徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

磷酸戊糖途径

指数 磷酸戊糖途径

磷酸戊糖途径(Pentose phosphate pathway)也称为戊糖磷酸途径、五碳糖磷酸途径、磷酸戊糖旁路(对应于双磷酸己糖降解途径,即Embden-Meyerhof途径)。是一种葡萄糖代谢途径。这是一系列的酶促反应,可以因应不同的需求而产生多种产物,显示了该途径的灵活性。 葡萄糖会先生成强氧化性的5-磷酸核糖(Ribose-5-phosphate),后者经转换后可以参与糖酵解或者是核酸的生物合成。部分糖酵解和糖异生的酶会参与这一过程。反应场所是胞质溶胶(Cytosol)。所有的中间产物均为磷酸酯。过程的调控是通过底物和产物浓度的变化实现的。.

29 关系: 代謝途徑固醇磷酸酯糖异生糖酵解烟酰胺腺嘌呤二核苷酸烟酰胺腺嘌呤二核苷酸磷酸生物合成非金属性葡萄糖葡萄糖-6-磷酸葡萄糖-6-磷酸脫氫酶缺乏症葡萄糖-6-磷酸脱氢酶脱羧反应脱氢脂肪酸酶促反应電子傳遞鏈果糖-6-磷酸核糖核酸核酮糖5-磷酸核酸水解3-磷酸甘油醛5-磷酸核糖5-磷酸核酮糖6-磷酸葡糖酸内酯6-磷酸葡萄糖酸6-磷酸葡萄糖酸内酯酶

代謝途徑

代謝途徑(metabolic pathway)在生物化學中,是一連串在細胞內發生的化學反應,並由酶所催化,形成使用或儲存的代謝物,或引發另一個代謝途徑(稱為「流量控制反應」)。多種途徑都是精細的,並涉及原來物質逐步修飾成所需的化學結構的化合物。在分子生物学中常被称作代谢通路,通常是指某个或某几个基因表达所涉及的全部酶或信号分子。在某一特定时间点的细胞内所有表达的基因的集合称为基因表达谱通常用RNA-seq来测定。 細胞內不同代謝途徑組成了代謝網絡。底物是否進入代謝途徑,要視乎細胞的需要,即合成代謝物及分解代謝物濃度的獨特組合(流量控制反應的動力)。代謝途徑包括主要的代學反應(一般都是需要酶的)令生物保持牠的內環境穩態。.

新!!: 磷酸戊糖途径和代謝途徑 · 查看更多 »

固醇

固醇(Sterols,或称甾醇)是類固醇(即甾体)的一个子群并且是重要的有机分子分类。他们与最家喻户晓的一类动物固醇胆固醇一起同时自然存在于植物、动物与真菌之中。胆固醇对细胞的功能发挥来说很重要,并且是许多脂溶性维生素与甾体激素的重要前体。.

新!!: 磷酸戊糖途径和固醇 · 查看更多 »

磷酸酯

磷酸酯又称正磷酸酯(以与亚磷酸酯相区别),是磷酸的酯衍生物,属于磷酸衍生物的一类。磷酸为三元酸,因此根据取代烃基数的不同,又可将磷酸酯分为伯磷酸酯(磷酸一酯、烃基磷酸)、仲磷酸酯(磷酸二酯)和叔磷酸酯(磷酸三酯)。.

新!!: 磷酸戊糖途径和磷酸酯 · 查看更多 »

糖异生

糖异生(Gluconeogenesis)又稱糖質新生作用、糖原異生作用,指的是非碳水化合物(乳酸、丙酮酸、甘油、生糖氨基酸等)转变为葡萄糖的过程。糖异生保证了机体的血糖水平处于正常水平。糖异生的主要器官是肝。肾在正常情况下糖异生能力只有肝的十分之一,但长期饥饿时肾糖异生能力可大为增强。.

新!!: 磷酸戊糖途径和糖异生 · 查看更多 »

糖酵解

糖酵解(glycolysis--是把葡萄糖(C6H12O6)转化成丙酮酸(CH3COCOO− + H+)的代谢途径。在这个过程中所释放的自由能被用于形成高能量化合物ATP和NADH。 糖解作用是所有生物细胞糖代谢過程的第一步。糖解作用是一个有10个步骤酶促反应的确定序列。在该过程中,一分子葡萄糖会经过十步酶促反应转变成两分子丙酮酸(严格来说,应该是丙酮酸盐,即是丙酮酸的阴离子形式)。 糖解作用及其各种变化形式发生在几乎所有的生物中,无论是有氧和厌氧。糖酵解的广泛发生显示它是最古老的已知的代谢途径之一。事实上,糖解作用及其并行途径戊糖磷酸途径,构成了反应,这些反应发生在还在不存在酶的条件下进行金属催化的太古宙海洋。糖解作用可能因此源于生命出现之前世界的化学约束。 糖解作用发生在大多数生物体中的细胞的胞质溶胶。最常见的和研究最彻底的糖解作用形式是双磷酸己糖降解途径(Embden-Meyerhof-Parnas途径,简称:EMP途径),这是被Gustav Embden,奥托·迈尔霍夫,和Jakub Karol Parnas所发现的。糖解作用也指的其他途径,例如,脱氧酮糖酸途径()各种异型的和同型的发酵途径,糖解作用一词可以用来概括所有这些途径。但是,在此处的讨论却是局限于双磷酸己糖降解途径(EMP途径)。 整个糖解作用途径可以分成两个阶段:.

新!!: 磷酸戊糖途径和糖酵解 · 查看更多 »

烟酰胺腺嘌呤二核苷酸

烟酰胺腺嘌呤二核苷酸(简称:辅酶Ⅰ,Nicotinamide adenine dinucleotide,NAD+),是一种转递質子(更准确来说是氢离子)的辅酶,它出现在细胞很多代谢反应中。NADH或更准确NADH + H+是它的还原形式,最多携带两个質子(写为NADH + H+),其標準電極電勢為-0.32V。 NAD+是脱氢酶的辅酶,如乙醇脱氢酶(ADH),用于氧化乙醇。它在糖酵解、糖异生、三羧酸循环及呼吸链中发挥着不可替代的作用。中间产物会将脱下的氢递给NAD,使之成为NAD + H+。 而NAD+ H+则会作为氢的载体,在電子傳遞鏈中通过化学渗透偶联的方式,合成ATP。 在吸光方面,NADH在260nm和340nm处各有一吸收峰,而NAD+则只有260nm一处吸收峰,这是区别两者的重要属性。这同时也是很多代谢试验中,测量代谢率的物理依据。NAD在260nm的吸光系数为1.78x104L /(mol·cm),而NADH在340nm的吸光系数为6.2x103 L/(mol·cm)。 在生物體內中,NAD可以由簡單的構建塊與氨基酸色氨酸或天冬氨酸合成。以替代方式,將更複雜的酶組合從食物中攝取,這維生素被稱為烟酸。通過分解NAD結構的反應釋放相似的化合物。這些預製組件然後通過一個回收通道,將其回收成活性形式。一些NAD也轉化為煙酰胺腺嘌呤二核苷酸磷酸(NADP);這種相關輔酶的化學成分與NAD類似,但在新陳代謝中具有不同的作用。在代謝中,NAD+參與氧化還原反應,將電子從一個反應攜帶到另一個反應。因此,輔酶在細胞中以兩種形式存在:NAD+是一種氧化劑,能接受來自其他分子的電子。該反應形成NADH,然後又可以用作為還原劑來給電子。這些電子轉移反應是NAD的主要功能。然而,它也用於其他細胞過程中,最顯著的是添加或除去蛋白質中的化學基團的酶的底物。由於這些功能的重要性,發現NAD代謝的酶是藥物的目標。儘管NAD+在特定氮原子上的正電荷而被寫入上標加號,但在生理pH大部分情況下,實際上是單電荷的陰離子(負電荷為1),而NADH為雙電荷陰離子。.

新!!: 磷酸戊糖途径和烟酰胺腺嘌呤二核苷酸 · 查看更多 »

烟酰胺腺嘌呤二核苷酸磷酸

--胺腺二核酸磷酸(简称:辅酶Ⅱ,nicotinamide adenine dinucleotide phosphate, NADP+)——曾被称为三磷酸核苷酸(,缩写为TPN)——是一种极为重要的核苷酸类辅酶,它是烟酰胺腺嘌呤二核苷酸(NAD+)中与腺嘌呤相连的核糖环系2'-位的磷酸化衍生物,参与多种合成代谢反应,如脂类、脂肪酸和核苷酸的合成。这些反应中需要NADP+的还原形式NADPH作为还原剂、氢负供体。 植物叶绿体中,光合作用光反应电子链的最后一步以NADP+为原料,经铁氧还蛋白-NADP+还原酶的催化而产生NADPH。产生的NADPH接下来在碳反应中被用于二氧化碳的同化。 对于动物来说,磷酸戊糖途径的氧化相是细胞中NADPH的主要来源,由它可以产生60%的所需NADPH。.

新!!: 磷酸戊糖途径和烟酰胺腺嘌呤二核苷酸磷酸 · 查看更多 »

生物合成

生物合成(Biosynthesis)是简单的物质在生物体内经过酶催化后转变为更复杂的物质的多步骤的过程。在生物合成过程中,简单的化合物通过化学反应,转换成其他化合物,或聚合形成大分子。这个过程通常在代谢途径中完成。生物合成有时候在单个细胞的细胞器内进行,而一些需要多种酶催化的合成会在多个细胞的细胞器中进行。生物合成的例子包括脂膜和核苷酸的合成。 生物合成的必要元素包括:先导化合物、化学能(如ATP)和包括辅酶(如NADH和NADPH)在内的催化酶。通过上述元素可以合成生物大分子的基本元素。 一些重要的生物大分子包括由氨基酸通过肽键连接而成的蛋白质和由核苷酸通过磷酸二酯键连接而成的DNA分子。.

新!!: 磷酸戊糖途径和生物合成 · 查看更多 »

非金属性

非金属性(氧化性)指原子、分子或离子在化学反应中吸收电子能力。吸收电子能力越强的粒子其非金属性也就越强;反之则越弱,而其金属性(还原性)就越强。非金属性最强的元素是氟。.

新!!: 磷酸戊糖途径和非金属性 · 查看更多 »

葡萄糖

葡萄糖(法语、德语、英語:glucose;又称血糖、玉米葡糖、玉蜀黍糖)是自然界分布最广、且最为重要的一種单糖。 因為擁有6個碳原子,被歸為己糖或六碳糖。葡萄糖是一种多羟基醛,分子式為C6H12O6。其水溶液旋光向右,故亦称“右旋糖”。葡萄糖在生物学领域具有重要地位,是活細胞的能量來源和新陳代謝的中间产物。植物可通过行光合作用產生葡萄糖。.

新!!: 磷酸戊糖途径和葡萄糖 · 查看更多 »

葡萄糖-6-磷酸

葡萄糖-6-磷酸(英語:Glucose 6-phosphate),也称6-磷酸葡萄糖,是葡萄糖經過磷酸化(在第6号碳)之後生成的分子。它也是生物細胞中的常見分子,參與磷酸戊糖途径與糖酵解等生化途徑。 在糖酵解中,這個分子是由第一個步驟形成,進行催化的酶是己糖激酶或其他類似的酶。葡萄糖-6-磷酸在糖酵解中,會經由磷酸葡萄糖異構酶的催化,而形成果糖-6-磷酸,以繼續接下來的步驟。 Category:磷酸酯 Category:单糖衍生物.

新!!: 磷酸戊糖途径和葡萄糖-6-磷酸 · 查看更多 »

葡萄糖-6-磷酸脫氫酶缺乏症

葡萄糖-6-磷酸脫氫酶缺乏症 ,又名G6PD缺乏症(英文:Glucose-6-Phosphate Dehydrogenase deficiency, G6PDD) ,俗稱蠶豆症。是一種的疾病,容易引發 溶血反應。 大多時候病患都不會有症狀, 但假如受到特定刺激就會引發一些症狀,像是黃疸、深色尿液、呼吸急促或感到倦意。 複合症狀可能包含貧血、新生兒黃疸。至於某些患者可能從未出現症狀。 蠶豆症是一種疾病,病因是葡萄糖-6-磷酸脫氫酶缺陷,導致無法正常分解葡萄糖。 溶血反應可能由感染、特定藥物、壓力、所引起。 除此以外,部份藥物和化學物如蠶豆、臭丸(即俗稱樟腦丸,雖然樟腦本身不是誘發因素)、龍膽紫(紫藥水)、薄荷都會令患者出現急性溶血反應,症狀包括黃疸、精神不佳,嚴重時會出現呼吸急速、心臟衰竭、甚至會出現休克而有生命危險。症狀的嚴種程度會隨著基因特定突變差異而不同。 臨床則依據不同症狀、血液檢驗和基因檢測來診斷。 避免刺激症狀是重要的。 急性症狀的處置可能包含藥物治療、停止刺激性藥物或輸血。 新生兒黃疸需要其他特殊處置。 通常會建議病患使用特定藥物前(例如:)要接受蠶豆症檢驗。 全球約有4億人口有這種症狀。 盛行於部分地區如:非洲、亞洲、地中海地區、和中東。 男性比女性更易得病。 2015年時約造成3萬3千人口死亡。 然而蠶豆症基因帶原者可能對瘧疾有部分抵抗能力。.

新!!: 磷酸戊糖途径和葡萄糖-6-磷酸脫氫酶缺乏症 · 查看更多 »

葡萄糖-6-磷酸脱氢酶

葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase,EC )是一种以NAD+或NADP+为受体、作用于供体CH-OH基团上的氧化还原酶。这种酶能催化以下酶促反应: 葡萄糖-6-磷酸脱氢酶主要参与磷酸戊糖途径,也能缓慢地作用在β-D-葡萄糖等其他糖类上。这种酶可由其底物葡萄糖-6-磷酸激活,如果人类表达葡萄糖-6-磷酸脱氢酶的基因G6PD有缺陷,将会导致葡萄糖-6-磷酸脱氢酶缺乏症,引发非免疫性溶血性贫血。葡萄糖-6-磷酸脱氢酶存在于众多生物细胞内,高等植物拥有数种葡萄糖-6-磷酸脱氢酶的蛋白异构体(protein isoform),它们分布于细胞质基质、和过氧化物酶体等细胞结构中。.

新!!: 磷酸戊糖途径和葡萄糖-6-磷酸脱氢酶 · 查看更多 »

脱羧反应

脱羧反应是有机化合物中的羧基(-COOH)转变为氢(-H),同时放出二氧化碳(CO2)的反应。.

新!!: 磷酸戊糖途径和脱羧反应 · 查看更多 »

脱氢

脱氢是一种化工单元过程,是氢化的相反过程,是减少有机物分子中的氢原子数目的过程,一般有两种方法:.

新!!: 磷酸戊糖途径和脱氢 · 查看更多 »

脂肪酸

脂肪酸(Fatty acid)是一类羧酸化合物,由碳氫组成的烃类基团连结-zh-hant:羧基;zh-hans:羧酸;-所構成。 三个长链脂肪酸与甘油形成三酸甘油酯(Triacylglycerols),為脂肪的主要成分,歸於脂類。.

新!!: 磷酸戊糖途径和脂肪酸 · 查看更多 »

酶促反应

酶促反应(又称酶催化)是指由一类被称为酶的特殊蛋白质所催化的化学反应。因为非催化反应的速率特别慢,故细胞中生物化学反应的催化作用就显得极重要。 酶促反应的机制与其他类型的化学催化在原理上很相似。酶通过提供替代反应路线以及稳定中间产物的方法,减少了为达到最高能量过渡态时的能量需求。活化能(Ea)的减少增加了具有足够达到活化能并形成产物的反应物分子的数量。.

新!!: 磷酸戊糖途径和酶促反应 · 查看更多 »

電子傳遞鏈

電子傳遞鏈又稱呼吸鏈,是氧化磷酸化的一部分,位于原核生物細胞膜或者真核生物的粒線體内膜上,葉綠體在類囊體膜上所進行的進行光合磷酸化過程,高能電子在膜上一系列蛋白傳送的過程,藉由膜蛋白的氧化與還原將其能量逐漸釋放出來,造成膜外與膜內質子濃度的差異(proton-gradient),而這些質子再由高濃度往低濃度運送,及一對質子(H+離子)的轉移這電子轉移穿膜,這產生的電化學質子濃度的差異驅動ATP合成,或形成化學能三磷酸腺苷(ATP)的產生。電子在電子傳遞鏈中的最終受體是氧分子。 電子傳遞鏈通過氧化還原反應,從陽光在光合作用中,或者如在醣類,細胞呼吸氧化的情況下獲取能量。在真核生物中,一個重要的電子傳遞鏈在線粒體內膜發現,通過使用ATP合成酶作氧化磷酸化反應。還發現在有光合作用的真核生物葉綠體的類囊體膜上。在細菌中電子傳輸鏈位於其細胞膜上。 在葉綠體中,光驅動水轉化為氧,並藉由傳遞H+離子跨越葉綠體膜轉化NADP+成NADPH。在粒線體中,則是將氧轉化成水,NADH至NAD+和琥珀酸鹽至富馬酸鹽建立質子梯度。 包括了四個膜蛋白複合物和脂溶性電子載體,用於將還原電勢轉化爲跨膜的質子梯度。.

新!!: 磷酸戊糖途径和電子傳遞鏈 · 查看更多 »

果糖-6-磷酸

果糖6-磷酸(英語:fructose 6-phosphate)是生物體內的常見分子之一,也是糖解作用的過程中所生成的產物之一,屬於酮糖。 在糖解作用中,果糖6-磷酸是葡萄糖6-磷酸在磷酸葡萄糖異構酶(英語:Phosphoglucose isomerase)的催化之下所形成;之後又會經由磷酸果糖激酶(英語:Phosphofructokinase)的催化,以及消耗一個ATP,生成果糖1,6-雙磷酸,是糖解作用中的第二次磷酸化作用。.

新!!: 磷酸戊糖途径和果糖-6-磷酸 · 查看更多 »

核糖核酸

核糖核酸(Ribonucleic acid),簡稱RNA,是一類由核糖核苷酸通過3',5'-磷酸二酯鍵聚合而成的線性大分子。自然界中的RNA通常是單鏈的,且RNA中最基本的四種鹼基爲A(腺嘌呤)、U(尿嘧啶)、G(鳥嘌呤)、C(胞嘧啶)通過轉錄後修飾,RNA可能會帶上(Ψ)這樣的稀有鹼基,相對的,與RNA同爲核酸的DNA通常是雙鏈分子,且含有的含氮鹼基爲A(腺嘌呤)、T(胸腺嘧啶)、G(鳥嘌呤)、C(胞嘧啶)四種。 RNA有着多種多樣的功能,可在遺傳編碼、翻譯、調控、基因表達等過程中發揮作用。按RNA的功能,可將RNA分爲多種類型。比如,在細胞生物中,mRNA(信使RNA)爲遺傳信息的傳遞者,它能夠指導蛋白質的合成。因爲mRNA有編碼蛋白質的能力,它又被稱爲編碼RNA。而其他沒有編碼蛋白質能力的RNA則被稱爲非編碼RNA(ncRNA)。它們或通過催化生化反應,或通過調控或參與基因表達過程發揮相應的生物學功能。比如,tRNA(轉運RNA)在翻譯過程中起轉運RNA的作用,rRNA(核糖體RNA)於翻譯過程中起催化肽鏈形成的作用,(小RNA)起到調控基因表達的作用。此外,RNA病毒甚至以RNA作爲它們的遺傳物質。 RNA通常由DNA通過轉錄生成。RNA在細胞中廣泛分佈,真核生物的細胞核、細胞質、粒線體中都有RNA。.

新!!: 磷酸戊糖途径和核糖核酸 · 查看更多 »

核酮糖5-磷酸

#重定向 核酮糖-5-磷酸.

新!!: 磷酸戊糖途径和核酮糖5-磷酸 · 查看更多 »

核酸

核酸(nucleic acids)是一种通常位于细胞核内的大型生物分子,負責生物体遗传信息的携带和传递。核酸有兩大類,分別是脱氧核糖核酸(DNA)和核糖核酸(RNA)。 核酸的单体结构为核苷酸。每一个核苷酸分子由三部分组成:一个五碳糖、一个含氮碱基、和一个磷酸基。如果其五碳糖是脱氧核糖則為脱氧核糖核苷酸,此單體之聚合物是DNA。如果其五碳糖是核糖則為核糖核苷酸,此單體之聚合物是RNA。核苷酸也被称为核苷酸磷酸盐。 核酸是最重要的生物大分子(其余为氨基酸/蛋白质,糖/碳水化合物,脂质和/脂肪)。它们大量存在于所有活的东西,功能有编码,传递和表达遗传信息 - 换句话说,信息通过核酸序列被传递。DNA分子含有生物物种的所有遗传信息,为双链分子,其中大多数是链状结构大分子,也有少部分呈环状结构,分子量一般都很大。RNA主要是负责DNA遗传信息的翻译和表达,为单链分子,分子量要比DNA小得多。 核酸存在于所有动植物细胞、微生物和病毒、噬菌体内,是生命的最基本物质之一,对生物的生长、遗传、变异等现象起着重要的决定作用。 核酸是在1869年被科学家弗雷德里希·米歇尔发现。核酸实验研究构成了现代生物学和医学研究的重要组成部分,形成了基因组和法医学,以及生物技术和制药行业的基础。.

新!!: 磷酸戊糖途径和核酸 · 查看更多 »

水解

水解是一种化工单元过程,是物質與水反應,利用水形成新的物质的过程。通常是指鹽類的水解平衡。.

新!!: 磷酸戊糖途径和水解 · 查看更多 »

3-磷酸甘油醛

#重定向 甘油醛3-磷酸.

新!!: 磷酸戊糖途径和3-磷酸甘油醛 · 查看更多 »

5-磷酸核糖

#重定向 核糖-5-磷酸.

新!!: 磷酸戊糖途径和5-磷酸核糖 · 查看更多 »

5-磷酸核酮糖

#重定向 核酮糖-5-磷酸.

新!!: 磷酸戊糖途径和5-磷酸核酮糖 · 查看更多 »

6-磷酸葡糖酸内酯

6-磷酸葡糖酸内酯(6-Phosphogluconolactone)是磷酸戊糖途径中的一种中间代谢产物。 这种物质是由葡萄糖-6-磷酸脱氢酶催化葡萄糖-6-磷酸脱氢而产出的。.

新!!: 磷酸戊糖途径和6-磷酸葡糖酸内酯 · 查看更多 »

6-磷酸葡萄糖酸

6-磷酸葡萄糖酸(6-Phosphogluconic acid)是戊糖磷酸途径与恩特纳–杜德洛夫途径中的一种代谢中间产物。 这种物质由6-磷酸葡萄糖酸内酯酶生成,并被磷酸葡萄糖酸脱氢酶作用以产生核酮糖5-磷酸。它也可以被6-磷酸葡萄糖酸脱水酶作用而产生2-酮,3-脱氧-6-磷酸葡萄糖酸。 Category:磷酸酯.

新!!: 磷酸戊糖途径和6-磷酸葡萄糖酸 · 查看更多 »

6-磷酸葡萄糖酸内酯酶

6-磷酸葡萄糖酸内酯酶(6-Phosphogluconolactonase)是戊糖磷酸途径过程中的一个酶。它将6-磷酸葡糖酸内酯转变为6-磷酸葡萄糖酸。.

新!!: 磷酸戊糖途径和6-磷酸葡萄糖酸内酯酶 · 查看更多 »

重定向到这里:

五碳糖磷酸路徑己糖磷酸支路戊糖磷酸途径磷酸戊糖旁路磷酸戊糖支路磷酸戊糖通路磷酸戊糖途徑

传出传入
嘿!我们在Facebook上吧! »