我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

莱纳·魏斯

指数 莱纳·魏斯

莱纳·“莱”·魏斯(Rainer "Rai" Weiss,)是美國理論物理學者,因在引力物理學與天文物理學的貢獻而知名於學術界,是麻省理工学院物理学榮譽教授。在他學術生涯中最重要的成就為發展出激光干涉術,其為激光干涉引力波天文台(LIGO)的關鍵技術。魏斯是宇宙背景探測者(COBE)科學工作小組的主席。 2017年,魏斯因对LIGO探测器及引力波探测的决定性贡献而与巴里·巴里什及基普·索恩共同获得诺贝尔物理学奖。.

目录

  1. 23 关系: 基礎物理學突破獎基普·索恩塔夫茨大學宇宙微波背景宇宙背景探測者巴里·巴里什干涉測量術国家科学基金会美國物理學會美国国家航空航天局物理学魏瑪共和國诺贝尔物理学奖麻省理工学院邵逸夫獎重力波 (相對論)GW150914HannoverKip Thorne柏林激光干涉引力波天文台朗納·德瑞福普林斯顿大学

  2. 實驗物理學家
  3. 引力波天文学
  4. 移民外国的纳粹德国人物
  5. 移民美國的外國人

基礎物理學突破獎

基礎物理學突破獎(Fundamental Physics Breakthrough Prize)是由基礎物理學獎基金會(Fundamental Physics Prize Foundation)頒發的一個獎項。該基金會是由俄國物理學者與互聯網企業家尤里·米爾納於2012設立的非營利組織,專門表彰從事於基礎物理研究的物理學者。 從2012開始至今,基礎物理學突破獎是全世界獎額最高的物理學獎,獎金是諾貝爾物理學獎的兩倍以上。.

查看 莱纳·魏斯和基礎物理學突破獎

基普·索恩

基普·斯蒂芬·索恩(Kip Stephen Thorne, )是美国理论物理学家,主要贡献是在引力物理和天体物理学领域。索恩和英国物理学家斯蒂芬·霍金,以及美国天文学家、科普作家、科幻小说作家卡尔·萨根保持了长期的好友和同事关系。2009年以前一直担任加州理工学院费曼理论物理学教授,是当今世界上研究在天体物理学領域的广义相对论理論與實驗的领导者之一。 2017年,索恩因对LIGO探测器及引力波探测的决定性贡献而与莱纳·魏斯及巴里·巴里什共同获得诺贝尔物理学奖。.

查看 莱纳·魏斯和基普·索恩

塔夫茨大學

塔夫茲大学(Tufts University)是一所研究型大学,位于美国教育重镇波士顿,是美国公认的优秀大学之一。塔夫茨大学有10,000名左右本科生与研究生。大学本科有两个学院:文理学院和工程学院。研究生院有文理研究生院、工程研究生院、医学院、生物科学院、牙医学院、营养学院、兽医学院、和著名的佛莱彻法律与外交学院。佛莱彻是美国最早的国际关系研究生院。塔夫茨大学重视培养学生的公民社会活动和公共服务意识,并以其国际关系专业和海外学习项目而闻名。.

查看 莱纳·魏斯和塔夫茨大學

宇宙微波背景

宇宙微波背景(英语:Cosmic Microwave Background,简称CMB,又稱3K背景輻射)是宇宙學中“大爆炸”遺留下來的熱輻射。在早期的文獻中,「宇宙微波背景」稱為「宇宙微波背景輻射」(CMBR)或「遺留輻射」,是一種充滿整個宇宙的電磁輻射。特徵和絕對溫標2.725K的黑體輻射相同。頻率屬於微波範圍。宇宙微波背景是宇宙背景輻射之一,為觀測宇宙學的基礎,因其為宇宙中最古老的光,可追溯至再復合時期。利用傳統的光學望遠鏡,恆星和星系之間的空間(背景)是一片漆黑。然而,利用靈敏的輻射望遠鏡可發現微弱的背景輝光,且在各個方向上幾乎一模一樣,與任何恆星,星系或其他對象都毫無關係。這種光的電磁波譜在微波區域最強。1964年美國射電天文學家阿諾·彭齊亞斯和羅伯特·威爾遜偶然發現宇宙微波背景 ,这一发现是基于於1940年代開始的研究,並於1978年獲得諾貝爾獎。 宇宙微波背景很好地解釋了宇宙早期發展所遺留下來的輻射,它的發現被認為是一個檢測大爆炸宇宙模型的里程碑。宇宙在年輕時期,恆星和行星尚未形成之前,含有緻密,高溫,充滿著白熱化的氫氣雲霧電漿。電漿與輻射充滿著整個宇宙,隨著宇宙的膨脹而逐漸冷卻。當宇宙冷卻到某個溫度時,質子和電子結合形成中性原子。這些原子不再吸收熱輻射,因此宇宙逐漸明朗,不再是不透明的雲霧。宇宙學家提出中性原子在「再復合」時期形成,緊接在「光子脫耦」之後,即光子開始自由穿越整個空間,而非在電子與質子所組成的電漿中緊密的碰撞。光子在脫耦之後開始傳播,但由於空間膨脹,導致波長隨著時間的推移而增加(根據普朗克定律,波長與能量成反比),光線越來越微弱,能量也較低。這就是別稱「遺留輻射」的來源。「最後散射面」是指我們由光子脫耦時的放射源接收到光子的來源點在空間中的集合。 因為任何建議的宇宙模型都必須解釋這種輻射,因此宇宙微波背景是精確測量宇​​宙學的關鍵。宇宙微波背景在黑體輻射光譜的溫度為 K。光譜輻射dEν/dν的峰值為60.2 GHz,在微波頻率的範圍內。(若光譜輻射的定義為dEλ/dλ,則峰值波長為1.063公釐。) 該光輝在所有方向中幾乎一致,但細微的殘留變化展現出各向異性,與預期的一樣,分佈相當均勻的熾熱氣體已經擴大到目前的宇宙大小。特別的是,在天空中不同角度的光譜輻射包含相同的各向異性,或不規則性,隨區域大小變化。它們已被詳細測量,若有因物質在極小空間的量子微擾而起的微小溫度變化,且膨脹到今日可觀測的宇宙大小,應該會與之吻合。這是一個非常活躍的研究領域,科學家同時尋求更好的數據(例如,普郎克衛星)和更好的宇宙膨脹初始條件。雖然許多不同的過程都可產生黑體輻射的一般形式,但沒有比大霹靂模型更能解釋漲落。因此,大多數宇宙學家認為,宇宙大霹靂模型最能解釋宇宙微波背景。 在整個可視宇宙中有高度的一致性,黯淡卻已測得的各向異性非常廣泛的支持大霹靂模型,尤其是ΛCDM模型。此外,威爾金森微波各向異性探測器及宇宙泛星系偏振背景成像實驗觀測相距大於再復合時期之宇宙視界角尺度上漲落間的相關性。此相關可能為非因果的微調,或因宇宙暴脹產生。.

查看 莱纳·魏斯和宇宙微波背景

宇宙背景探測者

宇宙背景探測者(COBE),也稱為探險家66號 ,是建造來探索宇宙論的第一顆衛星。他的目的是調查宇宙間的宇宙微波背景輻射(CMB),而測量和提供的結果將可以協助提供我們了解宇宙的形狀,這工作也將可以鞏固宇宙的大霹靂理論。根據諾貝爾獎委員會的看法:「宇宙背景探測的計畫可以視為宇宙論成為精密科學的起點。」 這個計劃的兩位主要研究員,乔治·斯穆特和约翰·马瑟在2006年獲得諾貝爾物理獎。.

查看 莱纳·魏斯和宇宙背景探測者

巴里·巴里什

巴里·克拉克·巴里什(Barry Clark Barish,),美国实验物理学家,任加州理工学院林德物理学教授。他是引力波领域的专家,并于2017年“因对LIGO探测器及引力波探测的决定性贡献”而与莱纳·魏斯及基普·索恩共同获得诺贝尔物理学奖。.

查看 莱纳·魏斯和巴里·巴里什

干涉測量術

干涉测量术(Interferometry)是通过由波的叠加(通常为电磁波)引起的干涉现象来获取信息的技术。这项技术对于天文学、光纤、工程计量、光学计量、海洋学、地震学、光谱学及其在化学中的应用、量子力学、核物理学、粒子物理学、 等离子体物理学、遥感、、表面轮廓分析、微流控、应力与应变的测量、测速以及验光等领域的研究都非常重要。 干涉仪广泛应用于科学研究和工业生产中对微小位移、折射率以及表面平整度的测量。在干涉仪中,从单个光源发出的光会分为两束,经不同,最终交汇产生干涉。所产生的干涉图纹能够反映两束光的光程差。在科学分析中,干涉仪用于测量长度以及光学元件的形状,精度能到纳米级。它们是现有精度最高的长度测量仪器。在傅里叶变换光谱学中,干涉仪用于分析包含与物质相互作用发生吸收或散射信息的光。由两个及以上的望远镜组成,它们的信号汇合在一起,结果的分辨率与直径为元件间最大间距的望远镜的相同。.

查看 莱纳·魏斯和干涉測量術

国家科学基金会

国家科学基金会(National Science Foundation,缩写为NSF)是一个美国政府独立机构,支持除医学领域外的科学和工程学基础研究和教育,负责医学的同类机构为国家卫生研究院。2007年NSF财政预算为59.1亿美金,NSF资助的项目占美国联邦政府资助的美国大学基础研究的20%。在某些领域,如数学、计算机科学、经济学和社会科学,NSF是主要的联邦赞助者。 NSF的主任、副主任和理事会24位成员,由美国总统任命、美国参议院批准。NSF主任和副主任负责管理、计划、预算和日常运作。NSF理事会一年开会6次,确定政策。.

查看 莱纳·魏斯和国家科学基金会

美國物理學會

美國物理學會(American Physical Society,APS)成立於1899年,是世界最大的物理學組織,發表十餘種科學期刊,每年舉辦20多項科學會議,約有四萬多會員。该学会亦是美国物理协会成员组织。.

查看 莱纳·魏斯和美國物理學會

美国国家航空航天局

美國國家航空暨太空總署(National Aeronautics and Space Administration,縮寫为NASA)是美国联邦政府的一个独立机构,负责制定、实施美国的民用太空计划、與开展航空科學暨太空科學的研究。1958年7月29日,美国总统艾森豪威尔签署了《美国公共法案85-568》,创立了國家NASA航空和太空管理局,取代了其前身美國國家航空諮詢委員會(NACA)。於1958年10月開始運作。自此,美國國家航空暨太空總署負責了美國的太空探索,例如登月的阿波羅計劃,太空實驗室,以及隨後的航天飞机。自2006年2月,美国国家航空航天局的愿景是“開拓未來的太空探索,科學發現及航空研究”。美国国家航空航天局的使命是“理解并保护我们依賴生存的行星;探索宇宙,找到地球外的生命;启示我们的下一代去探索宇宙”。在太空计划之外,美国国家航空航天局还进行长期的民用以及军用航空航天研究。美国国家航空航天局被广泛认为是世界范围内太空机构中執牛耳者。美國國家航空暨太空總署透過地球觀測系統提升對地球的了解,透過太陽科學研究計劃精進太陽科學。美國國家航空暨太空總署注重於利用先進的機械任務探索太陽系中的的所有天體並利用天文觀測台及相關計劃研究天體物理學中的主題,例如大爆炸理論。美國國家航空暨太空總署與許多美國國內及國際的組織分享其研究數據。.

查看 莱纳·魏斯和美国国家航空航天局

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

查看 莱纳·魏斯和物理学

魏瑪共和國

威瑪共和國(Weimarer Republik)指1918年至1933年採用共和憲政政体的德国,于德意志帝國在第一次世界大战中战败、霍亨索伦王朝崩溃后成立。由於這段時間施行的宪法(一般称之为《威瑪憲法》)是在憲法召开的国民议会上通过的,因而得此名稱。其使用的國名為「德意志國」(Deutsches Reich)。「威瑪共和」这一稱呼是后世历史学家的称呼,从来不是政府的正式用名。有如現在的法蘭西共和國算是第五共和國,共和是針對政權的說明。 威瑪共和是德国历史上第一次走向共和的嘗試,于德国十一月革命后而生,因阿道夫·希特勒及纳粹党在1933年上台执政而结束。虽然1919年的威瑪共和宪法在第二次世界大战结束前在法律上仍然有效,但納粹黨政府在1933年采取的一体化(Gleichschaltung)政策已经彻底破坏了共和国的民主制度,所以魏玛共和国在1933年已经名存实亡。.

查看 莱纳·魏斯和魏瑪共和國

诺贝尔物理学奖

| title.

查看 莱纳·魏斯和诺贝尔物理学奖

麻省理工学院

麻省理工學院(Massachusetts Institute of Technology,縮寫為MIT)是位於美國麻薩諸塞州劍橋市的私立研究型大學。成立於1861年,當時目的是為了響應。學校採用了辦學,早期著力於應用科學與工程學的實驗教學。麻省理工的研究人員在二戰及冷戰期間,致力開發電腦、雷達及慣性導航系統技術;戰後的防禦性科技研究使學校得以進一步發展,教職員人數及校園面積在的帶領下有所上升。大學於1916年遷往現在位於查爾斯河北岸的校址,沿岸伸延逾,佔地。 擁有6間學術學院、32個學系部門的麻省理工學院常獲納入全球最佳學府之列。學校一直聞名於物理科學與工程學的教研,但在近代亦大力發展諸如生命科學、經濟學、管理學、語言學等其他學術範疇。別名「工程師」的麻省理工體育校隊合計31支,涵蓋不同項目,學生因此可參與不同類型的跨校體育聯賽。 ,著名麻省理工師生、校友或研究人員包括了91位諾貝爾獎得主、52位國家科學獎章獲獎者、45位羅德學者、38名麥克阿瑟獎得主、6名菲爾茲獎獲獎者、25位图灵奖得主。此校同時具很強的創業文化,由其校友所創辦的公司利潤總值相當於全球第十一大經濟體。.

查看 莱纳·魏斯和麻省理工学院

邵逸夫獎

邵逸夫獎(The Shaw Prize)由香港已故著名的影視製作人邵逸夫爵士於2002年11月創立,以表彰在科學學術研究上取得「對人類生活产生深遠影響」的成果的科學家。邵逸夫獎是一個重要的全球性的科學獎項,被稱為「東方諾貝爾獎」。.

查看 莱纳·魏斯和邵逸夫獎

重力波 (相對論)

在廣義相對論裡,重力波是時空的漣漪。當投擲石頭到池塘裡時,會在池塘表面產生漣漪,從石頭入水的位置向外傳播。當帶質量物體呈加速度運動時,會在時空產生漣漪,從帶質量物體位置向外傳播,這時空的漣漪就是重力波。由於廣義相對論限制了引力相互作用的傳播速度為光速,因此會產生重力波的現象。相反地說,牛頓重力理論中的交互作用是以無限的速度傳播,所以在這一理論下並不存在重力波。 由於重力波與物質彼此之間的相互作用非常微弱,重力波很不容易被傳播途中的物質所改變,因此重力波是優良的信息載子,能夠從宇宙遙遠的那一端真實地傳遞寶貴信息過來給人們觀測。重力波天文學是觀測天文學的一門新興分支。重力波天文學利用重力波來對於劇烈天文事件所製成的重力波波源進行數據收集,例如,像白矮星、中子星與黑洞一類的星體所組成的聯星,另外,超新星與大爆炸也是劇烈天文事件所製成的重力波波源。原則而言,天文學者可以利用重力波觀測到超新星的核心,或者大爆炸的最初幾分之一秒,利用電磁波無法觀測到這些重要天文事件。 阿爾伯特·愛因斯坦根據廣義相對論於1916年預言了重力波的存在。1974年,拉塞爾·赫爾斯和約瑟夫·泰勒發現赫爾斯-泰勒脈衝雙星。這雙星系統在互相公轉時,由於不斷發射重力波而失去能量,因此逐漸相互靠近,這現象為重力波的存在提供了首個間接證據。科學家也利用重力波探測器來觀測重力波現象,如簡稱LIGO的激光干涉重力波天文台。2016年2月11日,LIGO科學團隊與處女座干涉儀團隊共同宣布,人类於2015年9月14日首次直接探测到重力波,其源自於双黑洞合併。之後,又陸續多次探測到重力波事件,特別是於2017年8月17日首次探測到源自於雙中子星合併的重力波事件GW170817。除了LIGO以外,另外還有幾所重力波天文台正在建造。2017年,萊納·魏斯、巴里·巴利許與基普·索恩因成功探測到重力波,而獲得諾貝爾物理學獎。.

查看 莱纳·魏斯和重力波 (相對論)

GW150914

GW150914是由激光干涉引力波天文台(LIGO)于2015年9月14日探测到的引力波现象,是人类首次直接探测到的引力波。相关探测结果由LIGO、處女座干涉儀(VIRGO)研究团队于2016年2月11日共同宣布。这束产生于双黑洞的引力波信号与广义相对论中对双黑洞旋近、併合以及併合后的黑洞会发生衰荡(ringdown)的理论预测相符。同时GW150914也是人类对双黑洞併合的首度观测,展示了双黑洞系统确实存在,且其併合在宇宙的目前阶段仍能发生。 信號名稱GW150914的意義為「重力波2015年9月14日」,GW是重力波"Gravitational Wave",150914是發現日期。 对于引力波的实验探寻已经超过了50年。其与物质间的作用十分微弱,以致爱因斯坦本人都怀疑其是否能被探测到。此次探测到的引力波所造成的时空变化相对于LIGO探测器的一个干涉臂而言,相当于头发丝的宽度之于地球与太阳外最近恒星的距离。然而在併合最后阶段,等价于约3倍太阳质量的能量在不到1秒的时间内以引力波的形式释出,瞬时功率非常巨大,大于可观测宇宙中所有星体发光功率总和。 此次探测验证了广义相对论最后一项未被证实的理论预测,同时开启了引力波天文学的新纪元。引力波就此作为一种粒子和电磁波之外的新的探针,将被用于探测过去未能探测到的天体现象,如中子星的诞生、演化以及衰亡以及宇宙诞生之初的图景。.

查看 莱纳·魏斯和GW150914

Hannover

#重定向 汉诺威.

查看 莱纳·魏斯和Hannover

Kip Thorne

#重定向 基普·索恩.

查看 莱纳·魏斯和Kip Thorne

柏林

柏林(Berlin,)是德国首都,也是德国最大的城市,现有居民约340万人。柏林位于德国东北部,四面被勃兰登堡州环绕,施普雷河和哈弗尔河流经该市。柏林也是德国十六个-zh-hans:联邦州; zh-hant:邦-之一,和汉堡、不来梅同为德国僅有的三個城市州份。 柏林是欧盟區內人口第3多的城市(歐盟區人口最多的都市是法國的巴黎,其次是英國的倫敦)以及城市面积第8大的城市。它是柏林-勃兰登堡都会区的中心,有来自超过190个国家的5百万人口。地理上位于欧洲平原,受温带季节性气候影响。城市周围三分之一的土地由森林、公园、花园、河流和湖泊组成。据有关统数据统计,柏林总人口共有3,405,259人。 该根據考古发掘,柏林地區在八萬年前( 舊石器时代晚期市)已经有人類活動。該第一次有文字记载是在13世纪,柏林连续的成为以下这些国家的首都:普鲁士王国(1701年-1870年)、德意志帝国(1871年-1918年)、魏玛共和国(1919年-1933年)、納粹德國(1933年-1945年)。在1920年代,柏林是世界第3大自治市。第二次世界大战后,城市被分割;东柏林成为东德的首都,而西柏林事实上成为西德在东德的一块飛地,被柏林墙围住。直到1990年两德统一,该市重新获得全德国首都的地位,驻有147个。 柏林无论是从文化、政治、传媒还是科学上讲都称的上是世界级城市。该市经济主要基于服务业,包括多种多样的创造性产业、传媒集团、议会举办地点。柏林扮演欧洲大陆上航空与铁路运输交通枢纽的角色,同时它也是欧盟内游客数量最多的城市之一。主要的产业包括信息技术、制药、生物工程、生物科技、光学电子、交通工程和可再生能源。 柏林都会区有知名大学、研究院、体育赛事、管弦乐队、博物馆和知名人士。城市的历史遗存使该市成为国际电影产品的交流中心。该市在节日活动、建筑的多样化、夜生活、当代艺术、公共交通网络以及高质量生活方面得到广泛认可。柏林已经发展成一个全球焦点城市,以崇尚自由生活方式和现代精神的年轻人和艺术家而闻名。.

查看 莱纳·魏斯和柏林

激光干涉引力波天文台

光干涉引力波天文台(Laser Interferometer Gravitational-Wave Observatory,缩写:LIGO)是探测引力波的一个大规模物理实验和天文观测台,其在美國華盛頓州的汉福德與路易斯安那州的利文斯頓,分別建有激光干涉儀。利用兩個幾乎完全相同的干涉儀共同進行篩檢,可以大幅度減少誤判假引力波的可能性。干涉儀的靈敏度極高,即使臂長為4千米的干涉臂的長度發生任何變化小至質子的電荷直徑的萬分之一,都能夠被精確地察覺。 LIGO是由美国国家科学基金会(NSF)资助,由加州理工学院與麻省理工学院的物理学者基普·索恩、朗納·德瑞福與莱纳·魏斯領導創建的一个科學项目,兩個學院共同管理與營運LIGO的日常操作。在2002年至2010年之間,LIGO進行了多次探測實驗,蒐集到大量數據,但並未探測到引力波。為了提升探測器的靈敏度,LIGO於2010年停止運作,進行大幅度改良工程。2015年,LIGO重新正式探测引力波。負責组织参与该项目的人員,估計全球約有1000多个科学家參與探測引力波,另外,在2016年12月約有44萬名活跃的Einstein@Home用户。。 在2016年2月11日,和Virgo协作共同发表论文表示,在2015年9月14日检测到引力波信号,其源自於距离地球約13亿光年处的两个質量分別為36太阳质量與29太阳质量的黑洞併合。因為「對LIGO探測器及重力波探測的決定性貢獻」,索恩、魏斯和LIGO主任巴里·巴里什榮獲2017年諾貝爾物理學獎。.

查看 莱纳·魏斯和激光干涉引力波天文台

朗納·德瑞福

朗納·德瑞福(Ronald Drever,),英國實驗物理學者,加州理工學院榮譽教授,是LIGO計畫創始人之一。德瑞福是能夠穩定激光的的發明者之一。對於2015年9月人類首次直接探測到引力波的創舉,這技術具有關鍵性作用。 在格拉斯哥大學,德瑞福開始了他的學術生涯,後來,他被聘請至加州理工學院。在那裏,他成立了一個引力波計畫。 德瑞福最近期的研究涉及到發展一種光學浮置科技,其可以使得實驗儀器與地震隔離。德瑞福退休后因痴呆症而在蘇格蘭的一家療養院休養。德瑞福已于2017年3月7日在苏格兰爱丁堡逝去,享年85岁。.

查看 莱纳·魏斯和朗納·德瑞福

普林斯顿大学

普林斯顿大学(Princeton University),又译普林斯敦大学,常被直接称为普林斯顿,是一所位於美国新泽西州普林斯顿的私立研究型大学,现为八所常春藤盟校之一。 普林斯顿历史悠久。它成立于1746年,是九所在美国革命前成立的殖民地学院之一,同时也是美国第四古老的高等教育机构。其在1747年移至纽瓦克,最终在1756年搬到了现在的普林斯顿,并于1896年正式改名为“普林斯顿大学”。虽然其旧校名是“新泽西学院”,但它与今天位于邻近的尤因镇(Ewing Township)的“新泽西学院”没有任何关联。此外虽然它最初是长老制的教育机构,但学校从没有跟任何宗教机构有直接的联系,而现在对学生亦无任何宗教上的要求。 普林斯顿现提供各种有关人文、自然科学、社会科学及工程学的本科及研究生课程;它并没有医学院、法学院、神学院及商学院,但能在政治及工程上提供专业课程。大学也与普林斯顿高等研究院及普林斯顿宗教学校有联谊。至今,已经有63位诺贝尔奖得主、17名美国国家科学奖章得主,14名菲尔兹奖得主,13名图灵奖得主,及3名美国国家人文奖章夺得人曾经或现为普林斯顿大学的毕业生或教职员。另外,普林斯顿也是获得最多捐款的学术机构之一。.

查看 莱纳·魏斯和普林斯顿大学

另见

實驗物理學家

引力波天文学

移民外国的纳粹德国人物

移民美國的外國人