徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

自相关函数

指数 自相关函数

自相关(Autocorrelation),也叫序列相关,是一个信号于其自身在不同时间点的互相关。非正式地来说,它就是两次观察之间的相似度对它们之间的时间差的函数。它是找出重复模式(如被噪声掩盖的周期信号),或识别隐含在信号谐波频率中消失的基頻的数学工具。它常用于信号处理中,用来分析函数或一系列值,如時域信号。.

24 关系: 埃爾米特函數卷积奇函數與偶函數实函数三維空間平稳过程互相关信号 (信息论)信号处理周期函数傅里叶变换共轭共轭复数短時距傅立葉變換离散信号維度维纳-辛钦定理白雜訊谐波谱密度自协方差柯西-施瓦茨不等式消失的基頻時域

埃爾米特函數

在數學分析的領域中,埃爾米特函數是當一個函數的共軛複數與將原函數的自變數變號後的值相等的复变函數。对于所有在 f 定义域内的所有 x 满足: (其中上横线表示复共轭) 这个定义也可以扩展到两个或多个变量的函数,例如,对于两个变量的函数 f,当 f 定义域内的所有数对 (x_1, x_2) 满足 时,它为埃尔米特函数。 根据这个定义,可得出一个很显然的推论:当且仅当.

新!!: 自相关函数和埃爾米特函數 · 查看更多 »

卷积

在泛函分析中,捲積、疊積、--積或旋積,是通过两个函数f和g生成第三个函数的一种数学算子,表徵函数f与经过翻转和平移的g的乘積函數所圍成的曲邊梯形的面積。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑動平均”的推广。.

新!!: 自相关函数和卷积 · 查看更多 »

奇函數與偶函數

在數學裡,偶函數和奇函數是滿足著相對於加法逆元之特定對稱關係的函數。這在數學分析的許多領域中都很重要,特別是在冪級數和傅立葉級數的理論裡。其命名是因為冪函數的冪的奇偶性滿足下列條件:若n為一偶數,則函數xn是偶函數,若n為一奇數,則為奇函數。.

新!!: 自相关函数和奇函數與偶函數 · 查看更多 »

实函数

实函数(Real function),指定义域和值域均为实数集的子集的函数。實函數的特性之一是可以在坐標平面上畫出圖形。.

新!!: 自相关函数和实函数 · 查看更多 »

三維空間

三维空间(也称为三度空間、三次元、3D),日常生活中可指由長、宽、高三个维度所構成的空間,而且常常是指三维的欧几里得空间。在历史上很长的一段时期中,三维空间被认为是我们生存的空间的数学模型。当时的物理学家认为空间是平坦的。20世纪以来,非欧几何的发现使得实际空间的性质有了其它的可能性。而相对论的诞生以及相应的数学描述:闵可夫斯基时空将时间和空间整体地作为四维的连续统一体进行看待。弦理论问世以后,用三维空间来描述现实中的宇宙已经不再足够,而需要用到更高维的数学模型,例如十维的空间。 Category:立體幾何 S S S.

新!!: 自相关函数和三維空間 · 查看更多 »

平稳过程

在数学中,平稳过程(Stationary process),又稱严格平稳过程(Strict(ly) stationary process)或強平穩過程()是一種特殊的隨機過程,在其中任取一段期間或空間(t.

新!!: 自相关函数和平稳过程 · 查看更多 »

互相关

在统计学中,互相关有时用来表示两个随机矢量 X 和 Y 之间的协方差cov(X, Y),以与矢量 X 的“协方差”概念相区分,矢量 X 的“协方差”是 X 的各标量成分之间的协方差矩阵。 在信号处理领域中,互相关(有时也称为“互协方差”)是用来表示两个信号之间相似性的一个度量,通常通过与已知信号比较用于寻找未知信号中的特性。它是两个信号之间相对于时间的一个函数,有时也称为“滑动点积”,在模式识别以及密码分析学领域都有应用。 对于离散函数 fi 和 gi 来说,互相关定义为 其中和在整个可能的整数 j 区域取和,星号表示复共轭。对于连续信号 f(x) 和 g(x) 来说,互相关定义为 其中积分是在整个可能的 t 区域积分。 互相关实质上类似于两个函数的卷积。.

新!!: 自相关函数和互相关 · 查看更多 »

信号 (信息论)

在通讯系统、信号处理或者电子工程等技术领域中,信号是“传递有关一些现象的行为或属性的信息的函数。” 在现实世界中,任何随时间或者空间变化的量(如影像)都是潜在的信号,它们可能会提供一个物理系统的状态信息,或在不同观察者之间传达消息等。《IEEE信号处理汇刊》阐述“信号”一词如下: 信号的其他例子如传递温度信息的热电偶输出,传递酸度信息的pH计输出。 一般来说,信号通常由传感器提供,而且通常用换能器将能量从原始形式转换为其他形式。例如,麦克风的声学信号转换为电压波形,而一个扬声器做相反的事情。.

新!!: 自相关函数和信号 (信息论) · 查看更多 »

信号处理

在计算机科学、药物分析、电子学等学科中,信号处理(signal processing)是指对信号表示、变换、运算等进行处理的过程。 信号处理可以用于沟通人类之间,或人与机器之间的联系;用以探测我们周围的环境,并揭示出那些不易观察到的状态和构造细节,以及用来控制和利用能源与信息.例如,我们可能希望分开两个或多个多少有些混在一起的信号,或者想增强信号模型中的某些成分或参数。 几十年来,信号处理在诸如语音与資料通訊、生物医学工程、声学、声呐、雷达、地震、石油勘探、仪器仪表、机器人、日用电子产品以及其它很多的这样一些广泛的领域内起着关键的作用。.

新!!: 自相关函数和信号处理 · 查看更多 »

周期函数

在数学中,周期函数是無論任何独立变量上經過一个确定的周期之后数值皆能重复的函数。我们日常所见的钟表指针以及月亮的月相都呈现出周期性的特点。周期性运动是系统的运动位置呈现周期性的运动。 对于实数或者整数函数来说,周期性意味着按照一定的间隔重复一个特定部分就可以绘制出完整的函数图。如果在函数f中所有的位置x都满足 那么,f就是周期为T的周期函数。非周期函数就是没有类似周期T的函数。 如果周期函数f的周期为T,那么对于f中的任意x以及任意整数n,有 若T.

新!!: 自相关函数和周期函数 · 查看更多 »

傅里叶变换

傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.

新!!: 自相关函数和傅里叶变换 · 查看更多 »

共轭

共轭(conjugate)可以指:.

新!!: 自相关函数和共轭 · 查看更多 »

共轭复数

在數學中,複數的複共軛(常簡稱共軛)是對虛部變號的運算,因此一個複數 的複共軛是 舉例明之: 在複數的極坐標表法下,複共軛寫成 這點可以透過歐拉公式驗證 將複數理解為複平面,則複共軛無非是對實軸的反射。複數z的複共軛有時也表為z^*。.

新!!: 自相关函数和共轭复数 · 查看更多 »

短時距傅立葉變換

短時距傅立葉變換是傅立葉變換的一種變形,用於決定隨時間變化的信號局部部分的正弦頻率和相位。實際上,計算短時傅立葉變換(STFT)的過程是將長時間信號分成數個較短的等長信號,然後再分別計算每個較短段的傅立葉轉換。通常拿來描繪頻域與時域上的變化,為時頻分析中其中一個重要的工具。.

新!!: 自相关函数和短時距傅立葉變換 · 查看更多 »

离散信号

离散信号是在连续信号上采样得到的信号。与连续信号的自变量是连续的不同,离散信号是一个序列,即其自变量是“离散”的。这个序列的每一个值都可以被看作是连续信号的一个采样。由于离散信号只是采样的序列,并不能从中获得采样率,因此采样率必须另外存储。以时间为自变量的离散信号为离散时间信号。 离散信号并不等同于数字信号。数字信号不仅是离散的,而且是经过量化的。即,不仅其自变量是离散的,其值也是离散的。因此离散信号的精度可以是无限的,而数字信号的精度是有限的。而有着无限精度,亦即在值上连续的离散信号又叫抽样信号。所以离散信号包括了数字信号和抽样信号。 实际的离散信号都是从连续信号采样而来,由此引出了采样定理。.

新!!: 自相关函数和离散信号 · 查看更多 »

維度

维度,又稱维数,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。 0维是一點,沒有長度。1维是線,只有長度。2维是一個平面,是由長度和寬度(或曲線)形成面積。3维是2维加上高度形成「體積面」。雖然在一般人中習慣了整數维,但在碎形中維度不一定是整數,可能会是一个非整的有理数或者无理数。 我们周围的空间有3个维(上下、前后、左右)。我們可以往上下、東南西北移動,其他方向的移動只需用3個三维空間軸來表示。向下移就等於負方向地向上移,向西北移就只是向西和向北移的混合。 在物理學上時間是第四维,與三個空間维不同的是,它只有一個,且只能往一方向前進。 我们所居於的时空有四个维(3个空间轴和1个时间轴),根據愛因斯坦的概念稱為四维时空,我們的宇宙是由時间和空间構成,而這條時間軸是一條虛數值的軸。 弦理論認為我們所居於的宇宙實際上有更多的維度(通常10、11或24個)。但是這些附加的维度所量度的是次原子大小的宇宙。 维度是理论模型,在非古典物理学中这点更为明显。所以不用计较宇宙的维数是多少,只要方便描述就行了。 在物理學中,質的量纲通常以質的基本單位表示:例如,速率的量纲就是長度除以時間。.

新!!: 自相关函数和維度 · 查看更多 »

维纳-辛钦定理

在应用数学中,维纳-辛钦定理(Wiener–Khinchin theorem),又称维纳-辛钦-爱因斯坦定理或辛钦-柯尔莫哥洛夫定理。该定理指出:宽平稳随机过程的功率谱密度是其自相关函数的傅里叶变换。.

新!!: 自相关函数和维纳-辛钦定理 · 查看更多 »

白雜訊

白噪声,是一種功率譜密度為常數的隨機信號或随机过程。即,此信號在各個频段上的功率是一樣的。由于白光是由各種頻率(颜色)的单色光混合而成,因而此信号的這種具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。相对的,其他不具有这一性质的噪声信号被称为有色噪声。 理想的白噪声具有無限頻寬,因而其能量是無限大,這在现实世界是不可能存在的。实际上,我們常常將有限頻寬的平整訊號視為白噪声,以方便进行數學分析。.

新!!: 自相关函数和白雜訊 · 查看更多 »

谐波

谐波是一个数学或物理学概念,是指周期函数或周期性的波形中能用常数、与原函数的最小正周期相同的正弦函数和余弦函数的线性组合表达的部分。.

新!!: 自相关函数和谐波 · 查看更多 »

谱密度

時間序列 x(t) 的功率谱 S_(f) 描述了信号功率在频域的分布状况。根据傅里叶分析,任何物理信号都可以分解成一些离散频率或连续范围的频谱。对特定信号或特定种类信号(包括噪声)频率内容的分析的统计平均,称作其频谱。 当信号的能量集中在一个有限时间区间的时候,尤其是总能量是有限的,就可以计算能量频谱密度。更常用的是应用于在所有时间或很长一段时间都存在的信号的功率谱密度。由于此种持续存在的信号的总能量是无穷大,功率谱密度(PSD)则是指单位时间的光谱能量分布。频谱分量的求和或积分会得到(物理过程的)总功率或(统计过程的)方差,这与帕塞瓦尔定理描述的将 x^2(t) 在时间域积分所得相同。 物理过程 x(t) 的频谱通常包含与 x 的性质相关的必要信息。比如,可以从频谱分析直接确定乐器的音高和音色。电磁波电场 E(t) 的频谱可以确定光源的颜色。从这些时间序列中得到频谱就涉及到傅里叶变换以及基于傅里叶分析的推广。许多情况下时间域不会具体用在实践中,比如在攝譜儀用散射棱镜来得到光谱,或在声音通过内耳的听觉感受器上的效应来感知的过程,所有这些都是对特定频率敏感的。 不过本文关注的是时间序列(至少在统计意义上)已知,或可以直接测量(如经麦克风采集再由电脑抽样)的情形。功率谱在与随机过程的统计研究以及物理和工程中的许多其他领域中都很重要。通常情况下,该过程是时间的函数,但也同样可以讨论空间域的数据按空間頻率分解。.

新!!: 自相关函数和谱密度 · 查看更多 »

自协方差

在统计学中,特定时间序列或者连续信号Xt的自协方差是信号与其经过时间平移的信号之间的协方差。如果序列的每个状态都有一个平均数E .

新!!: 自相关函数和自协方差 · 查看更多 »

柯西-施瓦茨不等式

數學上,柯西-施瓦茨不等式,又稱施瓦茨不等式或柯西-布尼亞科夫斯基-施瓦茨不等式,是一條很多場合都用得上的不等式;例如線性代數的矢量,數學分析的無窮級數和乘積的積分,和概率論的方差和協方差。它被认为是最重要的数学不等式之一。它有一些推广,如赫尔德不等式。 不等式以奧古斯丁·路易·柯西(Augustin Louis Cauchy),赫爾曼·阿曼杜斯·施瓦茨(Hermann Amandus Schwarz),和(Виктор Яковлевич Буняковский)命名。.

新!!: 自相关函数和柯西-施瓦茨不等式 · 查看更多 »

消失的基頻

消失的基頻(missing fundamental)是心理聲學(psychoacoustics)領域常被談論的現象。週期訊號的基頻即為訊號的音高,但基頻訊號的強度大小卻不一定大過泛音強度大小,有時基頻訊號的強度大小甚至為零,這種情形即為我們所謂的消失的基頻。 在日常生活中,一般的樂器的聲音均是由基頻與倍頻(泛音)組合而成,而基頻就是影響聲音音高的主要因素之一。然而,當我們將基頻的強度以人為得方式調整為零時,會發現被調整過後的聲音音高仍舊不變。 此一現象雖然讓音高在頻譜上的判別更加困難,但也被應用於訊號處理領域。 這裡有一個網站可以讓各位聽看看一些基頻消失的例子.

新!!: 自相关函数和消失的基頻 · 查看更多 »

時域

時域(time domain)是描述數學函數或物理信號對時間的關係。例如一個信號的時域波形可以表達信號隨著時間的變化。 若考慮離散時間,時域中的函數或信號,在各個離散時間點的數值均為已知。若考慮連續時間,則函數或信號在任意時間的數值均為已知。 在研究時域的信號時,常會用示波器將信號轉換為其時域的波形。.

新!!: 自相关函数和時域 · 查看更多 »

重定向到这里:

自相关自相关系数自相關函數

传出传入
嘿!我们在Facebook上吧! »