徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

能量守恒定律

指数 能量守恒定律

能量守恒定律(law of conservation of energy)闡明,孤立系统的总能量 E 保持不变。如果一个系统处于孤立环境,即不能有任何能量或質量从该系统输入或输出。能量不能无故生成,也不能无故摧毁,但它能够改变形式,例如,在炸弹爆炸的过程中,化学能可以转化为动能。 从能量守恒定律可以推导出第一類永动机永远無法實現。没有任何孤立系统能够持續對外提供能量。.

72 关系: 加农炮动能动量动量守恒定律动量中心系卡尔·弗里德里希·莫尔反電中微子参考系守恒定律安托万-洛朗·德·拉瓦锡对称性 (物理学)尤利乌斯·冯·迈尔尼古拉·卡诺工程师不变质量不确定性原理中子丹麦伽利略·伽利莱彈性碰撞化學能哲學家哈密顿力学内能元素光子四维动量皮耶爾-西蒙·拉普拉斯米哈伊尔·瓦西里耶维奇·罗蒙诺索夫约翰·普莱费尔热功当量热力学第二定律热质说电子电荷守恒定律物理学家物理定律牛顿狭义相对论狹義相對論中的質量相对论荷屬東印度角动量守恒定律詹姆斯·普雷斯科特·焦耳诺特定理质量质量守恒定律贾斯帕-古斯塔夫·科里奥利...路德維格·奧古斯特·柯丁能量能量守恒定律阿尔伯特·爱因斯坦赫尔曼·冯·亥姆霍兹量子力学自然哲学的数学原理速度連續對稱恩培多克勒氧气波函数泰勒斯活力本杰明·汤普森,伦福德伯爵机械能惯性参考系戈特弗里德·莱布尼茨时空摩擦力托马斯·杨拉格朗日量 扩展索引 (22 更多) »

功(work),也叫机械功,是物理学中表示力对位移的累积的物理量,指从一种物理系统到另一种物理系统的能量转变,尤其是指通过使物体朝向力的方向移动的力的作用下能量的转移。与机械能相似的是,功也是标量,国际单位制单位为焦耳。 “功”一词最初是法国数学家贾斯帕-古斯塔夫·科里奥利创造的。 由动能定理,若一个外力作用于一物体使之动能从Ek0增至Ek,那么,此力所作的机械功为: 其中m是物体的质量,v是物体的速度。 机械功就是力与位移的內積: 若力与位移的夹角小于直角,则机械功为正,亦称为力作正功。若力与位移的夹角大于直角,则机械功为负,或力作负功,或物体克服力作功。 若力的方向与位移方向垂直,则此力不作功: 舉例來說:一個10牛頓(F.

新!!: 能量守恒定律和功 · 查看更多 »

加农炮

加农炮(Cannon),為火炮的一種,東西方談論加農砲的定義並不相同。目前來說,加農炮它較同口徑的榴彈炮有更長的炮管,因此炮彈可以獲得更強的膛內壓力、更快的初速,讓炮彈可以射到更遠的距離。同時因為初速較快,所以加農炮的投射彈道衰減較慢,火砲射擊彈道較為平直,因此也可以作為直射炮使用。在20世紀冷戰後,由於軍隊追求更遠的火炮射程,稱為榴彈炮的武器也具備長炮管,因此現在榴彈炮與加農炮已無明確分類。.

新!!: 能量守恒定律和加农炮 · 查看更多 »

动能

动能是物质运动时所得到的能量。它通常被定义成使某物体从静止状态至运动状态所做的功。由于运动是相对的,动能也是相对于某参照系而言。同一物体在不同的参照系会有不同的速率,也就是有不同的动能。动能的国际单位是焦耳(J),以基本单位表示是千克米平方每秒平方(kg·m2·s-2)。一个物体的动能只有在速率改变时才会改变。.

新!!: 能量守恒定律和动能 · 查看更多 »

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

新!!: 能量守恒定律和动量 · 查看更多 »

动量守恒定律

动量守恒定律(Conservation of momentum):如果物体系受到的合外力为零,则系统内各物体动量的矢量合保持不变,系統質心維持原本的運動狀態。.

新!!: 能量守恒定律和动量守恒定律 · 查看更多 »

动量中心系

在物理学中,动量中心系(Center-of-momentum frame)是人为选取的这样一个参考系,在此参考系中,系统的总动量为零。动量中心系又叫做零动量系(zero-momentum frame)。 动量中心系的特例是质心参考系,即原点固定在体系质心的动量中心系。.

新!!: 能量守恒定律和动量中心系 · 查看更多 »

卡尔·弗里德里希·莫尔

卡尔·弗里德里希·莫尔(Karl Friedrich Mohr,1806年11月4日-1879年9月28日),德国化学家。其最著名贡献为提出能量守恒定律的早期表述。硫酸亚铁铵(化学式(NH4)2Fe(SO4)2.6H2O)以其姓氏又被称为莫尔盐(Mohr's salt)。.

新!!: 能量守恒定律和卡尔·弗里德里希·莫尔 · 查看更多 »

反電中微子

反電中微子,是電中微子的反物質,中子衰變後,會形成質子、電子和反電中微子與些許的能量。.

新!!: 能量守恒定律和反電中微子 · 查看更多 »

参考系

参考系(又称参照系、参考坐标),在物理學中指用以測量並記錄位置、定向以及其他物體屬性的坐標系;或指與觀測者的運動狀態相關的觀測參考系;又或同指兩者。.

新!!: 能量守恒定律和参考系 · 查看更多 »

守恒定律

在物理學裏,假若孤立物理系統的某種可觀測性質遵守守恆定律(law of conservation),則隨著系統的演進,這種性質不會改變。 諾特定理是關於守恆定律的重要理論。諾特定理表明,每一種守恆定律,必定有其伴隨的物理對稱性。例如,伴隨著能量守恆的是物理系統對於時間的不變性。不論在空間的取向為何,物理系統的物理行為一樣,這性質導致角動量守恆。.

新!!: 能量守恒定律和守恒定律 · 查看更多 »

安托万-洛朗·德·拉瓦锡

安托万-洛朗·德·拉瓦锡(Antoine-Laurent de Lavoisier,),法国貴族,著名化学家、生物学家 ,被後世尊稱為“近代化學之父”。他使化学从定性转为定量,給出了氧與氫的命名,並且預測了硅的存在。他幫助建立了公制。拉瓦锡提出了「元素」的定義,按照這定義,於1789年發表第一個現代化學元素列表,列出33種元素,其中包括光與熱和一些當時被認為是元素的化合物。拉瓦锡的貢獻促使18世紀的化學更加物理及數學化。他提出规范的化学命名法,撰写了第一部真正現代化学教科书《化學基本論述》(Traité Élémentaire de Chimie)。他倡导并改进定量分析方法并用其验证了质量守恒定律。他創立氧化说以解释燃烧等实验现象,指出动物的呼吸实质上是缓慢氧化。这些划时代贡献使得他成为历史上最伟大的化学家之一。 拉瓦锡曾任税务官,因此他有充足的资金进行科学研究。不幸在法国大革命中被送上断头台而死。.

新!!: 能量守恒定律和安托万-洛朗·德·拉瓦锡 · 查看更多 »

对称性 (物理学)

对称性(symmetry)是现代物理学中的一个核心概念,系统从一个状态到另一个状态,如果这两个状态等价,则说系统对这一变换是对称的。或者说给系统一个“操作”,如果系统从一个状态变到另一个等价的状态,则说系统对这一操作是对称的。它泛指「规范对称性」(gauge symmetry),或「局域对称性」(local symmetry)和「整体对称性」(global symmetry)。它是指一个理论的拉格朗日量或运动方程在某些变量的变化下的不变性。如果这些变量随时空变化,这个不变性被称为规范对称性,反之则被称为整体对称性。物理学中最简单的对称性例子是牛顿运动方程的伽利略变换不变性和麦克斯韦方程的洛伦兹变换不变性和相位不变性。 数学上,这些对称性由群论来表述。上述例子中的群分别对应着伽利略群,洛伦兹群和U(1)群。对称群为连续群和分立群的情形分别被称为「连续对称性」(continuous symmetry)和「離散對稱性」(discrete symmetry)。德国数学家外尔(Hermann Weyl)是把这套数学方法运用于物理学中并意识到规范对称重要性的第一人。1950年代杨振宁和米尔斯意识到规范对称性可以完全决定一个理论的拉格朗日量的形式,并构造了核作用的SU(2)规范理论。从此,规范对称性被大量应用于量子场论和粒子物理模型中。在粒子物理的标准模型中,强相互作用,弱相互作用和电磁相互作用的规范群分别为SU(3),SU(2)和U(1)。除此之外,其他群也被理论物理学家广泛地应用,如大统一模型中的SU(5),SO(10)和E_6群,超弦理论中的SO(32)和E_8\times E_8群。 整体对称性在粒子物理和量子场论的发展中也起着非常重要的角色,如强相互作用的手征对称性。规范和整体对称性破缺是粒子物理學和凝聚体物理学的重要概念。.

新!!: 能量守恒定律和对称性 (物理学) · 查看更多 »

尤利乌斯·冯·迈尔

尤利乌斯·罗伯特·冯·迈尔(Julius Robert von Mayer,),德国物理学家、医生,热力学的奠基人之一,热力学第一定律的发现者之一。1841年提出相当于能量的“力”的概念,认为运动、热、电等都可以归纳为一种“力”。次年证明从热到机械力与从机械力到热的转化,并作出“一切机械运动都能借摩擦转化为热”的判断。.

新!!: 能量守恒定律和尤利乌斯·冯·迈尔 · 查看更多 »

尼古拉·卡诺

尼古拉·莱昂纳尔·萨迪·卡诺(Nicolas Léonard Sadi Carnot,),法国物理学家、工程师,常被形容為“熱力學之父”。尼古拉·卡诺在1824年6月12日发表了他唯一的出版著作《论火的动力》(《Reflections on the Motive Power of Fire》)。卡诺在这部著作中提出了卡诺热机和卡诺循环概念及“卡诺原理”(现在称为卡诺定理)。在卡诺的一生中,他的研究不曾引起外界关注。卡诺生前的好友罗贝林(Robelin)在法国《百科评论》杂志上曾经这样写道:“卡诺孤独地生活、凄凉地死去,他的著作无人阅读,无人承认。”不过後來他的理论被鲁道夫·克劳修斯和威廉·汤姆森重新陳述,是建立热力学第二定律的正式定義熵的概念的重要基础。《论火的动力》这部著作也成为热力学成为现代科学的标志。1832年,他染上了流行性霍乱,在同年8月24日被夺去了生命,病逝于巴黎,年仅36岁。.

新!!: 能量守恒定律和尼古拉·卡诺 · 查看更多 »

工程师

工程师(Engineer)是指那些在工程专业领域的人,他们使用科学知识来驾驭技术以解决实际问题,并以此为职业。.

新!!: 能量守恒定律和工程师 · 查看更多 »

不变质量

不变质量(invariant mass)或称内秉质量(intrinsic mass)、固有质量(proper mass),亦常简称为质量,指的是一个物体或一个物体系统由总能量和动量构成的在所有参考系下都相同的一个洛仑兹不变量。当这个系统作为整体保持静止时,不变质量等于系统的总能量除以光速的平方,这也等于这个系统在一个与之相对静止的秤上称得的质量。如果系统由一个单一粒子组成,不变质量也称作这个粒子的静止质量。 由于一个孤立系统的质心总保持匀速直线运动,因此观察者总可以选择这样一个参考系,使系统在这一参考系中的总动量为零,即相对这个参考系为静止。这样的参考系称作质心系,这时系统的不变质量就等于系统的总能量除以光速的平方。这个於质心系下的总能量,可以被看作是系统在不同惯性系下可能被观测到所具有能量的“最小值”。 在多粒子系统的情形下,质心系中的粒子彼此之间可能会存在相对运动,并有可能存在一种或多种基本相互作用。这时粒子的动能和力场的势能会增大系统的总能量,使之大于所有粒子的静止质量之和,这部分能量也对系统的不变质量有贡献。.

新!!: 能量守恒定律和不变质量 · 查看更多 »

不确定性原理

在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。.

新!!: 能量守恒定律和不确定性原理 · 查看更多 »

中子

| magnetic_moment.

新!!: 能量守恒定律和中子 · 查看更多 »

丹麦

丹麦(Danmark),全称丹麦王国(Kongeriget Danmark),是北欧国家,政体为君主立宪制下的议会民主制,首都在哥本哈根,擁有两個自治領地:法羅群島和格陵蘭。由于丹麦和挪威、瑞典有相近的语言、文化和历史,合称为斯堪地那维亚国家。 丹麥是歐洲聯盟成員國,經濟高度發達,同時是個典型的福利国家,貧富差距極小,为世界高度发达国家。丹麥也是北大西洋公約組織創始會員國之一。 丹麦政体为君主立宪制下的议会民主制,現任君主是玛格丽特二世女王,中央政府拥有相当大的权力,并负责属地法罗群岛和格陵兰的部分事务。.

新!!: 能量守恒定律和丹麦 · 查看更多 »

伽利略·伽利莱

伽利略·伽利莱(Galileo Galilei, ;)Drake(1978, p.1).伽利略出生日期用的是儒略曆,當時所有基督教國家都使用這個曆法。義大利及幾個天主教國家於1582年改用公曆。除非特別註明,條目中的日期皆為公曆。,義大利物理學家、數學家、天文學家及哲學家,科學革命中的重要人物。其成就包括改進望遠鏡和其所帶來的天文觀測,以及支持哥白尼的日心说。伽利略做实验证明,感受到引力的物体并不是呈等速運動,而是呈加速度運動;物體只要不受到外力的作用,就會保持其原來的靜止狀態或勻速運動狀態不變。他又發表惯性原理阐明,未感受到外力作用的物体会保持不变其原来的静止状态或匀速运动状态。伽利略被譽為“現代觀測天文學之父”、“現代物理學之父”、“科學之父”及“現代科學之父”。Finocchiaro (2007).

新!!: 能量守恒定律和伽利略·伽利莱 · 查看更多 »

彈性碰撞

彈性碰撞是碰撞前後整個系統動能不變的碰撞。彈性碰撞的必要條件是動能沒有轉成其他形式的能量(熱能、轉動能量),例如原子的碰撞。.

新!!: 能量守恒定律和彈性碰撞 · 查看更多 »

化學能

化學能是內能的一種,指一些需要經由化學反應釋放出來的能量。例如煤的能量是由燃燒(與氧反應)釋放出來的,貯存於煤裏面的能量即稱為化學能。電池裡的化學物質,是藉著化學變化而產生電能。 生物裡呼吸作用、光合作用產生之能量,也是化學能。 由於化學能是化學反應時產生的,因此是一種隱蔽的能量,不能直接用來做功,只有在发生化学变化时,才释放出来,变成热能或者其他形式的能量。.

新!!: 能量守恒定律和化學能 · 查看更多 »

哲學家

哲學家(Philosopher),哲學的研究者,對哲學懷抱興趣,擁有廣泛的知識,並且能夠利用這些知識來解決特定的哲學問題。根據歐洲哲學傳統,哲學家研究的主題包括美學、倫理學、知識學、邏輯學、形而上學,以至於社會哲學與政治哲學等。.

新!!: 能量守恒定律和哲學家 · 查看更多 »

哈密顿力学

哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。 适合用哈密顿力学表述的动力系统称为哈密顿系统。.

新!!: 能量守恒定律和哈密顿力学 · 查看更多 »

内能

在熱力學裡,內能(internal energy)是熱力學系統內兩個具狀態變數之基本狀態函數的其中一個函數。內能是指系統所含有的能量,但不包含因外部力場而產生的系統整體之動能與位能。內能會因系統能量的增損而隨之改變。 系統的內能可能因(1)對系統加熱、(2)對系統作,或(3)添加或移除物質而改變。當系統內有不可穿透的牆阻止物質傳遞時,該系統稱之為「封閉系統」。如此一來,熱力學第一定律描述,內能的增加會等於增加的熱量加上環境對該系統所作的功。若該系統周圍的牆不能傳遞物質與能量,則該系統稱之為「孤立系統」,且其內能會維持定值。 一系統內給定狀態下的內能不能被直接量測。給定狀態下的內能可由一已給定其內能參考值之參考狀態開始,經過一連串及熱力學過程,以達到該給定狀態來決定其值。這一連串的操作及過程,理論上可使用該系統的某些外延狀態變數來描述,亦即該系統的熵 S、容量 V 及莫耳數 。內能 是這些變數的函數。有時,該函數還能再附加上其他的外延狀態變數,如電偶極矩。就熱力學及工程學上的實際用途來看,一般很少需要考慮一個系統的所有內含能量,如質量所含有的等價能量。一般而言,只有與研究的系統及程序有關的部分才會被包含進來。熱力學一般只在意內能的「變化量」。 內能是一系統內的狀態函數,因為其值僅取決於該系統的目前狀態,而與達到此一狀態所採之途徑或過程無關。內能是個外延物理量。內能是個基本熱動力位能。使用勒壤得轉換,可從內能開始,在數學上建構出其他的熱動力位能。這些函數的狀態變數,部分外延變數會被其共軛內含變數所取代。因為僅是將外延變數由內含變數所取代並無法得出其他熱動力位能,所以勒壤得轉換是必要的。熱力學系統的另一個基本狀態函數為該系統的熵 ,是個除熵 S 這個狀態變數被內能 U 所取代外,具有相同狀態變數之狀態函數。 雖然內能是個宏觀物理量,內能也可在微觀層面上由兩個假設的量來解釋。一個是系統內粒子的微觀運動(平移、旋轉、振動)所產生的微觀動能。另一個是與粒子間的化學鍵及組成物質的靜止質量能量等微觀力有關之位能。在微觀的量與系統因作功、加熱或物質轉移而產生之能量增損的量之間,並不存在一個簡單的普遍關係。 能量的國際單位為焦耳(J)。有時使用單位質量(公斤)的內能(稱之為「比內能」)會比較方便。比內能的國際單位為 J/kg。若比內能以物質數量(莫耳)的單位來表示,則稱之為「莫耳內能」,且該單位為 J/mol。 從統計力學的觀點來看,內能等於系統總能量的。.

新!!: 能量守恒定律和内能 · 查看更多 »

元素

#重定向 化學元素.

新!!: 能量守恒定律和元素 · 查看更多 »

光子

| mean_lifetime.

新!!: 能量守恒定律和光子 · 查看更多 »

四维动量

狭义相对论和广义相对论中,四维动量(英文:four-momentum)是经典的三维动量在四维时空中的相对论化形式。动量是三维空间中的矢量,而类似地四维动量是时空中的四维矢量。引入四维动量的原因是它在洛伦兹变换下是協變性的。对于一个具有三维动量\vec p.

新!!: 能量守恒定律和四维动量 · 查看更多 »

皮耶爾-西蒙·拉普拉斯

#重定向 皮埃尔-西蒙·拉普拉斯.

新!!: 能量守恒定律和皮耶爾-西蒙·拉普拉斯 · 查看更多 »

米哈伊尔·瓦西里耶维奇·罗蒙诺索夫

米哈伊尔·瓦西里耶维奇·罗蒙诺索夫(Михаи́л Васи́льевич Ломоно́сов;),俄國化學家、哲學家、诗人,俄国自然科学的奠基者。.

新!!: 能量守恒定律和米哈伊尔·瓦西里耶维奇·罗蒙诺索夫 · 查看更多 »

约翰·普莱费尔

约翰·普莱费尔,FRSE,FRS(John Playfair,),苏格兰科学家、数学家,爱丁堡大学自然哲学教授。 普莱费尔最著名的著作是于1802年出版的《关于赫顿地球论的说明》(Illustrations of the Huttonian Theory of the Earth)。该书是詹姆斯·赫顿《地球论》(Theory of the Earth)一书的简写本,普莱费尔用通俗的语言阐述了赫顿的均变论,使这一思想为大众所知。 以其名字命名的普莱费尔公理则被用于替代欧几里得的平行公设。.

新!!: 能量守恒定律和约翰·普莱费尔 · 查看更多 »

热功当量

热功当量是指热力学单位卡与作为功的单位焦耳之间存在的一种当量关系,由于用传递热量或作功的方法都能改变物质系统的能量,所以他们的单位之间存在着一定换算关系。 英国物理学家焦耳首先用实验确定了这关系,后规定: 在热工学中常用功的热当量等于1/426.9千卡以表示功与热之间的换算常数;如果工程上以千瓦或马力作为功率的计算单位,则功与热之间的换算当量为每千瓦小时.

新!!: 能量守恒定律和热功当量 · 查看更多 »

热力学第二定律

热力学第二定律(second law of thermodynamics)是热力学的三条基本定律之一,表述热力学过程的不可逆性——孤立系统自發地朝著熱力學平衡方向──最大熵狀態──演化,同样地,第二类永动机永不可能实现。 這一定律的歷史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。定律的数学表述主要借助魯道夫·克勞修斯所引入的熵的概念,具体表述为克劳修斯定理。 虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到解释。 这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。定律本身可作为过程不可逆性及时间流向的判据。而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等。.

新!!: 能量守恒定律和热力学第二定律 · 查看更多 »

热质说

熱質說(Caloric theory)是種錯誤和受局限的科學理論,曾用來解釋熱的物理現象。此理論認為熱是一種稱為「熱質」(caloric)的物質,熱質是一種無質量的氣體,物體吸收熱質後溫度會升高,熱質會由溫度高的物體流到溫度低的物體,也可以穿過固體或液體的孔隙中。熱質說在拉瓦節1772年用實驗推翻燃素說後開始盛行,拉瓦節的《化學基礎》一書就把熱列在基本物質之中。 熱質說可以解釋一些熱的現象,不過無法解釋一些只要持續作功就可以持續產生熱的現象(如摩擦生熱)。19世紀中,熱質說被機械能守恆所取代;之後,熱質說仍然在許多科學文獻中出現,一直到19世紀末才消失。目前常用的熱量單位卡路里(Calorie)即起源自熱質(caloric)。.

新!!: 能量守恒定律和热质说 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 能量守恒定律和电子 · 查看更多 »

电荷守恒定律

在物理學裏,電荷守恒定律(law of charge conservation)是一種關於電荷的守恆定律。電荷守恒定律有兩種版本,「弱版電荷守恒定律」(又稱為「全域電荷守恒定律」)與「強版電荷守恒定律」(又稱為「局域電荷守恒定律」)。弱版電荷守恒定律表明,整個宇宙的總電荷量保持不變,不會隨著時間的演進而改變。注意到這定律並沒有禁止,在宇宙這端的某電荷突然不見,而在宇宙那端突然出現。強版電荷守恒定律明確地禁止這種可能。強版電荷守恒定律表明,在任意空間區域內電荷量的變化,等於流入這區域的電荷量減去流出這區域的電荷量。對於在區域內部的電荷與流入流出這區域的電荷,這些電荷的會計關係就是電荷守恒。 定量描述,這強版定律的方程式乃是一種連續方程式: 其中,Q(t)是在時間t某設定體積內的電荷量,Q_、Q_是在時間間隔內分別流入與流出這設定體積的電荷量。 上述兩種守恆定律建立於一個基礎原則,即電荷不能獨自生成與湮滅。假設帶正電粒子接觸到帶負電粒子,兩個粒子帶有電量相同,則因為這接觸動作,兩個粒子會變為中性,這物理行為是合理與被允許的。一個中子,也可以因貝他衰變,生成帶正電的質子、帶負電的電子與中性的反微中子。但是,任何粒子,不可能獨自地改變電荷量。物理學明確地禁止這種物理行為。更仔細地說,像電子、質子一類的亞原子粒子會帶有電荷,而這些亞原子粒子可以被生成或湮滅。在粒子物理學裏,電荷守恆意味著,在那些生成帶電粒子的基本粒子反應裏,雖然會有帶正電粒子或帶負電粒子生成,在反應前與反應後,總電荷量不會改變;同樣地,在那些湮滅帶電粒子的基本粒子反應裏,雖然會有帶正電粒子或帶負電粒子湮滅,在反應前與反應後,總電荷量絕不會改變; 雖然全域電荷守恒定律要求宇宙的總電荷量保持不變,到底總電荷量是多少仍舊是有待研究問題。大多數跡象顯示宇宙的電荷量為零,即正電荷量與負電荷量相同。.

新!!: 能量守恒定律和电荷守恒定律 · 查看更多 »

熱可以指:.

新!!: 能量守恒定律和熱 · 查看更多 »

物理学家

物理學家是指受物理學訓練、並以探索物質世界的組成和運行規律(即物理學)為目的科學家。研究範疇可細至構成一般物質的微細粒子,大至宇宙的整體,不同的範圍都會有相對的專家。對應於物理學分為理論物理學和實驗物理學,物理学家也可以分為理論物理學家和實驗物理學家。物理學中理論和實驗都是必不可缺的组成部分,所以有时候這樣的分類很難界定,只不過在一個物理學家更偏重理論的情况下,被稱為理論物理學家的例子包括爱因斯坦、海森堡、狄拉克、埃爾溫·薛丁格、尼爾斯·波耳、楊振寧等;而若偏重實驗,則稱為實驗物理學家,例如艾薩克·牛頓、法拉第、亨利·貝克勒、尼古拉·特斯拉、馬克斯·馮·勞厄、約瑟夫·湯姆森、歐內斯特·勞倫斯、吳健雄、威廉·肖克利、朱棣文等。.

新!!: 能量守恒定律和物理学家 · 查看更多 »

物理定律

物理定律或科學定律是一種理論陳述。這個陳述由特定的事實推理得出,適用於一個確定的群體或一類現象,並且可以透過陳述表明:在某些條件下,總是會發生某個特定的現象。物理定律通常是經過多年重複科學實驗與觀察得出的結論,並且被在科學界被普遍接受。科學的一個基本目標,便是以這種定律的形式對環境進行總結描述。.

新!!: 能量守恒定律和物理定律 · 查看更多 »

牛顿

牛顿(Newton)是一个欧洲人的姓氏,字源于地名。地名在古英语裡的意思是“新镇”。牛顿或Newton可以指:.

新!!: 能量守恒定律和牛顿 · 查看更多 »

狭义相对论

-- 狭义相对论(英文:Special relativity)是由爱因斯坦、洛仑兹和庞加莱等人创立的,應用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦在1905年完成的《論動體的電動力學》論文中提出了狭义相对论Albert Einstein (1905) "", Annalen der Physik 17: 891; 英文翻譯為George Barker Jeffery和 Wilfrid Perrett翻譯的(1923); 另一版英文翻譯為Megh Nad Saha翻譯的On the Electrodynamics of Moving Bodies(1920).

新!!: 能量守恒定律和狭义相对论 · 查看更多 »

狹義相對論中的質量

质量这一名词在狭义相对论中通常是指物质在静止时所测量的质量(静质量)。这个意义的质量与牛顿力学的质量相同。不变质量是静质量的另一名称,但它通常是指由许多粒子构成的系统。 相对论性质量这一名词也被使用,而这是一个物体所具有的總能量。物体的相对论性质量包括了它所具有的动能,因此取决于观察者所处于的参考系。.

新!!: 能量守恒定律和狹義相對論中的質量 · 查看更多 »

相对论

对论(Theory of relativity)是关于时空和引力的理论,主要由愛因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。.

新!!: 能量守恒定律和相对论 · 查看更多 »

荷屬東印度

荷屬東印度是指1800年至1949年荷蘭人所統治的印度尼西亞。1596年,荷兰人霍特曼率领的一支荷兰船队到达爪哇岛的万丹。1603年,荷兰在爪哇建商站;1605年,征服盛产香料的马鲁古群岛中的安汶岛、帝利岛。1619年,攻占爪哇岛上的雅加达,命名巴达维亚,作为荷兰东印度公司在东方的总部。在荷兰人到来之前,葡萄牙人已经在印尼地区建立了一些商站。之后,英国人也登陆印尼,建立殖民地。而荷兰变成了这些欧洲国家裡面占领最多领土的国家。荷兰最初通过荷兰东印度公司对这些地区实行殖民统治。1799年东印度公司解散后殖民地被荷兰政府接管,史称荷属东印度。 第一次世界大戰結束後,當地人開始爭取自治。到了第二次世界大戰,當荷蘭本土被德國完全佔領後,荷蘭政府宣佈終止與當時最大貿易伙伴日本的貿易,觸發日本對印尼的侵略行動。這可以說是印尼得以獨立的原因。日本二戰投降的消息傳到印尼之後,蘇加諾立即在之後一日發表印尼獨立宣言。之後在短短五日間,印尼全國都宣告脫離荷蘭政府的管治,荷兰欲夺回殖民地,双方展开三年多的印荷战争。有日軍兩千多人改名換姓,偽裝為當地人,他們幫助印尼訓練士兵與荷蘭作戰,又联合国向荷蘭施壓的緣故,印尼在战争中占了上风。最終荷蘭當局在1949年与印尼签署,宣佈放棄對印尼的管治權,使印尼得以正式獨立,苏加诺當選为印尼第一任总统。.

新!!: 能量守恒定律和荷屬東印度 · 查看更多 »

角动量守恒定律

角动量守恒定律是指系统所受合外力矩为零时系统的角动量保持不變。 \frac.

新!!: 能量守恒定律和角动量守恒定律 · 查看更多 »

詹姆斯·普雷斯科特·焦耳

詹姆斯·普雷斯科特·焦耳,FRS(James Prescott Joule,),英國物理學家。焦耳在研究热的本质时,发现了热和功之间的转换关系,并由此得到了能量守恒定律,最终发展出热力学第一定律。国际单位制导出单位中,能量的单位——焦耳,就是以他的名字命名。他和开尔文合作发展了温度的绝对尺度。他还观测过磁致伸缩效应,发现了導體电阻、通過導體电流及其產生熱能之间的关系,也就是常称的焦耳定律。.

新!!: 能量守恒定律和詹姆斯·普雷斯科特·焦耳 · 查看更多 »

诺特定理

诺特定理是理论物理的中心结果之一,它表达了连续对称性和守恒定律的一一对应。例如,物理定律不随着时间而改变,这表示它们有关于时间的某种对称性。如果我们想象一下,譬如重力的强度每天都有所改变,我们就会违反能量守恒定律,因为我们可以在重力弱的那天把重物举起,然后在重力强的时候放下来,这样就得到了比我们开始输入的能量更多的能量。 诺特定理对于所有基于作用量原理的物理定律是成立的。它得名于20世纪初的数学家埃米·诺特。诺特定理和量子力学深刻相关,因为它仅用经典力学的原理就可以认出和海森堡测不准原理相关的物理量(譬如位置和动量)。.

新!!: 能量守恒定律和诺特定理 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 能量守恒定律和质量 · 查看更多 »

质量守恒定律

質量守恆定律是自然界普遍存在的基本定律之一。此定律指出,對於任何物質和能量全部轉移的系統來說,系統的質量必須隨著時間的推移保持不變,因為系統質量不能改變,不能增加或消除。因此,質量隨著時間的推移而保持不變。這定律意味著質量既不能被創造也不能被破壞,儘管它可能在空間中重新排列,或者與之相關的實體可能在形式上發生變化,例如在化學反應中,反應前化學成分的質量是等於反應後組分的質量。 因此,在孤立系統中的任何化學反應和低能量熱力學過程期間,反應物或起始材料的總質量必須等於產物的質量。質量守恆的概念在化學,力學和流體動力學等許多領域得到了廣泛的應用。歷史上,米哈伊爾·羅蒙諾索夫(Mikhail Lomonosov)獨立發現了化學反應中的質量守恆,後來在18世紀晚期被安托萬·拉瓦錫(Antoine Lavoisier)重新發現。從煉金到化學的現代自然科學,這一規律的製定至關重要。 質量的守恆只是近似的,被認為是來自經典力學的一系列假設的一部分。在質量 - 能量等價的原則下,必須對該定律進行修改,使其符合量子力學和狹義相對論的規律,即能量和質量形成一個守恆量。對於非常有能量的系統來說,質量守恆是不成立的,核反應和粒子物理學中的粒子 - 反粒子湮滅就是這種情況。 質量在開放系統中通常也不被保存。當各種形式的能源和物質被允許進出系統時就是這種情況。然而,除非涉及放射性或核反應,否則從熱量,機械功或電磁輻射等系統逸出的能量通常太小而不能被測量為系統質量的下降。 對於涉及大引力場的系統,必須考慮廣義相對論,其中質能守恆成為一個更為複雜的概念,受到不同定義的限制,質量和能量也不如嚴格守恆狹義相對論。.

新!!: 能量守恒定律和质量守恒定律 · 查看更多 »

贾斯帕-古斯塔夫·科里奥利

贾斯帕-古斯塔夫·科里奥利或古斯塔夫·科里奥利(Gustave Gaspard de Coriolis,)是法国数学家、工程学家、科学家,以对科里奥利力的研究而闻名。 他也是首位将力在一段距离内对物体的效果称为“功”的科学家。.

新!!: 能量守恒定律和贾斯帕-古斯塔夫·科里奥利 · 查看更多 »

路德維格·奧古斯特·柯丁

路德維格·奧古斯特·柯丁(Ludwig August Colding,)是一位丹麥土木工程師和物理學家,他與詹姆斯·普雷斯科特·焦耳和尤利烏斯·羅伯特·馮·邁爾幾乎同時闡明了能量守恆定律,惟被遺忘。.

新!!: 能量守恒定律和路德維格·奧古斯特·柯丁 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 能量守恒定律和能量 · 查看更多 »

能量守恒定律

能量守恒定律(law of conservation of energy)闡明,孤立系统的总能量 E 保持不变。如果一个系统处于孤立环境,即不能有任何能量或質量从该系统输入或输出。能量不能无故生成,也不能无故摧毁,但它能够改变形式,例如,在炸弹爆炸的过程中,化学能可以转化为动能。 从能量守恒定律可以推导出第一類永动机永远無法實現。没有任何孤立系统能够持續對外提供能量。.

新!!: 能量守恒定律和能量守恒定律 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

新!!: 能量守恒定律和阿尔伯特·爱因斯坦 · 查看更多 »

赫尔曼·冯·亥姆霍兹

赫尔曼·冯·亥姆霍兹(Hermann von Helmholtz,),德國物理學家、医生。.

新!!: 能量守恒定律和赫尔曼·冯·亥姆霍兹 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 能量守恒定律和量子力学 · 查看更多 »

自然哲学的数学原理

《自然哲学的数学原理》(Philosophiæ Naturalis Principia Mathematica),是英国科学家艾萨克·牛顿的三卷本代表作,成书于1686年。1687年7月5日该书的拉丁文版首次出版发行。Among versions of the Principia online:.

新!!: 能量守恒定律和自然哲学的数学原理 · 查看更多 »

速度

速度(Vēlōcitās,Vitesse,Velocità,Geschwindigkeit,Velocity)是描述物体运动快慢和方向的物理量。物体在一段时间\Delta t内的平均速度\bar是它在这段时间里的位移\Delta \boldsymbol和时间间隔之比: 物体在某一时刻的瞬时速度\boldsymbol则是定義為位置矢量\boldsymbol 隨時間t的變化率: 物理学中提到物体的速度通常是指其瞬时速度。速度在国际单位制中的单位是米每秒,国际符号是m/s,中文符号是米/秒。相对论框架中,物体的速度上限是光速。 日常生活中,速度和速率幾乎是同義的。然而在物理學中,速度和速率是两个不同的概念。速度是矢量,具有大小和方向;速率則純粹指物體運動的快慢,是标量,没有方向。举例来说,假如一辆汽车以60公里每小时的速率朝正北方行驶,那么它的速度是一个大小等于60公里每小时、方向指向正北的矢量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。.

新!!: 能量守恒定律和速度 · 查看更多 »

連續對稱

在數學裡,連續對稱是觀察如運動等之某些對稱性概念而自然產生出的觀念,和由一個狀態翻轉至另一狀態而不變的鏡射對稱相對。它大量地且成功地被公式化於數學的許多如拓撲群、李群及群作用等概念上。連續對稱在這些公式化的概念中,最實用的是在拓撲群之群作用中的被應用。 最簡單的運動可以視為如三維空間中的歐幾里德群等李群的單參數子群。例如,平行x軸、u單位量之平移為單參數群。繞為z軸的旋轉也是單參數群。 連續對稱在理論物理中的諾特定理有著很基本的重要性,此定理由系統的對稱(尤其是連續對稱)中導出守恆定律來。量子場論的進一步發展使得對自然界裡連續對稱的尋找變得熱絡了起來。.

新!!: 能量守恒定律和連續對稱 · 查看更多 »

恩培多克勒

恩培多克勒(希腊语:Ἐμπεδοκλῆς,),又译恩贝多克利,公元前5世紀的古希臘哲學家,西西里岛的阿格里根特人,他的生平富神話色彩,相傳他為證明自己的神性,投進埃特纳火山而亡,但是火山却将他的青铜凉鞋喷射出来,显示他的不诚实。另一个传说是他跳进火山,向他的门徒证明他的不朽;他相信他在经火之后会作为神回到人间。後世騷人墨客常以此為詩材。 他認為萬物皆由水、土、火、氣四者構成,再由「愛」與「衝突」或合或間。“爱”使所有元素聚合,“衝突”使所有元素分裂。恩培多克勒认为宇宙本身在绝对的爱和衝突之间来回摆动。跟巴门尼德一樣用韻文寫作,也只留下斷片,相傳他的兩部长诗名為《論自然》和《淨化》和一篇散文《医论》。现在我们所能见到的,只有古人记载的大约450行残篇。 E E.

新!!: 能量守恒定律和恩培多克勒 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 能量守恒定律和氧气 · 查看更多 »

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

新!!: 能量守恒定律和波函数 · 查看更多 »

泰勒斯

米利都的泰勒斯(Θαλῆς ὁ Μιλήσιος,),常被稱為泰勒斯(Θαλῆς,Thalēs,Thales,),是古希腊时期的哲學家和科學家,亦是希腊最早的前苏格拉底哲学学派之一,米利都学派(亦称爱奥尼亚学派)的创始人,希腊七贤之一,西方思想史上第一个有记载留下名字的思想家,被后人称为“科学和哲学之祖”。他的学生有阿那克西曼德和阿那克西米尼等。.

新!!: 能量守恒定律和泰勒斯 · 查看更多 »

活力

活力(Vis viva,意為「生命力」)是動能的歷史名詞,出現於早期描述能量守恆原理的公式。活力也是已知第一個被用來描述「動能」這個概念的名詞。 Category:自然哲学 Category:已废弃的科学理论 Category:力學 Category:热力学 Category:戈特弗里德·萊布尼茨.

新!!: 能量守恒定律和活力 · 查看更多 »

本杰明·汤普森,伦福德伯爵

本杰明·汤普森爵士,伦福德伯爵,FRS (Sir Benjamin Thompson, Count Rumford, Reichsgraf von Rumford,),英国物理学家,生于英属美洲。他对于热的本质的研究挑战了当时占主流的热质说,对19世纪热力学的发展有重大意义。他也是位多产的发明家。 他于美国独立战争中忠于英国王室,在英国陆军中服役,銜至中校,於战后移居伦敦。在那里,其在后勤方面才能受到赏识,晋升上校,于1784年被英王乔治三世进封爵士。其后,他又移居巴伐利亚,出任当地的陆军大臣,重整了陆军,于1791年获封为神圣罗马帝国伯爵。.

新!!: 能量守恒定律和本杰明·汤普森,伦福德伯爵 · 查看更多 »

机械能

机械能()又作--,是指宏观物质所表现出的势能(位能)Ep与动能Ek的总和,即.

新!!: 能量守恒定律和机械能 · 查看更多 »

惯性参考系

在经典物理学与狭义相对论中,惯性参考系(常简称为惯性系)是指可以均匀且各向同性地描述空间,并且可以均匀描述时间的参考系。在惯性参考系内,系统内部的物理规律与系统外的因素无关。 所有的惯性系之间都在进行匀速平移运动。不同惯性系的测量结果可以通过简单的变换(伽利略变换或洛伦兹变换)相互转化。广义相对论中,在任意足够小以致时空曲率与潮汐力可以忽略的区域内,人们可以找到一组惯性系来近似描述这个区域。广义相对论中,非惯性系中的系统由于测地线运动原理不会受到外界影响。 物理定律在所有惯性系中形式一致。经典物理学与狭义相对论中,在非惯性系里,系统的物理规律会受到参考系相对于惯性系的加速度影响而发生变化。此时物体的受力要考虑惯性力。比如,落地的小球由于地球自转并不是完全沿直线落下。与地球一起运动的观察者必须考虑科里奥利力才能预测小球的水平运动情况。离心力是另一种与旋转参考系有关的惯性力。.

新!!: 能量守恒定律和惯性参考系 · 查看更多 »

戈特弗里德·莱布尼茨

戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz, 或 ;Godefroi Guillaume Leibnitz,,),德意志哲学家、数学家,歷史上少見的通才,獲誉为十七世纪的亚里士多德。他本人是律師,經常往返於各大城鎮;他許多的公式都是在顛簸的馬車上完成的,他也自稱具有男爵的貴族身份。 莱布尼茨在数学史和哲学史上都占有重要地位。在数学上,他和牛顿先后独立发明了微积分,而且他所使用的微積分的数学符号被更廣泛的使用,萊布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。莱布尼茨还对二进制的发展做出了贡献。 在哲学上,莱布尼茨的乐观主义最为著名;他认为,“我们的宇宙,在某种意义上是上帝所创造的最好的一个”。他和笛卡尔、巴鲁赫·斯宾诺莎被认为是十七世纪三位最伟大的理性主义哲学家。莱布尼茨在哲学方面的工作在预见了现代逻辑学和分析哲学诞生的同时,也显然深受经院哲学传统的影响,更多地应用第一性原理或先验定义,而不是实验证据来推导以得到结论。 莱布尼茨对物理学和技术的发展也做出了重大贡献,并且提出了一些后来涉及广泛——包括生物学、医学、地质学、概率论、心理学、语言学和信息科学——的概念。莱布尼茨在政治学、法学、伦理学、神学、哲学、历史学、语言学诸多方向都留下了著作。 莱布尼茨对如此繁多的学科方向的贡献分散在各种学术期刊、成千上万封信件、和未发表的手稿中,其中約四成為拉丁文、約三成為法文、約一成五為德文。截至2010年,莱布尼茨的所有作品还没有收集完全。 2007年,戈特弗里德·威廉·莱布尼茨图书馆暨下薩克森州州立圖書舘的莱布尼茨手稿藏品被收入联合国教科文组织编写的世界记忆项目。 由於莱布尼茨曾在汉诺威生活和工作了近四十年,并且在汉诺威去世,为了纪念他和他的学术成就,2006年7月1日,也就是萊布尼茨360周年诞辰之际,汉诺威大学正式改名为汉诺威莱布尼茨大学。.

新!!: 能量守恒定律和戈特弗里德·莱布尼茨 · 查看更多 »

时空

时空(时间-空间,时间和空间)是一种基本概念,分别属于物理学、天文学、空间物理学和哲学。并且也是这几个学科最重要的最基本的概念之一。 空间在力学和物理学上,是描述物体以及其运动的位置、形状和方向等抽象概念;而时间则是描述运动之持续性,事件发生之顺序等。时空的特性,主要就是通过物体,其运动以及与其他物体的相互作用之间的各种关系之汇总。空间和时.

新!!: 能量守恒定律和时空 · 查看更多 »

摩擦力

摩擦力(英語:friction)指两个表面接触的物体相对滑动时抵制它们的相对移动的力,是经典力学的一個名詞。广义地,物体在液体和气体中运动时也受到摩擦力。 摩擦力產生的成因:.

新!!: 能量守恒定律和摩擦力 · 查看更多 »

托马斯·杨

湯瑪士‧楊格(Thomas Young,),亦称“杨氏”,是一位英国科学家、医生、通才,曾被譽為「世界上最後一個什麼都知道的人」。.

新!!: 能量守恒定律和托马斯·杨 · 查看更多 »

拉格朗日量

在分析力學裏,一个动力系统的拉格朗日量(Lagrangian),又稱為拉格朗日函數,是描述整个物理系统的动力状态的函数,對於一般經典物理系統,通常定義為動能減去勢能,以方程式表示為 其中,\mathcal為拉格朗日量,T為動能,V為勢能。 在分析力学裡,假設已知一个系统的拉格朗日量,则可以将拉格朗日量直接代入拉格朗日方程式,稍加运算,即可求得此系统的运动方程式。 拉格朗日量是因數學家和天文學家約瑟夫·拉格朗日而命名。.

新!!: 能量守恒定律和拉格朗日量 · 查看更多 »

重定向到这里:

能量守恒和转化定律能量守恆能量守恆定律能量的守恆定理

传出传入
嘿!我们在Facebook上吧! »