徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

自發過程

指数 自發過程

自發過程(spontaneous process),或自發程序,是系統隨時間釋放自由能、移往自由能更低且更加熱力學平衡的能量狀態的過程。自由能變化的正負值取決於熱力學的測量傳統,當系統釋放自由能,系統自由能變化為負值,而外界自由能變化為正值。 隨著過程的條件不同,所採用的自由能也不相同。例如,當考慮恆溫恆壓過程時,應採用吉布斯自由能;而考慮恆溫恆容過程時,則採用亥姆霍茲自由能。 由於降低系統自由能為自發過程的特色,因此該過程不需外界提供能量即可發生。 於孤立系統的情形之下,系統邊界無任何能量交換,增加系統熵的方向為自發過程的方向。.

8 关系: 吉布斯自由能孤立系統系統热力学热力学第二定律絕對溫度

吉布斯自由能

#重定向 吉布斯能.

新!!: 自發過程和吉布斯自由能 · 查看更多 »

孤立系統

在熱力學之中,孤立系統(或孤懸系統)是指一個完全不與外界交換能量或質量的系統。任何能量或質量都不能進入或者離開一個孤立系統,只能在系統內移動。 除了把整個宇宙視為一體之外,孤立系統並不存在於現實之中。但是,在一定次數內,有些真實系統的行為近乎於孤立系統。因而,孤立系統的概念可以作為真實情況的一個近似模型。在建立以數學模型描述一些自然現象時,孤立系統是個可被接受的模型。 可被近似於孤立系統的模型包括:.

新!!: 自發過程和孤立系統 · 查看更多 »

系統

系統(system;system;système;sistema)泛指由一群有關聯的個體組成,根據某種規則運作,能完成個別元件不能單獨完成的工作的群體。 系統分為自然系統與人為系統兩大類。.

新!!: 自發過程和系統 · 查看更多 »

热力学

热力学,全稱熱動力學(thermodynamique,Thermodynamik,thermodynamics,源於古希腊语θερμός及δύναμις)是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与準平衡态的物理、化学过程。热力学定義許多巨觀的物理量(像溫度、內能、熵、壓強等),描述各物理量之間的關係。热力学描述數量非常多的微觀粒子的平均行為,其定律可以用統計力學推導而得。 熱力學可以總結為四條定律。 熱力學第零定律定義了温度這一物理量,指出了相互接觸的两个系統,熱流的方向。 熱力學第一定律指出内能這一物理量的存在,並且與系統整體運動的動能和系統与與環境相互作用的位能是不同的,區分出熱與功的轉換。 熱力學第二定律涉及的物理量是温度和熵。熵是研究不可逆过程引入的物理量,表征系統通過熱力學過程向外界最多可以做多少熱力學功。 熱力學第三定律認為,不可能透過有限過程使系統冷却到絕對零度。 熱力學可以應用在許多科學及工程的領域中,例如:引擎、相變化、化學反應、輸運現象甚至是黑洞。熱力學計算的結果不但對物理的其他領域很重要,對航空工程、航海工程、車輛工程、機械工程、細胞生物學、生物醫學工程、化學、化學工程及材料科學等科學技術領域也很重要,甚至也可以應用在經濟學中。 热力学是从18世纪末期发展起来的理论,主要是研究功與热量之間的能量轉換;在此功定義為力與位移的內積;而熱則定義為在熱力系統邊界中,由溫度之差所造成的能量傳遞。兩者都不是存在於熱力系統內的性質,而是在熱力過程中所產生的。 熱力學的研究一開始是為了提昇蒸汽引擎的效率,早期尼古拉·卡諾有許多的貢獻,他認為若引擎效率提昇,法國有可能贏得拿破崙戰爭。出生於愛爾蘭的英國科學家開爾文在1854年首次提出了熱力學明確的定義: 一開始熱力學研究關注在熱機中工質(如蒸氣)的熱力學性質,後來延伸到化学过程中的能量轉移,例如在1840年科學家杰迈因·亨利·盖斯提出,有關化學反應的能量轉移的研究。化學熱力學中研究熵對化學反應的影響Gibbs, Willard, J. (1876).

新!!: 自發過程和热力学 · 查看更多 »

热力学第二定律

热力学第二定律(second law of thermodynamics)是热力学的三条基本定律之一,表述热力学过程的不可逆性——孤立系统自發地朝著熱力學平衡方向──最大熵狀態──演化,同样地,第二类永动机永不可能实现。 這一定律的歷史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。定律的数学表述主要借助魯道夫·克勞修斯所引入的熵的概念,具体表述为克劳修斯定理。 虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到解释。 这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。定律本身可作为过程不可逆性及时间流向的判据。而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等。.

新!!: 自發過程和热力学第二定律 · 查看更多 »

絕對溫度

#重定向 热力学温标.

新!!: 自發過程和絕對溫度 · 查看更多 »

焓(enthalpy,读音ㄏㄢˊ|hán)是一个热力学系统中的能量参数。规定由字母H表示(H来自于英语Heat Capacity(热容)一词),单位為焦耳(J)。此外在化学和技术文献中,摩尔焓Hm(单位:千焦/摩尔,kJ/mol)和质量焓(或比焓)h(单位:千焦/千克,kJ/kg)也非常重要,它们分别描述了焓在单位物质的量和单位质量上的定义。 焓是内能和体积的勒让德变换。它是SpN总合的热势能。.

新!!: 自發過程和焓 · 查看更多 »

化學及热力学中所谓熵(entropy),是一種測量在動力學方面不能做功的能量總數,也就是當總體的熵增加,其做功能力也下降,熵的量度正是能量退化的指標。熵亦被用於計算一個系統中的失序現象,也就是計算該系統混亂的程度。熵是一个描述系统状态的函数,但是经常用熵的参考值和变化量进行分析比较,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。.

新!!: 自發過程和熵 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »