徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

真空电容率

指数 真空电容率

真空电容率,又称为真空介电系数,或電常數,是一个常见於电磁学的物理常数,符号为\epsilon_0\,\!。在国际单位制裏,真空电容率的數值为: 真空電容率\epsilon_0\,\!可以用公式定義為 其中,c_0\,\!是光波傳播於真空的光速,\mu_0\,\!是真空磁導率。 採用國際單位制,光速的數值定義為 299\ 792\ 458\,\!公尺/秒,真空磁導率的數值定義為 4\pi\times 10^\,\! 亨利/公尺。因此,\epsilon_0\,\!的數值也是個定義值。但是,由於\pi\,\!是個無理數;所以,\epsilon_0\,\!只能近似為 這些數值都可以在2006 CODATA報告裏找到。 真空電容率出現於電位移\mathbf\,\!的定義式: 其中,\mathbf\,\!是電場,\mathbf\,\!是電介質的經典電極化強度。 學術界常遇到一個錯誤的觀點,就是認為真空電容率\epsilon_0\,\!是一個可實現真空的一個物理性質。正確的觀點應該為,\epsilon_0\,\!是一個度量系統常數,是由國際公約發表和定義而產生的結果。\epsilon_0\,\!的定義值是由光波在參考系統的光速或基準(benchmark)光速的衍生而得到的數值。這參考系統稱為自由空間,被用為在其它各種介質的測量結果的比較基線。可實現真空,像外太空、超高真空(ultra high vacuum)、量子色動真空(QCD vacuum)、量子真空(quantum vacuum)等等,它們的物理性質都只是實驗和理論問題,應與\epsilon_0\,\!分題而論。\epsilon_0\,\!的含義和數值是一個度量衡學(metrology)問題,而不是關於可實現真空的問題。為了避免產生混淆,許多標準組織現在都傾向於採用電常數為\epsilon_0\,\!的名稱。.

36 关系: 偶極子卡西米爾效應向量恆等式列表外层空间安培度量衡學库仑库仑定律介電質引力場光速国际单位制球坐標系磁化強度磁感应强度米 (单位)真空真空磁导率电磁学电流無理數靜電單位制馬克士威方程組高斯磁定律达因自由空間電場電位移電磁波電極化ISO 31波动方程法拉旋度

在物理學中,力是任何導致自由物體歷經速度、方向或外型的變化的影響。力也可以藉由直覺的概念來描述,例如推力或拉力,這可以導致一個有質量的物體改變速度(包括從靜止狀態開始運動)或改变其方向。一個力包括大小和方向,這使力是一個向量。牛頓第二定律,\mathbf.

新!!: 真空电容率和力 · 查看更多 »

偶極子

在電磁學裏,有兩種偶極子(dipole):電偶極子是兩個分隔一段距離,電量相等,正負相反的電荷。磁偶極子是一圈封閉循環的電流,例如一個有常定電流運行的線圈,稱為載流迴路。偶極子的性質可以用它的偶極矩描述。 電偶極矩(\mathbf)由負電荷指向正電荷,大小等於正電荷量乘以正負電荷之間的距離。磁偶極矩(\mathbf)的方向,根據右手法則,是大拇指從載流迴路的平面指出的方向,而其它手指則指向電流運行方向,磁偶極矩的大小等於電流乘以線圈面積。 除了載流迴路以外,電子和許多基本粒子都擁有磁偶極矩。它們都會產生磁場,與一個非常小的載流迴路產生的磁場完全相同。但是,現時大多數的科學觀點認為這個磁偶極矩是電子的自然性質,而非由載流迴路生成。 永久磁鐵的磁偶極矩來自於電子內稟的磁偶極矩。長條形的永久磁鐵稱為條形磁鐵,其兩端稱為指北極和指南極,其磁偶極矩的方向是由指南極朝向指北極。這常規與地球的磁偶極矩恰巧相反:地球的磁偶極矩的方向是從地球的地磁北極指向地磁南極。地磁北極位於北極附近,實際上是指南極,會吸引磁鐵的指北極;而地磁南極位於南極附近,實際上是指北極,會吸引磁鐵的指南極。羅盤磁針的指北極會指向地磁北極;條形磁鐵可以當作羅盤使用,條形磁鐵的指北極會指向地磁北極。 根據當前的觀察結果,磁偶極子產生的機制只有兩種,載流迴路和量子力學自旋。科學家從未在實驗裏找到任何磁單極子存在的證據。.

新!!: 真空电容率和偶極子 · 查看更多 »

卡西米爾效應

-- 卡西米爾效應(Casimir effect)是由荷蘭物理學家亨德里克·卡西米爾(Hendrik Casimir)於1948年提出的一種現象,此效應隨後被偵測到,並以卡西米爾為名以紀念他。其根據量子場論的「真空不空」觀念——即使沒有物質存在的真空仍有能量漲落,而提出此效應:真空中兩片中性(不帶電)的金屬板會出現吸力;這在古典理論中是不會出現的現象。这种效应只有在两物体的距离非常之小时才可以被检测到。例如,在亚微米尺度上,该效应导致的吸引力成为中性导体之间主要作用力。事实上在10纳米间隙上(大概是一个原子尺度的100倍),卡西米爾效應能产生1个大气压的压力(101.3千帕)。一对中性原子之间的范德瓦耳斯力是一种类似的效应。.

新!!: 真空电容率和卡西米爾效應 · 查看更多 »

向量恆等式列表

這條目陳列一些常用的向量代數的恆等式。.

新!!: 真空电容率和向量恆等式列表 · 查看更多 »

外层空间

-- --(outer space),於中國大陸稱外層空間,指的是地球大氣層及其他天體之外的虛空區域。 與真空有所不同的是,外太空含有密度很低的物質,以等離子態的氫為主。其中還有電磁輻射、磁場等。理論上,外層空間可能還包含暗物質和暗能量。 外太空與地球大气层並沒有明確的界線,因為大氣隨著海拔增加而逐漸變薄。假設大氣層温度固定,大氣壓會由海平面的大約1013毫巴,隨著高度增加而呈指數化減少至零為止。 国际航空联合会定義在100公里的高度為卡門線,為現行大氣層和太空的界線定義。美國認定到達海拔80公里的人為太空人,在太空船重返地球的過程中,120公里是空氣阻力開始發生作用的界線。.

新!!: 真空电容率和外层空间 · 查看更多 »

安培

安培,简称安,是国际单位制中电流强度的单位,符号是A。同时它也是国际单位制中七个基本单位之一另外六个是米、开尔文、秒、摩尔、坎德拉和千克。安培是以法国数学家和物理学家安德烈-马里·安培命名的,为了纪念他在经典电磁学方面的贡献。 实际情况中,安培是对单位时间内通过导体横截面的电荷量的度量。1秒内通过横截面的电量为1库仑(个电子的电量)时,电流大小為1安培。 比安培小的電流可以用毫安、微安等單位表示。.

新!!: 真空电容率和安培 · 查看更多 »

度量衡學

#重定向 计量学.

新!!: 真空电容率和度量衡學 · 查看更多 »

库仑

库仑(Coulomb)是电量的单位,符号为\mathrm。若导线中载有1安培的穩定電流,则在1秒内通过导线横截面积的电量为1库仑。 库仑不是國際單位制基本單位,而是國際單位制導出單位。1库仑.

新!!: 真空电容率和库仑 · 查看更多 »

库仑定律

库仑定律(Coulomb's law),法国物理学家查尔斯·库仑於1785年发现,因而命名的一条物理学定律。库仑定律是电学发展史上的第一个定量规律。因此,电学的研究从定性进入定量阶段,是电学史中的一块重要的里程碑。庫侖定律闡明,在真空中两个静止点电荷之间的相互作用力与距离平方成反比,与电量乘积成正比,作用力的方向在它们的连线上,同号电荷相斥,异号电荷相吸。.

新!!: 真空电容率和库仑定律 · 查看更多 »

介電質

介電質(dielectric)是一種可被電極化的絕緣體。假設將介電質置入外電場,則束縛於其原子或分子的束縛電荷不會流過介電質,只會從原本位置移動微小距離,即正電荷朝著電場方向稍微遷移位置,而負電荷朝著反方向稍微遷移位置。這會造成介電質電極化,從而在介電質內部產生反抗電場,減弱整個介電質內部的電場。假若介電質是由弱鍵結的分子構成,則這些分子不但會被電極化,也會改變取向,試著將自己的對稱軸與電場對齊。 介電質通常指的是可被高度電極化的物質。在原子與分子層次,極化性可以用來衡量微觀的電極化性質,從極化性可以理論計算出介電質的電極化率和電容率,兩個巨觀的電極化性質。或者,可以直接從實驗測量出介電質的電極化率和電容率。假若置入了具有高電容率的介電質,則平行板電容器的電容會大幅增加,儲存於兩塊金屬平行板的正負電荷也會增加 。 介電質的用途相當廣泛。介電質的電傳導能力很低,再加上具備有很好的(dielectric strength)性質,就可以用來製造電絕緣體。另外介電質可被高度電極化,是優良的電容器材料。對於介電性質的研究,涉及了物質內部電能和磁能的儲存與耗散。用於解釋電子學、光學和固態物理的各種各樣現象,這研究極端重要。 回應麥可·法拉第的請求,英國科學家威廉·暉巍(William Whewell)命名所有可被電極化的絕緣體為介電質。.

新!!: 真空电容率和介電質 · 查看更多 »

引力場

引力場(簡體中文中重--力場一詞特指地球表面的引力場。)是描述一物体在空間中受到万有引力(重力)作用的場,在经典物理学中是一个物理量。.

新!!: 真空电容率和引力場 · 查看更多 »

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。.

新!!: 真空电容率和光 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

新!!: 真空电容率和光速 · 查看更多 »

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

新!!: 真空电容率和国际单位制 · 查看更多 »

球坐標系

#重定向 球座標系.

新!!: 真空电容率和球坐標系 · 查看更多 »

磁化強度

磁化強度(magnetization),又稱磁化向量,是衡量物體的磁性的一個物理量,定義為單位體積的磁偶極矩,如下方程式: 其中,\mathbf 是磁化強度,n 是磁偶極子密度,\mathbf 是每一個磁偶極子的磁偶極矩。 當施加外磁場於物質時,物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度描述物質被磁化的程度。採用國際單位制,磁化強度的單位是安培/公尺。 物質被磁化所產生的磁偶極矩有兩種起源。一種是由在原子內部的電子,由於外磁場的作用,其軌域運動產生的磁矩會做拉莫爾進動,從而產生的額外磁矩,累積凝聚而成。另外一種是在外加靜磁場後,物質內的粒子自旋發生「磁化」,趨於依照磁場方向排列。這些自旋構成的磁偶極子可視為一個個小磁鐵,可以以向量表示,作為自旋相關磁性分析的古典描述。例如,用於核磁共振現象中自旋動態的分析。 物質對於外磁場的響應,和物質本身任何已存在的磁偶極矩(例如,在鐵磁性物質內部的磁偶極矩),綜合起來,就是淨磁化強度。 在一個磁性物質的內部,磁化強度不一定是均勻的,磁化強度時常是位置向量的函數。.

新!!: 真空电容率和磁化強度 · 查看更多 »

磁感应强度

磁感应强度也被称为磁通量密度或磁通密度,是一个表示贯穿一个标准面积的磁通量的物理量,其符号是B,國際單位制導出單位是T。 此物理量也常被稱為磁場,例如在核磁共振、磁振造影等領域,此命名歧異參見磁場。.

新!!: 真空电容率和磁感应强度 · 查看更多 »

米 (单位)

-- --( → metre,),中國大陸和香港音譯為「--」(亦稱「公--尺」),台灣作「--」(口語偶稱「--」),舊譯「邁當」、「--達」。它是国际单位制基本长度单位,符号为m。1米的长度最初定义为通过巴黎的經線上从地球赤道到北极点的距离的千万分之一。其后随着人们对度量衡学的认识加深,米的长度的定义几经修改。从1983年至今,米的长度已经被定义为“光在真空中于1/299792458秒内行进的距离”。.

新!!: 真空电容率和米 (单位) · 查看更多 »

真空

真空是一種不存在任何物質的空間狀態,是一種物理現象。在真空中,聲波因為沒有介質而無法傳遞,但電磁波的傳遞不受真空的影響。粗略地說,真空是指在一區域之內的氣壓遠遠小於大氣壓力。真空常用帕斯卡(Pascal)或托爾(Torr)做為壓力的單位。目前在自然環境裡,只有外太空堪稱最接近真空的空間。 真空下的氣壓為零,有些情形下,氣壓小於大氣壓力,但不為零,此時稱為局部真空,有些也簡稱為真空。 在局部真空的情形下,若其他條件不變,氣壓越低,表示越接近真空。例如一般的吸塵器的吸力可以使氣壓降低20%。也可以以產生更接近真空的條件,像化學、物理及工程常見的腔體,其氣壓可以到大氣壓力的10−12,粒子密度為100粒子/cm3,對應約100粒子/cm3。外太空更接近真空,相當於平均一立方公尺只有幾個氫原子,估計本星系群的密度為 for the Local Group,原子質量單位為,大約一立方公尺有40個原子。根據現代物理學的了解,即使空間中的所有物質都移除了,因為量子涨落、暗能量、經過的γ-射线和宇宙射线、微中子等現象,空間仍然不會是完全的真空。在近代的粒子物理中,將視為是物質的基態。 自古希臘起,真空就是常帶來爭議的哲學議題,但到了十七世紀西方才開始實驗上的研究。埃萬傑利斯塔·托里切利在1643年進行了第一個真空的實驗,而隨著他大氣壓力理論的出現,也開始產生其他的實驗技術。托里切利真空是將一端封閉的長玻璃容器(超過76公分)中裝滿水銀,倒置在裝滿水銀的容器中,長玻璃容器上方的真空即為托里切利真空。 20世紀在電燈泡及真空管問世後,真空變成一個有價值的工業工具,也出現了許多產生真空的技術。载人航天的進展也讓真空對人類及其他生物的影響開始感興趣。.

新!!: 真空电容率和真空 · 查看更多 »

真空磁导率

真空磁导率(\mu_0),又称磁场常数、磁常數、自由空間磁导率或磁常數是一物理常數,指真空中的磁导率。实验测得这个数值是一个普适的常数,联系着力学和电磁学的测量。真空磁导率是由運動中的帶電粒子或電流產生磁場的公式中產生,也出現在其他真空中產生磁場的公式中,在国际单位制中,其數值為 真空磁导率是一個常數,也可以定義為一個基礎的不變量,是真空中馬克士威方程組中出現的常數之一。在經典力學中,自由空間是電磁理論中的一個概念,對應理論上完美的真空,有時稱為「自由空間真空」或「經典真空」 : 在真空中,磁场常数是磁感应强度和磁场强度的比率: 真空磁导率 \mu_0 和真空电容率 \varepsilon_0 以及光速的关系为c^2\varepsilon_0\mu_0.

新!!: 真空电容率和真空磁导率 · 查看更多 »

电磁学

电磁学(英語:electromagnetism)是研究电磁力(電荷粒子之间的一种物理性相互作用) 的物理学的一个分支。电磁力通常表现为电磁场,如電場、磁場和光。电磁力是自然界中四种基本相互作用之一。其它三种基本相互作用是强相互作用、弱相互作用、引力。 電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關係的一門學科。 英文单词electromagnetism是两个希腊语词汇ἢλεκτρον(ēlektron,“琥珀”)和μαγνήτης(magnetic源自"magnítis líthos"(μαγνήτης λίθος),意思是“镁石”,一种铁矿)的合成词。研究电磁现象的科学是用电磁力定义的,有时称作洛伦兹力,是既含有電也含有磁的现象。 电磁力在决定日常生活中大多数物体的内部性质中发挥着主要作用。常见物体的电磁力表现在物体中单个分子之间的分子间作用力的结果中。电子被电磁波力学束缚在原子核周围形成原子,而原子是分子的构成单位。相邻原子的电子之间的相互作用产生化學过程,是由电子间的电磁力与动量之间的相互作用决定的。 电磁场有很多种数学描述。在经典电磁学中,电场用欧姆定律中的電勢与电流描述,磁場与电磁感应和磁化强度相关,而馬克士威方程組描述了由电场和磁场自身以及电荷和电流引起的电场和磁场的产生和交替。 电磁学理论意义,特别是基于“媒介”中的传播的性质(磁导率和电容率)确立的光速,推动了1905年阿尔伯特·爱因斯坦的狭义相对论的发展。 虽然电磁力被认为是四大基本作用力之一,在高能量中弱力和电磁力是统一的。在宇宙的历史中的夸克時期,电弱力分割成电磁力和弱力。.

新!!: 真空电容率和电磁学 · 查看更多 »

电流

電流(courant électrique; elektrischer Strom; electric current)是电荷的平均定向移动。电流的大小称为电流强度,是指单位时间内通过导线某一截面的电荷,每秒通过1库仑的電荷量稱为1安培。安培是國際單位制七個基本單位之一。安培計是專門測量電流的儀器 。 有很多種承載電荷的載子,例如,導電體內可移動的電子、電解液內的離子、電漿內的電子和離子、強子內的夸克。這些載子的移動,形成了電流。 有一些效應和電流有關,例如電流的熱效應,根據安培定律,電流也會產生磁場,馬達、電感和發電機都和此效應有關。.

新!!: 真空电容率和电流 · 查看更多 »

無理數

無理數是指除有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两个整数的比来说明一个无理数。 非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環,即无限不循环小数。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表達式。 傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现。他以幾何方法證明\sqrt無法用整数及分數表示。而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數的存在。後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機。 無理數可以通過有理數的分划的概念進行定義。.

新!!: 真空电容率和無理數 · 查看更多 »

靜電單位制

電單位制(electrostatic unit)是衍生自厘米-克-秒制(CGS制)的一套單位系統,用來量測電荷、電流及電壓等電學的物理量。在靜電單位制中,電荷以其對其他電荷所施的力來定義。雖然CGS制已經被國際單位制所取代,但在一些特定的物理學領域中仍會用到靜電單位制,例如粒子物理學及天体物理学。 在靜電單位制下,庫侖定律可用以下的形式表示 其中 靜電單位制的主要單位有:.

新!!: 真空电容率和靜電單位制 · 查看更多 »

馬克士威方程組

克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.

新!!: 真空电容率和馬克士威方程組 · 查看更多 »

高斯磁定律

在電磁學裏,高斯磁定律闡明,磁場的散度等於零。因此,磁場是一個螺線向量場。從這事實,可以推斷磁單極子不存在。磁的基本實體是磁偶極子,而不是磁荷。當然,假若將來科學家發現有磁單極子存在,那麼,這定律就必須做適當的修改,如稍後論述。高斯磁定律是因德國物理學者卡爾·高斯而命名。 在物理學界,很多學者使用「高斯磁定律」來指稱這定律,但並不是每一位學者都採用這名字。有些作者稱它為「自由磁單極子缺失」,或明確地表示這定律沒有取名字。還有些作者稱此定律為「橫向性要求」,因為在真空中或線性介質中傳播的電磁波必須是橫波。.

新!!: 真空电容率和高斯磁定律 · 查看更多 »

达因

达因(Dyne)在物理学中是一个力的单位,特别用于厘米-克-秒(CGS)单位系统。其符号是dyne,命名自希臘文δύναμις,意思是「力量」。1达因等于10-5牛顿。更进一步,达因可以定义为“使质量1克物体的加速度为1厘米每秒平方所需要的力”。; 1 dyne.

新!!: 真空电容率和达因 · 查看更多 »

自由空間

在經典物理裏,自由空間(free space)是電磁理論的一種概念,指的是一種理論的完美真空,不含有任何物質的真空。有時候,自由空間又稱為自由空間真空,或經典真空。自由空間可以恰當地被視為一種參考介質 許多國際單位制的單位,像安培或公尺,其定義都是建立於以自由空間為參考介質的測量值。由於實驗室所使用的參考介質並不是自由空間,實驗室得到的測量值必須經過修正,才能成為以自由空間為參考介質的測量值。.

新!!: 真空电容率和自由空間 · 查看更多 »

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

新!!: 真空电容率和電場 · 查看更多 »

電位移

在電磁學裏,電位移是出現於馬克士威方程組的一種向量場,可以用來解釋電介質內自由電荷所產生的效應。電位移\mathbf以方程式定義為 其中,\varepsilon_是電常數,\mathbf是電場,\mathbf是電極化強度。.

新!!: 真空电容率和電位移 · 查看更多 »

電磁波

#重定向 电磁辐射.

新!!: 真空电容率和電磁波 · 查看更多 »

電極化

在经典电磁学裏,當給電介質施加一個電場時,由於電介質內部正負電荷的相對位移,會產生電偶極子,這現象稱為電極化(electric polarization)。施加的電場可能是外電場,也可能是嵌入電介質內部的自由電荷所產生的電場。因為電極化而產生的電偶極子稱為“感應電偶極子”,其電偶極矩稱為“感應電偶極矩”。 電極化強度又稱為「電極化矢量」,定義為電介質內的電偶極矩密度,也就是單位體積的電偶極矩。這定義所指的電偶極矩包括永久電偶極矩和感應電偶極矩。它的國際單位制度量單位是庫侖每平方米(coulomb/m2),表示为矢量 P。McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3.

新!!: 真空电容率和電極化 · 查看更多 »

ISO 31

ISO 31(国际标准化组织1992年制定的质量与单位标准)是一个被国际广泛认可的物理量和量度单位的样式指引。全球的科学和教育文件中的公式都是参照这个标准列出的。大多数国家的数学和物理教科书中的符号都依据ISO 31给出的建议书写。该标准目前已被ISO/IEC 80000取代。.

新!!: 真空电容率和ISO 31 · 查看更多 »

波动方程

波动方程或稱波方程(wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 1746年,达朗贝尔发现了一维波动方程,欧拉在其后10年之内发现了三维波动方程。Speiser, David.

新!!: 真空电容率和波动方程 · 查看更多 »

法拉

法拉(farad)是电容的国际单位,简称法,单位符号为F。是一种国际单位制导出单位,是以发现电磁感应现象的英国物理学家迈克尔·法拉第(Michael Faraday)的名字而命名的。 由\mbox.

新!!: 真空电容率和法拉 · 查看更多 »

旋度

旋度(Curl)或稱回轉度(Rotation),是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。向量场每一点的旋度是一个向量,称为旋度向量。它的方向表示向量场在这一点附近旋度最大环量的旋转轴,它和向量场旋转的方向满足右手定则。旋度向量的大小则是这一点附近向量场旋转度的一个量化体现,定义为当绕着这个旋转轴旋转的环量与旋转路径围成的面元面积之比趋近于零时的极限。举例来说,假设一台滚筒洗衣机运行的时候,从前方看来,内部的水流是逆时针旋转,那么中心水流速度向量场的旋度就是朝前方向外的向量。.

新!!: 真空电容率和旋度 · 查看更多 »

重定向到这里:

Ε0真空介电常数真空介電係數真空介電常數電常數

传出传入
嘿!我们在Facebook上吧! »