徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

金星

指数 金星

金星(英語、拉丁語:Venus,天文符號:♀),在太陽系的八大行星中,是從太陽向外的第二顆行星,軌道公轉週期為224.7地球日,它沒有天然的衛星。在中國古代稱為太白、明星或大囂,另外早晨出現在東方稱啟明,晚上出現在西方稱長庚。到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現太白為白色,與「五行」學說聯繫在一起,正式把它命名為金星。它的西文名稱源自羅馬神話的愛與美的女神,维纳斯(Venus),古希腊人称为阿佛洛狄忒,也是希腊神话中爱与美的女神。金星的天文符号用维纳斯的梳妆镜来表示。 它在夜空中的亮度僅次於月球,是第二亮的天然天體,視星等可以達到 -4.7等,足以照射出影子。由於金星是在地球內側的內行星,它永遠不會遠離太陽運行:它的離日度最大值為47.8°。 金星是一顆類地行星,因為它的大小、質量、體積與到太陽的距離,均與地球相似,所以經常被稱為地球的姊妹星。然而,它在其它方面則明顯的與地球不同。它有著四顆類地行星中最濃厚的大氣層,其中超過96%都是二氧化碳,行星表面的大氣壓力是地球的92倍。表面的平均溫度高達,是太陽系最熱的行星,比最靠近太陽的水星還要熱。金星沒有將碳吸收進入岩石的碳循環,似乎也沒有任何有機生物來吸收生物量的碳。金星被一層高反射、不透明的硫酸雲覆蓋著,阻擋了來自太空中,可能抵達表面的可見光。它在過去可能擁有海洋,並且外觀與地球極為相似,但是隨著失控的溫室效應導致溫度上升而全部蒸發掉了B.M. Jakosky, "Atmospheres of the Terrestrial Planets", in Beatty, Petersen and Chaikin (eds), The New Solar System, 4th edition 1999, Sky Publishing Company (Boston) and Cambridge University Press (Cambridge), pp.

174 关系: 加州理工學院加速度动能华氏温标千克南美洲古希腊史记司馬遷合 (天體位置)吉祥天高原吉米·卡特夏威夷州夏威夷群島大衛·史提芬遜 (天文學家)大气层大溪地天文單位天文符號太阳系太阳风太阳日太陽太陽系探索時間線太陽系探測器列表太陽星雲容積熱容宇宙航空研究開發機構安達盧西亞導體對流小行星尼古拉·哥白尼尼斯 (金星假想卫星)射电望远镜巴比伦不明飞行物中國希腊神话帕斯卡一氧化碳幾何反照率乔凡尼·多美尼科·卡西尼二氧化硫二氧化碳伊师塔地伊本·西那伽利略·伽利莱开尔文...地壳地幔地獄地球地球大气层國家地理頻道國際天文聯會喜马拉雅山脉儒略年儒略曆冕狀物內側行星公里光致蛻變皇家天文學會月報玄武岩火山火星灰光球面反照率破火山口破曉號硫酸碳循環磁場米哈伊尔·瓦西里耶维奇·罗蒙诺索夫米每秒类地行星罗马神话美国羰基硫电离层Earth隱沒帶順行和逆行行星行星核心衛星馬克士威山脈馬特山视星等高原距角麥哲倫號金星探測器黏度黄道輻照度轉動慣量阿佛洛狄忒阿佛洛狄忒陸薄餅狀穹丘闪电金星11號金星12號金星4號金星大氣層金星帶金星地質金星凌日金星特快車金星相位金星表面特徵列表金星計劃金星曆法苏联離心率雷达雷暴蛛網膜地形G力J2000.0JPL Horizons On-Line Ephemeris SystemMarsUniversity of Chicago PressUniversity of Nottingham板块构造论椭圆欧洲空间局毕达哥拉斯氟化氢氯化氢水蒸气水星水手10號气压波长波數涅伊特温室效应準衛星潮汐潮汐加速澳大利亚本初子午線月球望远镜浮升器海洋地殼方铅矿施普林格科学+商业媒体日心说日心軌道摄氏温标撞击坑撞擊事件攝動散射托勒密2002 VE682004年金星凌日2012年金星凌日 扩展索引 (124 更多) »

加州理工學院

#重定向 加利福尼亞理工學院.

新!!: 金星和加州理工學院 · 查看更多 »

加速度

加速度是物理学中的一个物理量,是一个矢量,主要应用于经典物理当中,一般用字母\mathbf表示,在国际单位制中的单位为米每二次方秒(\mathrm)。加速度是速度矢量對于时间的变化率,描述速度的方向和大小变化的快慢。 在经典力学中,牛顿第二定律说明了力和加速度成正比,這定律又稱為「加速度定律」。假設施加於物體的淨外力為零,則加速度為零,速度為常數,由於動量是質量與速度的乘積,所以動量守恆。在電動力學裏,呈加速度運動的帶電粒子會發射电磁辐射。.

新!!: 金星和加速度 · 查看更多 »

动能

动能是物质运动时所得到的能量。它通常被定义成使某物体从静止状态至运动状态所做的功。由于运动是相对的,动能也是相对于某参照系而言。同一物体在不同的参照系会有不同的速率,也就是有不同的动能。动能的国际单位是焦耳(J),以基本单位表示是千克米平方每秒平方(kg·m2·s-2)。一个物体的动能只有在速率改变时才会改变。.

新!!: 金星和动能 · 查看更多 »

华氏温标

華氏溫標是一种温標,符号为℉。华氏温标的定義是:在标准大气压下,冰的熔点为32℉,水的沸点为212℉,中间有180等分,每等分为华氏1度。.

新!!: 金星和华氏温标 · 查看更多 »

千克

--( → ,,單位符号kg),又称--,国际单位制中質量的基本單位。在国际单位制的七个基本单位中,千克是唯一一個带有词头的基本單位。 目前,千克是国际单位制基本单位中唯一仍使用实物进行定义的单位,即被定义为国际千克原器的质量。2011年国际度量衡大会(CGPM)会议原则性同意以普朗克常数重新定义千克,并计划于2018年会议上做出最终决定。.

新!!: 金星和千克 · 查看更多 »

南美洲

南亚美利加洲(西班牙语: 或 ;葡萄牙语:;法语:;英语:;荷兰语:;字源:阿美利哥·维斯普西),简称南美洲,为七大洲之一,位於西半球南部(或南半球),西臨南太平洋,西面為太平洋板塊及納斯卡板塊。太平洋板塊及納斯卡板塊之間的內營力為張力,衍生了東太平洋海嶺;而納斯卡板塊與南美洲板塊的內營力為擠壓力,衍生了秘魯智利海溝的俯衝帶,並於南美洲板塊之下。與東面則是大西洋,北面則是加勒比海。南美洲是美洲大陸南面的一部分,西面有海拔數千--的安第斯山脈,東向則主要是平原,包括亞馬遜河森林。 南美洲面積達1,784萬平方公里,佔地球表面的3.5%。直到2011年,南美洲人口已有3億8千萬,世界排名第五。其中巴西是南美洲面積最大的國家,佔有一半左右。.

新!!: 金星和南美洲 · 查看更多 »

古希腊

位于雅典卫城的帕特农神庙,是给女神雅典娜而建。它是古希腊文明最具代表性的标志性符号之一。 古希腊是指从希腊历史上公元前8世纪的古风时期开始到公元前146年被罗马共和国征服之前的这段时间的希腊文明。 早在古希臘文明興起之前約800年,愛琴海地區就孕育了燦爛的克里特文明和邁錫尼文明。大約在公元前1200年,多利亞人的入侵毀滅了邁錫尼文明,希臘歷史進入所謂「黑暗時代」。 在雅典的领导下,在兩次的波希战争取胜之后,并在前5世纪到前4世纪之间,也就是在波希戰爭結束後至伯羅奔尼撒戰爭爆發前的這段時期达到鼎盛,被称作“黄金时期”。在被馬其頓國王亚历山大大帝征服后,希腊化文明在地中海西岸到中亚的大片地区扩散。 古希腊人在宗教、哲學、科學、藝術、工藝等诸多方面有很深的造诣。由于古希腊文明对罗马帝国有过重大影响,后者将前者的文明吸收并带到环地中海和欧洲的许多地区。因此一般认为古希腊文明为西方文明打下了基础。.

新!!: 金星和古希腊 · 查看更多 »

史记

《史记》最早稱為《太史公書》,由西汉太史令(太史公)司马迁编写的历史书籍。记载了自黄帝至汉武帝太初年間共二千五百年的历史,是纪传体通史之祖。全书包括本纪 12 卷、世家 30 卷、列传 70 卷、表 10 卷、书 8 卷,共 130 篇(卷),52 万 6500 餘字。该书原稿约在西汉末年消失,目前存世最古的史记残卷是日本京都高山寺藏中国六朝抄本,目前存世最古的完整史记是现藏台湾中央研究院历史语言研究所的北宋“景祐本”《史记集解》(其中有十五卷为别版补配)及日本藏南宋版黄善夫三家注史记。 《太史公書》首创的纪传体撰史方法为後来历代“正史”所传承,与後来的《汉书》、《後汉书》、《三國志》合称“前四史”。作者司马迁以其“究天人之际,通古今之变,成一家之言”的史识,对後世史学和文学的发展皆产生了深远影响,《太史公書》同时是一部优秀的文学著作,鲁迅称其为“史家之绝唱,无韵之离骚”。 《太史公书》最初無固定书名,或称《太史公记》、《太史公传》、《太史記》、《太史公》。《史记》本来是古代史书的通称,从三国时期开始,“史记”由史书的通称逐渐成为“太史公书”的专称。.

新!!: 金星和史记 · 查看更多 »

司馬遷

司馬遷(),字子長,左馮翊夏陽(今山西河津)人(一说陝西韓城人),是中國西漢時期著名的史学家和文學家。司馬遷所撰写的《史记》被公认为是中国史书的典范,首創的紀傳體撰史方法為後來歷代正史所傳承,被後世尊称爲史遷,又因曾任太史令,故自稱太史公。.

新!!: 金星和司馬遷 · 查看更多 »

合 (天體位置)

合(conjunction,亦稱合日)是位置天文學的一個名詞,它的意義是從一個選定的特定天體(通常是地球)觀察到二個天體在天空上的位置彼此非常靠近。較嚴謹的說法是這兩個天體在天球上有相同的赤經或黃經,而通常對太陽系內的天體都會使用黃經。這種現象有時稱為appulse:兩星漸近(台灣用法)或最小角距(中國大陸用法)。 在天文學上的符號是☌(在Unicode編碼為x260c),手寫是:.

新!!: 金星和合 (天體位置) · 查看更多 »

吉祥天高原

吉祥天高原(Lakshmi Planum)是一個金星上的高原,位於伊师塔地西方,以印度教的財富女神吉祥天女命名.

新!!: 金星和吉祥天高原 · 查看更多 »

吉米·卡特

小詹姆斯·厄尔·“吉米”·卡特(James Earl "Jimmy" Carter, Jr.,),是美国的第39任总统。他早年一直在军队中服役,曾任喬治亞州州长。1976年代表民主黨当选总统,在任期间,卡特創建了兩個新的內閣部門,能源部和教育部。外交方面,卡特积极调停以色列和埃及之间的战争,美国和共产主义国家的关係得到了很好的改善,並和中華人民共和國正式建立外交關係。卡特跟其他国家外交时注重人权保障,曾施壓當時由軍事強人朴正熙執政的韓國政府改善人权。任內面對持續性的“滯脹” ,高通膨,高失業率和經濟緩慢成長的組合,他为了阻止通货膨胀,曾将利息增加到最高20%,引起了部分民眾的反对。1979年他签署移交巴拿馬運河主權移議,同年蘇聯進兵阿富汗,卡特下令對蘇聯採取糧食禁運,抵制1980年莫斯科夏季奧運會,並撤銷雙方所簽署的限制戰略武器條約。1980年,伊朗霍梅尼政权绑架人质,卡特派遣部隊救援但失败,因此他同年在竞选連任时输给了罗纳德·里根,人質危機經444天後直至他卸任當天才解決。 卸任后,卡特積極參與调停各种战争及人質危機的斡旋工作,反对美国小布什政府攻打伊拉克。2002年获得诺贝尔和平奖。.

新!!: 金星和吉米·卡特 · 查看更多 »

夏威夷州

夏威夷州(夏威夷語:Mokuʻāina o Hawaiʻi,State of Hawaii)在1959年8月21日成為美國的第50個州,由夏威夷群島所組成,位於北太平洋中,所在的大洲是大洋洲。距離美國本土3,700公里,屬於太平洋沿岸地區。首府為檀香山。在1778至1898年間,夏威夷也被稱為「三明治群島」(Sandwich Islands)。 夏威夷是距今最近加入美國的州份,與美國其他各州有著明顯的區別:它除了是美國最南方的州外,也是美國唯一一個全部位於熱帶的州;它與阿拉斯加州是美國各州中,僅有的兩個不與其他各州相連的州份,也是美國唯一一個沒有任何土地位在美洲大陸的州。論美國所有領土而言,夏威夷州是除了美國海外屬地和群島以外,最南端的一州,但非最南端的領土(美國最南端的領土在美屬薩摩亞群島)。在族群分佈上,它是兩個非白種人居多數州份的其中之一,比起其他各州,夏威夷州擁有最大的亞裔人口比例。生態及農業方面,它是全世界擁有最多瀕危物種的地方,也是美國唯一生產咖啡具有工業規模的州份。.

新!!: 金星和夏威夷州 · 查看更多 »

夏威夷群島

夏威夷群島(Hawaiian Islands),太平洋中北部的岛群。 夏威夷群島在1778至1898年间也被称为三明治群島(Sandwich Islands),波利尼西亚群岛的一部分,是由19個较大的島嶼和其他小岛組成的群島,成因多为火山岛或珊瑚岛。位處北緯19°至29°之間,北回归线穿过本群岛。属于太平洋、大洋洲,呈東南-西北向排列,共長2400公里,面积16705平方公里。其中面積最大的島为最東南的夏威夷島,當地人慣稱為「大島」,而人口最多則是作為夏威夷州首府檀香山所在的歐胡島。最高点为冒纳凯阿火山(Mauna kea)海拔4205米。 夏威夷群島屬於夏威夷-天皇海山鏈的其中一部份,而這些火山島是由地殼中的熱點所產生的。 群岛常年受东北信风控制,终年高温多雨,为热带海洋性气候。虽然地处热带,但受海洋调节作用,气温不至于太高。 夏威夷群島1959年設為美國領土的第五十州,為夏威夷州,是美国的两大海外州之一,首府在檀香山。.

新!!: 金星和夏威夷群島 · 查看更多 »

大衛·史提芬遜 (天文學家)

大衛·J·史提芬遜(David J. Stevenson,),美國加州理工學院行星科學系教授。他於紐西蘭出生,於康乃爾大學取得物理學系博士學位,在他修讀期間,曾製作木星內部結構的模型。他以流體力學和磁流體動力學來研究行星和衛星的結構為著名,1984年曾奪得哈罗德·C·尤里奖。現時他為英國皇家學會的名譽會員。 S S S S S S S Category:哈罗德·C·尤里奖获得者.

新!!: 金星和大衛·史提芬遜 (天文學家) · 查看更多 »

大气层

大氣層,均源自及也許是一層受到重力吸引聚攏在擁有巨大質量天體周圍的氣體,而如果重力夠大且氣體的溫度夠低,就能長期保留住。有些行星擁有許多不同的主要氣體,並且有非常深厚的大氣(參見氣體巨星)。 恆星大氣層這個名詞描述的是恆星外面的區域,典型的範圍是從不透明的光球開始向外的部份。相對來說是低溫的恆星,在它們外面的大氣層也許可以形成複合的分子。地球大氣層,不僅包含有多數有機體呼吸所使用的氧和植物與海藻和藍綠藻行光合作用所使用的二氧化碳,也保護生物的基因免於受到太陽紫外線輻射的傷害。它目前的組成是古大氣層生活在其中的有機體經過數億年的生物化學修改後的結果。.

新!!: 金星和大气层 · 查看更多 »

大溪地

--(Tahiti),又譯--,是法屬玻里尼西亞向风群岛(社會群島的一部份)上最大的岛屿,位于南太平洋中部。它是法属波利尼西亚群岛的经济,文化和政治中心。火山活动造就了大溪地高耸的、山脉众多的地理环境,四周由珊瑚礁环绕。岛上人口数量为183,456(2012年人口普查),是法属波利尼西亚人口最多的岛屿,它占向风群岛总人口比率的68.6%。 法屬玻里尼西亞的首府帕皮提位于西海岸,法阿國際機場是这个地区唯一的国际机场,距离城市中心5公里(3.11英里)。大溪地在公元300至800年间最原始的定居者是波利尼西亚人,肥沃的土地和捕鱼为他们提供了食物,他们组成了这个岛上70%的人口。其余的人口主要由欧洲人,中国人以及他们通婚的后代组成。该岛在1880年就已被宣布为法国殖民地,但直到1946年那些当地居民才开始获得法国国籍。法语是大溪地岛上唯一官方语言,但当地语言大溪地语却是被广泛使用的一种语言。 大溪地是南太平洋諸島中最多華人移居的地方,當中以客家人為主。島上佳麗多次在國際選美中贏得獎項。大溪地岛也是著名的旅游勝地,除了有陽光、沙灘等景點,也有不少渡假村。.

新!!: 金星和大溪地 · 查看更多 »

天文單位

天文單位(縮寫的標準符號為AU,也寫成au、a.u.或ua)是天文學上的長度單位,曾以地球與太陽的平均距離定義。2012年8月,在中国北京举行的国际天文学大会(IAU)第28届全体会议上,天文学家以无记名投票的方式,把天文单位固定为149,597,870,700米。新的天文单位以公尺来定义,而公尺的定义来源于真空中的光速,也就是说,天文单位现在不再与地球與太阳的實際距离挂钩,而且也不再受时间变化的影响(虽然天文单位最初的来源就是日地平均距离)。 國際度量衡局建議的縮寫符號是ua,但英語系的國家最常用的仍是AU,國際天文聯合會則推薦au,同時國際標準ISO 31-1也使用AU,后来的國際標準ISO 80000-3:2006又改成了ua。通常,大寫字母僅用於使用科學家的名字命名的單位符號,而au或a.u.也可以是原子單位或是任意單位;但是AU被廣泛的地區使用作為天文單位的符號。以1天文單位距離的值為單位的天文常數的值會以符號A標示。.

新!!: 金星和天文單位 · 查看更多 »

天文符號

天文符号是天文学中用来表示各种天体、理论构造以及观测事件的符号。其中的许多符号也用于占星学中。这里列出的符号是专业天文学家和业余天文爱好者们经常用到的一些,有些也同样用于占星学。不过,在世界上的不同地方,有的符号会有些差异(例如欧洲使用的象形符号就和美国使用的稍有不同)。.

新!!: 金星和天文符號 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

新!!: 金星和太阳系 · 查看更多 »

太阳风

太陽風(solar wind)特指由太阳上層大氣射出的超高速等离子体(带电粒子)流。非出自太陽的类似带电粒子流也常稱爲“恆星風”。 在太陽日冕层的高温(几百万開氏度)下,氢、氦等原子已经被電離成帶正電的质子、氦原子核和带负电的自由电子等。这些带电粒子运动速度极快,以致不断有带电的粒子挣脱太阳的引力束缚,射向太陽的外围,形成太陽風。 太陽風的速度一般在200-800km/s。 一般認為在太阳极小期,從太陽的磁場极地附近吹出的是高速太陽風,從太陽的磁场赤道附近吹出的是低速太陽風。太陽的磁場的活动是會變化的,週期大約為11年。 太陽風一词是在1950年代被尤金·派克提出。但是直到1960年代才證實了它的存在。長期觀測發現,當太陽存在冕洞時,地球附近就能觀測到高速的太陽風。因此天文学家認為高速太陽風的產生與冕洞有密切的關係。太阳表面的磁场及等离子体活动对地球有很重要的影响。当太阳发生强烈的活动时,大量的带电粒子随着太阳风吹向地球的两极,就会在两极的电离层引发美丽的极光。.

新!!: 金星和太阳风 · 查看更多 »

太阳日

太陽日(solar day)是依據太陽運動,所定義的時間,可以分為視太陽日和平太陽日。 一太阳日傳統称為一“日”、一“天”或一“昼夜”。.

新!!: 金星和太阳日 · 查看更多 »

太陽

#重定向 太阳.

新!!: 金星和太陽 · 查看更多 »

太陽系探索時間線

#重定向 太陽系探索年表.

新!!: 金星和太陽系探索時間線 · 查看更多 »

太陽系探測器列表

本列表包括任務成功以及試圖到達地球以外的所有探測器,其中的目標任務包括小行星、行星、衛星、太陽甚至是太陽系外的探測。其中有一些任務僅飛掠小行星、行星、衛星、太陽,由於探測地球本身的探測器數量龐雜、利用多次重力拋射的探測器軌道複雜,所以未加觀測地球、飛掠地球的探測器並未列入。另外,本列表目前也未將已取消或是未來可能發射的探測器列入,因為可能有諸多不確定因素。 截至2016年4月為止,共有248艘探測器被設定為太陽系探測器,這些探測器有些攜帶許多小探測器,但大部分為單一的探測器,其中143艘探測器成功;7艘探測器部分成功;98艘探測器失敗。.

新!!: 金星和太陽系探測器列表 · 查看更多 »

太陽星雲

太陽星雲相信是讓地球所在的太陽系形成的氣體雲氣,這個星雲假說最早是在1734年由伊曼紐·斯威登堡提出的。在1755年,熟知斯威登堡工作的康德將理論做了更進一步的開發,他認為在星雲慢慢的旋轉下,由於引力的作用雲氣逐漸坍塌和漸漸變得扁平,最後形成恆星和行星。拉普拉斯在1796年也提出了相同的模型。這些可以被認為是早期的宇宙論。 當初僅適用於我們自己太陽系的形成理論,在我們的銀河系內發現了超過200個外太陽系之後,理論學家認為這個理論應該要能適用整個宇宙中的行星形成。.

新!!: 金星和太陽星雲 · 查看更多 »

容積熱容

容積熱容是指物體在溫度改變而沒有相變之下的儲熱能力。與比熱不同之處是它視乎物體的容積,而比熱則視乎物體的質量。根據物體的比熱,我們可以利用物體的密度得出容積熱容。 .

新!!: 金星和容積熱容 · 查看更多 »

宇宙航空研究開發機構

宇宙航空研究開發機構(;Japan Aerospace Exploration Agency,縮寫:JAXA),簡稱宇宙機構、宇宙航空機構,為負責日本航空太空開發政策的國家研究與發展法人,包括研究、开发和发射人造卫星入地心轨道。其它任务包括探测小行星和未来可能的登月工程。 宇宙航空研究開發機構隸屬於文部科學省,2003年10月1日由3個與日本航太事業有關的政府機構:文部科學省宇宙科学研究所(ISAS)、航空宇宙技術研究所(NAL)、宇宙開發事業團(NASDA)合組而成,總部設於原航空宇宙技術研究所總部。首任執行長為的川泰宣。.

新!!: 金星和宇宙航空研究開發機構 · 查看更多 »

安達盧西亞

安達魯西亞(Andalucía)是組成西班牙的17個自治區之一,下辖阿尔梅里亚、加的斯、科尔多瓦、格拉纳达、韦尔瓦、哈恩、马拉加和塞维利亚8省,是西班牙人口最多以及面积第二大的自治区。首府位于塞维利亚。 安達魯西亞在西班牙南方,北有埃斯特雷马杜拉和卡斯蒂利亚-拉曼查,东有穆尔西亚,南有地中海、直布罗陀,西有葡萄牙。 摩尔人(西亚及北非地区穆斯林的统称)曾统治過此地并命名为安达卢斯,意思是“汪达尔人的土地”,安達魯西亞便因此得名,而这里也便很多摩尔式建筑物。最著名的便是在格拉納達的阿尔罕布拉宫。.

新!!: 金星和安達盧西亞 · 查看更多 »

導體

導體(conductor)為能夠讓電流通過的材料,依其導電性,能夠細分為超導體、導體、半導體及絕緣體。在科學及工程上常用利用歐姆來定義某材料的導電程度。它们使電力極容易地通过它们。例如:金属、人体、大地、石墨、食鹽水溶液等都是導電體。 當電流在導體內流過時,事實上是因為導體內的自由电荷(在金属中的自由电荷是电子,而在溶液中的自由电荷则为阴、阳產生漂移而造成的,根據材料的不同,自由电荷的漂移方式也不相同:在超導體中,電子幾乎不受原子核的干擾而能夠快速移動;而在導體內電子的移動受限於該材料所造成的電子海的能階大小;而在半導體內,電子能夠移動是因為電子-空穴效應;而絕緣體則是電子受限於分子所構成的共價鍵,使得電子要脫離原子是非常困難的事。因此,沒有絕對絕緣的絕緣體,只要有足夠大的能量就可以使電子得以通過某絕緣體。 Category:材料 Category:熱力學 Category:電學.

新!!: 金星和導體 · 查看更多 »

對流

對流是指流體內部的分子運動,是熱傳與質傳的主要模式之一。熱對流(亦稱爲對流傳熱)是三種主要熱傳方式中的其中一種(另外兩種分別是熱傳導與熱輻射).

新!!: 金星和對流 · 查看更多 »

小行星

小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.

新!!: 金星和小行星 · 查看更多 »

尼古拉·哥白尼

尼古拉·哥白尼(Nicolaus Copernicus,Mikołaj Kopernik,)是文艺复兴时期波兰数学家、天文学家,他提倡日心说模型,提到太陽為宇宙的中心。1543年哥白尼临终前发表了《天體運行論》一般認為他著的是現代天文學的起步點。它开启了哥白尼革命,并对推动科学革命作出了重要贡献。 哥白尼出生于皇家普魯士,该地区自1466年隶属于波兰王国。哥白尼获得了教会法规博士学位,同时也是一名医生,通晓多国语言,了解经典文学,能够胜任翻译,做过执政官、外交官,也是一名经济学家(后续几项都没有学历学位)。1517年,哥白尼总结了货币量化理论,成为当今经济学的重要基础之一。1519年,哥白尼在托马斯·格雷沙姆之前总结出了劣幣驅逐良幣理论的前身。.

新!!: 金星和尼古拉·哥白尼 · 查看更多 »

尼斯 (金星假想卫星)

尼斯 (Neith)是一颗曾经有许多人声称观测到的金星的卫星,後來证实了無此卫星存在。它的首次发现是由意大利出生的法国天文学家乔凡尼·多美尼科·卡西尼在1672年完成的。天文学家对尼斯的零星观察一直持续到1982年,但是这些观察之后受到了怀疑(也许是其它昏暗的星体在恰好的时间出现在了恰好的位置上)。小行星2002 VE68維持著與金星相似的軌道,但金星目前沒有发现天然的衛星。.

新!!: 金星和尼斯 (金星假想卫星) · 查看更多 »

射电望远镜

射电望远镜(Radio telescope)是一个专门的天线和无线电接收机,在射电天文学用来接收天空中从天文射电源的无线电波。射电望远镜的外形差别很大,有固定在地面的单一口径的球面射电望远镜,有能够全方位转动的类似卫星接收天线的射电望远镜,有射电望远镜阵列,还有金属杆制成的射电望远镜。 1931年,美国贝尔实验室的央斯基用天线阵接收到了来自银河系中心的无线电波。随后美国人格羅特·雷伯在自家的后院建造了一架口径9.5米的天线,并在1939年接收到了来自银河系中心的无线电波,并且根据观测结果绘制了第一张射电天图。射电天文学从此诞生。雷伯使用的那架天线是世界上第一架专门用于天文观测的射电望远镜。 20世纪60年代天文学取得了四项非常重要的发现:脉冲星、类星体、宇宙微波背景辐射、星际有机分子,被称为“四大发现”。这四项发现都与射电望远镜有关。 天文望远镜的极限分辨率取决于望远镜的口径和观测所用的波长。口径越大,波长越短,分辨率越高。由于无线电波的波长要远远大于可见光的波长,因此射电望远镜的分辨本领远远低于相同口径的光学望远镜,而射电望远镜的天线又不能无限做大。这在射电天文学诞生的初期严重阻碍了射电望远镜的发展。 1962年,英国剑桥大学卡文迪许实验室的马丁·赖尔(Ryle)利用干涉的原理,发明了综合孔径射电望远镜,大大提高了射电望远镜的分辨率。其基本原理是:用相隔两地的两架射电望远镜接收同一天体的无线电波,两束波进行干涉,其等效分辨率最高可以等同于一架口径相当于两地之间距离的单口径射电望远镜。赖尔因为此项发明获得1974年诺贝尔物理学奖。.

新!!: 金星和射电望远镜 · 查看更多 »

巴(符号bar)、毫巴(符号mbar)都是表示壓强的单位。它们不属于國際單位制或厘米-克-秒制,但接受與國際單位並用。因为巴與大氣壓力相似,所以被廣泛用於描述壓力。它在歐洲聯盟國家裡律法上被承認。英國標準 BS 350:2004 Conversion Factors for Units.

新!!: 金星和巴 · 查看更多 »

巴比伦

巴比伦(阿拉伯语: بابل, Bābil; 阿卡德语: Bābili(m); 苏美尔语语标符号: KÁ.DINGIR.RAKI; 希伯来语: בָּבֶל, Bāḇel; 古希腊语: Βαβυλών Babylṓn)原本是一个闪语族阿卡德人的城市。它的历史可以追溯到大约四千三百年前的阿卡德帝国。 它起初是一个低级行政中心。公元前1894年在由移民者建立的阿摩利人王朝的手里巴比伦才成为一个独立的城邦。巴比伦人在他们的历史上相对更多地被其它移民王朝统治,例如加喜特人、阿拉米人、埃兰人与迦勒底人。两河流域的同胞亚述人也统治过巴比伦。 巴比伦城市遗址在今天伊拉克巴比伦省的希拉被发现,位于巴格达以南约八十五公里处。这个举世闻名城市的遗址地处底格里斯河和幼发拉底河之间肥沃的美索不达米亚平原上,现在仅留存着由破损的土砖建筑物构成的大型土墩和碎片。城市沿着幼发拉底河建造,被左、右河岸平分成两部分,配有陡峭的河堤来抵御季节性的洪水。 现存的历史资料显示,巴比伦最初是一个小城镇,在公元前二千年初变得兴盛。在阿摩利人巴比伦第一王朝于公元前1894年兴起时它作为一个小城邦获得独立。巴比伦宣称自己是苏美尔-阿卡德城邦——埃利都的继承者。尽管在那时候它还是一个小城市,但是它让美索不达米亚平原上的“圣城”尼普尔黯然失色。大约也是这个时候,也就是公元前十八世纪左右,一个名叫汉谟拉比的亚摩利人国王第一次建立了一个短命的巴比伦帝国。从这时候开始美索不达米亚平原的南部被人称作巴比倫尼亞,巴比伦城市的规模日益膨胀,变得越来越雄伟。 巴比伦帝国随着灭亡而快速瓦解。之后,巴比伦在亚述人、加喜特人和埃兰人的统治下度过了漫长的岁月。在被亚述人毁灭并重建后,巴比伦于公元前608年到公元前539年之间成为新巴比伦王国的所在地。这个帝国由来自美索不达米亚平原东南角的迦勒底人建立。新巴比伦帝国最后一个国王是一个来自美索不达米亚平原北部的亚述人。巴比伦的空中花园是古代世界七大奇迹之一。巴比伦在衰落后又被阿契美尼德帝国、塞琉古王朝、帕提亚帝国、罗马帝国和萨珊王朝统治。.

新!!: 金星和巴比伦 · 查看更多 »

不明飞行物

不明飛行物(體)或稱未確認飛行物(體)(英文:Unidentified Flying Object 縮寫:UFO),是指不明來歷、不明性質,漂浮及飛行在天空的物體。意指是只要在觀察者眼中看不清或無法辨認的不詳物體都稱為UFO。 很多人將UFO視為等同於高科技或外星文明的飛碟、飛盤(英文:Flying Saucer),台灣稱為飛碟、幽浮。 一般人相信它是來自其他行星的太空船或者未來的人來今日地球做研究所操控的時光機,一些人則認為是大氣現象,還有一些人則認為是來自地球本身的人造軍事飛碟,甚至純粹的惡作劇等。許多不明飛行物照片經過專家鑑定為騙局或者誤會,但是始終有部分發現根據現存科學知識無法解釋,例如鳳凰城光點及華盛頓不明飛行物事件等。 在不明飛行物一詞出現以前,英文中只有飛碟一詞稱呼,但是經常造成誤解。20世紀開始,美國上空發現碟狀飛行物,當時稱為飛碟,以為是蘇聯新式偵察武器。這是當代對不明飛行物的興趣的開端,後來人們著眼於世界各地的不明飛行物報告。.

新!!: 金星和不明飞行物 · 查看更多 »

中國

中國是位於東亞的國家或地理區域,此名稱最早见于西周,用來指以洛陽盆地為中心的中原地區,與四夷相對,之後逐漸用來指稱從夏朝起延續傳承至今的各政權。其疆域隨著歷史演變而有所增減,但大多不脫以中原王朝根基所在的汉地九州為中心。民族構成上以漢族為主體,文化上透過歷代王朝政權與周邊各民族政權的交流與征戰,而融入不少周邊民族的文化。現今國際上廣泛承認代表中國的政權是中华人民共和国。 中國文明是世界上最早的文明之一。 新石器时期,中原地区开始出现聚落组织;公元前27世纪左右出现方国,以共主為首的制度;前20世纪开始,古代中国进入世袭的封建皇朝阶段;公元前2世紀,秦滅六國,完成中國第一次大一統。此後幾千年來,中國的政治制度以半傳統的夏代為基礎的世襲君主制以朝代更換政權運作。此後经多次擴大,破裂,重組,朝代更迭,經過數次统一与分裂交替进行。直到1911年辛亥革命後,中國废除君主制,实行共和制,清朝被1912年成立的中华民国取代。1945年第二次國共內戰爆發後,中國共產黨逐漸控制中國的大部分領土,最終於1949年10月1日建立中华人民共和国,形成了中华民国與中华人民共和国双方相隔台灣海峽对峙的局面;惟做為國際關係核心場域的聯合國系統內,中華民國政府仍持擁有中國代表權,直到1971年聯合國大會2758號決議通過後,才被中華人民共和國政府完全取代。 中國經濟曾经在相当长的历史时期中在世界上占有重要的地位,其周期通常与王朝的兴衰与更替相對應。中國經濟史可分为几个階段:第一階段為遠古至西晉末年,其中以三國孫吳時轉變較大;第二階段為東晉至北宋末年,其中以唐安史之亂劃分為前後;第三階段為南宋建立至鴉片戰爭張家駒,《兩宋經濟重心的南移》,湖北人民出版社,1957年。工业革命後,西方國家的工業成品,無論在數量和質量上,相較於當時中国純手工業經濟出産的商品,佔有壓倒性的優勢。而且,由于明清兩代以來,中國對外政策趨於保守,並對外實行海禁,使得西方工業化的影响步伐在中国国門前站住了腳,中国在19世紀末以前,一直沒有很好地進行工業化,經濟遂落後於西方。1978年改革開放施行後,中国经济發展迅速,對世界經濟的影響也日漸顯著。 中国文化歷經上千年的歷史演變,是各區域、各民族古代文化長期相互交流、借鉴、融合的結果。其中汉文化对日本、朝鮮半島和东南亚有深远影响,形成漢字文化圈。中国的传统艺术形式有国乐、相声、戏曲、书法、国画、文學、陶瓷藝術、雕刻等,传统娱乐活动有象棋、围棋、麻将、中国武术等。茶、酒、菜和筷子等为中国的特色饮食文化,春节(舊曆新年)、元宵、清明、端午、七夕、中秋、重阳、冬至等为传统节日。中国传统上是一个儒学国家,以夏历为历法,以五伦为道德准则。春秋时期孔子「有教无类,因材施教」开始办私塾培养人才,汉朝时采用察举推选政府官员,隋朝起实行科举在平民中选拔人才。此外,中国歷朝歷代都设有史官,因此保存有十分详尽的历史资料,如《二十四史》、《资治通鉴》等。古代中國在科學領域上有豐厚的成就。.

新!!: 金星和中國 · 查看更多 »

希腊神话

希臘神話(希腊语:ἡ Ἑλληνικὴ Μυθολογία)即口頭或文字上一切有關古希臘人的神、英雄、自然和宇宙歷史的神話。希臘神話是古希臘宗教的組成部分之一。現代的學者更傾向於研究神話,因為其實際上反映了古希臘的宗教和政治制度、文明以及這些神話產生的本質原因。一些神學家甚至認為古希臘人創造這些神話是為了解釋他們所遇到所有的事件。 希臘神話涵及大量傳說故事,其中很多都通過希臘藝術品來表現,比如古希臘的陶器繪畫和浮雕藝術。這些傳說意在解釋世界的本源和講述眾神和英雄們的生活和冒險以及對當時的生物的特殊看法。這些神話開始於口耳相傳,今日所知的希臘神話或傳說大多來源於古希臘文學。已知的最早的古希臘文學作品有荷馬的敘事史詩《伊利亞特》和《奧德賽》,著重描寫了和特洛伊戰爭相關的重大事件。基本上和荷馬是同時期的赫西俄德的兩部詩歌《神譜》和《工作與時日》包含了當時的學者對世界起源、神權統治和人類時代的延續以及人類疾苦和祭祀活動的起源的看法和認識。除了《荷馬史詩》之外,還可以從《》(抒情詩,公元前5世紀的悲劇作品)、希臘化時期的學術作品和詩歌以及羅馬帝國時期的作品,如普魯塔克和保薩尼亞斯的作品中發現希臘神話的踪跡。 現在希臘神話已經從很多藝術品上關於眾神和英雄故事的裝飾得到考古學上證明。公元前8世紀的陶器上的幾何設計鮮明地記錄特洛伊圍城的場景和赫拉克勒斯的冒險。在隨後的古風時期、古典希臘時期以及希臘化時期,大量得到了文學上的證據證明神話場景不斷湧現。 希臘神話對西方文化、藝術、文學和語言有著明顯而深遠的影響。從古希臘時期到現代,詩人和藝術家很多都從希臘神話中獲得靈感,並為其賦予現代意義。.

新!!: 金星和希腊神话 · 查看更多 »

帕斯卡

帕斯卡(符號Pa或Pascal)是國際單位制(SI)的壓強單位。在不致混淆的情況下也可簡稱為「帕」。它等於每平方米一牛頓。以法國學者(同時身兼數學家、物理學家、化學家、音樂家、宗教家、教育家、氣象學家、哲學家)布莱茲·帕斯卡之名而命名。百帕(hPa)和千帕(kPa)也是自Pa衍生出來的氣象常用單位,正常海平面約101kPa、或1013百帕。.

新!!: 金星和帕斯卡 · 查看更多 »

一氧化碳

一氧化碳,分子式CO,是無色、無嗅、無味的无机化合物氣體,比空氣略輕。在水中的溶解度甚低,但易溶于氨水。空气混合爆炸极限为12.5%~74%。 一氧化碳是含碳物质不完全燃烧的产物。也可以作为燃料使用,煤和水在高温下可以生成水煤气(一氧化碳与氢气的混合物)。有些現代技術,如煉鐵,還是會產生副產品的一氧化碳。一氧化碳是可用作身體自然調節炎症反應的三種氣體之一(其他兩種是一氧化氮和硫化氫)。 由于一氧化碳与体内血红蛋白的亲和力比氧与血红蛋白的亲和力大200-300倍,而碳氧血红蛋白较氧合血红蛋白的解离速度慢3600倍,当一氧化碳浓度在空气中达到35ppm,就会对人体产生损害,會造成一氧化碳中毒(又称煤气中毒)。 雖然一氧化碳有毒,但動物代謝亦會產生少量一氧化碳,並認為有一些正常的生理功能。.

新!!: 金星和一氧化碳 · 查看更多 »

幾何反照率

天體的幾何反照率(geometric albedo)是天體在相位角為0的實際光度(即光源)和相同橫截面在完美平面上的完全漫反射()比例。 漫反射意味著反射的光不會有入射光源的各向同性。零相位角就代表延著光源的方向觀察。對於地球上的觀測者,這種狀況將會在天體位於衝或黃道上時發生。 可見光幾何反照率(visual geometric albedo)則只計算在可見光下的天體幾何反照率。.

新!!: 金星和幾何反照率 · 查看更多 »

乔凡尼·多美尼科·卡西尼

乔凡尼·多美尼科·卡西尼(意大利文:Giovanni Domenico Cassini,),法文名让-多米尼克·卡西尼(Gian Domenico Cassini或Jean-Dominique Cassini),是一位在熱那亞共和國(今意大利境內)出生的法国籍天文学家和水利工程师。 卡西尼1625年出生于熱那亞共和國的佩里納爾多(即今意大利因佩里亞省佩里納爾多),在1648年至1669年期間曾在旁扎诺天文台工作。1640年起,担任博洛尼亚大学天文学教授,並在1671年巴黎天文台落成后成為该台的第一任總監直到去世。1673年加入法国国籍,改名为法文,即让-多米尼克·卡西尼,又称卡西尼一世(Cassini Ier,其曾孙与其同名,称卡西尼二世)。 卡西尼被认为与胡克同时发现了大红斑(1665年)。卡西尼是第一个发现土星的四个卫星(土卫八、土卫五、土卫四、土卫三)的人。1690年,他在觀測木星的大氣層時發現木星赤道旋轉得比兩極快,因此發現了木星的較差自轉。1675年,他发现土星光环中间有条暗缝,这就是后来以他名字命名的著名的卡西尼环缝。他猜测,光环是由无数小颗粒构成。两个多世纪后的分光观测证实了他的猜测。1671年到1679年,他仔细观测了月球的表面特征,1679年送呈法国皇家科学院一份大幅月面图,在一个多世纪内始终没人能在这方面超过他。1683年3月起,卡西尼研究了黄道光,认为它是由于行星际尘埃反射太阳光引起的,不属于大气现象。 卡西尼是一位保守的天文学家,他拒绝接受哥白尼的日心说,也反对开普勒定律、艾萨克·牛顿的万有引力定律和光速有限说。卡西尼於1711年失明,次年(1712年)逝世于法国巴黎。除了天文學的貢獻以外,他亦曾被教宗委任治理波河的防治、管理及防汛工程。 当代人类探测土星的探测器“卡西尼号”即以他的名字命名。.

新!!: 金星和乔凡尼·多美尼科·卡西尼 · 查看更多 »

二氧化硫

二氧化硫,(sulphur dioxide, sulfur dioxide)化学式是SO2。是最常见的硫氧化物。无色气体,有强烈刺激性气味。大气主要污染物之一。火山爆发时会喷出该气体,在许多工业过程中也会产生二氧化硫。由于煤和石油通常都含有硫化合物,因此燃烧时会生成二氧化硫。當二氧化硫溶於水中,會形成亞硫酸(酸雨的主要成分)。若把SO2进一步氧化,通常在催化剂如二氧化氮的存在下,便会生成硫酸。这就是对使用这些燃料作为能源的环境效果的担心的原因之一。.

新!!: 金星和二氧化硫 · 查看更多 »

二氧化碳

二氧化碳(IUPAC名:carbon dioxide,分子式:CO2)是空氣中常見的化合物,由两个氧原子与一个碳原子通过共价键连接而成。空氣中有微量的二氧化碳,約佔0.04%。二氧化碳略溶於水中,形成碳酸,碳酸是一種弱酸。 在二氧化碳分子中,碳原子的成键方式是sp杂化轨道与氧原子成键。碳原子的两个sp杂化轨道分别与两个氧原子生成两个σ键。碳原子上两个没有参加杂化(混成)的p轨道与成键的sp杂化轨道成90°的直角,并同氧原子的p轨道分别发生重叠,故缩短了碳氧键的间距。 二氧化碳平均约占大气体积的400ppm,不過每年因為人為的排放增加,比率還在逐步上升。2018年4月大氣二氧化碳月均濃度超過410ppm,為過去80萬年來最高。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。 二氧化碳常壓下為無色、無味、不助燃、不可燃的氣體。二氧化碳是一種溫室氣體。二氧化碳的濃度自1900年至2016年11月增長了約127ppm。.

新!!: 金星和二氧化碳 · 查看更多 »

伊师塔地

#重定向 伊絲塔區.

新!!: 金星和伊师塔地 · 查看更多 »

伊本·西那

阿布·阿里·侯赛因·本·阿卜杜拉·本·哈桑·本·阿里·本·西那(阿拉伯文:,波斯文:ابوعلی حسین بن عبدالله بن حسن بن علي بن سینا;),一般简称伊本·西那(阿拉伯文、波斯文:),欧洲人尊其为阿维森纳(阿维真纳)(希腊文:Aβιτζιανός,拉丁文:Avicenna),塔吉克人,生于布哈拉附近。中世纪波斯哲学家、医学家、自然科学家、文学家。 伊本·西那青年时曾任宫廷御医;二十岁时,因王朝覆灭而迁居花剌子模;十一年后,因政治原因逃至伊朗。他博学多才,有多方面的成就。医学上,丰富了内科知识,重视解剖,所著《》是十七世纪以前亚洲、欧洲广大地区的主要医学教科书和参考书。哲学上,他是阿拉伯/波斯亚里士多德学派的主要代表之一。持二元论,并创造了自己的学说。肯定物质世界是永恒的、不可创造的,同时又承认真主是永恒的。主张灵魂不灭,也不轮回,反对死者复活之说。主要著作还有《》、《知识论》等。.

新!!: 金星和伊本·西那 · 查看更多 »

伽利略·伽利莱

伽利略·伽利莱(Galileo Galilei, ;)Drake(1978, p.1).伽利略出生日期用的是儒略曆,當時所有基督教國家都使用這個曆法。義大利及幾個天主教國家於1582年改用公曆。除非特別註明,條目中的日期皆為公曆。,義大利物理學家、數學家、天文學家及哲學家,科學革命中的重要人物。其成就包括改進望遠鏡和其所帶來的天文觀測,以及支持哥白尼的日心说。伽利略做实验证明,感受到引力的物体并不是呈等速運動,而是呈加速度運動;物體只要不受到外力的作用,就會保持其原來的靜止狀態或勻速運動狀態不變。他又發表惯性原理阐明,未感受到外力作用的物体会保持不变其原来的静止状态或匀速运动状态。伽利略被譽為“現代觀測天文學之父”、“現代物理學之父”、“科學之父”及“現代科學之父”。Finocchiaro (2007).

新!!: 金星和伽利略·伽利莱 · 查看更多 »

开尔文

开尔文(Kelvin)是温度的计量单位。它是國際單位制(SI)的七个基本單位之一,符號为K。以开尔文计量的温度标准称为热力学温标,其零点为绝对零度。在热力学的经典表述中,绝对零度下所有热运动停止。1开尔文定义为水的三相点與绝对零度相差的。水的三相点是0.01°C,因此温度变化1攝氏度,相当于变化了1开尔文。 开氏温标得名自英國工程师和物理学家威廉·汤姆森,第一代开尔文男爵(1824–1907)。.

新!!: 金星和开尔文 · 查看更多 »

地壳

在地理上,地殼(Crust)是指一个星球最外層的實心薄殼,可以用化學方法将它与地幔區别。地球,月球,水星,金星,火星以及其它星球的地殼大部分都是由火成岩形成的,星球的地殼比起它们的地幔有更多的不相容成分。.

新!!: 金星和地壳 · 查看更多 »

地幔

地函(Erdmantel;mantle;manteau;原於mantellum,意為斗篷),--,位於地殼之下,地核之上,和地殼以莫氏不連續面為界,和地核間則以古氏不連續面為界。厚度约2900公里。化学成分主要是含铁、镁的矽酸鹽,平均密度是3.3–5.5 g/cm3。地函含石榴子石、輝石、橄欖石及其他類型的岩石。占地球體積的83%,總質量的68%。由於P波及S波皆可通過地函,故推測地函主要為固體構成。地函可分成上部地函、過渡帶及下部地函。.

新!!: 金星和地幔 · 查看更多 »

地獄

地獄,被一些人認為是人死亡後靈魂會到的地方。在汉族传统宗教观念中,地獄是陰間地府的一部分。地獄的觀念广泛分布於世界各地的宗教信仰观念中,如道教、佛教、印度教、現今的猶太教和基督宗教中的一些派别、伊斯兰教等。其實陰間和地獄的性質不盡相同,陰間也稱冥界,泛指亡魂所在的空間,而地獄特指囚禁和懲罰生前罪孽深重的亡魂之地,可以說是陰間的監獄和刑場。 地狱的观念同时出现在古代东方的印度和西方的西亚,这是个很有趣的问题,其最初来源可能是位于两者之间的伊朗高原。早在公元前1800年古波斯的拜火教就有这样的描述:末日审判是有一个大火坑,好人在那里被牛奶和蜂蜜浇灌,而坏人则被融化的金属溶液浇灌。有人認為這是东西方所有地狱观念的共同起源,研究古波斯宗教的学者也持此观点。一種觀點認為佛教傳入前中國沒有地獄觀念。以著有《東漢生死觀》的余英時等為代表的學者認為,中國道教原本已有地獄觀念,佛教傳入後又影響後來道教的地獄概念。 不同的信仰對地獄的理解會有所不同,但一般與人死後的靈魂會到地獄受審、等待輪迴、轉世或受刑罰等事有關。地獄與痛苦的負面情緒有不可分割的聯想,佛教認為地獄道是沒有喜悅意和喜樂的地方,在六道之中最苦的境界;地獄道的是囚犯即“罪鬼”,這與鬼道中的鬼是不同的。.

新!!: 金星和地獄 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: 金星和地球 · 查看更多 »

地球大气层

地球大氣層,又稱大氣圈,因重力關係而圍繞著地球的一層混合氣體,是地球最外部的气体圈层,包围着海洋和陆地,大气圈没有确切的上界,在离地表2000-16000公里高空仍有稀薄的气体和基本粒子,在地下、土壤和某些岩石中也会有少量氣體,它们也可視同大气圈的組成部分,地球大气的主要成分為氮、氧、氩、二氧化碳和不到0.04%比例的微量氣體,這些混合氣體即稱為空氣,地球大气圈气体的总质量约为5.136×1021克,相当于地球总质量的百万分之0.86,由于地球引力作用,几乎全部的气体集中在离地面100公里的熱层、其中99%在低於25~30公里以內,地球高密度大氣的氣壓也相當驚人,海平面每平方公尺所受空氣擠壓高達11公噸,每立方公尺的空氣質量可達1.29kg之多。大氣層保護地表避免太陽輻射直接照射,尤其是紫外線;也可以減少一天當中極端溫差的出現。.

新!!: 金星和地球大气层 · 查看更多 »

圆 (Circle),根據歐幾里得的《几何原本》定義,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:「平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。.

新!!: 金星和圆 · 查看更多 »

國家地理頻道

國家地理頻道(National Geographic Channel,簡稱:NGC),是美國國家地理合股有限公司(National Geographic Partners)旗下負責電視及製作事業群,該公司於1997年成立、現由二十一世紀福斯及國家地理學會合資。 海外國家地理頻道(國際)(National Geographic Channels International,NGCI)則是國家地理電視(National Geographic Television,NGT)及福斯娛樂集團合組而成的企業。.

新!!: 金星和國家地理頻道 · 查看更多 »

國際天文聯會

國際天文學聯合會(International Astronomical Union,缩写为IAU;法語:Union astronomique internationale,縮寫為UAI),由博士以上的專業天文學家所組成,積極參與天文學研究與教育。於1919年7月28日在比利時的布魯塞爾成立,由當時的國際天文星圖計畫(Carte du Ciel)、太陽天文聯合會(Solar Union)和國際時間局(Bureau International de l'Heure)等數個組織合併而成。其後,世界各國的國家級天文組織陸續加入,构成今日的規模。該會是國際科學理事會(ICSU)的國際科學聯合成員,也是國際上承認的權威机构,負責統合恆星、小行星、衛星、彗星等新天體以及天文學名詞的定義與英文命名。2014年7月10日宣布「外星世界命名」(NameExoWorlds)活動啟動,開放公眾參與系外行星的命名。 IAU下分成數個工作單位,IAU也負責天文訊息全球電報通報系統,實際工作由中央天文電報局(Central Bureau for Astronomical Telegrams,CBAT)汇总整理天文訊息的匯報及電報的發布。 總會共有90個不同國家或地區共10144位會員,其中美國最多,有2579位會員,其次为法國(700位)、日本(598位)、義大利(568位)、德國(532位)和英國(523位)。.

新!!: 金星和國際天文聯會 · 查看更多 »

喜马拉雅山脉

喜马拉雅山脉(हिमालय IAST:hīmalaya,“雪域”之意;;हिमालय)是世界海拔最高的山脉,位于亚洲的中国西藏自治区与巴基斯坦、印度、尼泊尔、不丹等国边境上。东西长2400多公里,南北宽200—300公里。分布于青藏高原南缘,西起克什米尔的南迦-帕尔巴特峰(北纬35°14'21",东经74°35'24",海拔8125米),东至雅鲁藏布江大拐弯处的南迦巴瓦峰(北纬29°37'51",东经95°03'31",海拔7756米),总面积约594,400平方公里。 中国与尼泊尔边界上的主峰珠穆朗玛峰海拔高度8844.43米,为世界第一高峰。喜马拉雅山脉中還有一百多座高度超過7200米的山峰,而喜马拉雅山脉以外的最高峰是世界第二高峰、位於喀喇昆仑山脉的喬戈里峰,高度8611米。喜马拉雅山脉對南亞文化有許多的影響,許多山脈中的高山是佛教及印度教的聖地。 喜马拉雅山脉也有一些較低而走勢平行的山麓,第一山麓在最南邊,高約一千米,稱為西瓦利克山脈,再往北即是高二千到三千米的。 喜马拉雅山脉橫跨了五個國家:印度、尼泊尔、不丹、中国及巴基斯坦,喜马拉雅山脉主要是在前三個國家的國境內。喜马拉雅山脉的西北方是興都庫什山脈和喀喇昆仑山脉,北邊是西藏高原,南邊則是印度河-恆河平原。 世界上的主要河川中,印度河、恆河及雅魯藏布江(下游是布拉馬普特拉河)-都是發源自喜马拉雅山脉。印度河和雅魯藏布江發源自岡仁波齊峰附近,而恆河發源自印度的北阿坎德邦。這些河的流域中居住了約六億人。.

新!!: 金星和喜马拉雅山脉 · 查看更多 »

儒略年

儒略年(符號:a)是天文學中測量時間的測量單位,定義的數值為365.25天,每天為國際單位的86400秒,總數為31,557,600秒。這個數值是西方社會早期使用儒略曆中年的平均長度,並且是這個單位的名稱。然而,因為儒略年只是測量時間的單位,並沒有針對特定的日期,因此儒略年與儒略曆或任何其他的曆都沒有關聯,也與許多其他型式年的定義沒有關聯。.

新!!: 金星和儒略年 · 查看更多 »

儒略曆

儒略曆,是格里曆的前身,由羅馬共和國獨裁官儒略·凱撒采纳埃及亚历山大的希腊数学家兼天文学家计算的历法,在公元前45年1月1日起执行,取代旧罗马历历法的历法。一年设12个月,大小月交替,四年一闰,平年365日,閏年於二月底增加一閏日,年平均長度為365.25日。由于累積误差隨着時間越來越大,1582年后由教皇格里高利十三世改良,变为格里历,即沿用至今的公历。但大英帝國、北美十三州等直到1752年才從儒略曆改用格里历。現今儒略曆只有蘇格蘭昔德蘭群島之富拉島、阿索斯神权共和国和一些北非的柏柏尔人使用。.

新!!: 金星和儒略曆 · 查看更多 »

冕狀物

在太空地质学中,冕狀物(Corona,複數形 coronae)是行星表面的一種卵形結構。這種結構出現在金星和天王星的衛星天衛五。此種地形可能是由地表下熱物質上湧形成。.

新!!: 金星和冕狀物 · 查看更多 »

內側行星

#重定向 內側行星和外側行星.

新!!: 金星和內側行星 · 查看更多 »

公里

--亦稱--( → kilometre、),是一种長度計量單位,等於一千米,是國際單位制之一,符號为km。.

新!!: 金星和公里 · 查看更多 »

光致蛻變

光致蛻變 是極端高能量的γ射線和原子核的交互作用,並且使原子核進入受激態,立刻衰變成為兩或更多個子核的物理過程。一個簡單的例子是一顆質子或中子有效的被接踵而來的γ射線從原子核中敲出時,而極端的例子則是γ射線導致自發性的核分裂反應。這種過程根本上是與核融合相反的,原本是轻的元素在高溫下結合在一起形成重元素並釋放出能量。光致蛻變是從比鐵輕的元素吸熱(能量吸收)而從比鐵重的元素放熱放出能量。光致蛻變至少在超新星中對一些重元素和富含質子的元素經由p-過程的核合成有所貢獻。.

新!!: 金星和光致蛻變 · 查看更多 »

皇家天文學會月報

皇家天文學會月報(Monthly Notices of the Royal Astronomical Society,MNRAS)是世界上最主要的天文學和天文物理學領域同行評審的學術期刊之一。出刊於1827年,發表作為天文等相關領域原創研究的論文或事件通報。另外,該期刊實際上並非每月出刊,所發表的文章也不僅限於英國皇家天文學會的訊息 。.

新!!: 金星和皇家天文學會月報 · 查看更多 »

玄武岩

武岩(basalt)是一種细粒致密、外觀呈黑色的火成岩,由基性岩漿噴發凝結而成,主要成分是硅铝酸钠或硅铝酸钙,二氧化硅的含量大约是45-52%,还含有较高的氧化铁和氧化镁。由于喷发时产生大量气孔,有时是大孔如杏仁状构造,后来中间常被其他矿物充填。玄武岩岩浆的黏度小,易于流动,形成很大的覆盖层,常形成广大的熔岩台地,所以分布很广。 玄武岩根据其成分不同可以分为拉斑玄武岩、碱性玄武岩、高铝玄武岩;按其结构不同可分为气孔状玄武岩、杏仁状玄武岩、玄武玻璃;按其充填矿物不同可分为橄榄玄武岩、紫苏辉石玄武岩等。 没有被风化的玄武岩是黑色或暗绿色的致密岩石,由于其凝结后产生六方晶体节理,被风化后形成六方柱状,风化厉害可以形成黄褐色的玄武土,如果进一步被雨水淋滤,除去二氧化硅形成铝土矿。有的玄武岩气孔中还充填有铜、钴、硫磺等矿物。.

新!!: 金星和玄武岩 · 查看更多 »

火山

火山是地表下在岩浆库中的高温岩浆及其有关的气体、碎屑从行星的地壳中喷出而形成的,具有特殊形態的地质结构。 地球上的火山发生是因为地壳被分裂成17个主要的和刚性的地壳板块,它们漂浮在地幔的一个更热和更软的层。火山可以分为死火山和活火山。在一段时间内,没有出現喷发事件的活火山叫做睡火山(休眠火山)。另外还有一种泥火山,它在科学上严格来说不属于火山,但是许多社会大众也把它看作是火山的一种类型。 火山爆发可能会造成许多危害,不仅在火山爆发附近。其中一个危险是火山灰可能对飞机构成威胁,特别是那些喷气发动机,其中灰尘颗粒可以在高温下熔化; 熔化的颗粒随后粘附到涡轮机叶片并改变它们的形状,从而中断涡轮发动机的操作。火山爆发是一种很严重的自然灾害,它常常伴有地震。大型爆发可能会影响温度,因为火山灰和硫酸液滴遮挡太阳并冷却地球的低层大气(或对流层); 然而,它们也吸收地球辐射的热量,从而使高层大气(或平流层)变暖。 历史上,火山冬天造成了灾难性的饥荒。 虽然火山喷发会对人类造成危害,但同时它也带来一些好处。例如:可以促进宝石的形成;扩大陆地的面积(夏威夷群岛就是由火山喷发而形成的);作为观光旅游考察景点,推动旅游业,如日本的富士山。 专门研究火山活动的学科称为火山学。.

新!!: 金星和火山 · 查看更多 »

火星

火星(Mars, 天文符號♂),是離太陽第四近的行星,為太陽系中四顆類地行星之一。西方稱火星為瑪爾斯,是羅馬神話中的戰神;古漢語中則因为它荧荧如火,位置、亮度時常變動讓人無法捉摸而稱之為熒惑。火星在太陽系的八大行星中,第二小的行星,其質量、體積仅比水星略大。火星的直徑約為地球的一半,自轉軸傾角、自轉週期則與地球相當,但繞太陽公轉周期是地球的兩倍。在地球上,火星肉眼可見,亮度可達-2.91,只比金星、月球和太陽暗,但在大部分時間裡比木星暗。 火星大气以二氧化碳为主,既稀薄又寒冷。火星在視覺上呈現為橘紅色是由其地表所廣泛分佈的氧化鐵造成的。火星地表沙丘、砾石遍布且没有稳定的液态水,火星南半球是古老、充满陨石坑的高地,北半球则是较年轻的平原。 火星有兩個天然衛星:火衛一和火衛二,形狀不規則,可能是捕獲的小行星。火星目前有四艘在軌運行的探測船,分別是火星奧德賽號、火星快車號和火星偵察軌道器以及2014年9月22日抵达的MAVEN轨道器,地表還有很多火星車和著陸器,包括兩台火星車:機會號和好奇號,和已經結束任務的精神號和鳳凰號。根據觀測的證據,火星以前可能覆蓋大面積的水。亦觀察到最近十年內類似地下水湧出的現象。 火星全球勘測者則觀察到南極冠有部份退縮。火星快車號和火星偵察軌道器的雷達資料顯示兩極和中緯度地表下存在大量的水冰Water ice in crater at Martian north pole http://www.esa.int/SPECIALS/Mars_Express/SEMGKA808BE_0.html。2008年7月31日,鳳凰號直接於表土之下證實水冰的存在。2013年9月26日,火星探測車好奇號發現火星土壤含有豐富水分,大約為1.5至3重量百分比,顯示火星有足夠的水資源供給未來移民使用。2015年9月證實火星有間歇流動的液態水(液態鹽水)。.

新!!: 金星和火星 · 查看更多 »

灰光

光是在金星夜晚一側發出的微弱可見光線,可以用觀測者在月球上同時看見白天的中國和夜晚的北美洲來比擬。灰光被認為與從地球上看見月球的地球反照非常相似,但沒有很容易辨別的亮度。它在1643年1月9日首度被天文學家Riccioli發現,之後也經常在不同天文學家的研究中被提到,包括赫歇爾、Moore、Dale P. Cruikshank和Hartmann。 在更強而有力的望遠鏡被發展出來之前,早期的天文學家Franz von Gruithuisen相信灰光是從金星新皇帝就位的慶祝活動發出來的,之後又認為是居民燃燒植被,為農田留出空間產生的。.

新!!: 金星和灰光 · 查看更多 »

球面反照率

球面反照率(Bond albedo)是由美國天文學家乔治·邦德提出,並以他的姓氏命名。它的定義是天體反射入太空的所有電磁輻射和入射的電磁輻射功率比例。它考慮到了所有相位角上的所有波長電磁輻射。.

新!!: 金星和球面反照率 · 查看更多 »

破火山口

火山口(又稱火山臼、陷落火山口)通常是由於火山錐頂部(或一群火山錐)因失去地下熔岩的支撐崩塌形成,是比較特殊的一種火山口。猛烈的爆发除了形成破火山口外,还使火山的高度大大降低。如坦博拉火山爆发,产生了一个直径12公里的破火山口,并且海拔高度也随之降低了1400米。外形為碗形的凹地,其直徑為數百公尺至數公里不等。其英文名「Caldera」的語源來自西班牙文,意指「罐子」或「大鍋子」。.

新!!: 金星和破火山口 · 查看更多 »

破曉號

曉號(日文:あかつき,開發名稱為PLANET-C;又稱為Venus Climate Orbiter,金星氣候衛星,或譯為黎明號)是日本宇宙航空研究開發機構的行星探測計劃,是的第三顆,也是日本第一個金星探测器,同時還是世界第一個非地球的行星氣象衛星。在日本當地時間2010年5月21日6時58分22秒由H-II運載火箭發射升空。 計畫的主要目的在於探测金星大氣的「超自轉」現象。2010年12月7日到達金星軌道,並且進行投入軌道的動作,但是失敗而沒有進入金星周回軌道。在飛行器繞太陽五年之後,工程師們通過點火其推進器20分鐘而進入一個替代的橢圓形金星軌道,JAXA于2015年12月9日下午六点宣布破晓号于2015年12月7日成功进入金星轨道。通過使用五種不同的攝像機,"破曉號"將研究大氣層分層,大氣動力學和雲物理學。.

新!!: 金星和破曉號 · 查看更多 »

硫是一种化学元素,在元素周期表中它的化学符号是S,原子序数是16。硫是一种非常常见的无味无臭的非金属,纯的硫是黄色的晶体,又稱做硫黄、硫磺。硫有许多不同的化合价,常見的有-2, 0, +4, +6等。在自然界中常以硫化物或硫酸盐的形式出现,尤其在火山地区纯的硫也在自然界出现。硫单质难溶于水,微溶于乙醇,易溶于二硫化碳。对所有的生物来说,硫都是一种重要的必不可少的元素,它是多种氨基酸的组成部分,尤其是大多数蛋白质的组成部分。它主要被用在肥料中,也廣泛地被用在火药、潤滑劑、殺蟲劑和抗真菌剂中。.

新!!: 金星和硫 · 查看更多 »

硫酸

硫酸(化学分子式為)是一种具有高腐蚀性的强矿物酸,一般為透明至微黄色,在任何浓度下都能与水混溶并且放热。有时,在工业製造过程中,硫酸也可能被染成暗褐色以提高人们对它的警惕性。 作為二元酸的硫酸在不同浓度下有不同的特性,而其对不同物质,如金属、生物组织、甚至岩石等的腐蚀性,都归根于它的强酸性,以及它在高浓度下的强烈脱水性(化学性质)、吸水性(物理性质)与氧化性。硫酸能对皮肉造成极大的伤害,因为它除了会透过酸性水解反应分解蛋白质及脂肪造成化学烧伤外,还会与碳水化合物发生脱水反应并造成二级火焰性灼伤;若不慎入眼,更会破坏视网膜造成永久失明。故在使用时,应做足安全措施。另外,硫酸的吸水性可以用来干燥非碱性气体 。 正因為硫酸有不同的特性,它也有不同的应用,如家用强酸通渠剂、铅酸蓄电池的电解质、肥料、炼油厂材料及化学合成剂等。 硫酸被广泛生產,最常用的工业方法為接触法。.

新!!: 金星和硫酸 · 查看更多 »

(),是化学元素,化学符号是Te,原子序数是52,是银白色的类金属。 碲的化学性质与硒及硫类似。主要用作合金及半导体。碲化铋用作热电装置中。 碲-128及碲-130是最常见的碲同位素,但它们都有微弱的放射性。 碲是制造碲化镉太阳能薄膜电池的主要原料。 碲矿资源分布稀散,多伴生在其它矿物中或以杂质形式存在于其它矿中。中国四川石棉县大水沟碲矿是至今发现的唯一碲独立矿床。.

新!!: 金星和碲 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

新!!: 金星和碳 · 查看更多 »

碳循環

碳循環是一种生物地质化学循环,指碳元素在地球上的生物圈、岩石圈、土壤圈、水圈及大氣中交換。碳的主要來源有四個,分別是大氣、陸上的生物圈(包括淡水系統及無生命的有機化合物)、海洋及沉積物。与氮循环和水循环一起,碳循环包含了一系列使地球能持续存在生命的关键过程和事件。碳循环描述了碳元素在地球上的回收和重复利用,包括碳沉淀。一个对湖泊的碳预算的测试可以检测这个湖泊是否起到了沉淀二氧化碳的作用。碳循环最早被 Joseph Priestley 和  Antoine Lavoisier 发现,被 Humphry Davy 所推广。 碳循環示意圖。黑色數字表示碳的蘊藏量,以十億噸的縮寫。約為2004年數據計。紫色數字表示碳每年的流動量。圖中的“沉積物”不包括碳酸鹽及岩乾酪根碳循环示意图。黑色数字表示碳的储存量,以十亿吨据计。紫色数字表示碳每年的流动量。图中的“沉积物”不包括碳酸盐及岩干酪根.

新!!: 金星和碳循環 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 金星和磁場 · 查看更多 »

米哈伊尔·瓦西里耶维奇·罗蒙诺索夫

米哈伊尔·瓦西里耶维奇·罗蒙诺索夫(Михаи́л Васи́льевич Ломоно́сов;),俄國化學家、哲學家、诗人,俄国自然科学的奠基者。.

新!!: 金星和米哈伊尔·瓦西里耶维奇·罗蒙诺索夫 · 查看更多 »

米每秒

米每秒是速度(矢量)和速率(标量)的单位,属于国际单位制导出单位,可写作㎧(U+33A7 (13223)),m/s、m·s−1或mps。天文学上常以单位更大的千米每秒为单位,1 km/s.

新!!: 金星和米每秒 · 查看更多 »

类地行星

類地行星(terrestrial planet),又稱地球型行星(telluric planet)或岩石行星(rocky planet)都是指以硅酸鹽岩石為主要成分的行星。這個項目的英文字根源自拉丁文的「Terra」,意思就是地球或土地。由於大眾媒體的流行,加上對象是行星,因此在二合一下採用「類地」行星這個譯名。類地行星與氣體巨星有極大的不同,氣體巨星可能沒有固體的表面,而主要的成分是氫、氦和存在不同物理狀態下的水。 截至2013年11月4日,根據開普勒太空任務的數據,銀河系估計共有逾400億圍繞著類太陽恆星或紅矮星公轉,位於適居帶內,且接近地球大小的类地行星存在。其中約110億顆是圍繞著類太陽恆星公轉。而最近的一個距離地球12光年。.

新!!: 金星和类地行星 · 查看更多 »

罗马神话

像古希腊神话这样的罗马神话实际上并不存在,一直到罗马共和国末期罗马的诗人才开始模仿希腊神话编写自己的神话,因此罗马人没有传說的、像希腊神话中那样的神之间的斗争之类的传说。 罗马人传统具有的是:.

新!!: 金星和罗马神话 · 查看更多 »

美国

美利堅合眾國(United States of America,簡稱为 United States、America、The States,縮寫为 U.S.A.、U.S.),通稱美國,是由其下轄50个州、華盛頓哥倫比亞特區、五个自治领土及外岛共同組成的聯邦共和国。美國本土48州和联邦特区位於北美洲中部,東臨大西洋,西臨太平洋,北面是加拿大,南部和墨西哥及墨西哥灣接壤,本土位於溫帶、副熱帶地區。阿拉斯加州位於北美大陸西北方,東部為加拿大,西隔白令海峽和俄羅斯相望;夏威夷州則是太平洋中部的群島。美國在加勒比海和太平洋還擁有多處境外領土和島嶼地區。此外,美國还在全球140多個國家和地區擁有着374個海外軍事基地。 美国拥有982萬平方公里国土面积,位居世界第三(依陆地面積定義为第四大国);同时拥有接近超过3.3億人口,為世界第三人口大国。因为有着來自世界各地的大量移民,它是世界上民族和文化最多元的國家之一Adams, J.Q.; Strother-Adams, Pearlie (2001).

新!!: 金星和美国 · 查看更多 »

羰基硫

羰基硫(化学式:)又称氧硫化碳、硫化羰,通常状态下为有臭鸡蛋气味的无色气体。它是一个结构上与二硫化碳和二氧化碳类似的无机碳化合物,气态的OCS分子为直线型,一个碳原子以两个双键分别与氧原子和硫原子相连。 羰基硫性质稳定,但会与氧化剂强烈反应,水分存在时也会腐蚀金属。可燃。有毒,但与硫化氢一样,会使人对其在空气中的浓度产生低估。.

新!!: 金星和羰基硫 · 查看更多 »

电离层

电离层是地球大气层被太阳射线电离的部分,它是地球磁层的内界。由于它影响到无线电波的传播,它有非常重要的实际意义。.

新!!: 金星和电离层 · 查看更多 »

Earth

#重定向 地球.

新!!: 金星和Earth · 查看更多 »

隱沒帶

隱沒帶(英語:subduction zone),也称“俯冲帶”、“消减带”、“隐没带”,指地球的岩石圈中對流的沉降流(downwelling)所在的地區。 隱沒帶存在於聚合板塊邊緣(convergent plate boundary)。海洋板塊擴張到大陸板塊邊緣,因為海洋板塊較重,會沉入大陸板塊之下,形成聚合板塊邊緣。地球的岩石圈、海洋板塊、沉積層以及被困住的水份就是經由隱沒帶回收到地函深處的。目前地球是唯一已知有隱沒帶的行星,金星與火星都沒有隱沒帶。但是根據1999年火星全球探勘者號(Mars Global Surveyor)對火星磁場的觀察發現,火星早期可能有板塊活動,但尚未得到確認。沒有隱沒作用(subduction),地球也不會是現在的樣子。沒有隱沒帶,地殼不會分化出大陸與海洋,所有的固體地球也都會被一個全球性的大海洋所覆蓋。 岩石圈(地殼加上上部地函的堅硬部份)與軟流圈的密度差造成隱沒作用。岩石圈比地函的軟流圈部份的密度要高的時候,岩石圈容易沉入地函裡,形成隱沒帶;而隱沒作用在岩石圈密度比軟流圈小的地方會遭到抵抗。岩石圈的密度比其下的軟流圈的密度大或是小取決於相關地殼的性質。地殼的密度總是比軟流圈或是地函的岩石圈部份的密度來得小。然而因為大陸地殼總是比海洋地殼厚,密度也總是比海洋地殼小,大陸岩石圈的密度也總是比海洋岩石圈的密度小。海洋岩石圈的密度通常比軟流圈大。例外的情況發生在大片的洪流玄武岩(flood basalt),又稱為“大型火成岩區(large igneous provinces(簡稱LIPs))”。 這類例外的情況會造成海洋地殼極度增厚,浮力太大而無法隱沒。當在下沉板塊之上的岩石圈浮力太大無法隱沒時會產生碰撞,因此有這句常說的話:隱沒作用引起造山運動。.

新!!: 金星和隱沒帶 · 查看更多 »

順行和逆行

順行是行星這種天體與系統內其他相似的天體共同一致運動的方向;逆行是在相反方向上的運行。在天體的狀況下,這些運動都是真實的,由固有的自轉或軌道來定義;或是視覺上的,好比從地球上來觀看天空。 在英文中「direct」和「prograde」是同義詞,前者是在天文學上傳統的名詞,後者在1963年才在一篇與天文相關的專業文章(J.

新!!: 金星和順行和逆行 · 查看更多 »

行星

行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.

新!!: 金星和行星 · 查看更多 »

行星核心

行星核心是行星最內部的幾個層次。 類地行星的核心組成傾向於以鐵為主要的成分,並且可能包含幾層固體和/或液體。地球的核心有部分是液態的,火星和金星的核心被認為完全是固體的,因為它們缺乏由內部引起的磁場。 在我們的太陽系,核心的尺度可以從月球的大約是直徑的20%到水星的約是直徑的75%。 類木行星也有富含鐵的核心,雖然這些核心在比例上的尺度遠小於類地行星,但這些熱木行星的核心實際上可能大於地球。木星的核心推測大約是地球質量的12倍(佔木星質量的3%),而系外行星 HD 149026 b的質量估計是地球的70倍。 一些軌道非常靠近主星的類木行星,也許在大氣層被剝離後,只留下了它們的核心。這些假設的行星分類被稱為" 冥府行星 "。 一些衛星、小天體和其他的小行星也許會因為大小和歷史而會有不同大小的核心。木星的衛星,埃歐和歐羅巴在許多方面與類地行星有如姐妹,它們非常確實的核心大約是直徑的三分之一。最大的小行星之一,灶神星也同樣被相信有一個分化過的獨特的核心。.

新!!: 金星和行星核心 · 查看更多 »

衛星

衛星,是環繞一顆行星按閉合軌道做周期性運行的天體。如地球的衛星是月球。不過,如果兩個天體的質量相當,它們所形成的系統一般稱為雙行星系統,而不是一顆行星和一顆天然衛星。通常,兩個天体的质量中心都處於行星之內。因此,有天文學家認為冥王星與冥衛一應該歸類為雙行星,但2005年發現兩顆新的冥衛,使問題複雜起來了。.

新!!: 金星和衛星 · 查看更多 »

馬克士威山脈

克士威山脈(Maxwell Montes),是金星北部伊师塔地东缘的一条山脉,以英国物理学家詹姆斯·克拉克·馬克士威之名命名,是金星上少数几个非女性的地名之一。馬克士威山脈比金星地面高出1.1万米左右,是金星上的最高点。.

新!!: 金星和馬克士威山脈 · 查看更多 »

馬特山

玛阿特山(Maat Mons)可能是一座巨大的盾状火山,它是金星第二高的山,也是最大的盾状火山。在处高出行星半径8公里,较周边平原高出接近5公里。 它以古埃及真理和正义女神玛阿特来命名。.

新!!: 金星和馬特山 · 查看更多 »

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

新!!: 金星和视星等 · 查看更多 »

高原

原(plateau、table land),指地势高而平坦的地形,高度比台地更高。形成年代较短的高原一般比较平坦,而年代较长的则因长期受风化侵蚀,比较低矮,而看起来和山地一样。美国东部的阿巴拉契亚山脉的西端实际就是这种像山的高原。 高原是指海拔高度在1000米以上,面積廣大,地形開闊,周邊以明顯的陡坡為界,比較完整的大面積隆起地區。.

新!!: 金星和高原 · 查看更多 »

距角

距角是一個天文名詞,表示從地球上觀察時,行星和太陽之間分離的角度。 當一顆內側行星在日落後能看見時,它通常是接近東大距,而在日出之前能看見時,則是接近西大距的時候。大距(東大距或西大距)的數值,對水星是在18° 和28°之間;對金星則是在45° 和47°之間。這個數值的變化是因為行星的軌道是橢圓形,而不是完美的圓型的緣故。 參考天文曆表和網站,像是,可以查到行星下一次達到大距的時刻。 在2008年,金星沒有大距 - 無論是東大距還是西大距,金星上次是在2007年10月26日西大距,要到2009年1月17日才會抵達東大距的位置。 在2008年,水星在1月22日、5月14日和9月11日東大距(然後是2009年1月4日);西大距則在3月3日、7月2日和10月22日。.

新!!: 金星和距角 · 查看更多 »

麥哲倫號金星探測器

麥哲倫太空船,也稱為金星雷達製圖者,是美國國家航空暨太空總署(NASA)於1989年5月4日發射,使用合成孔徑雷達繪製金星表面地圖和測量行星引力場的機器人太空探測器。 麥哲倫探測器是第一艘從太空梭發射以進行星際飛行任務,第一個使用,以及第一個測試大氣制動做為進入圓形軌道方法的太空探測器。"麥哲倫"是NASA第五次成功的金星任務,它填補了美國11年未發射行星際探測器的缺口。.

新!!: 金星和麥哲倫號金星探測器 · 查看更多 »

黏度

黏度(Viscosity),是黏性的程度,是材料的首要功能,也称动力粘度、粘(滞)性系数、内摩擦系数。不同物质的黏度不同,例如在常温(20℃)及常压下,空气的黏度为0.018mPa·s(10^-5),汽油为0.65mPa·s,水为1 mPa·s,血液(37℃)为4~15mPa·s,橄榄油为102 mPa·s,蓖麻油为103 mPa·s,蜂蜜为104mPa·s,焦油为106 mPa·s,沥青为108 mPa·s,等等。最普通的液体黏度大致在1~1000 m Pa·s,气体的黏度大致在1~10μPa·s。糊状物、凝胶、乳液和其他复杂的液体就不好说了。一些像黄油或人造黄油的脂肪很黏,更像软的固体,而不是流动液体。 黏滯力是流體受到剪應力變形或拉伸應力時所產生的阻力。在日常生活方面,黏滯像是「黏稠度」或「流體內的摩擦力」。因此,水是「稀薄」的,具有較低的黏滯力,而蜂蜜是「濃稠」的,具有較高的黏滯力。簡單地說,黏滯力越低(黏滯係數低)的流體,流動性越佳。 黏滯力是粘性液體內部的一種流動阻力,並可能被認為是流體自身的摩擦。黏滯力主要來自分子間相互的吸引力。例如,高粘度酸性熔岩產生的火山通常為高而陡峭的錐狀火山,因為其熔岩濃稠,在其冷卻之前無法流至遠距離因而不斷向上累加;而黏滯力低的鎂鐵質熔岩將建立一個大規模、淺傾的斜盾狀火山。所有真正的流體(除超流體)有一定的抗壓力,因此有粘性。 沒有阻力對抗剪切應力的流體被稱為理想流體或無粘流體。 黏度\mu定義為流體承受剪應力時,剪應力與剪應變梯度(剪應變隨位置的變化率)的比值,数学表述为: 式中:\tau为剪应力,u为速度场在x方向的分量,y为与x垂直的方向坐标。 黏度較高的物質,比較不容易流動;而黏度較低的物質,比較容易流動。例如油的黏度較高,因此不容易流動;而水黏度較低,不但容易流動,倒水時還會出現水花,倒油時就不會出現類似的現象。.

新!!: 金星和黏度 · 查看更多 »

黄道

道是太阳在天球上的视运动轨迹,它是黄道坐标系的基准。另外,黄道也指太阳视运动轨迹所在的平面,它和地球绕太阳的轨道共面(看起来像是太阳绕着地球转) 。太阳的视运动轨迹并不能经常被观测到,地球自转产生了日出与日落的变化,这掩盖了太阳相对其他星星运动的轨迹。 黃道是在一年當中太陽在天球上的視路徑,看起來它在群星之間移動的路徑,明顯的也是行星在每年中所經過的路徑。更明確的說,它是球狀的表面(天球)與黃道平面的交集;以幾何學來描述,它是包含地球環繞太陽運行的平均軌道平面。 西方的黃道(ecliptic)一詞是從蚀(eclipse)發生的地方延伸出來的。 由于地球公转受到月球和其他行星的摄动,地球公转轨道并不是严格的平面,即在空间产生不规则的连续变化,这种变化包括多项短周期的和一项缓慢的长期运动。短周期运动可以通过一定时期内的平均加以消除,消除了周期运动的轨道平面称为瞬时平均轨道平面。.

新!!: 金星和黄道 · 查看更多 »

輻照度

在光學裏,輻照度(irradiance)是電磁輻射入射於曲面時每單位面積的功率。輻射出射度(radiant emittance,radiant exitance)是從曲面輻射出的功率每單位面積。採用國際單位制,這些物理量的單位為瓦特每平方米(W/m2),採用CGS單位制,這些物理量的單位為爾格每平方厘米每秒(erg·cm−2·s−1,常用於天文學)。 物理学中,代表单位面积功率的物理量常被稱為強度,但這用法會與輻射強度(单位立体角内的辐射通量)引起混淆。特别在光学和激光物理学中,辐照度也被叫做光强。 輻照度表示各種頻率輻射的總量。物理學者時常也會分開檢驗輻射頻譜的每一單獨頻率。假設對於入射於曲面的輻射做這動作,則稱這輻射為光譜輻照度(spectral irradiance),國際單位制的單位為W/m2。 假設一個點光源均勻地朝著所有方向傳播光波,則輻照度按照平方反比定律遞減。.

新!!: 金星和輻照度 · 查看更多 »

轉動慣量

在经典力學中,轉動慣量又稱慣性矩(Moment of inertia),通常以I表示,國際單位制為·。轉動慣量是一個物體對於其旋轉運動的慣性大小的量度。一個剛體對於某轉軸的轉動慣量決定了對於這物體繞著這轉軸進行某種角加速度運動所需要施加的力矩。轉動慣量在转动動力學中的角色相當於線性動力學中的質量,描述角動量、角速度、力矩和角加速度等數個量之間的關係。.

新!!: 金星和轉動慣量 · 查看更多 »

阿佛洛狄忒

阿佛洛狄忒(Αφροδίτη、Aphrodite)是希臘神話中是代表爱情、美丽与性欲的女神。拉丁语族的“金星”和“星期五”等字符都來源於她的罗马名字:在罗马神话中與阿佛洛狄忒相對應是维纳斯(拉丁语:Venus),但她與維納斯不同的是,阿佛洛狄忒不只是性愛女神,她也是司管人間一切情誼的女神。在希臘神話中,阿佛洛狄忒是奧林匹斯十二主神的一柱。 阿佛洛狄忒有著古希臘最完美的身段和樣貌,象徵愛情與女性的美麗,被認為是女性體格美的最高象徵。在帕里斯的评判中,阿佛洛狄忒被选定为最高位的美神,并获得象征最美女神的金苹果。 由于阿佛洛狄忒的天生丽质,使眾天神都爱慕她追求她。宙斯也追求過她但却遭到拒絕,因此宙斯一气之下把她许配給既醜陋又瘸腿的火神铁匠赫淮斯托斯作他的妻子,对此不满的阿佛洛狄忒为了报复宙斯,使他变得风流成性,让被他所冷落的妻子赫拉去惩罚他的情人和后代。阿佛洛狄忒所爱慕的是戰神阿瑞斯,并和阿瑞斯生下愛情之神厄洛斯、情欲之神安忒洛斯、协调女神哈耳摩尼亚和一對雙胞胎,分別是恐怖之神福波斯和恐懼之神得摩斯等几个儿女。除此之外,阿佛洛狄忒还和一些神祇和凡人育有儿女。司管美丽和优雅的美惠三女神卡里忒斯则是阿佛洛狄忒的随身侍女,也有的神话说美惠三女神是狄俄倪索斯和阿佛洛狄忒的女儿。.

新!!: 金星和阿佛洛狄忒 · 查看更多 »

阿佛洛狄忒陸

阿佛洛狄忒陸是金星上最大的大陸及高地地形,十分靠近赤道。.

新!!: 金星和阿佛洛狄忒陸 · 查看更多 »

薄餅狀穹丘

薄餅狀穹丘(Pancake dome,拉丁語稱為Farrum)是一種只在金星上發現的一種不尋常的熔岩穹丘。薄餅狀穹丘在整個金星都可見,且經常數個集結成群,雖然每一群中少數的此種地形應該是更常見的盾狀火山。這種穹丘常見於金星低地內的冕狀物或鑲嵌地塊(Tesserae,大範圍的崎嶇地形,特徵是二維或三維的摺皺或破碎狀態,相信只存在於金星)附近。薄餅狀穹丘的範圍是地球上火山穹丘的10到100倍。 薄餅狀穹丘相當寬廣而平坦,類似盾狀火山,一般認為是大量低流動性的高黏度富含矽熔岩形成。其中心部分會有類似火山口的坑狀或碗狀結構,但一般認為中心的凹陷是在熔岩冷卻後釋放出氣體形成,而非熔岩形成的噴發口。其表面覆蓋了小規模的裂縫和斷層。.

新!!: 金星和薄餅狀穹丘 · 查看更多 »

闪电

闪电,在大气科学中指大气中的强放电现象。在夏季的雷雨天气,雷电现象较为常见。它的发生与云层中气流的运动强度有关。有资料显示,冬季下雪时也可能发生雷电现象,即雷雪,但是发生機會相当微小。若有嚴重的火山爆發時,或是原子彈爆炸產生曇狀雲,空中可能因短路而發生閃電。 闪电的放電作用通常會產生电光。雷电起因一般被认为是云层内的各种微粒因为碰撞摩擦而积累电荷,当电荷的量达到一定的水平,等效于云层间或者云层与大地之间的电压达到或超过某个特定的值时,会因为局部电场强度达到或超过当时条件下空气的电击穿强度从而引起放电。空气中的電力經過放電作用急速地將空氣加熱、膨脹,因膨脹而被壓縮成電漿,再而產生了闪电的特殊構件雷(衝擊波的聲音)。目前对于放电具体过程的认识还不能透徹明白,一般被认为和长间隙击穿的现象相类似。 闪电的电流很大,其峰值一般能达到几万安培,但是其持续的时间很短,一般只有几十微秒。所以闪电电流的能量不如想象的那么巨大。不过雷电电流的功率很大,对建筑物和其他设备尤其是电器设备的破坏十分巨大,所以需要安装避雷针或避雷器等以在一定程度上保护这些建筑和设备的安全。.

新!!: 金星和闪电 · 查看更多 »

金星11號

金星11號是蘇聯的金星計畫中其中一台探測器。屬於一個無人探測任務,於1978年9月9日3:25:39發射。目的為研究金星大氣、宇宙射線、太陽風離子等,由一台飛掠器與一台著陸器所組成.

新!!: 金星和金星11號 · 查看更多 »

金星12號

金星12號(Венера-12)是蘇聯的金星計畫的探測器,為一個無人探測任務,於1978年9月14日02:25:13發射。金星12號與金星11號完全一樣,目的是研究金星大氣層、宇宙射線、太陽風離子等,由一台飛掠器與著陸器所組成。.

新!!: 金星和金星12號 · 查看更多 »

金星4號

金星4號(Венера-4)是第二台成功到達金星大氣層的探測器,也是首次成功傳回科學資訊的金星大氣層探測器。.

新!!: 金星和金星4號 · 查看更多 »

金星大氣層

金星大氣層是由俄羅斯科學家米哈伊爾·瓦西里耶維奇·羅蒙諾索夫於1761年在聖彼得堡觀測金星凌日時發現的。它比地球大氣層更為厚重與濃密,其表面溫度為740 K或467°C,而氣壓則為93大氣壓,主要為二氧化碳所構成。金星的大氣層中有硫酸形成的不透明雲,因此在地球或金星環繞探測器上不可能以可見光觀測金星表面。金星表面的地形是以雷達成像的方式探測得知。金星大氣層主要由二氧化碳和氮組成,以及少許痕量氣體。 金星的大氣層受到超高速大氣環流和超慢速自轉影響。金星的大氣環流只需要四個地球日就可以環繞金星一周,但金星的恆星日卻有243日。金星的風速最高可達到100 m/s或360 km/h,是金星自轉速度的60倍;而地球最高速的風速度只有地球自轉速度的10%到20%。另一方面,金星的風速隨高度下降而降低,在表面時風速大約是10 km/h。金星兩極則有屬於反氣旋的極地渦旋。每個氣旋都有兩個風眼,並且有特殊的S型雲結構。 金星和地球不同的是它缺乏磁場,而金星的電離層將大氣層和太空以及太陽風分離。電離層將太陽磁場隔離,使金星的磁場環境相當特殊,造成金星的磁層是「誘發磁層」。包含水蒸氣等較輕氣體則持續被太陽風經由誘發磁尾吹出金星大氣層。推測40億年前的金星大氣層與表面有液態水的地球大氣層相當類似。失控溫室效應(Runaway greenhouse effect)造成金星表面的液態水蒸發,並且使其他溫室氣體含量上升。 儘管金星表面的狀況相當嚴苛,在金星大氣層50到65公里高的地方氣壓與溫度卻與地球相若,使金星的高層大氣是太陽系中環境最類似地球的地方,甚至比火星表面更類似。因為溫度和壓力類似,並且在金星上可呼吸空氣(21%的氧和78%的氮)是上升氣體,類似地球大氣層中的氦。因此有人提出可在金星的高層大氣進行探測和殖民。 2013年1月29日,歐洲太空總署科學家宣布金星電離層物質外流的模式與「類似條件下來自彗星彗核的離子尾」類似。.

新!!: 金星和金星大氣層 · 查看更多 »

金星帶

#重定向 维纳斯带.

新!!: 金星和金星帶 · 查看更多 »

金星地質

金星的表面有許多讓人驚訝的地表特徵。今日對金星表面所知道的知識大多來自於1990年8月16日至1994年9月完成6次環繞金星的麥哲倫號金星探測器;該探測器總共測繪了98%的金星表面,且有22%是可使用3D眼鏡觀看的立體影像。 金星表面被濃密的大氣層覆蓋,並且有火山曾經激烈活動的證據。金星上的盾狀火山和複式火山和地球相似。 相對於月球、火星和水星,金星表面甚少小型撞擊坑。這很可能是因為金星的濃密大氣層將較小的流星燒光。金星的中型到大型撞擊坑比小型撞擊坑多,但數量仍不如月球和水星。 在金星上還有一些特殊的地表特徵,其中包含冕狀物(Corona,因為外表像帽子)、鑲嵌地塊(Tesserae,指高度變形的大範圍區域,可見到二維或三維地形摺曲和破碎地形,一般認為只在金星發現)、蛛網膜地形(Arachnoid,類似蜘蛛網)。並有發現長熔岩河,以及風蝕作用和板塊運動造成金星表面現在複雜地形的證據。 雖然金星是最接近地球的行星(和地球下合時距離僅約4000萬公里左右),而且和地球體積相近;但至今沒有一個探測器可在金星表面工作數小時以上,這是因為金星的大氣壓力是地球的 90 倍。而金星表面的溫度大約是 450°C。最可能原因是金星大氣層大量二氧化碳 (96.5%)造成的溫室效應。 以紫外線探測金星可看到在赤道附近有 Y 形的雲系統形成,代表赤道上空的大氣環流每四天就可環繞金星一週,所以風速可高達 500 km/h 。這種高速風存在於高空,但在金星表面附近的大氣層則相當平靜,且多數金星影像中甚少風蝕的證據。.

新!!: 金星和金星地質 · 查看更多 »

金星凌日

金星凌日是指太陽和地球之間的行星金星像暗斑一样掠過太陽盘面,並且遮蔽一小部分太阳对地辐射的天文现象。這類天文现象可能会持续数小時。金星凌日的原理与月球造成的日食一樣。雖然金星的直徑幾乎是月球的4倍,但由于它离地球更遠,在下合時的視直徑還不到一弧分角,因此它遮蔽的太陽面積就非常小。科學家可以通过觀察金星凌日估算太陽和地球之間的距離。在火星、木星、土星、天王星及海王星等地外行星同樣可以觀察到凌日这一天文現象。 金星凌日是种罕見的天文現象。在最近的近两千年时间里,它会以243年的週期循环往复:一个周期内会出现間隔8年的两次金星凌日;这对金星凌日与前后两次金星凌日的相隔时间分别为121.5年或105.5年。之所以会存在這種週期性规律,是因为地球和金星恒星轨道周期比约为8:13或243:395。最近兩次金星凌日发生在2004年6月8日和2012年6月5日至6日。之前一次金星凌日要追溯到1882年12月,下一次则要等到2117年12月才会到来。 金星凌日观测在歷史上曾經有極为重要的科學意義。天文學家曾经利用金星凌日的觀測结果,結合恆星視差原理,獲得了比之前更為精確的天文单位的数值。2004年和2012年的金星凌日探测对於寻找太陽系外行星以及探测系内行星环境等方面的研究都有所助益。 金星凌日虽然用肉眼可以观测到,但为了安全起见,最好采用观测日食时使用的蒸镀有铝、铬或是银涂层的减光滤片观测。不过滤片也不能将有害光完全滤去,因而最好在观测过程中时常休息。使用望远镜观测时,为了降低失明风险,務必采用减光滤镜或是通过投影间接观测。.

新!!: 金星和金星凌日 · 查看更多 »

金星特快車

金星快车(Venus Express,VEX),是欧洲方面的首次对金星探勘任务,名称来源于定义、准备和发射该任务僅用了很短时间。主要承包商是法国图卢兹市的伊兹·阿斯特瑞姆公司。发射日期是2005年11月9日。发射器是欧洲/俄罗斯联合公司斯塔瑞森(Starsem)制造的联盟号飞船。发射质量1270千克,包括93千克轨道器有效载荷和570千克燃料。轨道器设备包括:金星监视照相机、空间等离子体和活性原子分析器等。宇宙飞船由位于德国达姆施塔特市的欧洲太空控制中心操纵。 2006年4月11日,欧洲空间局宣布,格林尼治时间8时07分,金星快车完成减速过程,顺利首次进入环金星椭圆形轨道。 4月14日,欧洲空间局公布了金星快车传回的首批金星图像。这些金星南极地区的图片是探测器4月12日在距离金星20万公里的环金星椭圆形轨道上由“紫外线、可见光和近红外线成像分光计”和“金星监测照相机”拍摄的。 6月27日,欧洲空间局宣布,科学家对金星快车发回的数据进行分析后确认,金星南极上空大气中存在着奇怪的双漩涡。 2014年11月可能沒有燃料而墜至金星,雖然曾11月23日和11月30日試想讓它飛高點但都失敗了,2014年12月16日宣布任務結束。 金星特快車(Venus Express,VEX)是歐洲太空總署(European Space Agency,ESA)的第一個金星探測任務。在2005年11月發射,在2006年4月就抵達金星,開始不斷地從其環繞金星的繞極軌道發送回科學的資料。這艘太空船帶有七種儀器,主要目的是長期觀察金星的大氣層。過去前往金星的派遣任務從來沒有做過這種長時期的觀察,而這是更好的理解大氣動力學的關鍵。它被寄望這種研究可以有助於了解大氣動力學的一般狀況,同時也有助於理解地球上的氣候變遷。ESA在2014年12月結束了任務。.

新!!: 金星和金星特快車 · 查看更多 »

金星相位

行星金星的類似於月相,是這顆行星表面亮面被看見部分的變化。伽利略是首位透過望遠鏡在1610年觀察和記錄下到這種變化。然而,無可置疑的在望遠鏡時代之前,極端的金星月牙形相位已經被肉眼觀測到。.

新!!: 金星和金星相位 · 查看更多 »

金星表面特徵列表

本表列出已命名的金星表面地质特征。金星是距太阳第二近的行星,被划分为一颗类地行星,由于与地球有相似的大小、重力和构成(金星是大小和距离最接近地球的行星),有时也称之为地球的“姊妹星球”。金星表面覆盖着厚密的云层,并存在曾经有过剧烈火山活动的明确证据,拥有类似于在地球上所发现的盾状和复式火山。 注:以下中文名称主要引用《世界神话辞典》1989年辽宁人民出版社;《世界各民族神话大观》1993年世界文化出版公司。.

新!!: 金星和金星表面特徵列表 · 查看更多 »

金星計劃

金星計劃(Венера)是蘇聯在1961年至1983年間研發的金星探測器,曾多次抵達或登陸金星地表。金星1A號是蘇聯第一臺嘗試探測金星的探測器,於1961年2月4日發射。.

新!!: 金星和金星計劃 · 查看更多 »

金星曆法

#重定向 瑪雅曆#卓爾金曆.

新!!: 金星和金星曆法 · 查看更多 »

苏联

苏维埃社会主义共和国联盟( ),简称苏联(),是一個存在於1922年至1991年的聯邦制社會主義國家,也是當時世界上土地面積最大的國家,佔有東歐的大部分,以及幾乎整個中亞和北亞;陸地與挪威、芬蘭、波蘭、捷克斯洛伐克、匈牙利、羅馬尼亞、土耳其、伊朗、阿富汗、中国、蒙古及朝鮮接壤;而與瑞典、日本、美國及加拿大隔海相望。 蘇聯起源自1917年的俄國革命,俄羅斯帝國的沙皇政府被推翻後,臨時政府成立,但僅執政了不到8個月,布爾什維克便很快從臨時政府手中奪取政權並於選舉後武力解散俄國立憲會議,史稱十月革命及一月劇變;之後俄國發生內戰,布尔什维克党領導的紅軍擊敗了白軍以及協約國的武裝干涉。1922年12月,俄羅斯、白俄羅斯、烏克蘭和外高加索等蘇維埃社會主義共和國合併,成立首個以社會主義為理念的國家——蘇聯。 第一任蘇聯領導人弗拉基米尔·列宁於1924年去世後,约瑟夫·斯大林從一連串的權力鬥爭中勝出,取得了領導權。斯大林以計劃經濟作保障,在歐美經濟危機期間推行驚人的大規模重工業化,但也進行多次大清洗,導致逾百萬人在政治鬥爭中被整肅或被殺。第二次世界大戰中,蘇聯先是与纳粹德国结盟,於1939年和德國共同瓜分了波蘭、将波罗的海国家纳入版图、割占罗马尼亚领土,将流亡苏联的德国政治难民交还纳粹判決。不過很快兩者關係破裂,1941年6月22日,苏联遭到德國等軸心國入侵,歷經了4年激烈的戰事後取得了勝利,與美國一同成為當時世界上最強大的兩個國家,被稱為超級大國,同時因出兵击退入侵德军,并得以控制了東歐大部分國家。 蘇聯而後與衛星國組成的華沙条約組織(華約),與以美國為首的北大西洋公約組織(北約)對峙,這兩大軍事集團在冷戰時期於全世界展開意識形態的對立和政治鬥爭,但在1980年代初期,石油以及初級資源價格回落,此時的蘇聯大力施行福利國家政策,致经济增长速度变慢,加上政治欠乏改革,基本的人民自由也陷入壓抑,苏联的国力已经落后于美国。 在1980年代末,蘇聯領導人米哈伊爾·戈爾巴喬夫試圖進行改革政策,將國家自由化和民主化,放寬對東歐等其他衛星國的控制,却导致蘇聯在1991年解體,在政治斗争中获胜的葉爾欽所領導的俄羅斯聯邦繼承了蘇聯主要的軍事、經濟和國際地位,但人口損失近半的情況下,蘇聯建立的紅色秩序已經不復存在。 儘管苏联宪法規範苏联是一個联邦制国家,由15个平等权利的苏维埃社会主义共和国(加盟共和国)按照自愿联合的原则组成,但其联邦特性不高,因為中央政府權力高度集中,並奉行世界上第一個完全的社會主義制度及計劃經濟政策,由蘇聯共產黨一黨執政。在1945年苏联16个加盟共和国中应有2个(乌克兰、白俄罗斯)应作为联合国创始会员国,因为苏联是联邦制国家,所以苏联在联合国历史上是唯一一个“一国三票”的主权国家。.

新!!: 金星和苏联 · 查看更多 »

離心率

離心率又稱偏心率,是指圆锥曲线上的一点到平面内一定点的距离与到不过此点的一定直线的距离之比。其中此定点称为焦点,而此定直线称为准线。 设一圆锥曲线C由C: d(P,M).

新!!: 金星和離心率 · 查看更多 »

雷,古代亦寫作「靁」,在气象学中指因為闪电通過而同時釋放高能量,將周圍的空氣急剧膨胀产生衝擊而形成的聲波,一般會表现为伴随闪电现象发生的隆隆聲響。因为声音和光在大气中的传播速度不同,人们可以通过计算它们之间的时间间隔来确定闪电发生的距离。在空气之中,声速大约为340米/秒,因此闪电发生的地点大约为每间隔3秒一公里(或5秒一英里)。至於有關閃電的詳細成因,請參見閃電。 雷击其实就是闪电电擊,不过由於電位差很大,通過的電能和电量就比较大,有的建筑物甚至会倒塌,树木可能会被劈断,人畜可能死伤。通过使用避雷針將雷電導向地線,原則上可以避免或减轻雷擊造成的损害。.

新!!: 金星和雷 · 查看更多 »

雷达

雷达(RADAR),是英文「Radio Detection and Ranging」(無線電偵測和定距)的縮寫及音譯。將電磁能量以定向方式發射至空間之中,藉由接收空間內存在物體所反射之電波,可以計算出該物體之方向,高度及速度,并且可以探测物体的形状。.

新!!: 金星和雷达 · 查看更多 »

雷暴

雷暴是一種產生閃電及雷聲的自然天氣現象。它通常伴隨著滂沱大雨或冰雹,而在冬季時甚至會隨暴風雪而來。 雷暴可以在世界任何地方發生,甚至發生在兩極和沙漠地帶,但通常在低緯度的地方(特別是熱帶雨林地區)會較頻繁地發生,可以每日都會發生。在亞熱帶和溫帶等中緯度地區,雷暴則通常會在夏季的下午或傍晚發生,有時在冬季也會受冷鋒影響而有短時性雷暴。烏干達及印尼為全世界雷暴發生最頻繁的地方,除此之外,在美國中西部及南部州份會發生威力最強烈的雷暴,因為這些雷暴會與冰雹或龍捲風一起發生。至今為止,全世界從未出現過雷暴的地區只有南美洲智利北部的阿他加馬沙漠,該地因氣候過於乾燥和難以形成雨雲才會未出現過雷暴。 雷暴會在大氣不穩定時發生,並且會製造大量的雨水或冰晶。通常其發生有三種特定情況:地球大氣層低空帶的濕度很高,這可以由露點溫度觀察得到;高空與低空的溫度差異極大,亦即是氣溫遞減率極大;冷鋒受到外力的逼迫而匯聚。 在古老的文明裡,雷暴有著極大的影響力。不論是中國古代、古羅馬或美洲古文明皆有與雷暴相關的神話。.

新!!: 金星和雷暴 · 查看更多 »

蛛網膜地形

在行星地质学中,蛛網膜地形(Arachnoid)是一種形成原因至今仍不明的大範圍結構,並且至今只在金星被發現。因為外形像蜘蛛網而得名。.

新!!: 金星和蛛網膜地形 · 查看更多 »

G力

G點(G-Point)原為一航空專有名詞,現在廣泛做為移動或改變切線,或是加速度與減速度時承受力道的單位.

新!!: 金星和G力 · 查看更多 »

J2000.0

J2000.0是在天文学上使用的曆元,前缀「J」代表这是一个儒略纪元法,而不是一个贝塞耳纪元。 它指的是儒略日期TT时2451545.0,或是TT时2000年1月1日12時,即相对于TAI的2000年1月1日,11:59:27.816或UTC时间2000年1月1日11:58:55.816。 因恒星赤经和赤纬会因岁差(與恒星的自行)改变,所以天文学家们经常指定某一特定的纪元作参考点。早期採用的纪元标准是B1950.0纪元。 在J2000时刻的天赤道與二分点用来定义天球参考坐标系,该参考坐标系也可写作J2000坐标或简单记为J2000,但更合适的,应该如下使用国际天球参考系統(ICRS)。.

新!!: 金星和J2000.0 · 查看更多 »

JPL Horizons On-Line Ephemeris System

#重定向 噴氣推進實驗室線上曆書系統.

新!!: 金星和JPL Horizons On-Line Ephemeris System · 查看更多 »

Mars

Mars」的英文意思為火星。「Mars」或「MARS」也可以指:.

新!!: 金星和Mars · 查看更多 »

University of Chicago Press

#重定向 芝加哥大學出版社.

新!!: 金星和University of Chicago Press · 查看更多 »

University of Nottingham

#重定向 諾汀罕大學.

新!!: 金星和University of Nottingham · 查看更多 »

板块构造论

板块构造论(又稱板块构造假说、板块构造学说或板块构造学,總稱「板塊飄移」)是为了解释大陆漂移现象而发展出的一种地质学理论。该理论认为,地球的岩石圈是由板块拼合而成;现今的全球分为六大板块(1968年法国勒皮雄划分),海洋和陆地的位置是不断变化的。根据这种理论,地球内部构造的最外层分为两部分:外层的岩石圈和内层的软流圈。这种理论基于两种独立的地质观测结果:海底擴張和大陆漂移。 岩石圈可以分為大板塊及小板塊,兩板塊相接觸的部份則可依其相對運動來分為分離板塊邊緣、聚合板塊邊緣及轉形斷層。在板塊邊緣常會出現地震、火山、造山運動及海沟。现今每年的相對運動距離約在0至150 mm不等。 板塊可以分為海洋板塊及較厚的陸地板塊,兩者都有各自的地殼。在聚合板塊邊緣會有隱沒帶,會將板塊沉降至地幔,使岩石圈質量減少,而分離板塊邊緣因海底擴張形成的新地殼,這種對板塊的預測稱為輸送帶原理。較早期的理論認為地球會漸漸膨脹或是漸漸收縮,也都還有一些人支持。 板塊可以移動的原因是因為岩石圈的強度比下方的軟流圈要大,地幔密度的變化造成了。一般認為板塊運動是由海底遠離擴張脊的運動(因為地形及地殼的變化,造成地球引力的差異)、阻力及隱沒帶向下的吸力等影響組合而成。另一種解釋則是考慮地球旋轉的受力差異,以及太陽及月亮的潮汐力。這些因素之間的相對重要性及其關係還不清楚,目前也還有許多爭議。.

新!!: 金星和板块构造论 · 查看更多 »

椭圆

在数学中,椭圆是平面上到两个固定点的距离之和为常数的点之轨迹。 根據該定義,可以用手繪橢圓:先準備一條線,將這條線的兩端各綁在固定的點上(這兩個點就當作是橢圓的兩個焦點,且距離小於線長);取一支筆,用筆尖将線繃緊,這時候兩個點和筆就形成了一個三角形(的兩邊);然後左右移動筆尖拉著線開始作圖,持續地使線繃緊,最後就可以完成一個橢圓的圖形了。.

新!!: 金星和椭圆 · 查看更多 »

欧洲空间局

欧洲空间局(Agence spatiale européenne,缩写:ASE; European Space Agency,缩写:ESA)是由欧洲数国政府組成的的國際空间探测和开发组织,总部设在法国首都巴黎。欧洲空间局负责亞利安4号和亞利安5号火箭运载火箭的研制与开发。 欧洲空间局的前身,--(European Space Research Organization,ESRO)经过1962年6月14日签署的一项协议,于1964年3月20日建立。如今它仍旧是ESA的一部分,称为欧洲空间研究与技术中心,位于荷兰诺德韦克。 ESA目前共有19个成员国:奥地利、比利时、捷克、丹麦、芬兰、法国、德国、希腊、爱尔兰、意大利、卢森堡、荷兰、挪威、葡萄牙、西班牙、瑞典、瑞士、羅馬尼亞以及英国;另外,加拿大是ESA的準成員國(Associate Member)。法国是其主要贡献者(参见法國國家太空研究中心)。目前,ESA与欧盟没有关系。歐盟轄下另有歐盟衛星中心(European Union Satellite Centre)。 ESA共有约2200名工作人员。其2011年的预算约为40亿欧元。 ESA的发射中心(欧洲航天发射中心)位于南美洲北部大西洋海岸的法属圭亚那,占地约90600平方公里,属法國國家太空研究中心领导,主要负责科学卫星、应用卫星和探空火箭的发射以及与此有关的一些运载火箭的试验和发射。由于此地靠近赤道,对火箭发射具有很大益处:纬度低,从发射点到入轨点的航程大大缩短,三子级不必二次启动;相同发射方位角的轨道倾角小,远地点变轨所需要的能量小,增加了同步轨道的有效载荷;向北和向东的海面上有一个很宽的发射弧度;人口、交通、气象条件理想等。目前,航天中心有阿里安第一、第二、第三发射场,是欧洲航天活动的主要基地。控制中心則位於德國的達姆施塔特。.

新!!: 金星和欧洲空间局 · 查看更多 »

毕达哥拉斯

毕达哥拉斯(Πυθαγόρας,约)是一名古希腊哲学家、数学家和音乐理论家,毕达哥拉斯主义的创立者。 他認為數學可以解釋世界上的一切事物,對數字癡迷到幾近崇拜;同時認為一切真理都可以用比例、平方及直角三角形去反映和證實:譬如主張平方數"100"意味「公正」。.

新!!: 金星和毕达哥拉斯 · 查看更多 »

氟化氢

氟化氫(化學式:HF)是氫的氟化物,有強烈的腐蝕性,有剧毒。它是無色的氣體,在空氣中,只要超過3ppm就會產生刺激的味道。 氫氟酸是氟化氫的水溶液,可以透過皮膚黏膜、呼吸道及腸胃道吸收。若不慎暴露於氫氟酸,應立即用大量清水沖洗20至30分鐘,然後以葡萄酸鈣軟膏或藥水塗抹,并緊急送醫處理;若不小心誤飲,則要立即喝下大量的高鈣牛奶,然後緊急送醫處理。.

新!!: 金星和氟化氢 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 金星和氢 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

新!!: 金星和氦 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 金星和氧 · 查看更多 »

氩(Argon)是一种化学元素,在希臘語有「不活潑」的意思,由它的特性而來。Hiebert, E. N. Historical Remarks on the Discovery of Argon: The First Noble Gas.

新!!: 金星和氩 · 查看更多 »

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

新!!: 金星和氮 · 查看更多 »

氯化氢

氯化氢(hydrogen chloride),分子式为HCl,室温下为无色气体,遇空气中的水汽形成白色盐酸酸雾。氯化氢及其水溶液盐酸在化工中非常重要。二者分子式均可写为HCl。.

新!!: 金星和氯化氢 · 查看更多 »

水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.

新!!: 金星和水 · 查看更多 »

水蒸气

水蒸氣(也称氛气),是水(H2O)的气体形式。当水达到沸点时,水就变成水蒸氣。水蒸气在空气中是无色的。在海平面一标准大气压下,水的沸点为100°C或212°F或373.15K。当水在沸点以下时,水也可以缓慢地蒸发成水蒸氣。而在極低壓環境下(小於0.006大气压),冰會直接升华變水蒸氣。水蒸气之密度为 0.59764 千克/立方米(100°C/212°F,101330Pa)。 水蒸氣可能會造成温室效应,是一种温室气体。.

新!!: 金星和水蒸气 · 查看更多 »

水星

水星(Mercurius),中國古稱辰星;到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現辰星呈灰色,與「五行」學說聯繫在一起,以黑色配水星,因此正式把它命名為水星。 水星是太陽系的八大行星中最小和最靠近太陽的行星,但有著八大行星中最大的離心率 ,軌道週期是87.969 地球日。從地球上看,它大约116天左右與地球會合一次,公转速度遠遠超過太阳系的其它星球。水星的快速運動使它在羅馬神話中被稱為墨丘利,是快速飛行的信使神。由于大氣層极为稀薄,无法有效保存热量,水星表面昼夜温差极大,为太阳系行星之最。白天时赤道地區温度可达430°C,夜间可降至-170°C。極區气温則終年維持在-170°C以下。水星的軸傾斜是太陽系所有行星中最小的(大約度),但它有最大的軌道偏心率。水星在遠日點的距離大約是在近日點的1.5倍。水星表面充滿了大大小小的坑穴(環形山),外觀看起來與月球相似,顯示它的地質在數十億年來都處於非活動狀態。 水星无四季变化。它也是唯一被太陽潮汐鎖定的行星。相對於恆星,它每自轉三圈的時間與它在軌道上繞行太陽兩圈的時間几乎完全相等。從太陽看水星,參照它的自轉與軌道上的公轉運動,是每兩個水星年才一個太陽日。因此,对一位在水星上的觀測者来说,一天相当于兩年。 因為水星的軌道位於地球的內側(金星也一樣),所以它只能在晨昏之際與白天出現在天空中,而不會在子夜前後出現。同時,也像金星和月球一樣,在它繞著軌道相對於地球,會呈現一系列完整的相位。雖然从地球上觀察,水星會是一顆很明亮的天體,但它比金星更接近太陽,因此比金星還難看見。 從地球看水星的亮度有很大的變化,視星等從-2.3至5.7等,但是它與太陽的分離角度最大只有28.3°。當它最亮時,从技術角度上讲應該很容易就能從地球上看見它,但由于其距离太阳过近,實際上並不容易找到。除非有日全食,否則在太陽光的照耀下通常是看不見水星的。在北半球,只能在凌晨或黃昏的曙暮光中看見水星。當大距出現在赤道以南的緯度時,在南半球的中緯度可以在完全黑暗的天空中看見水星。 水星軌道的近日點每世紀比牛頓力學的預測多出43角秒的進動,這種現象直到20世紀才從愛因斯坦的廣義相對論得到解釋。.

新!!: 金星和水星 · 查看更多 »

水手10號

水手10號(Mariner 10)是一系列以飛越方式進行的行星探險水手號計劃中的第10個計畫,也是計畫中的最後一個。水手10號以飛掠的方式探測水星與金星,也是第一個探測過水星的太空船。其後美國太空總署在2004年發射信使號探測船已經於2011年抵達水星進行探測。 水手10號大約晚水手9號兩年發射,於1973年11月3日發射。主要任務包括探測水星與金星的環境、大氣、地表與行星的特徵。水手10號也是第1艘利用行星重力來同時探測2顆行星的探測船,也就是以重力彈弓效應(gravity assist trajectory)來加速,進入金星重力影響區內,接著靠金星的重力將探測船拋至另一個軌道來接近水星。.

新!!: 金星和水手10號 · 查看更多 »

氘(注音:ㄉㄠ;拼音:dāo(1);客家話:dao(1);粵語:dou(1);台語:to(1);英语:Deuterium)為氢的一种穩定形態同位素,又称重氢,元素符号一般为D或2H。它的原子核由一颗质子和一颗中子组成。在大自然的含量约为一般氢的7000分之一。.

新!!: 金星和氘 · 查看更多 »

氖(舊譯作氝,訛作氞)是一种化学元素,它的化学符号是Ne,它的原子序数是10,是一种无色的稀有气体,把它放电时呈橙红色。氖最常用在霓红灯之中。空气中含有少量氖。.

新!!: 金星和氖 · 查看更多 »

气压

气压的国际单位制是帕斯卡(或简称帕,符号是Pa),泛指是气体对某一点施加的流体静力压强,来源是大气层中空气的重力,即為单位面积上的大氣壓力。在一般气象学中人们用千帕斯卡(KPa)、或使用百帕(hPa)作为单位。测量气压的仪器叫气压表。其它的常用单位分别是:巴(bar,1 bar.

新!!: 金星和气压 · 查看更多 »

波长

波长是一個物理學的名詞,指在某一固定的頻率裡,沿着波的传播方向、在波的图形中,離平衡位置的「位移」與「時間」皆相同的两个质点之间的最短距离。在物理學,波長普遍使用希臘字母λ來表示。.

新!!: 金星和波长 · 查看更多 »

波數

在物理學裏,波數是波動的一種性質,定義為每  長度的波長數量(卽每單位長度的波長數量乘以 )。更明確地說,波數是每  長度內,波動重複的次數(一個波動取同樣相位的次數)。波數與波長成反比。用方程的語言說, 其中,\lambda\,\! 是波長。 角频率是單位時間內的角度變化,而波數為單位長度內的角度變化,因此波數即是空間上的角频率。波數對應向量爲波向量。 有時候,波數也會定義為每單位長度的波長的數目。但這樣定義比較不好使用。 從隨著時間而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個頻率譜;而從隨著位置而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個波數譜。 採用國際單位制,波數的單位是m^\,\!。.

新!!: 金星和波數 · 查看更多 »

涅伊特

奈斯神“Neith”(或,也拼写为尼特“Nit”、涅特“Net”或涅伊特“Neit”)是一位早期埃及神殿中的女神,塞易斯城的守护神,该城早在第一王朝起,就成为埃及尼罗河三角洲西部地区涅伊特的崇拜中心,它的古埃及名称叫扎乌(Zau)。 涅伊特也是古埃及南部城市“Ta-senet”或“Iunyt”现称为伊斯纳,希腊文称为“莱托波利斯”(Latopolis)(位于尼罗河西岸,卢克索(Luxor)以南约55公里处,现今的基纳省“Qena Governorate”)的三位守护神之一。.

新!!: 金星和涅伊特 · 查看更多 »

温室效应

溫室效应(Greenhouse effect)是指行星的大氣層因為吸收辐射能量,使得行星表面升溫的效应。由於溫室效应,行星表面溫度會比沒有大氣層時的溫度要高A concise description of the greenhouse effect is given in the Intergovernmental Panel on Climate Change Fourth Assessment Report, "What is the Greenhouse Effect?", IIPCC Fourth Assessment Report, Chapter 1, page 115: "To balance the absorbed incoming energy, the Earth must, on average, radiate the same amount of energy back to space.

新!!: 金星和温室效应 · 查看更多 »

準衛星

準衛星是與行星有著1:1軌道共振,在公轉許多次後便會接近行星並留駐的天體。 準衛星繞太陽公轉的軌道週期與行星相同,但是有著不同的離心率(通常更大),如右圖所示。當從行星上观察這顆行星的準衛星時,會出现繞著行星的橢圓行逆行軌跡。 對比於真衛星,準衛星的軌道位於行星的希爾球之外,並且是不穩定的。經過一段時間的發展,傾向於成為其他類型的共振運動,使它們不再逗留在行星的附近,然後可能又會回到準衛星的軌道,等等不一而足。 其他型式的1:1共振軌道包括馬蹄形軌道和環繞著拉格朗日點的蝌蚪形軌道,但是這種軌道的天體在繞行太陽公轉多次之後,不會停留在接近行星的經度上。已知馬蹄形軌道的天體有時會轉移到一個相對較短的準衛星軌道,因此有時會混為一談。這種例子像是。.

新!!: 金星和準衛星 · 查看更多 »

潮汐

漲潮是地球上的海洋表面受到太陽和月球的万有引力(潮汐力)作用引起的漲落現象。潮汐的變化與地球、太陽和月球的相對位置有關,並且會與地球自轉的效應耦合和海洋的海水深度、大湖及河口。在其它引力場的時間和空間系統內也会發生类似潮汐的現象。 在淺海和港灣實際發生的海平面變化,不僅受到天文的潮汐力影響,還會受到氣象(風和氣壓)的強烈影響,例如風暴潮。潮汐造成海洋和港灣口積水深度的改變,並且形成震盪的潮汐流,因此製作沿海地區潮汐流的預測在航海上是很重要的。在漲潮時會埋在海水中,而在退潮時會裸露出來的潮間帶,是潮汐造成的重要海洋生態。.

新!!: 金星和潮汐 · 查看更多 »

潮汐加速

潮汐加速是行星與其衛星之間潮汐力的效應。這種“加速”通常都是負面的效應,如果衛星是在順行軌道上運行,會逐漸退行和遠離行星(衛星的角動量增加),相對的,行星的自轉也會減緩(角動量守恆)。這個過程最終會導致質量小的先潮汐鎖定,然後大的也會如此。地月系統是研究這種情況的最佳事件。 衛星軌道週期短於主星(行星)的自轉周期,或是逆行軌道的狀況,稱為潮汐減速,是一種類似的程序(衛星的角動量減少)。.

新!!: 金星和潮汐加速 · 查看更多 »

澳大利亚

澳大--利亚联邦(Commonwealth of Australia),通称澳大--利亚(Australia,缩写为 AU、AUS),中文环境下(尤其是臺灣、香港等地)常使用「澳--洲」代替“--”,是全球面积第六大的国家,大洋洲最大的国家和南半球第二大的国家。澳大利亚国土包括澳大利亚大陆,塔斯曼尼亚岛及数个海外的岛屿,面积和美國本土相似,是世界上唯一一个国土覆盖整个大陆的国家。與隔海相望的东南近邻是紐西蘭,西北是印度尼西亚,北边是巴布亚新几内亚、西巴布亚及东帝汶。澳大利亚的首都位于堪培拉,最大城市为悉尼。 澳大利亞一詞源於拉丁語,意思為“未知的南方大陸”(terra australis incognita)。其所在的地理位置通常稱作澳洲大陆,是地球上最小的大陆板塊。澳大利亚人均擁有國土面積0.353平方公里,是世界最廣闊的國家之一。有多樣的自然景觀,包括熱帶雨林、別稱為“紅色中心”的沙漠、吸引很多旅客的海濱及馳名遐邇的自然遺產大堡礁及烏魯汝Davison, Hirst and Macintyre, pp.

新!!: 金星和澳大利亚 · 查看更多 »

本初子午線

本初子午線(Prime meridian),即0度經線,亦稱格林威治子午線、格林尼治子午線或本初經線,是經過英國格林尼治天文台的一條經線(亦稱子午線)。本初子午線的東西兩邊分別定為東經和西經,於180度相遇。 不像緯度起點(即赤道)可由地球自轉軸決定,理論上任何一條經線均可定為本初子午線,故此在歷史上曾對此線有不同定位。1851年御用天文學家艾里(Sir George Airy)在格林威治天文台設置中星儀,並以此確定格林威治子午線。因為當時超過三分之二的船隻已使用該線為參考子午線,在1884年於美國華盛頓特區舉行的上正式定之為經度的起點。來自25個國家共41位代表參與了會議,但法國代表在投票時棄權,在1911年之前法國仍以巴黎子午線做為經度起點。 從北極開始,本初子午線經過英國、法國、西班牙、阿爾及利亞、馬利、布吉納法索、多哥和迦納共8個國家,然後直至南極。 除了定義經度,格林尼治子午線亦曾作為世界時間標準使用。理論上來說,格林尼治標準時間的正午是指當太陽橫穿格林尼治子午線時的時間。然而因為地球自轉速度並不規則,現在的世界標準時間基準已由協調世界時取代。.

新!!: 金星和本初子午線 · 查看更多 »

月球

没有描述。

新!!: 金星和月球 · 查看更多 »

望远镜

望遠鏡是一種可以透過遙控方式收集電磁波(例如可見光)以協助觀察遠方物體的工具。已知能實用的第一架望遠鏡是在17世紀初期在荷蘭使用玻璃透鏡發明的。這項發明現在被應用在陸地和天文學。 在第一架望遠鏡被製造出來幾十年內,用鏡子收集和聚焦光線的反射望遠鏡就被製造出來。在20世紀,許多新型式的望遠鏡被發明,包括1930年代的電波望遠鏡和1960年代的紅外線望遠鏡。望遠鏡這個名詞現在是泛指能夠偵測不同區域的電磁頻譜的各種儀器,在某些情況下還包括其他類型的探測儀器。 英文的「telescope」(來自希臘的τῆλε,tele "far"和 σκοπεῖν,skopein "to look or see";τηλεσκόπος,teleskopos "far-seeing")。這個字是希臘數學家乔瓦尼·德米西亚尼在1611年於伽利略出席的意大利猞猁之眼国家科学院的一場餐會中,推銷他的儀器時提出的。在《星際信使》這本書中,伽利略使用的字是"perspicillum"。.

新!!: 金星和望远镜 · 查看更多 »

浮升器

--(aerostat)或--,是一款靠較輕的氣體所產生的浮力而浮起的航空器。浮空器通常包括自由氣球、繫留氣球及飛艇。浮空器的主要造成部分為其蒙皮,所產生的氣囊包著較輕的氣體以產生足夠,而又不會過分流失的浮力。在印度新德里舉行的2010年英聯邦運動會釋放了一個有史以來最巨大的浮空器。.

新!!: 金星和浮升器 · 查看更多 »

海洋地殼

海洋地殼是岩石圈的一部分,由密度較大的矽鎂質岩石構成,偏向鹼性,與大陸地殼相比,硅酸鹽較缺乏,密度也較大,平均密度約3.0g/cm^3(大陸地殼2.7g/cm^3),由於密度較大,根據大陸均衡學說,海洋地殼無法像大陸地殼般在地幔之上浮得那麼高。 主要是由玄武岩組成。海洋地殼的厚度約在5至10公里之間,地球內部由於熱的作用產生對流,岩漿上升處,是在地表張裂板塊,產生分離板塊邊緣(divergent boundaries),中洋脊是為代表,該地區會有許多淺的、正斷層(張裂作用)式的小地震。大部分情況下,和板塊碰撞時隱沒,因此地質年齡也較年輕,現存的海洋地殼年齡都在200百萬年之內。在中洋脊由深部岩漿加進來,所產生的是為海洋板塊,在淺部都是玄武岩,深部則為輝長岩。 海洋地殼上的大板塊只有太平洋海板塊,其餘均為較小的板塊。 海洋板塊以每年兩公分的速度向外擴張(稱為海底擴張學說),直到碰到大陸板塊邊緣,由於海洋板塊密度較大,會隱沒到大陸板塊之下,產生聚合板塊邊緣(convergent boundaries)。海洋板塊在擠壓過程中,會推動大陸板塊移動,產生「大陸漂移」,目前世界五大洲分佈,是由二億年前一大塊「盤古」大陸(泛大陸)張裂開來的。聚合板塊邊緣由於兩種不同性質的板塊碰撞,不斷的在擠壓,不斷的在累積變形能量,直到超過岩石能夠忍受的程度,遂將累積之變形能量在瞬間釋放出來,發生地震。這種巨大的碰撞力量,使聚合板塊邊緣產生許多淺至深的、逆衝斷層(擠壓作用)式的大地震。海洋板塊沿著隱沒帶,俯衝下插到大陸板塊之下約七百公里,才會與周遭物質同化,因此最深的地震也可到達七百公里。 Category:地球的结构 Category:地球物理學 category:地质学.

新!!: 金星和海洋地殼 · 查看更多 »

方铅矿

方鉛礦(,又稱立方硫化铅)是一种铅與硫的化合物,其英文名稱源自於拉丁文,為鉛之意。化学式为PbS(理论组成:鉛:86.60%,硫:13.40%),混入物以銀为最常见,其次为銅與鋅,有时含有鐵、砷、銻、鉍、鎘、鉈、銦與硒等,另外硒可代替硫,形成PbS的鏡像化合物。颜色铅灰色,硬度2.5~3,比重7.4~7.6 。開闢北宜高速公路時,於宜蘭頭城發現之鉛鋅銅礦脈,所採礦樣經化驗結果含鉛:1.81%,鋅:2.88% ,銅:0.012%。方铅矿中87%的重量是铅,因此是重要的铅矿石,由于其中也包含至1%的银,因此过去是银的重要来源之一。晶形常為六面體及八面體,晶系為等軸晶系,具有三組發達的解理,故其晶體常呈現為立方體(稱為氯化鈉型晶體結構),有时也呈平顶金字塔状或骨头状,由很多立方體晶體聚集形成粒状或塊狀。具貝殼狀斷口,金屬光澤,顏色及條痕為鉛灰色,由於熔點低(370℃)容易鑄成各種有價值之合金及製品。方鉛礦屬低溫環境產物,在變質岩與火山硫化物矿床中形成,呈脈狀或塊狀存在於石灰岩的洞穴和角礫帶裏,經常与铜矿混生,風化后就則成為白鉛礦和鉛礬。方鉛礦世界最大產地是美國密蘇里州(State of Missouri),僅鉛的儲量就達3000萬噸。在台灣產於新北市金瓜石、坪林與台東縣樟原,在金瓜石之方鉛礦通常以小結晶與閃鋅礦、黃鐵礦、黃銅礦、石英等礦物共生。中國出產於雲南金頂、廣東凡口與青海錫鐵山等地,常與閃鋅礦共生,也偶爾於煤礦中發現。此外英國康瓦爾(Cornwall)﹑德國弗萊貝格(Freiberg)與澳大利亞布羅肯希爾(Broken Hill)也是著名的產地。 方鉛礦是人类最早開採的礦石之一,古埃及古王國时期開始,人们使用方铅礦作为化妆品,巴比倫人與古羅馬人也從中冶煉銀。中國早在商代前就從方铅礦中提煉鉛,另由於方鉛礦中多含有銀,古代為冶煉銀大量開採。中國古代煉鉛的原料有兩類,一類是氧化鉛(以白鉛礦為主),另一類是硫化鉛(以方鉛礦為主)。明朝陸容在《菽園雜記》中有敘述硫化鉛礦的冶煉方法。宋應星在《天工開物》中提到當時所開採的三種練鉛礦物,一種是「銀礦鉛」,指與銀礦共生的方鉛礦;另一種是「銅山鉛」,指包括方鉛礦、閃鋅礦與黃銅礦等的多金屬礦;在另一種是「草節鉛」,可能是指傑晶粗大的方鉛礦。方鉛礦有多種用途,早期无线电使用方铅矿作为整流器,製作解调器和矿石收音机也會使用方铅矿。從中提煉金屬鉛,用於蓄電池、鉛管、鉛板、顏料、塗料、鉛玻璃、鉛合金、鉛字、陶瓷釉藥、鑄品、彈頭、化學藥品。鉛具有很好的耐腐蝕性,古希臘船員用含鉛的棲清除附生在船底的藤壶,除了排除生物的蠶食外,也降低船底在海中運行的阻力。中藥中的藥用鉛稱為黑錫或黑鉛,即由方鉛礦提煉,具有鎮逆、墜痰、殺蟲、解毒等功效。汽油中亦添加鉛之有機化合物作為抗震劑、抗爆劑以提高辛烷值。.

新!!: 金星和方铅矿 · 查看更多 »

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

新!!: 金星和施普林格科学+商业媒体 · 查看更多 »

日心说

日心说,也称为地动说,是关于天体运动的和地心说相对立的学说,它认为太阳是宇宙的中心,而不是地球。 哥白尼提出的日心说,推翻了长期以来居于统治地位的地心说,实现了天文学的根本变革。.

新!!: 金星和日心说 · 查看更多 »

日心軌道

日心軌道是環繞太陽的軌道。在我們的太陽系,所有的行星、彗星和小行星的軌道都是日心軌道,也有許多人造的太空船和太空垃圾有這種軌道。相對的,月球不是在日心軌道上環繞著地球。 在英文中,字首helio-源自於古希臘字helios,在擬人化的希臘神話中可以解釋成"月球",也可以是"太陽"。.

新!!: 金星和日心軌道 · 查看更多 »

摄氏温标

摄氏温标是世界上普遍使用的温标,符号为°C,属于公制单位。 摄氏温标的规定是:在标准大气压,纯水的凝固点(即固液共存的温度)為0°C,水的沸點為100°C,中間劃分為100等份,每等份為1°C。.

新!!: 金星和摄氏温标 · 查看更多 »

撞击坑

撞击坑(又称陨石坑或环形山)為行星、卫星、小行星或其它類地天体表面通过陨石撞击而形成的环形的凹坑。撞击坑的中心往往会有一座小山,在地球上撞击坑内常常会積水,形成撞击湖,湖心则有一座小岛。 在具有风化过程的天体上或者具有地壳运动的天体上老的撞击坑会逐渐被磨灭。比如在地球上通过风化、风吹来的尘沙的堆积、岩浆撞击坑会被掩盖或者磨灭。在其它天体上有可能有其它效应来磨灭撞击坑。比如木卫四的表面是冰,随着时间的流易,冰会慢慢流动,使得这颗卫星表面的撞击坑消失。 在地球上约有150个大的依然可以辨认出来的撞击坑,其中直徑大於100公里的僅有5個,通过对这些撞击坑的研究地质学家还发现了许多已经无法辨认出来的撞击坑。几乎所有具有固体表面的行星和卫星均带有撞击坑。在有些天体上撞击坑的密度可以被用来确定相应的表面地区的形成年代。.

新!!: 金星和撞击坑 · 查看更多 »

撞擊事件

天文學上的撞擊事件(Impact event)是指地球或其他行星和小行星、彗星等其他天體互相碰撞的事件。根據歷史記載,有數百個在特定地區造成死傷以及財物損失的小型撞擊事件(包含火流星爆炸)被記錄下來。在海洋發生的撞擊事件可能造成海嘯對海洋和海岸造成損害。 最近的一次重大撞擊事件發生在700 BC爱沙尼亚的卡里,形成卡里隕石坑。 自從撞擊事件研究成為現在科學界的顯學後,在許多科幻作品中撞擊事件是重要的情節和背景知識。.

新!!: 金星和撞擊事件 · 查看更多 »

攝動

攝動(Perturbation)是天文學上的一個術語(專有名詞),是用來描述一個大質量天體受到一個以上質量體的引力影響而可察覺的複雜運動。 這種天體的複雜運動可以分成不同的成分而加以描述。首先,假設它的運動只受到一個天體的引力影響,因此它的運動是必然的結果。以其它的方法表示,這種運動可視為二體問題的解,或是為受到攝動的克卜勒軌道。然後,假設上未受到攝動的運動和實際的運動之間的差別,這是由於來自額外的一個或多個物體的引力效應,就是所謂的攝動。如果只有另一個影響較顯著的天體,則這種攝動的解稱為三體問題;如果有多個物體都有顯著的影響,這種運動可以作為更高階的代表,稱為多體問題(N體問題)。 當年,牛頓在導出他的引力運動時,就已經承認攝動的存在,並知道這種計算的複雜和困難。從牛頓的時代開始,已經發展出一些數學上的技術來分析攝動,它們可以分為兩大類:一般攝動和特殊攝動。分析一般攝動的方法,運動的常微分方程可以得到解答,通常是一系列的逼近,還有使用三角函數或代數的結果,再使用許多不同的設定,通常就可以得到不同設定條件下的解。從歷史上看,一般攝動是先被研究的,因為特殊攝動的方法:數值資料、表示位置的值、速度和加速度的影響,是建立在微分方程數值積分的基礎上。 許多系統都涉及多體引力,存在於其中的一個物體是佔有引力優勢的主導者(例如,恆星系,在這樣的案例中是恆星和它的行星;或是行星系,在這樣的案例中是行星和它的衛星)。然後,其它的引力影響,相較於未受攝動的行星,可被視為導致行星受到攝動;或是,衛星,各自環繞著主要的天體。 在太陽系,許多的攝動是由周期性的元件造成的,所以攝動的天體依照軌道的周期性或準周期的,長時間的周期-像是月球在它的強擾動軌道,這是月球運動說的主題。 行星會在其它行星的軌道導致周期性的攝動,天王星的軌道受道攝動的結果,導致1846年的發現海王星。 行星相互間的攝動會導致其軌道要素長期的準周期變化。金星目前有著最小的離心率,也就是說它的軌道是行星軌道中最接近圓形的。再過約25,000年,地球的軌道將會比金星的更圓(低離心率)。 太陽系內許多小天體的軌道,像是彗星,經常會受到巨大的攝動,尤其是通過氣體巨星的引力場時。雖然這些攝動有很多是周期性的,但也有些不是,並且這些特別可能代表著混沌運動。例如在1996年4月,木星的引力場影響到海爾-博普彗星軌道的周期從4,206年縮減為2,380年,並且這些變化將不會在任何的周期基礎上被還原。 在太空動力學和人造衛星的事件中,軌道的攝動通常來自大氣拖曳和太陽輻射壓力。.

新!!: 金星和攝動 · 查看更多 »

散射

傳播中的輻射,像光波、音波、電磁波、或粒子,在通過局部性的位勢時,由於受到位勢的作用,必須改變其直線軌跡,這物理過程,稱為散射。這局部性位勢稱為散射體,或散射中心。局部性位勢各式各樣的種類,無法盡列;例如,粒子、氣泡、液珠、液體密度漲落、晶體缺陷、粗糙表面等等。在傳播的波動或移動的粒子的路徑中,這些特別的局部性位勢所造成的效應,都可以放在散射理論(scattering theory)的框架裏來描述。.

新!!: 金星和散射 · 查看更多 »

托勒密

#重定向 克劳狄乌斯·托勒密.

新!!: 金星和托勒密 · 查看更多 »

2002 VE68

(也可以寫成2002 VE68)是一顆金星的準衛星,它是在2002年11月11日被發現的。 這顆小行星也是一顆掠水小行星和越地小行星;它似乎已經和金星至少共軌7,000年了,而且註定在500年後會從這個軌道被彈射出去。在這段期間內,它與金星的距離將持續增加至超過0.2天文單位(3公里)。.

新!!: 金星和2002 VE68 · 查看更多 »

2004年金星凌日

在2004年6月8日,從地球觀測到一次金星凌日的天象。 這次的事件受到廣泛的注意,因為這是廣播媒體發明以後第一次的金星凌日。因為上一次的金星凌日發生在1882年12月6日,因此当时活著的人沒有一位個曾親眼目睹過上一次的事件。 歐洲南方天文臺(ESO)和歐洲天文教育協會 (EAAE) 推出,共同策劃的還有 de Mécanique Céleste et de Calcul des Éphémérides (IMCCE)研究所和法國巴黎天文台、捷克共和國科學院的天文研究所。這個專案的企圖是嘗試利用此一天文事件,通過一組廣泛的興趣和科學行動,藉由人類的好奇心,轉換成知識。 這個專案在全球有2763個參加者,包括將近1,000所的學校。參加者提交出測量天文單位 (AU) 的結果是,與目前被認可的值只有0.007%的差異。.

新!!: 金星和2004年金星凌日 · 查看更多 »

2012年金星凌日

2012年金星凌日是發生於2012年的一次金星凌日。金星在2012年6月5日22时09分(UTC)开始凌日,2012年6月6日04时49分(UTC)结束。 由于观测地点的不同,准确时间有±7分钟的差异。金星凌日发生的模式是“成双成对”的,相邻的“一对”金星凌日事件之间间隔8年,而不同的“两对”事件之间则有较长的间隔。 2012年的金星凌日是“一对”凌日事件中的第二次,上一次发生在2004年6月8日,而下一对金星凌日要到2117年的12月和2125年的12月。NASA也利用太陽動力學天文台卫星对这次金星凌日进行了直播。.

新!!: 金星和2012年金星凌日 · 查看更多 »

重定向到这里:

启明星塞斯大泽星大相星大衰星天浩星太正星太白星宫星序星殷星月纬星晚星终星营星长庚星

传出传入
嘿!我们在Facebook上吧! »