徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

神经递质

指数 神经递质

经递质(neurotransmitter),有时简称“递质”或译作神经传递素,常用译名还包括神經傳導物質、神經傳達物質、脑内物质等,是在神经元、肌细胞或感受器间的化学突触中充当信使作用的特殊的机体内生的分子。神经递质在神经、肌肉和感觉系统的各个角落都有分布,是动物的正常生理功能的重要一环。截止1998年,在大脑内大约有45种不同的神经递质已被确认。.

55 关系: 动作电位去甲肾上腺素单胺类神经递质单胺氧化酶可卡因受体多巴胺大脑天冬氨酸帕金森病一氧化氮乙酰胆碱乙酰胆碱受体乙酰胆碱酯酶乙酸代谢利血平分子內分泌系統神經元神经系统突触突触可塑性第二信使箭毒精神分裂症絲氨酸組織胺生物胺甘氨酸物质血清素褪黑素體抑素谷氨酸黑质胞吐作用胆碱肾上腺素肌肉系统脑内啡镇痛药酪氨酸腺苷電勢选择性5-羟色胺再吸收抑制剂Γ-氨基丁酸L-多巴...抑郁症患者列表氨基酸感受器感觉系统扩散作用 扩展索引 (5 更多) »

动作电位

動作電位(英文:action potential),指的是靜止膜電位狀態的细胞膜受到適當刺激而产生的,短暂而有特殊波形的跨膜电位搏动。细胞产生动作电位的能力被称为兴奋性,有这种能力的细胞如神经细胞和肌细胞。动作电位是实现神经传导和肌肉收缩的生理基础。 一個初始刺激,只要達到了阈电位(threshold potential),不論超過了多少,也就是,就能引起一系列离子通道的开放和关闭,而形成离子的流动,改变跨膜电位。而这个跨膜电位的改变尤能引起临近位置上细胞膜电位的改变,这就使得兴奋能沿着一定的路径传导下去。.

新!!: 神经递质和动作电位 · 查看更多 »

去甲肾上腺素

去甲肾上腺素(INN名称:Norepinephrine、nor-epinephrine,也称Noradrenaline、nor-adrenaline--,缩写NE或NA),旧称正肾上腺素,学名1-(3,4-二羟苯基)-2-氨基乙醇,是肾上腺素去掉 N-甲基后形成的物质,在化学结构上也属于儿茶酚胺。它既是一种神经递质,主要由交感节后神经元和脑内肾上腺素能神经末梢合成和分泌,是后者释放的主要递质,也是一种激素,由肾上腺髓质合成和分泌,但含量较少。循环血液中的去甲肾上腺素主要来自肾上腺髓质。.

新!!: 神经递质和去甲肾上腺素 · 查看更多 »

单胺类神经递质

单胺神经递质(英語:monoamine neurotransmitter)是含有芳乙胺结构的神经递质和神经调质,所有单胺类都是从芳香族氨基酸(苯丙氨酸、酪氨酸、色氨酸)和甲状腺激素衍生而来,经芳香族L-胺基酸脫羧酶的作用而得。 单胺受体的树形图.

新!!: 神经递质和单胺类神经递质 · 查看更多 »

单胺氧化酶

单胺氧化酶(缩写MAO),,是催化单胺类物质氧化脱氨反应的酶。单胺氧化酶存在于细胞的线粒体外膜上,在人体内分布极广,尤以肝、脑及肾等组织细胞内的含量最高。由于需要黄素腺嘌呤二核苷酸(FAD)作辅因子,因此它属于黄素蛋白酶或含黄素胺氧化酶。 1928年玛丽·伯恩海姆在肝细胞中首先发现单胺氧化酶,并将其命名为“酪胺氧化酶”。.

新!!: 神经递质和单胺氧化酶 · 查看更多 »

可卡因

可卡因(INN:Cocaine),又譯為--。為一強烈的興奮劑,是一種毒品。可卡因常以粉末方式由鼻腔吸入或是靜脈注射的方式使用。可能造成的心理影響有思覺失調、欣快感,或者。生理上的症狀可能包括心跳過速、出汗與瞳孔放大。高劑量的可卡因會造成高血壓或中暑。使用後數秒到分鐘即出現效果,並持續5到90分鐘。可卡因偶爾也會用於醫療用途,例如局部麻醉與減少鼻部手術的出血。 可卡因具有成癮性,原因是由於其作用於腦中的 -->。短時間使用後,會出現依賴性的高風險。使用可卡因也會增加中風、心肌梗死、肺部問題、敗血症與猝死的風險。一般街頭犯罪上販賣的可卡因,常見的會混入局部麻醉藥、玉米澱粉、奎寧或者醣類等會增加額外毒性的物質。持續反覆使用可卡因,會減少感覺快樂的能力與身體疲累。 可卡因是5-羟色胺、去甲基腎上腺素,和多巴胺的再摄取抑制剂,會使腦部這三種神經遞質的濃度上昇。可卡因可以輕易地通過血腦屏障,而且可能會造成血腦屏障的破壞。可卡因是由古柯的葉子製成,此一植物的主要產地在南美。2013年合法生產的可卡因數量有419公斤。估計美國每年非法可卡因的市場在一千億到五千億美金之間,可卡因可再經過進一步的加工,製成霹靂可卡因。 每年用藥人數約在1400萬至2100萬人之間,其中北美洲的用量最大,其次為歐洲和南美洲。其中 1-3% 的已開發國家人口在他的一生中至少使用過可卡因一次。2013年,可卡因直接導致約4300人死亡,比起1990年的2400人上升了許多。從遠古時代就有嚼食古柯葉的習俗。1860年,可卡因首次由古柯樹的古柯葉內純化出來。1961年起,國際麻醉品單一公約要求各國將所有非醫學用途的可卡因使用列入刑事罪行規範。.

新!!: 神经递质和可卡因 · 查看更多 »

受体

受體可以是指:.

新!!: 神经递质和受体 · 查看更多 »

多巴胺

多巴胺(英語:dopamine,擷取自3,4-dihydroxyphenethylamine);化学式:C6H3(OH)2-CH2-CH2-NH2)是一种脑内分泌物,属于神经递质,可影响一个人的情绪。 它正式的化学名称为4-(2-乙胺基)苯-1,2-二酚,简称「DA」。阿尔维德·卡尔森确定多巴胺为脑内信息传递者的角色,这使他赢得了2000年诺贝尔医学奖。 多巴胺是兒茶酚胺和苯乙胺家族中一種在腦和身體中扮演幾個重要作用的有機化學物。其名稱來自其化學結構: 它是一個胺由其前體一個分子左旋多巴除去羧基合成,其發生在人腦細胞和腎上腺細胞中。在大腦中多巴胺作為神經遞質,通過神經元釋放一種化學物將信號發送到其它神經細胞。大腦包括幾個不同的多巴胺途徑,其中一個起著獎勵–激勵行為的主要作用。大多數類型的獎勵增加多巴胺在腦中的濃度,大部分成癮藥物增加多巴胺神經元活動。其他的腦多巴胺用來參與運動控制和控制各種激素的釋放。 神經系統以外,在身體的幾個部分多巴胺作為局部化學信使的功能。在血管中它抑制去甲腎上腺素的釋放,並作為血管擴張劑(在正常濃度下);在腎臟中它增加鈉和尿的排泄;在胰臟中它減少胰島素生產;在消化系統中它減少胃腸蠕動和保護腸粘膜;並在免疫系統中它減少淋巴細胞的活性。血管除外,多巴胺在這些外圍系統局部合成,在鄰近該釋放它的細胞旁發揮其作用。 幾個重要的神經系統疾病與多巴胺系統的功能障礙有關,而使用一些改變多巴胺作用的關鍵藥物來治療他們。帕金森氏病一種退行性狀況引起身體震顫和運動障礙,是通過中腦中稱為黑質區的分泌神經元分泌多巴胺不足所引起。其代謝前體L-DOPA可以工業製造,其純銷售形式為左旋多巴是最廣泛使用的治療方法。有證據表明精神分裂症涉及多巴胺活性水平的改變,大多數經常使用的抗精神病藥物具有降低多巴胺活動的主要效果。類似多巴胺拮抗劑藥物,也有一些是最有效抗噁心藥物。不寧腿綜合徵與注意力不足過動症與多巴胺活性降低有關。高劑量多巴胺興奮劑可以上癮,但也有一些使用較低劑量治療過動症。多巴胺本身可製造成靜脈注射的藥物:雖然不能從血液到達腦部,其週邊作用使其對心臟衰竭或休克的治療是有用的,尤其是對新生嬰兒。 File:Dopamine 3D ball.png|多巴胺 File:TAAR1 Dopamine.svg| File:Synapse dopaminergique.png|多巴胺在神經突觸處.

新!!: 神经递质和多巴胺 · 查看更多 »

大脑

綠色是顳葉,藍色是額葉,黃色是頂葉,紅色是枕葉。 大脑(cerebrum),是脑与间脑。在醫學及解剖学上,多用大脑一词來指代端脑。 端脑有左右两个大脑半球(端脑半球)。将两个半球隔开的是称为大脑纵隔的沟壑,两个半球除了脑梁与透明中隔相连以外完全左右分开。半球表面布满脑沟,沟与沟之间所夹细长的部分称为脑回。脑沟并非是在脑的成长过程中随意形成,什么形态出现在何处都完全有规律(其深度和弯曲度因人稍有差异)。每一条脑沟在解剖学上都有专有名称(nomina anatomica)。脑沟与脑回的形态基本左右半球对称,是对脑进行分叶和定位的重要标志。有关大脑两半球功能单侧化的研究表明,大多数人的言语活动中枢在大脑左半球。比较重要的脑沟有外侧沟 (lateral sulcus)起于半球下面,行向后上方,至上外侧面;中央沟 (central sulcus)起于半球上绿中点稍后方,斜向前下方,下端与外侧沟隔一脑回,上端延伸至半球内侧面;顶枕沟(parietooccipital sulcus)位于半球内侧面后部,自下向上。在外侧沟上方和中央沟以前的部分为额叶;外侧沟以下的部分为颞叶;枕叶位于半球后部,其前界在内侧面为顶枕沟,在上外侧面的界限是自顶枕沟至枕前切迹(在枕叶后端前方约4cm处)的连线;顶叶为外侧沟上方、中央沟后方、枕叶以前的部分;岛叶呈三角形岛状,位于外侧沟深面,被额、顶、颞叶所掩盖,与其他部分不同布满细小的浅沟(非脑沟)。 左右大脑半球有各自的称为侧脑室的腔隙。侧脑室与间脑的第三脑室,以及小脑和延脑及脑桥之间的第四脑室之间有孔道连通。脑室中的脉络丛产生脑的液体称为脑脊液。脑脊液在各脑室与蛛网膜下腔之间循环,如果脑室的通道阻塞,脑室中的脑脊液积多,将形成脑积水。 广义的大脑的脑神经有,端脑出发的嗅神经,间脑出发的视神经。 大脑的断面分为白质与灰白质。端脑的灰白质是指表层的数厘米厚的称为大脑皮质的一层,大脑皮质是神经细胞聚集的部分,具有六层的构造,含有复杂的回路是思考等活动的中枢。相对大脑皮质白质又称为大脑髓质。 间脑由丘脑与下丘脑构成。丘脑与大脑皮质,脑干,小脑,脊髓等联络,负责感觉的中继,控制运动等。下丘脑与保持身体恒常性,控制自律神经系统,感情等相关。 大腦的神經細胞只要在1.5分鐘內得不到氧氣,人就會失去知覺;而5、6分鐘後仍缺氧,神經細胞便會陸續死去。.

新!!: 神经递质和大脑 · 查看更多 »

天冬氨酸

天冬氨酸(aspartic acid,可簡寫為Asp或D)是一种α-氨基酸,其化學式為HOOCCH2CH(NH2)COOH。天冬氨酸的L-異構物是20种蛋白胺基酸之一,即蛋白質的构造单位。它的密碼子是GAU和GAC。它与谷氨酸同為酸性氨基酸。天冬氨酸普遍存在于生物合成作用中。.

新!!: 神经递质和天冬氨酸 · 查看更多 »

帕金森病

#重定向 帕金森氏症.

新!!: 神经递质和帕金森病 · 查看更多 »

一氧化氮

一氧化氮是氮的化合物,化学式NO,分子量30,氮的化合价为+2,是一種無色、無味、難溶於水的有毒氣體。由於一氧化氮帶有自由基,這使它的化學性質非常活潑。具有顺磁性。当它与氧反应后,可形成具有腐蚀性的气体——二氧化氮(NO2)。一氧化氮在标准状况下为无色气体,液态、固态呈蓝色。.

新!!: 神经递质和一氧化氮 · 查看更多 »

乙酰胆碱

乙酰胆碱(Acetylcholine, ACh,分子式CH3COOCH2CH2N+(CH3)3)為中樞及周邊神經系統中常見的神經傳導物質,於自主神經系統及體運動神經系統中參與神經傳導。乙醯膽鹼由軸突末梢釋出之後,會穿過突觸間隙和突觸後神經元或運動終板的細胞膜上之受體做結合。 在體運動神經系統,乙醯膽鹼在神經肌肉連接處是控制肌肉的收縮;於副交感神經,乙醯膽鹼為節前及節後神經釋出的神經傳導物質;於交感神經,乙醯膽鹼則為節前神經釋出的神經傳導物質。乙醯膽鹼的作用因被乙酰胆碱酯酶(acetylcholinesterase;AChE)分解而中止。乙酰膽鹼是自主神經系統(ANS)中許多神經遞質中的一個。它同時作用於週邊神經系統(PNS)和中樞神經系統(CNS)上,並且是軀體神經系統運動中,使用的唯一的神經遞質。乙酰膽鹼也是所有自主神經節的主要神經遞質。 在心臟組織中的乙酰膽鹼具有抑制神經傳遞的效果,從而降低心臟速率,然而在骨骼肌神經肌肉接頭處,乙酰膽鹼也表現為一種興奮性神經遞質。 。.

新!!: 神经递质和乙酰胆碱 · 查看更多 »

乙酰胆碱受体

乙酰胆碱受体(acetylcholine receptor,简称为AChR)是一种对乙酰胆碱这种神经递质的结合进行响应的内在膜蛋白。.

新!!: 神经递质和乙酰胆碱受体 · 查看更多 »

乙酰胆碱酯酶

乙酰胆碱酯酶(Acetylcholinesterase,简称为AChE,)是一种降解(通过其水解活性)神经递质乙酰胆碱成为胆碱和乙酸的酶。该酶主要存在于神经肌肉接头与胆碱能神经系统中,在这些地方该酶的活性就是为了终止突触传递。乙酰胆碱酯酶具有极高的水解活性——每秒钟一分子的乙酰胆碱酯酶可以水解25000分子的乙酰胆碱。经乙酰胆碱酯酶作用而产生的胆碱被重新利用——通过重摄取被转运进入神经末梢,在那里被重新利用以合成新的乙酰胆碱分子。.

新!!: 神经递质和乙酰胆碱酯酶 · 查看更多 »

乙酸

乙酸,也叫醋酸、冰醋酸,化学式CH3COOH,是一种有机一元酸和短链饱和脂肪酸,为食醋内酸味及刺激性气味的来源。纯正而且无水的乙酸(冰醋酸)是无色的吸湿性固体,凝固点为16.7℃(62℉),凝固后为无色晶体。尽管乙酸是一种弱酸,但是它具有腐蚀性,其蒸汽对眼和鼻有刺激性作用,聞起來有一股刺鼻的酸臭味。 乙酸是一种简单的羧酸,由一個甲基一個羧基組成,是一种重要的化学试剂。在化学工业中,它被用来制造聚对苯二甲酸乙二酯,后者即饮料瓶的主要部分。乙酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维和织物。家庭中,乙酸稀溶液常被用作除垢剂。食品工业方面,在食品添加剂列表E260中,乙酸是规定的一种酸度调节剂。 每年世界范围内的乙酸需求量在650万吨左右。其中大约150万吨是循环再利用的,剩下的500万吨是通过石化原料直接制取或通过生物发酵制取。.

新!!: 神经递质和乙酸 · 查看更多 »

代谢

代谢是生物体维持生命的化学反应总称。这些反应使得生物体能够生长和繁殖、保持它们的结构以及对环境作出反应。代谢通常被分为两类:分解代谢可以对大的分子进行分解以获得能量(如细胞呼吸);合成代谢则可以利用能量来合成细胞中的各个组分,如蛋白质和核酸等。代谢是生物体不断进行物质和能量的交换过程,一旦物质和能量交换停止,生物体的生命就會結束。 代谢中的化学反应可以归纳为代謝途徑,通过一系列酶的作用将一种化学物质转化为另一种化学物质。酶对于代谢反應来说是非常重要的,因为酶可以通过一個熱力學上易於發生的反應來驅動另一個難以進行的反應,使之變得可行;例如,利用ATP的水解所产生的能量来驱动其他化学反应。一个生物体的代谢机制决定了哪些物质对于此生物体是有营养的,而哪些是有毒的。例如,一些原核生物利用硫化氢作为营养物质,但这种气体对于动物来说却是致命的。代谢速度,或者说代谢率,也影响了一个生物体对于食物的需求量。 代谢有一個特点:無論是任何大小的物种,基本代谢途径也是相似的。例如,羧酸,作为柠檬酸循环(又称为“三羧酸循环”)中的最为人们所知的中间产物,存在于所有的生物体,无论是微小的单细胞的细菌还是巨大的多细胞生物如大象。代谢中所存在的这样的相似性很可能是由于相关代谢途径的高效率以及这些途径在进化史早期就出现而形成的结果。.

新!!: 神经递质和代谢 · 查看更多 »

利血平

利血平(Reserpine),或作利舍平,蛇根碱,是一种用于治疗高血压及精神病的吲哚类生物碱药物,最初是在萝芙木属植物蛇根木中提取而成。如今由于副作用较多并且更优的新药上市,利血平已不再是治疗的首选药物 The Columbia Encyclopedia, Sixth Edition.

新!!: 神经递质和利血平 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

新!!: 神经递质和分子 · 查看更多 »

內分泌系統

人體內部有維持恆定現象的功能,因此有賴於內分泌系統和神經系統來共同運作。內分泌系統(Endocrine)是負責調控動物體內各種生理功能正常運作的兩大控制系統之一,由分泌激素(荷爾蒙)的無導管腺體(内分泌腺)所組成。另一個控制系統是神經系統。荷爾蒙又稱為激素,是一種化學傳導物質,自腺體分泌出來後,藉由體液或進入血液經由循環系統運送到標的器官而產生作用。.

新!!: 神经递质和內分泌系統 · 查看更多 »

神經元

经元(neuron),又名神经原或神经细胞(英語:nerve cell),是神经系统的结构与功能单位之一。神经元能感知环境的变化,再将信息传递给其他的神经元,并指令集体做出反应。神經元佔了神經系統約10%,其他大部分由膠狀細胞所構成。基本構造由樹突、軸突、髓鞘、細胞核組成。傳遞形成電流,在其尾端為受體,藉由化學物質(化学递质)傳導(多巴胺、乙醯膽鹼),在適當的量傳遞後在兩個突觸間形成電流傳導。 人脑中,神经细胞约有860亿个。其中约有700亿个为小脑颗粒细胞(cerebellar granule cell)。.

新!!: 神经递质和神經元 · 查看更多 »

神经系统

經系統是由神經元這種特化細胞的網路所構成的。其身體的不同部位間傳遞訊號。動物體藉神經系統和內分泌系統的作用來應付環境的變化。動物的神經系統控制著肌肉的活動,协调各个组织和器官,建立和接受外来情报,并进行协调。神經系統是動物體最重要的連絡和控制系統,它能測知環境的變化,決定如何應付,並指示身體做出適當的反應,使動物體內能進行快速、短暫的訊息傳達來保護自己和生存。 神經組織最早是出現在五億到六億年前的埃迪卡拉生物群中。脊椎动物的神经系统分為二部份:分別是中樞神經系統(CNS)及周围神经系统(PNS)。 中樞神經系統包括腦及脊髓,周围神经系统主要是由神經構成,是由長神經纖維或是轴突組成,連接中樞神經系統及身體各部位。 傳送由大腦發出信號的神經稱為運動(motor)神經或是下行(efferent)神經,而將身體各部位產生信號傳送到中樞神經的神經稱為感覺(sensory)神經或是上行(afferent)神經。大部份的神經是雙向傳遞信號,稱為混合神經。 周围神经系统可分為軀體神經系統、自律神經系統及肠神经系统。軀體神經系統處理隨意運動,也就是依生物體意願而產生的運動,自律神經系統又可分為交感神经及副交感神经,交感神经是在緊急情形時驅動,而副交感神经是在器官呈休息狀態時驅動。 肠神经系统則控制消化道。自律神經系統及肠神经系统都會不隨意願的自主動作。從脑部發出的神经稱為脑神经,而從脊髓發出的神经稱為。 以細胞層面來看,神经系统是以一種稱為神經元的細胞組成。神經元有特殊的構造,可以快速且準確的傳送信號給其他細胞,傳送的是電化學信號,藉由稱為轴突的神經纖維傳輸。 在神經元發生衝動時時,會由突触釋放神經傳導物質。神經元之間的連結形成了神經迴路及,神经网络,控制了生物體的感知及其行為。神經系統除了神經元外,還有神經膠質細胞,提供支持及新陳代謝等機能。 大部份的多細胞生物皆有神經系統,但複雜度有很大的差異。多細胞生物中只有多孔动物门、扁盘动物门及中生動物門等結構非常簡單的生物完全沒有神經系統。 放射狀對稱的生物,包括栉水母及刺胞動物門(包括海葵、水螅、珊瑚及水母),其神經系統為發散狀的。 其他大部份的多細胞生物其神經系統都包括一個腦、一條脊髓(或二條脊髓平行排列)及由腦或脊髓發散到全身的神經,只有一些蠕蟲例外。神經系統的大小隨生物體而不同,最簡單的蠕蟲其神經系統由數百個細胞組成,非洲象的神經系統則有三千億個細胞。 中樞神經系統的功用是在身體全部位之間傳送信號,而接收反饋。神經系統的机能障碍可能是因為先天基因問題造成,也可能是因為外傷或是中毒導致的傷害,或是因為感染或是年老所產生。 神經內科研究有關神經系統的疾病,並尋找預防或治療的方式。周围神经系统最常見的問題是神經傳導不良,其原因有很多種,包括,或著是多发性硬化症及肌萎缩性脊髓侧索硬化症等脱髓鞘疾病。 神经科学是研究神經系統的科學。.

新!!: 神经递质和神经系统 · 查看更多 »

突触

突触(法语、英语、德语: Synapse)是神经元之间,或神经元与肌细胞、腺体之间通信的特异性接头。神经元与肌肉细胞之间的突触亦称为神经肌肉接头(neuromuscular junction)。 中枢神经系统中的神经元以突触的形式互联,形成神经元网络。这对于感觉和思维的形成极为重要。突触也是中枢神经系统和身体的其它部分,例如肌肉和各种感受器交换信息的渠道。 神经元之间的突触可以分为化学突触和电突触两大类(electrical synapse)。前者的工作机制是一种称为神经递质的信号分子的释放和接收,两个神经元之间没有直接的电气耦合。后者是两个神经元之间的直接电气耦合。化学突触较电突触更为常见,类型更为丰富,下文将着重介绍化学突触。.

新!!: 神经递质和突触 · 查看更多 »

突触可塑性

突触可塑性(Synaptic plasticity)指神经细胞间的连接,即突触,其连接强度可调节的特性。突触可塑性的产生有多种原因,例如:突触中释放的神经递质数量的变化,细胞对神经递质的反应效率。突触可塑性被认为是构成记忆和学习的重要神经化学基础。.

新!!: 神经递质和突触可塑性 · 查看更多 »

第二信使

#重定向 第二信使系统.

新!!: 神经递质和第二信使 · 查看更多 »

箭毒

箭毒(Curare,),一种生物碱类骨骼肌松弛药。来源于植物,现代医学中用作全身麻醉的辅助用药,常与环丙烷合用,尤其常用于腹部手术。属于神经肌肉阻断药,注射后在神经末梢与乙酰胆碱竞争,阻断来自骨骼肌的神经冲动,使骨骼肌松弛无力。首先对脚趾、耳部及眼部肌肉发生作用,次及颈部、背部及四肢肌肉,最后影响呼吸肌。大剂量时因麻痹呼吸而致死。其粗制品即称“箭毒”,南美印第安人以此涂抹在箭头或飞镖上用于狩猎。它曾被世界各地狩猎采集阶段的人使用,各种各样的箭毒主要来自南美洲,箭毒蛙的皮肤分泌物和箭毒马鞍子是著名的箭毒,南美洲原住民用“ampi”一词作为他们所用的一系列植物萃取的箭毒的总称。现在在南美洲,非洲和亚洲还有人在使用它。 箭毒本品来源于数种美洲热带植物(防己科的Chondodendron属及马钱科马钱子属)。粗制箭毒为树脂状团块,暗棕色至黑色,粘稠或坚硬,有柏油似的气味。curare一词源出印第安语woorari,woorali或urari,意为“毒物”.

新!!: 神经递质和箭毒 · 查看更多 »

精神分裂症

思覺失調症(Schizophrenia)是精神疾病的一種。其特徵為患者出現異常的和不能理解什麼是真實的。台灣、中國大陸和香港以往皆譯作精神--分裂--症,乃直譯拉丁文名稱「Schizophrenia」而來,台灣後來則改譯為「--」。常見的症狀包括錯誤信念(false beliefs),不易瞭解或混亂的思維,聽到其他人聽不見的聲音,妄想、幻覺、幻聽、社會參與和情緒表達的程度減少,以及缺乏動機。思覺失調症患者通常伴有其他心理上的健康問題,例如焦慮症、重性抑郁障碍或藥物濫用障碍。症狀通常逐漸地出現,且一般在成年早期開始,並持續一段長時間。 精神分裂症的成因包括環境因子及遺傳因子。可能的環境因子包括在城市中長大、濫用娛樂性藥物、某些传染病、父母年齡,和自身在母體內時營養攝取不足。遺傳因子則包括各種常見和罕見的遺傳變異。精神分裂症的診斷是基於觀察求診者所表現出來的行為及其所主訴的個人經歷。在診斷時,還必須把求診者的文化背景納入考慮範圍之內。截至2013年為止,此病並沒有任何客观的測試予供作診斷。精神分裂症並不等同「多重人格」或「多重人格障礙」——這種混淆的想法常在公眾的認知中出現。 治療的重心是為患者處方抗精神病藥,以及安排諮詢、工作培訓和社會康復。目前尚不清楚與兩者間哪種的效果會較佳。在其他抗精神病藥物都無法改善病情的情況下,就可能會使用氯氮平。必要時,可能會強制患者住院治療,如患者可能會對自身或他人構成傷害这一種情況,但現在的住院時間比以往更為短暫,且強制住院治療的總次數亦較为少。 世界人口中約0.3-0.7%在其一生中受精神分裂症所影響 。2016年,全球估計有超過2100萬名精神分裂症患者。男性比女性更常受到精神分裂症的影響。大約20%的人康復得很好,一些人亦能完全康復。患者常伴有一定的社會問題,例如長期失業、貧窮和無家可歸。患有精神分裂症的人的平均預期壽命比平均值少10年至25年。其背後原因是患者的身體健康問題增加和自殺率較高(約5%)。在2015年,全球估計有17,000人死於與精神分裂症有關或由其引起的行為。.

新!!: 神经递质和精神分裂症 · 查看更多 »

絲氨酸

絲氨酸(serine)是一種非必需氨基酸,富含於鸡蛋、鱼、大豆,人体亦可從甘氨酸中合成丝氨酸。 絲氨酸在醫藥上有著廣泛用途。絲氨酸可促進脂肪和脂肪酸的新陳代謝,有助於維持免疫系統。.

新!!: 神经递质和絲氨酸 · 查看更多 »

組織胺

組織胺(Histamine),是一種有機含氮化合物。它參與局部免疫反應和炎症反應,並具有作為瘙癢介體中心和調節腸道生理功能的作用。它还被用作神經遞質。組織胺由嗜鹼性球和附近結締組織肥大細胞產生。另外,它也增加微血管對白血球和某些蛋白質的通透性,以允許白血球从微血管进入感染組織并吞噬其中的病原體。组织胺廣泛存在于动植物组织中,可人工合成。.

新!!: 神经递质和組織胺 · 查看更多 »

生物胺

生物胺泛指所有生源胺类物质,重要的例子有组胺、酪胺、血清素、儿茶酚胺和色胺。生物胺有内源生物胺和外源生物胺之分。.

新!!: 神经递质和生物胺 · 查看更多 »

甘氨酸

氨酸(glycine,简写为Gly或G),即胺基乙酸,是20个蛋白氨基酸中分子量最小的一个。它是白色或浅黄色晶体,易溶于水,有甜味。甘氨酸的侧键是一个氢原子。甘氨酸的α碳连接两个氢原子,故不是旋光异构体。由于甘氨酸的侧键非常小,它可以占据其它氨基酸无法占据的空间,比如作为胶原螺旋内的氨基酸。 在一些蛋白质中(比如细胞色素、肌红蛋白和血红蛋白)它随着进化的演变变化相当小,因为假如一个比较大的氨基酸取代它的话整个蛋白质的结构就会变化。 大多数蛋白质只含少量甘氨酸,膠原蛋白是一个重要的例外,它含三分之一的甘氨酸。.

新!!: 神经递质和甘氨酸 · 查看更多 »

物质

物质是一個科學上沒有明確定義的詞,一般是指靜止質量不為零的東西。物质也常用來泛稱所有組成可觀測物體的成份 。 所有可以用肉眼看到的物體都是由原子組成,而原子是由互相作用的次原子粒子所組成,其中包括由質子和中子組成的原子核,以及許多電子組成的電子雲 。 一般而言科學上會將上述的複合粒子視為物質,因為他們具有靜止質量及體積。相對的,像光子等无质量粒子一般不視為物質。不過不是所有具有靜止質量的粒子都有古典定義下的體積,像夸克及輕子等粒子一般會視為質點,不具有大小及體積。而夸克和輕子之間的交互作用才使得質子和中子有所謂的體積,也使得一般物體有體積。 物質常見的物質狀態有四種:固體、液體、氣體及等离子体。不過實驗技術的進步產生了許多新的物質狀態,像是玻色–爱因斯坦凝聚及费米子凝聚态。對於基本粒子的研究也產生了新的物質狀態,像是夸克-膠子漿 。在自然科學的歷史中,許多人都在研究物質的確切性質,物質是由許多離散組件組合而成的概念,即所謂的「物質粒子論」,最早是由古希臘哲學家留基伯及德谟克利特提出。 愛因斯坦證明所有物體都可以轉換為能量(即質能等價),之間的關係式即為著名的E.

新!!: 神经递质和物质 · 查看更多 »

血清素

血清素(Serotonin,全稱血清張力素,又稱5-羟色胺和血清胺,简称为5-HT)為單胺型神經遞質,由色氨酸经色氨酸羟化酶转化为5-羟色氨酸,再经5-羟色氨酸脱羧酶在中樞神經元及動物(包含人類)消化道之腸嗜鉻細胞中合成。5-羥色胺主要存在於動物(包括人類)的胃腸道,血小板和中樞神經系統中。 它被普遍認為是幸福和快樂感覺的貢獻者。血清素在大脑中的含量为总量的2%,有九成位于粘膜肠嗜鉻细胞和肌间神经丛,参与肠蠕动的调节。与肠粘膜进入血液的5-HT主要被血小板摄取。8%-9%的位于血小板中。因为5-HT不能透过血脑屏障,故中枢和外周可视为两个独立的系统。 人體大約90%的總5-羥色胺位於腸胃道中的嗜鉻細胞中,它用於調節腸的蠕動。5-羥色胺分泌於腸管和基底面,由此增加了血小板對血清素的吸收。5-羥色胺激活後增加刺激 myenteric plexus影響腸蠕動的速率。剩餘部分在中樞神經的血清素能神經元中合成,其中它具有各種功能,這些包括調節心情,食慾和睡眠。血清素還具有一些認知功能,包括記憶和學習。在突觸處調節5-羥色胺,被認為是幾類抗抑鬱藥藥物的主要作用。 嗜鉻細胞分泌的血清素最終從組織中出來進入血液中。它由血小板積極吸收與存儲它。當血小板凝結成塊時,血小板釋放血清素,其用作血管收縮劑並有助於調節血液凝固和止血。血清素也是某些細胞的生長因子,其在傷口癒合中起到作用。有各种血清素受體。 5-羥色胺主要由肝臟代謝為5-羥基吲哚乙酸(5-HIAA)。代謝包括首先通過單胺氧化酶氧化成相應的醛。然後通過醛脫氫酶氧化成5-羥基吲哚乙酸(5-HIAA),一種吲哚乙酸衍生物。然後後者由腎臟排出。 除了動物,在真菌和植物中也發現5-羥色胺。 許多真菌與植物中皆含有血清素,而人类必须通过食物获取色氨酸。.

新!!: 神经递质和血清素 · 查看更多 »

褪黑素

褪黑素(melatonin;),或称褪黑激素或美拉托宁,化学名为N-乙酰基-5-甲氧基色胺,是一种在动物、植物、真菌和细菌中皆有发现的物质。在动物体内,褪黑素是一种调节生物钟的激素;而其作用在其他生物体内可能不同,同样,褪黑素在动物体内的合成过程也不同于其他物种 。 褪黑素可以用来帮助入睡和治疗睡眠障碍。其可以口服也可以通过喷雾或透皮贴剂的方式给药。褪黑素在美国和加拿大是非处方药,在中国为保健食品(如脑白金的主要成分)。在台灣是未經政府許可的藥物。在其他的一些国家,褪黑素可能需要凭处方使用,或者不可用。.

新!!: 神经递质和褪黑素 · 查看更多 »

體抑素

抑素(Somatostatin),又稱生長素抑制因子(Growth hormone release-inlease-inhibiting hormone,GHRIH),屬於肽類激素,是神经激素。此外在神經系統可做為神經遞質。.

新!!: 神经递质和體抑素 · 查看更多 »

谷氨酸

谷氨酸(英語:Glutamic acid)是α-氨基戊二酸是组成生物体内各种蛋白质的20種氨基酸之一。.

新!!: 神经递质和谷氨酸 · 查看更多 »

黑质

黑质(Substantia nigra,拉丁语意为“黑色的物质”)是中脑的一个神经核团。黑质的位置位于中脑背盖部(tegmentum)和大脑脚之间。黑质不是一个均一的核团,它可分为结构和功能上都相差很大的黑质致密部(Substantia nigra pars compacta, SNpc),黑质网状部(Substantia nigra pars reticulata, SNpr)和黑质侧部(Substantia nigra pars lateralis)三部分。黑质是基底核的一个附属核团,是有關基底核間互相連絡之重要構造。.

新!!: 神经递质和黑质 · 查看更多 »

胞吐作用

胞吐作用(Exocytosis)是指细胞内的大分子物质通过小泡与细胞质膜 融合的过程,在融合蛋白的帮助下被释放到细胞外基质。它可以看作是细胞内吞作用的反向作用。胞吐作用可以自发进行,也可以受其它信号触发。.

新!!: 神经递质和胞吐作用 · 查看更多 »

胆碱

胆碱(Choline),是一种类维生素、人体必需营养素。它是构成细胞膜的重要成分,也是人體合成甘胺酸的原料之一,亦广泛存在于各种食物中。1864年由 Andreas Strecker 从猪胆汁中首先分离出来,1866年被化学合成。体内的胆碱有很大一部分来源于食物中。它在大肠中被分解为三甲胺。 胆碱被視為有助對人類腦部發展和記憶。 Category:醇 Category:季铵盐 Category:膳食补充品 Category:维生素.

新!!: 神经递质和胆碱 · 查看更多 »

肽(peptide,來自希臘文的“消化”),即胜肽,又稱縮氨酸,是天然存在的小生物分子,介於胺基酸和蛋白質之間的物質。 由於胺基酸的分子最小,蛋白質最大,而它們則是氨基酸單體組成的短鏈,由肽(酰胺)鍵連接。當一個氨基酸的羧基基團與另一個氨基酸的氨基反應時,形成該共價化學鍵。肽由氨基酸組成的短鏈是精準的蛋白質片段,其分子只有纳米般大小,腸胃、血管及肌膚皆極容易吸收。二胜肽(簡稱二肽),就是由二個胺基酸組成的蛋白質片段,兩個或以上的胺基酸脫水縮合形成若干個肽鍵從而組成一個肽,多個肽進行多級折叠就組成一個蛋白質分子。蛋白質有時也稱為“多肽”。.

新!!: 神经递质和肽 · 查看更多 »

肾上腺素

腎上腺素(Epinephrine或Adrenaline), 3,4-三羥基-N-甲基苯乙胺。是腎上腺髓質分泌的激素及神經傳導物質,也是一種藥物。腎上腺素被應用於治療多項疾病,包含全身性過敏反應、心搏停止,以及表面出血等等,吸入式的腎上腺素有時會被用於改善義膜性喉炎的症狀。另外當哮喘的第一線治療皆無效時,也可能會考慮使用腎上腺素。由於口服腎上腺素會迅速被降解而失效,因此須從靜脈、肌肉,或皮下注射給藥。也可以吸入的方式給予藥物。 常見的副作用包括暈眩、焦慮和盜汗。心跳過快和高血壓也可能發生,偶爾也會導致心律不整。雖然此藥物在懷孕以及哺乳使用的風險還未釐清,但對母親的害处還是必須納入考慮。 腎上腺素通常由腎上腺和特定神經分泌。腎上腺素在戰鬥或逃跑反應中扮演了非常重要的角色,能增加到肌肉的血流量、心輸出量、促使瞳孔放大和血糖上升 。主要是由於腎上腺素作用在α和β接受器上。腎上腺素在許多動物以及某些單細胞生物上也找得到。 高峰讓吉在1901年首次分離出腎上腺素。此後,腎上腺素被列入世界衛生组織基本藥物標準清單之中,為基礎醫療中的必備藥物。本藥物現在為通用名藥物,一小罐的售價區間約為0.10至0.95美金之間.

新!!: 神经递质和肾上腺素 · 查看更多 »

肌肉系统

肌肉系統(Muscular System) 指身體的所有肌肉組織, 包括骨骼肌, 平滑肌和心肌,它參與動作的產生, 維持姿勢及產生熱量。.

新!!: 神经递质和肌肉系统 · 查看更多 »

脑是由稱為神經元的神經細胞所组成的神经系统控制中心,是所有脊椎动物和大部分无脊椎动物都具有的一个器官,只有少数的无脊椎动物没有脑,例如海绵、水母、成年的海鞘与海星,它们以分散或者局部的神经网络代替。 许多动物的脑位于头部,通常是靠近主要的感觉器官,例如视觉、听觉、前庭系统、味觉和嗅觉。脑是脊椎动物身体中最复杂的器官。在普通人类的大脑皮质(脑中最大的部分)中,包含150-330亿个神经元,每一个神经元都通过突触和其他数千个神经元相连接。这些神经元之间通过称作轴突的原生质纤维进行较长距离互相联结,可以将一种称作动作电位的冲动信号,在脑的不同区域之间或者向身体的特定接收细胞传递。脊椎动物的脑由颅骨保护。脑与脊髓构成中枢神经系统。中枢神经系统的细胞依靠复杂的联系来处理传递信息。脑是感情、思考、生命得以维持的中枢。它控制和协调行为、身体内穩態(身体功能,例如心跳、血压、体温等)以及精神活动(例如认知、情感、记忆和学习)。 从生理上来说,脑的功能就是控制身体的其他器官。脑对其他器官的作用方式,一是调制肌肉的运动模式,二是通过分泌一些称为荷尔蒙的化学物质。集中的控制方式,可以对环境的变化做出迅速而一致的反应。 一些基本的反应,例如反射,可以通过脊髓或者周边神经节来控制,然而基于多种感官输入,有心智、有目的的动作,只有通过脑中枢的整合能力才能控制。 关于单个脑细胞的运作机制,现今已经有了比较详细的了解;然而数以兆亿的神经元如何以集群的方式合作,还是一个未解决的问题。现代神经科学中,新近的模型将脑看作一种生物计算机,虽然运行的机制和电子计算机很不一样,但是它们从周围世界中获得信息、存储信息、以多种方式处理信息的功能是类似的,它有点像计算机中的中央处理器(CPU)。 本文会对各种动物的脑进行比较,特别是脊椎动物的脑,而人脑将被作为各种脑的其中一种进行讨论。人脑的特别之处会在人脑条目中探讨,因为其中很多话题在人脑的前提下讨论,内容会丰富得多。其中最重要的,是与脑损伤造成的后果,它会被放在人脑条目中探讨,因为人脑的大多数常见疾病并不见于其他物种,即使有,它们的表现形式也可能不同。.

新!!: 神经递质和脑 · 查看更多 »

脑内啡

#重定向 内啡肽.

新!!: 神经递质和脑内啡 · 查看更多 »

镇痛药

镇痛药(Analgesic)是指能缓解痛的一类药物。该词起源于希腊语中的"an"(意即「没有」)和"algos"(意即「痛」)。镇痛药通过不同的机理作用于中枢和周围神经系统,对痛觉中枢有选择性抑制作用,但对其他感觉中枢很少影响。.

新!!: 神经递质和镇痛药 · 查看更多 »

酪氨酸

酪氨酸(Tyrosine, 縮寫為 Tyr or Y) 或 4 - 羥基苯丙氨酸, 是細胞用來合成蛋白質的22種胺基酸之一,在細胞中可用於合成蛋白質,其密碼子為UAC和UAU,屬於含有極性側基,人體可自行合成的非必需胺基酸。單詞“酪氨酸”是來自希臘語 tyros,意思奶酪。19世紀初被德國的化學家尤斯图斯·冯·李比希首先在起司的酪蛋白中發現, ,當用作於官能基或側基時則稱做酪氨酰。.

新!!: 神经递质和酪氨酸 · 查看更多 »

腺苷

腺苷(Adenosine)是核苷的一種,由核糖(呋喃核糖)與腺嘌呤的一部分組成,中間由β-N9-配糖鍵(β-N9-glycosidic bond)連結。 腺苷在生物化學上扮演重要角色,包括以腺苷三磷酸(ATP)或腺苷雙磷酸(ADP)形式轉移能量,或是以環狀腺苷單磷酸(cAMP)進行信號傳遞等。此外腺苷也是一種抑制性神經傳導物(inhibitory neurotransmitter),可能會促進睡眠。.

新!!: 神经递质和腺苷 · 查看更多 »

電勢

在静電學裡,電勢(electric potential)定義為處於電場中某个位置的單位電荷所具有的電勢能。電勢又稱為電位,是純量。其數值不具有絕對意義,只具有相對意義,因此為了便於分析問題,必須設定一個參考位置,並把它設為零,稱為零勢能點。通常,會把無窮遠處的電勢設定為零。那麼,電勢可以定義如下:假設檢驗電荷從無窮遠位置,經過任意路徑,克服電場力,緩慢地移動到某位置,則在這位置的電勢,等於因遷移所做的機械功與檢驗電荷量的比值。在國際單位制裏,電勢的度量單位是伏特(Volt),是為了紀念意大利物理學家亞歷山德羅·伏打(Alessandro Volta)而命名。 電勢必需滿足帕松方程式,同時符合相關邊界條件;假設在某區域內的電荷密度為零,則帕松方程式約化為拉普拉斯方程式,電勢必需滿足拉普拉斯方程式。 在電動力學裏,當含時電磁場存在的時候,電勢可以延伸為「廣義電勢」。特別注意,廣義電勢不能被視為電勢能每單位電荷。.

新!!: 神经递质和電勢 · 查看更多 »

选择性5-羟色胺再吸收抑制剂

#重定向 选择性5-羟色胺再摄取抑制剂.

新!!: 神经递质和选择性5-羟色胺再吸收抑制剂 · 查看更多 »

Γ-氨基丁酸

γ-胺基丁酸(γ-Aminobutyric acid,简称GABA,化学名称:4-氨基丁酸,又稱氨酪酸、哌啶酸。广泛分布于动植物体内。植物如豆属、参属、等的种子、根茎和组织液中都含有GABA。在动物体内,GABA几乎只存在于神经组织中,其中脑组织中的含量大约为0.1-0.6mg/克组织,免疫学研究表明,其浓度最高的区域为中脑中黑质。GABA是目前研究较为深入的一种重要的抑制性神经递质,它参与多种代谢活动,具有很高的生理活性。在人體,GABA還直接調控。 雖然在化學上,GABA被歸類為胺基酸,但科學界很少這樣將他歸類,因為生物學上稱的胺基酸通常指的是α-胺基酸,而GABA則屬於γ-胺基酸;也就是說,該化合物的胺基連接在羰基旁的第三個碳(γ碳)上。 在(spastic diplegia)的患者身上,由於病變,造成神經的GABA吸收能力受損,導致 肌肉張力亢進。.

新!!: 神经递质和Γ-氨基丁酸 · 查看更多 »

L-多巴

L-多巴(L-DOPA,全称3,4-二羟苯丙氨酸)是酪氨酸经酪氨酸羟化酶的作用下羟化产生的一种氧化产物,具有儿茶酚羟基,可进一步生成另外一些有生物活性的物质:L-多巴在酪氨酸酶的作用下生成多巴醌继而自发转变为黑色素,或在芳香族氨基酸脱羧酶的作用下生成多巴胺,继而形成去甲肾上腺素与肾上腺素等。.

新!!: 神经递质和L-多巴 · 查看更多 »

抑郁症患者列表

很多的名人都曾患上过抑郁症,遭受其中的痛苦。在历史上,患上抑郁症曾被认为是一件可耻的事,在70年代后,人们才开始关注并公开讨论抑郁症。.

新!!: 神经递质和抑郁症患者列表 · 查看更多 »

氨基酸

胺基酸是生物學上重要的有機化合物,它是由胺基(-NH2)和羧基(-COOH)的官能團組成的,以及一個側鏈连到每一個胺基酸。胺基酸是構成蛋白質的基本單位。賦予蛋白質特定的分子結構形態,使他的分子具有生化活性。蛋白質是生物体內重要的活性分子,包括催化新陳代謝的酶(又称“酵素”)。 不同的胺基酸脱水缩合形成肽(蛋白質的原始片段),是蛋白質生成的前.

新!!: 神经递质和氨基酸 · 查看更多 »

感受器

感受器(Sensory receptor)也译作感觉接受器,是机体感受刺激的装置。.

新!!: 神经递质和感受器 · 查看更多 »

感觉系统

感觉系统(英語:sensory system)是神经系统中处理感觉信息的一部分。感觉系统包括感受器、神经通路以及大脑中和感觉知觉有关的部分。通常而言感觉系统包括那些和视觉、听觉、触觉、味觉以及嗅觉相关的系统。简单而言,感觉系统是物理世界与内在感受之间的变换器,人類或是動物以此產生對外在世界的知觉。 感受野對應特定的感覺細胞或感覺器官,是指外在世界上可產生刺激,使感覺細胞或器官可以感知的部份。例如眼睛可見之處,就是眼睛的感受野,而视杆细胞或视锥细胞可以感受到的光,是這些細胞的感受野。感受野會因為對應视觉系统、聽覺系統、體感系統等,而有不同的感受野。.

新!!: 神经递质和感觉系统 · 查看更多 »

扩散作用

扩散作用是一个基于分子热运动的输运现象,是分子通过布朗运动从高浓度区域向低浓度区域的输运的过程。它是趋向于热平衡态的驰豫过程,是熵驱动的过程。菲克定律是扩散作用的近似描述,实际过程是从高化学势区域向低化学势区域的转移。扩散作用的速率和混合物的浓度梯度一般不太大,因此通常可以用近平衡态热力学理论进行处理。 扩散作用有多种微观解释,较有影响力的是分子动理论的解释和随机行走模型的解释。.

新!!: 神经递质和扩散作用 · 查看更多 »

重定向到这里:

Neurotransmitter神經傳導物神經傳導物質神經傳遞物神經傳達物質神經遞質神经传递体递质

传出传入
嘿!我们在Facebook上吧! »