徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

碳-碳键

指数 碳-碳键

碳-碳鍵是一連接兩個碳原子的共價鍵。其中最普通的形式是單鍵:即一個鍵是由兩個電子组成,其中兩個原子分别提供一個電子。碳-碳單鍵屬於σ键,组成单键的兩個碳原子自身的电子先形成混成軌域,然后两个混成軌域之间形成碳-碳单键,例如乙烷的两个碳原子就是形成sp3混成軌域,但碳的單鍵也有形成其他混成軌域的例子(例如sp2對sp2)。其實單鍵二端的的碳原子不一定要形成相同的混成軌域。在烯烃中碳原子會形成雙鍵,在炔烃中碳原子會形成三键。雙鍵的组成是一个σ键(由两个形成sp2混成軌域的电子)和一个π鍵(由两个未參與混成的p軌域电子所構成)。三鍵则是一個sp混成軌域和二個p軌域所構成,其中二個原子各提供一個p軌域。雙鍵及三鍵中使用的p軌域會形成π鍵。當碳-碳鍵數愈多,鍵能愈大,鍵長愈短。 碳有一個很特殊的性質,那就是碳原子可以互相鍵結形成長鏈,此性質稱為「成鏈」。有了這個性質,碳原子就可以連結在一起形成眾多不同类型的分子,其中一些化合物對這個世界上的生命和人類的生活有極大的意義,有機化學就是專門研究有機分子的化學特性。.

29 关系: 原子叔丁醇塑料季戊四醇四硝酸酯三键乙烷乙醇仲醇伯醇單鍵共价键维蒂希反应羟醛反应羰基烯烃炔烃电子異丙醇Diels-Alder反应药品赫克反应雙鍵Michael反应格氏试剂混成軌域有机反应有机化学成鏈

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 碳-碳键和原子 · 查看更多 »

叔丁醇

叔丁醇(tert-Butanol;IUPAC名:2-甲基-2-丙醇),又稱第三丁醇或新丁醇,是最简单的叔醇,為丁醇四种异构体之一。叔丁醇是具有樟脑香味的液体,易溶于水、乙醇和乙醚。叔丁醇熔点仅仅超过25°C ,因此室温下有可能是固态。 叔丁醇被用作溶剂。叔丁醇也被用于变性乙醇、油漆清洗剂、汽油添加剂和其他日用品如香料和香水的生产中。 工业上,叔丁醇可由异丁烯的催化水化制得。 由于是三级醇,因此相对于其他丁醇而言,叔丁醇对于氧化剂比较稳定。用强碱(如氢化钠)脱去叔丁醇的质子时,产物是醇盐负离子,即叔丁氧基负离子。 叔丁氧基负离子在有机化学中是一个很有用的弱亲核性强碱,它可以很快夺取其他化合物中的活泼氢,但是它的体积限制了它发生亲核反应,如Williamson合成或SN2反应。 叔丁醇可以与盐酸反应生成叔丁基氯。反应机理是SN1反应。 总的反应是: 反应机理是SN1的原因是:叔丁醇生成的叔丁基碳正离子是一个三级碳正离子,非常稳定。相反地,一级醇由于其相应的碳正离子不稳定,因此采用SN2机理。.

新!!: 碳-碳键和叔丁醇 · 查看更多 »

塑料

塑料是指以高分子量的合成树脂为主要组分,加入适当添加剂,如增塑剂、稳定剂、抗氧化剂、阻燃剂、润滑剂、着色剂等,经加工成型的塑性(柔韧性)材料,或固化交联形成的刚性材料。 塑膠最早來自於1850年代的英國。自從塑膠被開發以來,各方面的用途日益廣泛。.

新!!: 碳-碳键和塑料 · 查看更多 »

季戊四醇四硝酸酯

季戊四醇四硝酸酯(Pentaerythritol Tetranitrate,簡稱PETN;中文名:太安或太恩,又名彭梯儿)是已知最強烈的炸药之一,其相對有效指數(R.E. factor)達1.66。由於它是一種比TNT對撞擊及摩擦更敏感的炸藥,所以一般不會單獨使用,而是與其他材料配合使用。一般來說,PETN主要用於地雷的藥引,用以在受壓時燃點其他穩定性較高的炸藥。 然而,與硝化甘油一樣,PETN亦可用於治療心臟病。例如:“Lentonitrat”就是一種純綷只有PETN的藥物。.

新!!: 碳-碳键和季戊四醇四硝酸酯 · 查看更多 »

三键

三鍵(),是有機化學中原子與原子之間被3對價電子連結的共價鍵的稱號。.

新!!: 碳-碳键和三键 · 查看更多 »

乙烷

乙烷是化学式为C2H6的烷烃。乙烷中的所有分子由共价键结合,通常在分子的书写中为了表现两个C(碳原子)之间只有一个化学键,写作CH3-CH3。它是由两个碳原子组成的烷烃中唯一的脂肪烃。 在标准状况下乙烷为可燃气体,无色无味,在一定的浓度下如遇火可产生爆炸。 工业生产的乙烷是从天然气分离出来的或者是煉油廠的副产品。在石油化工中它是生产乙烯的原材料。.

新!!: 碳-碳键和乙烷 · 查看更多 »

乙醇

乙醇(Ethanol,結構简式:CH3CH2OH)是醇类的一种,是酒的主要成份,所以也俗稱酒精,有些地方俗稱火酒。化學結構通常縮寫為, 或 EtOH,Et代表乙基。乙醇易燃,是常用的燃料、溶剂和消毒剂,也用于有机合成。工業酒精含有少量有毒性的甲醇。医用酒精主要指体积浓度为75%左右(或质量浓度为70%)的乙醇,也包括医学上使用广泛的其他浓度酒精。 乙醇与甲醚是同分异构体。.

新!!: 碳-碳键和乙醇 · 查看更多 »

仲醇

仲醇,或稱二級醇(secondary alcohol),是指羟基直接连接在一个仲碳原子上的醇。它也可以说是含有基团“.

新!!: 碳-碳键和仲醇 · 查看更多 »

伯醇

伯醇,或稱「一級醇」,是指羟基直接连接在一个伯碳原子上的醇。它也可以说是含有基团“–CH2OH”的醇。 乙醇、正丙醇、正丁醇都是伯醇。.

新!!: 碳-碳键和伯醇 · 查看更多 »

單鍵

在有機化學中,單鍵(),是一種兩原子間共用2個價電子所形成的,共享一對電子的鍵結形態的,共價鍵的分類稱呼。.

新!!: 碳-碳键和單鍵 · 查看更多 »

共价键

共价键(Covalent Bond),是化学键的一种。两个或多个非金屬原子共同使用它们的外层电子(砷化鎵為例外),在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做共价键。与离子键不同的是进入共价键的原子向外不显示电荷,因为它们并没有获得或损失电子。共价键的强度比氢键要强,比离子键小。 同一種元素的原子或不同元素的原子都可以通過共​​價鍵結合,一般共價鍵結合的產物是分子,在少數情況下也可以形成晶體。 吉爾伯特·路易斯于1916年最先提出共价键。 在简单的原子轨道模型中进入共价键的原子互相提供单一的电子形成电子对,这些电子对围绕进入共价键的原子而属它们共有。 在量子力学中,最早的共价键形成的解释是由电子的复合而构成完整的轨道来解释的。第一个量子力学的共价键模型是1927年提出的,当时人们还只能计算最简单的共价键:氢气分子的共价键。今天的计算表明,当原子相互之间的距离非常近时,它们的电子轨道会互相之间相互作用而形成整个分子共用的电子轨道。.

新!!: 碳-碳键和共价键 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

新!!: 碳-碳键和碳 · 查看更多 »

维蒂希反应

维蒂希反应(Wittig反应)是醛或酮与三苯基磷鎓內鹽(维蒂希试剂)作用生成烯烃和三苯基氧膦的一类有机化学反应,以发明人德国化学家格奥尔格·维蒂希的姓氏命名。 格奥尔格·维蒂希在1954年发现该反应,并因此获得1979年诺贝尔化学奖。 维蒂希反应在烯烃合成中有十分重要的地位。 维蒂希反应的反应物一般是醛/酮和单取代的磷鎓內鹽。使用活泼叶立德时所得产物一般都是Z型的,或Z/E异构体比例相当;而使用比较稳定的叶立德时,或在Schlosser改进的条件下,产物则以E型为主。.

新!!: 碳-碳键和维蒂希反应 · 查看更多 »

羟醛反应

羟醛反应(aldol reaction)是有机化学及生物化学中构建碳-碳键最重要的反应手段之一。该反应由查尔斯·阿道夫·武兹 和亞歷山大·波菲里耶維奇·鮑羅丁于1872年分别独立发现鮑羅丁觀察到乙醛在酸性環境下會二聚化,形成3-羥基丁醛,它是指具有α氢原子的醛或酮在一定条件下形成烯醇负离子,再与另一分子羰基化合物发生加成反应,并形成β-羟基羰基化合物的一类有机化学反应。 反应连接了两个羰基底物(最初反应使用醛)合成的β-产物,其命名取用了醇羟基的“羟”(ol)字和醛类化合物的“醛”(ald)字,也称作“羟醛”(aldol)化合物。 |zh-hans.

新!!: 碳-碳键和羟醛反应 · 查看更多 »

羰基

基(carbonyl group)在有机化学中,是一个形如 C.

新!!: 碳-碳键和羰基 · 查看更多 »

烯烃

(alkene)是指含有C.

新!!: 碳-碳键和烯烃 · 查看更多 »

炔烃

(alkyne)是一类有机化合物,属于不饱和烃。其官能团为碳-碳三键(-C≡C-)。通式CnH2n-2,其中n為非1正整數。简单的炔烃化合物有乙炔(),丙炔()等。炔烃也被叫做电石气,电石气通常也被用来特指炔烃中最简单的乙炔。 炔字是新造字,左边的火取自“碳”字,表示可以燃烧;右边的夬取自“缺”字,表示氢原子数和化合价比烯烃更加缺少,意味着炔是烷(完整)和烯(稀少)的不饱和衍生物。「炔」的讀音同「缺」。.

新!!: 碳-碳键和炔烃 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 碳-碳键和电子 · 查看更多 »

異丙醇

#重定向 2-丙醇.

新!!: 碳-碳键和異丙醇 · 查看更多 »

Diels-Alder反应

#重定向 狄尔斯–阿尔德反应.

新!!: 碳-碳键和Diels-Alder反应 · 查看更多 »

药品

#重定向 藥品.

新!!: 碳-碳键和药品 · 查看更多 »

赫克反应

赫克反应(Heck反应)也称沟吕木-赫克反应(Mizoroki-Heck反应),是不饱和卤代烃(或三氟甲磺酸酯)与烯烃在强碱和钯催化下生成取代烯烃的偶联反应。 它得名于美国化学家理查德·赫克和日本人沟吕木勉,赫克憑藉此貢獻得到了2010年諾貝爾化學獎。 原料卤代烃 或三氟甲磺酸酯中的R基可以是芳基、苄基或乙烯基。烯烃的双键碳必须连有氢,且烯烃通常为缺电子烯烃,如丙烯酸酯或丙烯腈。钯催化剂可以是四(三苯基膦)合钯(0)、氯化钯(II)或乙酸钯(II)。碱可以是三乙胺、碳酸钾或乙酸钠。 反应综述:.

新!!: 碳-碳键和赫克反应 · 查看更多 »

雙鍵

在有機化學中,雙鍵(),是對含1根σ鍵和1根π鍵的共價鍵的分類稱呼。.

新!!: 碳-碳键和雙鍵 · 查看更多 »

Michael反应

#重定向 麦克尔加成反应.

新!!: 碳-碳键和Michael反应 · 查看更多 »

格氏试剂

格氏试剂,又称--,是指烃基卤化镁(R-MgX)一类有机金属化合物,是一种很好的亲核试剂。在有机合成和有機金屬化學中有重要用途。此类化合物的发现者法国化学家维克多·格林尼亚(François Auguste Victor Grignard)因此而获得1912年诺贝尔化学奖。.

新!!: 碳-碳键和格氏试剂 · 查看更多 »

混成軌域

混成軌域(Hybrid orbital)是指原子軌域經混成(hybridization)後所形成的能量简并的新轨道,用以定量描述原子間的鍵結性質。與價層電子對互斥理論可共同用來解釋分子軌域的形狀。混成概念是萊納斯·鮑林於1931年提出。.

新!!: 碳-碳键和混成軌域 · 查看更多 »

有机反应

有机反应即涉及有机化合物的化学反应,是有机合成的基础。几种基本反应类型为:加成反应、消除反应、取代反应、周环反应、重排反应和氧化还原反应。在有机合成当中,有机反应被广泛的应用于各种人造分子的合成。比如药物,塑料,食品添加剂和合成纤维等等。 早期的有机反应,包括有机燃料的燃烧反应,以及制造肥皂所用的皂化反应。当今有机反应已愈发复杂,其中几个获得诺贝尔化学奖的反应为:1912年的格氏反应、1950年的狄尔斯-阿尔德反应、1979年的维蒂希反应、2005年的烯烃复分解反应和2010年的赫克反应。.

新!!: 碳-碳键和有机反应 · 查看更多 »

有机化学

有机化学是研究有机化合物及有機物質的结构、性质、反應的学科,是化学中极重要的一个分支。有机化学研究的對象是以不同形式包含碳原子的物質 ,又称为碳化合物的化学。 有關有机化合物或有機物質結構的研究包括用光譜、核磁共振、红外光谱、紫外光谱、质谱或其他物理或化學方式來確認其組成的元素、組成方式、實驗式及化學式。有關性質的研究包括其物理性質及化學性質,也需評估其,目的是要了解有機物質在其純物質形式(若是可能的話),以及在溶液中或是混合物中的性質。有機反應的研究包括有機物質的製備(可能是有機合成或是其他方式),以及其化學反應,可能是在實驗室中的,或是In silico(經由電腦模擬的)。 有机化学研究的範圍包括碳氫化合物,也就是只由碳和氫組成的化合物,化合物中也有可能还会参与其他的元素,包括氢、 氮、氧和卤素,还有诸如磷、硅、硫等元素。 。有机化学和許多相關領域有重疊,包括药物化学、生物化学、有机金属化学、高分子化学以及材料科学等。 有机化合物之所以引起研究者浓厚的兴趣,是因为碳原子可以形成稳定的长碳链或碳环以及许许多多种的官能基,这种性质造就有机化合物的多样性。有機化合物是所有碳基生物的基礎。有機化合物的應用範圍很廣,包括醫學、塑膠、藥物、、食物、化妆品、护理用品、炸藥及塗料等。.

新!!: 碳-碳键和有机化学 · 查看更多 »

成鏈

成鏈(catenation)是指同一種化學元素的原子經由連續的共價鍵互相連接形成長鏈狀的分子。成鏈之形式在碳原子中最易出現,形成碳原子和碳原子之間相連的共價鍵。成鏈是自然界存在大量有機物質的原因,而有機化學實質上就是在研究碳利用這個性質所形成的化合物。然而,碳並非唯一擁有此性質的元素,其他主族元素也有形成長鏈的性質,如矽和硫。 化學元素能否形成長鏈,主要基於元素自身連接的鍵能,但也會受到位阻效應和電性因素的影響,包括:元素的電負性、混成分子軌域及元素之間形成不同共價鍵的能力。以碳元素為例,臨近原子之間重疊的σ軌域可以足夠強而可形成穩定的長鏈。以往認為其他元素很難形成長鏈,但現已發現許多元素都具有成鏈的分子結構。 元素硫有許多特點都和其成鏈能力有關。自然界中的硫是S8的環狀分子。當加熱超過攝氏160度時打開其環狀結構,分子和分子間再互相鍵結形成長鏈,長鏈會隨溫度上昇而變長,其黏度也因長鏈變長而增加,直到約攝氏190度時黏度最大。硒和碲也有類似的結構。 元素矽可以與其他矽原子形成σ键,不過其穩定性不如碳原子之間的σ键。一些有機的取代基可以取代矽烷上的氫原子,形成類似烷烃的聚矽烷(polysilane)。由於其離域的σ電子分散在長鏈上,這類化合物具有很特殊的電子屬性如高導電性,這是由於鏈上的可離域σ電子(類似於石墨)。。 矽原子之間也可能形成π鍵,類似烯烃的矽烯(disilylene)非常罕見。以往認為矽的三鍵化合物非常不穩定,後來在2004年已製備了類的化合物。 聯有取代基的磷鏈也已經被成功合成,但由於其共價鍵的鍵能不及碳-碳鍵,脆弱易斷,因此小環分子或簇更常見。近幾年來,也有越來越多的類金屬像是矽、鍺、砷和鉍……等,皆被發現可以互相連接形成雙鍵和三鍵。這些除碳之外元素形成的長鏈都被歸于。.

新!!: 碳-碳键和成鏈 · 查看更多 »

重定向到这里:

1級碳2級碳3級碳Carbon-carbon bond forming reactions仲碳伯碳叔碳季碳碳-碳键碳碳键碳-碳鍵碳-碳鍵形成反應碳-碳键形成反应

传出传入
嘿!我们在Facebook上吧! »