目录
磁单极子
磁单极子是理论物理学中指一些仅带有北極或南極单一磁极的磁性物质,它们的磁感线分布类似于点电荷的电场线分布。更专业地说,这种粒子是一种带有一个单位“磁荷”(类比于电荷)的粒子。科学界之所以如此感兴趣于磁单极子,是因为磁单极子在粒子物理学当中的重要性,大统一理论和超弦理论都预测了它的存在。这种物质的存在性在科学界時有紛爭,截至2013年末,尚未发现以基本粒子形式存在的磁单极子。可以说是21世纪物理学界重要的研究主题之一。 但是,非孤立的磁单极准粒子确实存在于某些凝聚态物质系统中,人工磁单极子已经被德国的一组研究者成功地制造出来。.
查看 磁标势和磁单极子
磁場
在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.
查看 磁标势和磁場
磁化強度
磁化強度(magnetization),又稱磁化向量,是衡量物體的磁性的一個物理量,定義為單位體積的磁偶極矩,如下方程式: 其中,\mathbf 是磁化強度,n 是磁偶極子密度,\mathbf 是每一個磁偶極子的磁偶極矩。 當施加外磁場於物質時,物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度描述物質被磁化的程度。採用國際單位制,磁化強度的單位是安培/公尺。 物質被磁化所產生的磁偶極矩有兩種起源。一種是由在原子內部的電子,由於外磁場的作用,其軌域運動產生的磁矩會做拉莫爾進動,從而產生的額外磁矩,累積凝聚而成。另外一種是在外加靜磁場後,物質內的粒子自旋發生「磁化」,趨於依照磁場方向排列。這些自旋構成的磁偶極子可視為一個個小磁鐵,可以以向量表示,作為自旋相關磁性分析的古典描述。例如,用於核磁共振現象中自旋動態的分析。 物質對於外磁場的響應,和物質本身任何已存在的磁偶極矩(例如,在鐵磁性物質內部的磁偶極矩),綜合起來,就是淨磁化強度。 在一個磁性物質的內部,磁化強度不一定是均勻的,磁化強度時常是位置向量的函數。.
查看 磁标势和磁化強度
磁矢势
磁矢势,又稱磁位、磁勢(magnetic potential),通常標記為 \mathbf 。磁向量勢的旋度是磁場,以方程式表示 其中,\mathbf 是磁場。 直觀而言,磁向量勢似乎不及磁場來得「自然」、「基本」,而在一般電磁學教科書亦多以磁場來定義磁向量勢。以前,很多學者認為磁向量勢並沒有實際意義,只是人為的物理量,除了方便計算以外,別無其它用途。但是,詹姆斯·馬克士威頗不以為然,他認為磁向量勢可以詮釋為「每單位電荷儲存的能量」,就好像電勢被詮釋為「每單位電荷儲存的能量」。相關論述,稍後會有更詳盡解釋。 磁向量勢並不是唯一定義的;其數值是相對的,相對於某設定數值。因此,學者會疑問到底儲存了多少動量?不論如何,磁向量勢確實具有實際意義。尤其是在量子力學裏,於1959年,阿哈諾夫-波姆效應闡明,假設一個帶電粒子移動經過某零電場、零磁場、非零磁向量勢場區域,則此帶電粒子的波函數相位會有所改變,因而導致可觀測到的干涉現象 。現在,越來越多學者認為電勢和磁向量勢比電場和磁場更基本。不單如此,有學者認為,甚至在經典電磁學裏,磁向量勢也具有明確的意義和直接的測量值。 磁向量勢與電勢可以共同用來設定電場與磁場。許多電磁學的方程式可以以電場與磁場寫出,或者以磁向量勢與電勢寫出。較高深的理論,像量子力學理論,偏好使用的是磁向量勢與電勢,而不是電場與磁場。因為,在這些學術領域裏所使用的拉格朗日量或哈密頓量,都是以磁向量勢與電勢表達,而不是以電場與磁場表達。 開爾文男爵最先於1851年引入磁向量勢的概念,並且給定磁向量勢與磁場之間的關係。.
查看 磁标势和磁矢势
靜磁學
磁學(Magnetostatics)是電磁學的分支,專門研究电流稳定(不随时间变化)的系统内磁場。在靜電學中,電荷是穩定不變的;在這裡,電流是穩定不變的。磁化强度不需要是静态的;静磁学的方程可以用于预测在纳秒或更小时间尺度内发生的快速磁性交换事件。 事實上即使電流不是靜態,只要電流交替不迅速,靜磁學是一個良好的近似。静磁学广泛应用于微磁学,例如磁记录设备的模型。.
查看 磁标势和靜磁學
靜電學
電學是研究「靜止電荷」的特性及規律的一門學科,電學的領域之一。靜電即電荷在靜止時的狀態,沒有電荷流動。而靜止電荷所建立的電場稱為靜電場,是指不隨時間變化的電場,該靜電場對於場中的電荷有作用力。.
查看 磁标势和靜電學
複分析
複變分析是研究複變函數,特別是亞純函數和複變解析函數的數學理論。 研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。複變分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。.
查看 磁标势和複分析
铁磁性
鐵磁性(Ferromagnetism)指的是一種材料的磁性狀態,具有自發性的磁化現象。各材料中以鐵最廣為人知,故名之。 某些材料在外部磁場的作用下得而磁化後,即使外部磁場消失,依然能保持其磁化的狀態而具有磁性,即所謂自發性的磁化現象。 所有的永久磁鐵均具有铁磁性或亞铁磁性。 基本上铁磁性这个概念包括任何在没有外部磁场时显示磁性的物质。至今依然有人这样使用这个概念。但是通过对不同显示磁性物质及其磁性的更深刻认识,学者们对这个概念做了更精确的定义。 一個物質的晶胞中所有的磁性離子均指向它的磁性方向時才被稱為是鐵磁性的。 若其不同磁性離子所指的方向相反,其效果能够相互抵消則被稱為反鐵磁性。 若不同磁性離子所指的方向相反,但是有强弱之分,其产生的效果不能全部抵消,則稱為亚铁磁性。 物質的磁性現象存在一個臨界溫度,在此溫度之上,铁磁性会消失而变成顺磁性,在此温度之下铁磁性才会保持。 對於鐵磁性和亞鐵磁性物质,此温度被稱為居里溫度(虽然都称为居里温度,但二者是有差别的);對於反鐵磁性物质,此温度被稱為奈爾溫度。 有人认为磁铁与铁磁性物质之间的吸引作用是人类最早对磁性的认识。Richard M.
查看 磁标势和铁磁性
電場
電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.
查看 磁标势和電場
電極化
在经典电磁学裏,當給電介質施加一個電場時,由於電介質內部正負電荷的相對位移,會產生電偶極子,這現象稱為電極化(electric polarization)。施加的電場可能是外電場,也可能是嵌入電介質內部的自由電荷所產生的電場。因為電極化而產生的電偶極子稱為“感應電偶極子”,其電偶極矩稱為“感應電偶極矩”。 電極化強度又稱為「電極化矢量」,定義為電介質內的電偶極矩密度,也就是單位體積的電偶極矩。這定義所指的電偶極矩包括永久電偶極矩和感應電偶極矩。它的國際單位制度量單位是庫侖每平方米(coulomb/m2),表示为矢量 P。McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B.
查看 磁标势和電極化
永磁体
永久磁体是指能够长期保持其磁性的磁体。如天然的磁石(磁铁矿)和人造磁鐵(鋁鎳鈷合金)等。磁鐵中除永久磁鐵外,也有需通電才有磁性的電磁鐵。永久磁体也叫硬磁体,不易失磁,也不易被磁化。但若永久磁体加熱超過居里溫度,或位於反向高磁場強度的環境下中,其磁性也會減少或消失。 所有的永磁体均具有鐵磁性或亞鐵磁性,鐵磁性的物質(例如鐵)具有自發性的磁化現象,而亞鐵磁性的物質,因其中的亞晶格是由不同的材料或不同價態的鐵組成,不同亞晶格的原子磁矩相反但不相等,無法完全抵消,因此也有磁性,如磁鐵礦(鐵(II,III)氧化物;Fe3O4)即為一例。.
查看 磁标势和永磁体
拉普拉斯方程
拉普拉斯方程,又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家皮埃尔-西蒙·拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学、熱力學和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电場、引力場和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。.
查看 磁标势和拉普拉斯方程
亦称为 磁純量勢。