徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

水星大氣

指数 水星大氣

水星大氣在水星形成之後,因為本身的引力不夠強大,加上高溫的影響,還有太陽風的吹拂,原始的大氣在短時間內就已經消失殆盡。儘管如此,現在還是有一層稀薄的大氣包圍著,成份有氫、氦、氧、鈉、鈣和鉀,綜合的大氣壓力約為10-15 帕(實際上是微不足道的)。.

20 关系: 太阳风帕斯卡二氧化碳引力自然 (期刊)水蒸气水星放射性

太阳风

太陽風(solar wind)特指由太阳上層大氣射出的超高速等离子体(带电粒子)流。非出自太陽的类似带电粒子流也常稱爲“恆星風”。 在太陽日冕层的高温(几百万開氏度)下,氢、氦等原子已经被電離成帶正電的质子、氦原子核和带负电的自由电子等。这些带电粒子运动速度极快,以致不断有带电的粒子挣脱太阳的引力束缚,射向太陽的外围,形成太陽風。 太陽風的速度一般在200-800km/s。 一般認為在太阳极小期,從太陽的磁場极地附近吹出的是高速太陽風,從太陽的磁场赤道附近吹出的是低速太陽風。太陽的磁場的活动是會變化的,週期大約為11年。 太陽風一词是在1950年代被尤金·派克提出。但是直到1960年代才證實了它的存在。長期觀測發現,當太陽存在冕洞時,地球附近就能觀測到高速的太陽風。因此天文学家認為高速太陽風的產生與冕洞有密切的關係。太阳表面的磁场及等离子体活动对地球有很重要的影响。当太阳发生强烈的活动时,大量的带电粒子随着太阳风吹向地球的两极,就会在两极的电离层引发美丽的极光。.

新!!: 水星大氣和太阳风 · 查看更多 »

帕斯卡

帕斯卡(符號Pa或Pascal)是國際單位制(SI)的壓強單位。在不致混淆的情況下也可簡稱為「帕」。它等於每平方米一牛頓。以法國學者(同時身兼數學家、物理學家、化學家、音樂家、宗教家、教育家、氣象學家、哲學家)布莱茲·帕斯卡之名而命名。百帕(hPa)和千帕(kPa)也是自Pa衍生出來的氣象常用單位,正常海平面約101kPa、或1013百帕。.

新!!: 水星大氣和帕斯卡 · 查看更多 »

二氧化碳

二氧化碳(IUPAC名:carbon dioxide,分子式:CO2)是空氣中常見的化合物,由两个氧原子与一个碳原子通过共价键连接而成。空氣中有微量的二氧化碳,約佔0.04%。二氧化碳略溶於水中,形成碳酸,碳酸是一種弱酸。 在二氧化碳分子中,碳原子的成键方式是sp杂化轨道与氧原子成键。碳原子的两个sp杂化轨道分别与两个氧原子生成两个σ键。碳原子上两个没有参加杂化(混成)的p轨道与成键的sp杂化轨道成90°的直角,并同氧原子的p轨道分别发生重叠,故缩短了碳氧键的间距。 二氧化碳平均约占大气体积的400ppm,不過每年因為人為的排放增加,比率還在逐步上升。2018年4月大氣二氧化碳月均濃度超過410ppm,為過去80萬年來最高。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。 二氧化碳常壓下為無色、無味、不助燃、不可燃的氣體。二氧化碳是一種溫室氣體。二氧化碳的濃度自1900年至2016年11月增長了約127ppm。.

新!!: 水星大氣和二氧化碳 · 查看更多 »

引力

重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.

新!!: 水星大氣和引力 · 查看更多 »

钠(Natrium,化学符号:Na)是一种化学元素,它的原子序数是11,相对原子质量为23。鈉单质不會在地球自然界中存在,因為鈉在空氣中會迅速氧化,並與水產生劇烈反應,所以常見於化合物中,元素狀態的鈉通常以特殊物質(如石蠟、煤油)保存,以防與空氣中的水份或氧氣產生化合物。.

新!!: 水星大氣和钠 · 查看更多 »

钾(Kalium,化学符号:K)是原子序数为19的化学元素,银白色有光泽的1A族碱金属元素,质软,和鈉的化學性質相似但更活泼。.

新!!: 水星大氣和钾 · 查看更多 »

钙(Calcium)是一種化学元素。其化学符号是Ca,原子序数是20。鈣是银白色的碱土金属,具有中等程度的軟性。雖然在地殼的含量也很高,為地殼中第五豐富的元素,占地殼總質量3%,因其化學活性頗高,可以和水或酸反應放出氫氣,或是在空氣中便可氧化(形成緻密氧化層(氧化鈣)),因此在自然界多以離子狀態或化合物形式存在,而沒有单质存在。在工業的主要礦物來源如石灰岩、石膏等,在建筑(水泥原料)、肥料、制鹼、和医疗上用途佷广。.

新!!: 水星大氣和钙 · 查看更多 »

自然 (期刊)

《自然》(Nature)是世界上最早的科学期刊之一,也是全世界最权威及最有名望的学术期刊之一,首版於1869年11月4日。虽然今天大多数科学期刊都专一於一个特殊的领域,《自然》是少数(其它类似期刊有《科学》和《美国国家科学院院刊》等)依然发表来自很多科学领域的一手研究论文的期刊。在许多科学研究领域中,每年最重要、最前沿的研究结果是在《自然》中以短文章的形式发表的。 《自然》的主要读者是从事研究工作的科学家,但期刊前部的文章概括使得一般公众也能理解期刊内最重要的文章。期刊开始部分的社论、新闻及专题文章报道科学家一般关心的事物,包括最新消息、研究资助、商业情况、科学道德和研究突破等。期刊也介绍与科学研究有关的书籍和艺术。期刊的其余部分主要是研究论文,这些论文往往非常紧密,非常具有技术性。 在《自然》上发表文章是非常光荣的,《自然》上的文章经常被引用,这有助于晋升、获得资助和获得主流媒体的关注。因此科学家之间在《自然》或《科学》上发表文章上的竞争非常强。但是与其它专业的科学杂志一样,在《自然》上发表的文章需要经过严格的同行评审。在发表前编辑选择其他在同一领域有威望的、但与作者无关的科学家来检查和评判文章的内容。作者要对评审做出的批评给予反应,比如更改文章内容,提供更多的试验结果,否则的话编辑可能拒绝该文章。.

新!!: 水星大氣和自然 (期刊) · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 水星大氣和氢 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

新!!: 水星大氣和氦 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 水星大氣和氧 · 查看更多 »

氩(Argon)是一种化学元素,在希臘語有「不活潑」的意思,由它的特性而來。Hiebert, E. N. Historical Remarks on the Discovery of Argon: The First Noble Gas.

新!!: 水星大氣和氩 · 查看更多 »

氪是一种化学元素,化学符号是Kr,原子序数是36,是一种无色、无臭、无味的惰性气体,把它放电时呈橙红色,在大气中含有痕量,可通过分馏从液态空气中分离,常用于制作荧光灯。氪正如其他惰性气体一样,不易与其他物质产生化学作用,已知的化合物有二氟化氪(KrF2)。 正如其他惰性气体,氪可用于照明和摄影。氪发出的光有大量谱线,并大量以等离子体的形态释出,这使氪成为制造高功率气体激光器的重要材料,另外也有特制的氟化氪激光。氪放电管功率高、操作容易,因此在1960年至1983年间,一米的定义是用氪86發出的橙色谱线作为基准的。.

新!!: 水星大氣和氪 · 查看更多 »

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

新!!: 水星大氣和氮 · 查看更多 »

水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.

新!!: 水星大氣和水 · 查看更多 »

水蒸气

水蒸氣(也称氛气),是水(H2O)的气体形式。当水达到沸点时,水就变成水蒸氣。水蒸气在空气中是无色的。在海平面一标准大气压下,水的沸点为100°C或212°F或373.15K。当水在沸点以下时,水也可以缓慢地蒸发成水蒸氣。而在極低壓環境下(小於0.006大气压),冰會直接升华變水蒸氣。水蒸气之密度为 0.59764 千克/立方米(100°C/212°F,101330Pa)。 水蒸氣可能會造成温室效应,是一种温室气体。.

新!!: 水星大氣和水蒸气 · 查看更多 »

水星

水星(Mercurius),中國古稱辰星;到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現辰星呈灰色,與「五行」學說聯繫在一起,以黑色配水星,因此正式把它命名為水星。 水星是太陽系的八大行星中最小和最靠近太陽的行星,但有著八大行星中最大的離心率 ,軌道週期是87.969 地球日。從地球上看,它大约116天左右與地球會合一次,公转速度遠遠超過太阳系的其它星球。水星的快速運動使它在羅馬神話中被稱為墨丘利,是快速飛行的信使神。由于大氣層极为稀薄,无法有效保存热量,水星表面昼夜温差极大,为太阳系行星之最。白天时赤道地區温度可达430°C,夜间可降至-170°C。極區气温則終年維持在-170°C以下。水星的軸傾斜是太陽系所有行星中最小的(大約度),但它有最大的軌道偏心率。水星在遠日點的距離大約是在近日點的1.5倍。水星表面充滿了大大小小的坑穴(環形山),外觀看起來與月球相似,顯示它的地質在數十億年來都處於非活動狀態。 水星无四季变化。它也是唯一被太陽潮汐鎖定的行星。相對於恆星,它每自轉三圈的時間與它在軌道上繞行太陽兩圈的時間几乎完全相等。從太陽看水星,參照它的自轉與軌道上的公轉運動,是每兩個水星年才一個太陽日。因此,对一位在水星上的觀測者来说,一天相当于兩年。 因為水星的軌道位於地球的內側(金星也一樣),所以它只能在晨昏之際與白天出現在天空中,而不會在子夜前後出現。同時,也像金星和月球一樣,在它繞著軌道相對於地球,會呈現一系列完整的相位。雖然从地球上觀察,水星會是一顆很明亮的天體,但它比金星更接近太陽,因此比金星還難看見。 從地球看水星的亮度有很大的變化,視星等從-2.3至5.7等,但是它與太陽的分離角度最大只有28.3°。當它最亮時,从技術角度上讲應該很容易就能從地球上看見它,但由于其距离太阳过近,實際上並不容易找到。除非有日全食,否則在太陽光的照耀下通常是看不見水星的。在北半球,只能在凌晨或黃昏的曙暮光中看見水星。當大距出現在赤道以南的緯度時,在南半球的中緯度可以在完全黑暗的天空中看見水星。 水星軌道的近日點每世紀比牛頓力學的預測多出43角秒的進動,這種現象直到20世紀才從愛因斯坦的廣義相對論得到解釋。.

新!!: 水星大氣和水星 · 查看更多 »

氖(舊譯作氝,訛作氞)是一种化学元素,它的化学符号是Ne,它的原子序数是10,是一种无色的稀有气体,把它放电时呈橙红色。氖最常用在霓红灯之中。空气中含有少量氖。.

新!!: 水星大氣和氖 · 查看更多 »

氙(注音:ㄒㄧㄢ,漢語拼音:xiān;舊譯作氠、氥、𣱧)是一種化學元素,化學符號為Xe,原子序為54。氙是一種無色、無味的稀有氣體。地球大氣層中含有痕量的氙。 雖然氙的化學活性很低,但是它仍然能夠進行化學反應,例如形成六氟合鉑酸氙──首個被合成的稀有氣體化合物。 自然產生的氙由8種穩定同位素組成。氙還有40多種能夠進行放射性衰變的不穩定同位素。氙同位素的相對比例對研究太陽系早期歷史有重要的作用。具放射性的氙-135是核反應爐中最重要的中子吸收劑,可通過碘-135的核衰变產生。 氙可用在閃光燈和弧燈中,或作全身麻醉藥。最早的准分子激光設計以氙的二聚體分子(Xe2)作為激光介質,而早期激光設計亦用氙閃光燈作激光抽運。氙還可以用來尋找大質量弱相互作用粒子,或作航天器離子推力器的推進劑。.

新!!: 水星大氣和氙 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

新!!: 水星大氣和放射性 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »