徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

薛定谔方程

指数 薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

141 关系: 动能原子原子軌道原子核偏微分方程反粒子向量奥地利威廉·哈密頓威廉·维恩定態宇宙对应原理密度泛函理論不变质量不确定性原理一次方程干涉平面波强相互作用彼得·德拜作用量微擾理論 (量子力學)分子分離變數法單位矩陣哥本哈根詮釋哈密頓-雅可比方程哈密頓-雅可比方程式哈密頓算符哈特里-福克方程共轭复数光子光电效应光速克莱因-戈尔登方程因式分解矩陣力學玻尔模型理查德·費曼磁量子数等值曲面精細結構粒子純量勢線性無關線性關係线性代数线性组合...统计学经典力学绝对值维尔纳·海森堡罗德里格公式电子無限深方形阱物質波牛頓第二運動定律牛顿运动定律狭义相对论狄拉克方程式相对论相位相位因子相速度隨機運動常數類氫原子衍射駐波角频率角量子数马克斯·普朗克譜線費馬原理质量路徑積分路徑積分表述路易·德布罗意軌道黑体辐射达朗贝尔算符运动方程能级能量能量守恒定律舊量子論阿尔伯特·爱因斯坦薛定谔猫薛定谔方程薛丁格繪景量子力学量子力學的數學表述量子力學詮釋量子场论量子化量子穿隧效應量子数量子態自旋自旋1/2苏黎世離心力零點能量電磁波電荷密度雙縫實驗虛數單位Α粒子Α衰变WKB 近似概率概率分布標準差機率幅正整數歸一條件氫原子決定論沃爾夫岡·包立泡利矩陣波包波函数波函數塌縮波前波動力學波矢波粒二象性波數洛伦兹变换期望值本徵函數最小作用量原理惠更斯-菲涅耳原理时间旋量拉普拉斯算子曲率普朗克-愛因斯坦關係式普朗克常数 扩展索引 (91 更多) »

动能

动能是物质运动时所得到的能量。它通常被定义成使某物体从静止状态至运动状态所做的功。由于运动是相对的,动能也是相对于某参照系而言。同一物体在不同的参照系会有不同的速率,也就是有不同的动能。动能的国际单位是焦耳(J),以基本单位表示是千克米平方每秒平方(kg·m2·s-2)。一个物体的动能只有在速率改变时才会改变。.

新!!: 薛定谔方程和动能 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 薛定谔方程和原子 · 查看更多 »

原子軌道

#重定向 原子轨道.

新!!: 薛定谔方程和原子軌道 · 查看更多 »

原子核

原子核(德语:Atomkern,英语:Atomic nucleus)是原子的组成部分,位于原子的中央,占有原子的大部分质量。組成原子核的有中子和質子。当周围有和其中质子等量的电子围绕时,构成的是原子。原子核極其渺小,如果将原子比作一座大廈,那麼原子核只有大廈裡的一張桌子那麼大。.

新!!: 薛定谔方程和原子核 · 查看更多 »

偏微分方程

偏微分方程(partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函數及其偏导數之間的關係。符合這個關係的函数是方程的解。 偏微分方程分為線性偏微分方程式與非線性偏微分方程式,常常有幾個解而且涉及額外的邊界條件。.

新!!: 薛定谔方程和偏微分方程 · 查看更多 »

反粒子

反粒子是相对于正常粒子而言的,它们的质量、寿命、自旋都与正常粒子相同,但是所有的内部相加性量子数(比如电荷、重子数、奇异数等)都与正常粒子大小相同、符号相反。有一些粒子的所有内部相加性量子数都为0,这样的粒子叫做纯中性粒子,反粒子就是它本身,比如光子、π0介子等。并不是粒子物理学中的每种粒子都有这种意义上的反粒子,中微子就没有反粒子,反微中子的定义与此不同。 反粒子的概念首先是1928年由英国物理学家狄拉克在他的空穴理论中提出的。1932年在宇宙射线中发现了正电子,证实了狄拉克的预言。1956年美国物理学家歐文·張伯倫(Owen Chamberlain)在劳伦斯-伯克利国家实验室发现了反质子。进一步的研究发现,狄拉克的空穴理论对玻色子不适用,因而不能解释所有的粒子和反粒子。根据量子场论,粒子被看作是场的激发态,而反粒子就是这种激发态对应的复共轭激发态。 如果反粒子按照通常粒子那样结合起来就形成了反原子。由反原子构成的物质就是反物质。.

新!!: 薛定谔方程和反粒子 · 查看更多 »

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

新!!: 薛定谔方程和向量 · 查看更多 »

奥地利

奥地利共和国()通稱奥地利(Österreich ),是一个位在於中歐的内陆国家,但在歷史上也被分類成西歐或者東歐的國家國。奧地利与多國接壤,东面是匈牙利和斯洛伐克,南面是意大利和斯洛文尼亚,西面是列支敦士登和瑞士,北面是德国和捷克。首都兼最大城市是維也納,人口超過170萬。國土面積,同時因阿爾卑斯山存在的緣故,奧地利成爲了一個山地國,只有32%的國土海拔低於,最高點海拔。 如今的奧地利是一個半總統制的代議民主國家,下含九個聯邦州。Lonnie Johnson 17奧地利是當今世界最富裕的國家之一,2012年的人均國民生產總值達到46,330美元。其人類發展指數在2014年排世界第21位。同時自1995年以來就是歐盟成員, 是OECD的創始國之一。1995年簽訂申根公約,1999年接受並于2002年起使用歐元。奧地利曾是統治中歐650年到1918年哈布斯堡王朝的核心部份,是神聖羅馬帝國和奧匈帝國的首都,並且奧地利在民族上屬於日耳曼民族的居住地,和德國、瑞士、盧森堡同為德語區,在歷史上和中歐東歐的的匈牙利、捷克、波蘭都有緊密的關聯。.

新!!: 薛定谔方程和奥地利 · 查看更多 »

威廉·哈密頓

威廉·哈密顿爵士(Sir William Rowan Hamilton,),愛爾蘭數學家、物理學家及天文學家。哈密顿最大的成就或许在於重新表述了牛顿力学,创立被称为哈密顿力学的力学表述。他的成果后在量子力学的发展中起到核心作用。哈密顿还对光学和代数的发展提供了重要的贡献,因为发现四元数而闻名。 他的妻子海倫·瑪俐亞·貝雷是一個牧師的女兒。哈密顿死於1865年9月2日,被安葬在都柏林杰羅姆山公墓。.

新!!: 薛定谔方程和威廉·哈密頓 · 查看更多 »

威廉·维恩

威廉·卡尔·维尔纳·奥托·弗里茨·弗兰茨·维恩(Wilhelm Carl Werner Otto Fritz Franz Wien,),德國物理學家,研究領域為熱輻射與電磁學等。1893年,維恩經由熱力學、光譜學、電磁學和光學等理論支援,發現了維恩位移定律,並應用於黑體等學術理論,揭開量子力學新領域。1911年,他因對於熱輻射等物理法則貢獻,而獲得諾貝爾物理學獎。.

新!!: 薛定谔方程和威廉·维恩 · 查看更多 »

定態

在量子力學裏,定態(stationary state)是一種量子態,定態的機率密度與時間無關。以方程式表式,定態的機率密度對於時間的導數為 其中,\Psi(x,\,t) 是定態的波函數,x 是位置,t 是時間 。 設定一個量子系統的含時薛丁格方程式為 其中,\hbar 是約化普朗克常數,m 是質量,V(x) 是位勢。 這個方程式有一個定態的波函數解: 其中,\psi(x) 是 \Psi(x,\,t) 的不含時間部分,E 是能量。 將這定態波函數代入含時薛丁格方程式,則可除去時間關係: 這是一個不含時薛丁格方程式,可以用來求得本徵能量 E 與伴隨的本徵函數 \psi_E(x) 。定態的能量都是明確的,是定態薛丁格方程式的本徵能量 E ,波函數 \psi(x) 是定態薛丁格方程式的本徵函數 \psi_E(x) 。.

新!!: 薛定谔方程和定態 · 查看更多 »

宇宙

宇宙(Universe)是所有時間、空間與其包含的內容物所構成的統一體;它包含了行星、恆星、星系、星系際空間、次原子粒子以及所有的物質與能量,宇指空間,宙指時間。目前人類可觀測到的宇宙,其距離大約為;而整個宇宙的大小可能為無限大,但未有定論。物理理論的發展與對宇宙的觀察,引領著人類進行宇宙構成與演化的推論。 根據歷史記載,人類曾經提出宇宙學、天體演化學與,解釋人們對於宇宙的觀察。最早的理論為地心說,由古希臘哲學家與印度哲學家所提出。數世紀以來,逐漸精確的天文觀察,引領尼古拉斯·哥白尼提出以太陽系為主的日心說,以及經約翰內斯·克卜勒改良的橢圓軌道模型;最終艾薩克·牛頓的重力定律解釋了前述的理論。後來觀察方法逐漸改良,引領人類意識到太陽系位於數十億恆星所形成的星系,稱為銀河系;隨後更發現,銀河系只是眾多星系之一。在最大尺度範圍上,人們假定星系的分布,且各星系在各個方向之間的距離皆相同,這代表著宇宙既沒有邊緣,也沒有所謂的中心。透過星系分布與譜線的觀察,產生了許多現代物理宇宙學的理論。20世紀前期,人們發現到星系具有系統性的紅移現象,表明宇宙正在;藉由宇宙微波背景輻射的觀察,表明宇宙具有起源。最後,1990年代後期的觀察,發現宇宙的膨脹速率正在加快,顯示有可能存在一股未知的巨大能量促使宇宙加速膨脹,稱做暗能量。而宇宙的大多數質量則以一種未知的形式存在著,稱做暗物質。 大爆炸理論是當前描述宇宙發展的宇宙學模型。目前主流模型,推測宇宙年齡為。大爆炸產生了空間與時間,充滿了定量的物質與能量;當宇宙開始膨脹時,物質與能量的密度也開始降低。在初期膨脹過後,宇宙開始大幅冷卻,引發第一波次原子粒子的組成,稍後則合成為簡單的原子。這些原始元素所組成的巨大星雲,藉由重力結合起來形成恆星。 目前有各種假說正競相描述著宇宙的終極命運。物理學家與哲學家仍不確定在大爆炸前是否存在任何事物;許多人拒絕推測與懷疑大爆炸之前的狀態是否可偵測。目前也存在各種多重宇宙的說法,其中部分科學家認為可能存在著與現今宇宙相似的眾多宇宙,而現今的宇宙只是其中之一。.

新!!: 薛定谔方程和宇宙 · 查看更多 »

对应原理

對應原理(correspondence principle)表明,在大量子數極限下,量子物理對於物理系統所給出的預測應該符合經典物理的預測。更仔細地說,為了在微觀層級正確地描述物質而對於經典理論做出的任何修改,其所獲得的結果當延伸至宏觀層級時,必須符合通過多次實驗檢試的經典定律。 尼爾斯·玻爾於1920年表述出對應原理,但他先前於1913年在發展原子的玻爾模型時,就已經使用到這原理。 更廣義地,對應原理代表一種信念,即在大量子數極限下,新理論應該能夠在舊理論的工作區域內複製已建立的舊理論。 經典物理量是以可觀察量的期望值的形式出現於量子力學。埃倫費斯特定理展示出,在量子力學裏,可觀察量的期望值隨著時間流易的演化方式,這演化方式貌似經典演化方式。因此,假若將經典物理量與可觀察量的期望值關聯在一起,則對應原理是埃倫費斯特定理的後果。.

新!!: 薛定谔方程和对应原理 · 查看更多 »

密度泛函理論

密度泛函理论 (Density functional theory (DFT))是一种研究多电子体系电子结构的量子力学方法。密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。.

新!!: 薛定谔方程和密度泛函理論 · 查看更多 »

不变质量

不变质量(invariant mass)或称内秉质量(intrinsic mass)、固有质量(proper mass),亦常简称为质量,指的是一个物体或一个物体系统由总能量和动量构成的在所有参考系下都相同的一个洛仑兹不变量。当这个系统作为整体保持静止时,不变质量等于系统的总能量除以光速的平方,这也等于这个系统在一个与之相对静止的秤上称得的质量。如果系统由一个单一粒子组成,不变质量也称作这个粒子的静止质量。 由于一个孤立系统的质心总保持匀速直线运动,因此观察者总可以选择这样一个参考系,使系统在这一参考系中的总动量为零,即相对这个参考系为静止。这样的参考系称作质心系,这时系统的不变质量就等于系统的总能量除以光速的平方。这个於质心系下的总能量,可以被看作是系统在不同惯性系下可能被观测到所具有能量的“最小值”。 在多粒子系统的情形下,质心系中的粒子彼此之间可能会存在相对运动,并有可能存在一种或多种基本相互作用。这时粒子的动能和力场的势能会增大系统的总能量,使之大于所有粒子的静止质量之和,这部分能量也对系统的不变质量有贡献。.

新!!: 薛定谔方程和不变质量 · 查看更多 »

不确定性原理

在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。.

新!!: 薛定谔方程和不确定性原理 · 查看更多 »

一次方程

一次方程式也被称为线性方程,因为在笛卡儿坐标系上任何一个一次方程的表示都是一条直线。组成一次方程的每个项必须是常数或者是一个常数和一个变量的乘积。且方程中必须包含一个变量,因为如果没有变量只有常数的式子是代数式而非方程式。 如果一个一次方程中只包含一个变量(x),那么该方程就是一元一次方程。如果包含两个变量(x和y),那么就是一个二元一次方程,以此类推。.

新!!: 薛定谔方程和一次方程 · 查看更多 »

干涉

干涉可以指:.

新!!: 薛定谔方程和干涉 · 查看更多 »

平面波

在三維空間裏,平面波(plane wave)是一種波動,其波阵面(在任何時刻,波相位相等的每一點所形成的曲面)是相互平行的平面。平面波的傳播方向垂直於波前。假若平面波的振幅不是常數,例如,振幅是位置的函數,則稱此種平面波為「非均勻平面波」。 加以延伸,平面波這術語時常用來形容,在空間的一個局部區域裏,近似於平面波的波動。例如,一個局部區域波源,像發射無線電波的天線,所發射出的電磁波,在可以近似為平面波。等價地說,對於在一個均勻介質內,波的傳播距離超長於波長的案例,在幾何光學的正確極限內,射線區域性地對應於近似平面波。.

新!!: 薛定谔方程和平面波 · 查看更多 »

强相互作用

强相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离第二短的(大约在 10-15 m 范围内,比弱交互作用的範圍大)。另外三种相互作用分别是引力、电磁力及弱相互作用。核子间的核力就是强相互作用。它抵抗了质子之间的强大的电磁力,维持了原子核的稳定。强相互作用也將夸克基本粒子結合成為質子及中子等強子,這也是組成大部份物質的粒子。而且一般質子或中子裡,大部份的質能是以强相互作用場能量的形式存在,夸克只提供了1%的質能。 强相互作用可以在二個地方看到:較大的尺度(約1至3飛米)下,强相互作用將質子及中子結合成為原子的原子核,較小的尺度(約0.8飛米,約為核子的尺寸)下,强相互作用將夸克結合,成為質子、中子或其他強子。强相互作用的作用力非常強,大到束縛一個夸克的能量可以轉換為新的夸克對的質量,强相互作用的這個性質稱為夸克禁閉。 强相互作用是唯一強度不會隨距離減小的作用力,但因為夸克禁閉,夸克會限制和其他夸克在一起,形成的強子之間會有殘留的强相互作用,也稱為核力,核力會隨距離而迅速減少。撞擊原子核釋放的部份束縛能和產生的核力有關,而核力也用在核能及核融合式的核武器中。 强相互作用一般認為是由膠子傳遞的,膠子會在夸克、反夸克及其他膠子之間交換。膠子會帶有色荷,色荷和人眼可見的顏色完全沒有關係,色荷類似電荷,但色荷有六種(紅、綠、藍、反紅、反綠、反藍),因此會形成不同的力,有不同的規則,在量子色動力學(QCD)中有描述,這也是夸克-膠子交互作用的基礎。吳秀蘭等科學家對膠子發現有很大貢獻的科學家,在1995年因此获得了欧洲物理学会髙能和粒子物理奖。 在大爆炸後,電弱時期時,電弱交互作用和强相互作用分離,統一弱交互作用和電磁交互作用的電弱統一理論已經獲得實驗證實。科學家進一步預期有一個大統一理論可以統一電弱交互作用及强相互作用,現今有許多是大統一理論的理論,第一個是哈沃德·乔吉和谢尔登·格拉肖于1974年提出了最早的SU(5)大统一理论,但和實驗不合,其他的理論有SO(10)模型、,但還沒有一個是廣為科學家接受,且有實驗證實的理論,而且許多大統一理論都預言質子衰變,但目前也還沒有實驗支持,大統一理論也還是未解決的物理學問題之一。.

新!!: 薛定谔方程和强相互作用 · 查看更多 »

彼得·德拜

彼得鲁斯·约瑟夫斯·威廉默斯·德拜(Petrus Josephus Wilhelmus Debije,)后改名为彼得·约瑟夫·威廉·德拜(Peter Joseph William Debye),荷兰物理学家与物理化学家,1936年诺贝尔化学奖获得者。.

新!!: 薛定谔方程和彼得·德拜 · 查看更多 »

作用量

在物理學裏,作用量(英语:action)是一個很特別、很抽象的物理量。它表示著一個動力物理系統內在的演化趨向。雖然與微分方程式方法大不相同,作用量也可以被用來分析物理系統的運動,所得到的答案是相同的。只需要設定系統在兩個點的狀態,初始狀態與最終狀態,然後,經過求解作用量的平穩值,就可以得到系統在兩個點之間每個點的狀態。.

新!!: 薛定谔方程和作用量 · 查看更多 »

微擾理論 (量子力學)

量子力學的微擾理論(perturbation theory)引用一些數學的微扰理论的近似方法於量子力學。當遇到比較複雜的量子系統時,這些方法試著將複雜的量子系統簡單化或理想化,變成為有精確解的量子系統,再應用理想化的量子系統的精確解,來解析複雜的量子系統。微扰理论从可以获得精确解或易于得到近似解的相对简单体系出发,在這簡單系統的哈密頓量(Hamiltonian)裏,加上一個很弱的微擾,變成了較複雜系統的哈密頓量。假若這微擾不是很大,複雜系統的許多物理性質(例如,能級,量子態)可以表達為簡單系統的物理性質加上一些修正。這樣,從研究比較簡單的量子系統所得到的知識,可以進而研究比較複雜的量子系統。 微擾理論可以分為兩類,不含時微擾理論(Time-independent perturbation theory)與含時微擾理論(Time-dependent perturbation theory)。在不含時微擾理論中,哈密顿量的微扰项不显含時間;而含時微擾理論的微擾哈密頓量含時間,詳見含時微擾理論。本篇文章只講述不含時微擾理論。此後凡提到微擾理論,皆指不含時微擾理論。.

新!!: 薛定谔方程和微擾理論 (量子力學) · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

新!!: 薛定谔方程和分子 · 查看更多 »

分離變數法

數學上,分離變數法是一種解析常微分方程或偏微分方程的方法。使用這方法,可以藉代數來將方程式重新編排,讓方程式的一部分只含有一個變數,而剩餘部分則跟此變數無關。這樣,隔離出的兩個部分的值,都分別等於常數,而兩個部分的值的代數和等於零。.

新!!: 薛定谔方程和分離變數法 · 查看更多 »

單位矩陣

在線性代數中,n階單位矩陣,是一個n \times n的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以I_n表示;如果階數可忽略,或可由前後文確定的話,也可簡記為I(或者E)。(在部分領域中,如量子力學,單位矩陣是以粗體字的1表示,否則無法與I作區別。) I_1.

新!!: 薛定谔方程和單位矩陣 · 查看更多 »

哥本哈根詮釋

哥本哈根詮釋(Copenhagen interpretation)是量子力學的一種詮釋。根據哥本哈根詮釋,在量子力學裏,量子系統的量子態,可以用波函數來描述,這是量子力學的一個關鍵特色,波函數是個數學函數,專門用來計算粒子在某位置或處於某種運動狀態的機率,測量的動作造成了波函數塌縮,原本的量子態機率地塌縮成一個測量所允許的量子態。 二十世紀早期,從一些關於小尺寸微觀物理的實驗裏,物理學家發現了很多新穎的量子現象。對於這些實驗結果,古典物理完全無法解釋。替而代之,物理學家提出了一些嶄新的理論。而這些理論能夠非常精確地解釋新發現的量子現象。但是,內嵌於這些經驗理論的,是一種關於小尺度真實世界的新模型。它們所給予的預測,常使物理學家覺得相當地反直覺。甚至它們的發現者都感受到極其驚訝。哥本哈根詮釋嘗試著,在實驗證據的範圍內,給予實驗結果和相關理論表述一個合理的解釋。換句話說,它試著回答一個問題:這些奇妙的實驗結果到底有什麼意義? 哥本哈根詮釋主要是由尼爾斯·波耳和維爾納·海森堡于1927年在哥本哈根合作研究时共同提出的。此詮釋延伸了由德国数学家、物理学家馬克斯·玻恩所提出的波函数的機率表述,之后发展为著名的不确定性原理。他們所提的詮釋嘗試要對一些量子力學所帶來的複雜問題提出回答,比如波粒二象性以及測量問題。此后,量子理论中的概率特性便不再是猜想,而是作为一条定律而存在了。量子论以及这条詮釋在整个自然科学以及哲学的发展和研究中都起着非常显著的作用。 哥本哈根詮釋給予了量子系統的量子行為一個精簡又易懂的解釋。1997年,在一場量子力學研討會上,舉行了一個關於詮釋論題的意向調查,根據這調查的結果,超過半數的物理學家對哥本哈根詮釋感到滿意;第二多的是多世界詮釋。雖然當前的傾向顯示出其它的詮釋也具有相當的競爭力,在20世紀期間,大多數的物理學家都願意接受哥本哈根詮釋。.

新!!: 薛定谔方程和哥本哈根詮釋 · 查看更多 »

哈密頓-雅可比方程

#重定向 哈密頓-雅可比方程式.

新!!: 薛定谔方程和哈密頓-雅可比方程 · 查看更多 »

哈密頓-雅可比方程式

在物理學裏,哈密頓-雅可比方程 (Hamilton-Jacobi equation,HJE) 是經典力學的一種表述。哈密顿-雅可比方程、牛頓力學、拉格朗日力學、哈密頓力學,這幾個表述是互相全等的。而哈密顿-雅可比方程在辨明守恆的物理量方面,特別有用處。有時候,雖然物理問題的本身無法完全解析,哈密顿-雅可比方程仍舊能夠正確的辨明守恆的物理量。 HJE 是经典哈密顿量一个正则变换,经过该变换得到的结果是一个一阶非线性偏微分方程,方程式之解描述了系统的行为。与哈密顿运动方程的不同之处在于 HJE 是一个偏微分方程,每个变量对应于一个坐标,而哈密顿方程是一个一阶线性方程组,每两个方程对应于一个坐标。HJE 可以漂亮地解析一些重要问题,例如开普勒问题。 HJE 是唯一能夠將粒子運動表達為波動的一種力學表述。因此,HJE 滿足了一個長久以來理論物理的研究目標(早至 18 世紀,約翰·白努利和他的學生皮埃爾·莫佩爾蒂的年代);那就是,尋找波傳播與粒子運動的相似之處。力學系統的波動方程式與薛丁格方程式很相似;但並不相同。稍後會有詳細說明。HJE 被認為是從經典力學進入量子力學最近的門階。.

新!!: 薛定谔方程和哈密頓-雅可比方程式 · 查看更多 »

哈密頓算符

#重定向 哈密顿算符.

新!!: 薛定谔方程和哈密頓算符 · 查看更多 »

哈特里-福克方程

#重定向 哈特里-福克方程.

新!!: 薛定谔方程和哈特里-福克方程 · 查看更多 »

共轭复数

在數學中,複數的複共軛(常簡稱共軛)是對虛部變號的運算,因此一個複數 的複共軛是 舉例明之: 在複數的極坐標表法下,複共軛寫成 這點可以透過歐拉公式驗證 將複數理解為複平面,則複共軛無非是對實軸的反射。複數z的複共軛有時也表為z^*。.

新!!: 薛定谔方程和共轭复数 · 查看更多 »

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。.

新!!: 薛定谔方程和光 · 查看更多 »

光子

| mean_lifetime.

新!!: 薛定谔方程和光子 · 查看更多 »

光电效应

光电效应(Photoelectric Effect)是指光束照射物体时會使其發射出電子的物理效應。發射出來的電子稱為「光電子」。 1887年,德國物理學者海因里希·赫茲發現,紫外線照射到金屬電極上,可以幫助產生電火花。(On an effect of ultra-violet light upon the electric discharge)1905年,阿爾伯特·愛因斯坦發表論文《关于光产生和转变的一个启发性观点》,給出了光電效應實驗數據的理论解釋。愛因斯坦主張,光的能量并非均匀分布,而是負載於離散的光量子(光子),而這光子的能量和其所組成的光的頻率有關。這个突破性的理論不但能够解释光电效应,也推动了量子力學的诞生。由於「他對理論物理學的成就,特別是光電效應定律的發現」,愛因斯坦獲頒1921年諾貝爾物理學獎。 在研究光電效應的过程中,物理學者对光子的量子性質有了更加深入的了解,这對波粒二象性概念的提出有重大影響。除了光電效應以外,在其它現象裏,光子束也會影響電子的運動,包括光電導效應、光伏效應、光電化學效應(photoelectrochemical effect)。 根據波粒二象性,光電效應也可以用波動概念來分析,完全不需用到光子概念。威利斯·蘭姆與馬蘭·斯考立(Marlan Scully)於1969年使用半經典方法證明光電效應,這方法將電子的行為量子化,又將光視為純粹經典電磁波,完全不考慮光是由光子組成的概念。.

新!!: 薛定谔方程和光电效应 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

新!!: 薛定谔方程和光速 · 查看更多 »

克莱因-戈尔登方程

克莱因-戈尔登方程式(Klein-Gordon equation)是相对论量子力学和量子场论中的最基本方程式,它是薛定谔方程式的狭义相对论形式,用于描述自旋为零的粒子。克莱因-戈尔登方程式是由瑞典理论物理学家奥斯卡·克莱因和德国人沃尔特·戈尔登于二十世纪二三十年代分别独立推导得出的。.

新!!: 薛定谔方程和克莱因-戈尔登方程 · 查看更多 »

因式分解

因式分解(factorization,factorisation,或factoring),在數學中一般理解為把一個多項式分解為兩個或多個的因式(因式亦為多項式)的過程。在這個過後會得出一堆較原式簡單的多項式的積。例如多項式x^2 -4可被因式分解為\left(x+2 \right) \left(x-2 \right)。.

新!!: 薛定谔方程和因式分解 · 查看更多 »

矩陣力學

矩陣力學是量子力學其中一種的表述形式,它是由海森堡、玻恩和约尔当(P.

新!!: 薛定谔方程和矩陣力學 · 查看更多 »

玻尔模型

玻尔模型是丹麦物理学家尼尔斯·玻尔于1913年提出的关于氢原子结构的模型。玻尔模型引入量子化的概念,使用经典力学研究原子内电子的运动,合理地解释了氢原子光谱和元素周期表,取得了巨大的成功。玻尔模型是20世纪初期物理学取得的重要成就,对原子物理学产生了深远的影响。.

新!!: 薛定谔方程和玻尔模型 · 查看更多 »

理查德·費曼

查德·菲利普斯·費曼(Richard Phillips Feynman,),美國理论物理學家,量子电动力学创始人之一,纳米技术之父。由費曼提出或完善的费曼图、费曼规则(Feynman rules)和重整化计算方法是研究量子电动力学和粒子物理学的重要工具。费曼个性十足,爱出风头,平易近人且喜爱搞怪,有很多逸闻流传于世。在1999年英國雜誌《》对全球130名領先物理學家的民意調查中,他被評為有史以來10位最偉大的物理學家之一。費曼父母皆為立陶宛猶太人,來自白俄羅斯,然而費曼本人是無神論者。 费曼业余爱好广泛,如打邦哥鼓、破译玛雅文明的象形文字、研究如何撬開保险櫃的鎖及逛脱衣舞厅等。他自己搜罗了不少这类故事,整理成了自传《别闹了,费曼先生!》。该书后來成为畅销大众读物。费曼是少数几个在大众心目中形象生动鲜活的前沿科学家之一。.

新!!: 薛定谔方程和理查德·費曼 · 查看更多 »

磁量子数

磁量子数(Magnetic quantum number)是电子运动角量子数在Z轴投影的量子数。 因为电子旋转相当于圆圈电流,它必定会产生磁场,形成轨道磁矩,在磁场作用下将有不同的取向。这一点是由塞曼()在1896年用实验证明的。量子力学波函数方程的解能够解释这个实验结果。所有这三个量子数,都取整数值,互相有制约。角量子数不能超过主量子数,磁量子数不能超过角量子数。.

新!!: 薛定谔方程和磁量子数 · 查看更多 »

等值曲面

等值曲面是一種曲面。在空間裏,假若,每一點都有一個設定的值。這值可能是壓力、溫度、速度、密度。那麼,一個等值曲面所包含的每一個點,其設定值是一樣的。換句話說,以三維空間為定義域的連續函數,其每一個水平集都是一個等值曲面。 應用計算機圖形學,我們可以簡易地顯示出等值曲面的線框圖或明暗圖。在計算流體力學裏,數據視覺化方法時常會用等值曲面來表示流體(液體或氣體)流過物體時的瞬時狀態。這是工程師研究發展新科技的一個利器。他們可以觀察一個系統在任何時間的狀態,從而發現其中奧秘。例如,等值曲面可以代表超音速飛行的單獨震波。或者,我們可以製造幾個等值曲面來代表,當空氣流過飛機翅膀時,隨著時間演變的一系列壓力值。 面對著一大堆三維空間的數據,一個明智又受歡迎的選擇,就是採用等值曲面為數據視覺化的主要形式。簡單的多邊形造型渲染的等值曲面,不需要用到很多的中央處理單元的資源,就能夠迅速的計算出所要顯示的圖形。 在醫學影像裏,三維的電腦斷層掃描用等值曲面來代表一個密度值區的部位。這樣,我們可以將內部器官、骨頭、等等,這些結構視覺化。.

新!!: 薛定谔方程和等值曲面 · 查看更多 »

精細結構

在原子物理學裏,因為一階相對論性效應,與自旋-軌道耦合,而產生的原子譜線分裂,稱為精細結構。 非相對論性、不考慮自旋的電子產生的譜線稱為粗略結構。類氫原子的粗略結構只與主量子數n\,\!有關;更精確的模型,考慮到相對論效應與自旋-軌道效應,能夠分解能級的簡併,使譜線能更精細地分裂。相對於粗略結構,精細結構是一個(Z\alpha)^\,\!效應;其中,Z\,\!是原子序數,\alpha\,\!是精細結構常數。 精細結構修正包括相對論性的動能修正與自旋-軌道修正。整個哈密頓量H\,\!是 其中,H^\,\!是零微擾哈密頓量,H_\,\!是動能修正,H_\,\!是自旋-軌道修正。.

新!!: 薛定谔方程和精細結構 · 查看更多 »

粒子

物理科學中,粒子為佔有微小局域的物体,能夠以數個物理性质或化学性质,如体积或质量加以描述。.

新!!: 薛定谔方程和粒子 · 查看更多 »

純量勢

純量勢或稱純量位,在向量分析與物理學中是一個基本概念(形容詞「純量」常被省略,只要不會與向量勢發生混淆)。給定一向量場F,其純量勢V為一純量場;對此純量場取負值梯度則得到F: 相反過來,給定一函數V,這個式子定義了一個向量場F,其純量勢為V。純量勢也常常標記為希臘字母Φ,比如在電動力學的場合。 純量勢的物理意義和場的類型有關。對一流體或氣體流的向量場,定義純量勢暗示了任一點的流向與該點純量勢的最陡降方向相同,而對於力場,在一點的加速度也是一樣的情況。力場的純量勢跟力場的勢能(或稱位能)密切相關。 不是每個向量場都有一純量勢;有純量勢的向量場稱作是保守向量場,相應於物理學中保守力的稱呼。在各種速度場中,任何的層狀場(lamellar field)皆有一純量勢,而一螺線向量場可有純量勢的情況只發生在拉普拉斯場(Laplacian field)。 C C Category:场论 fr:Champ de vecteurs#Champ de gradient.

新!!: 薛定谔方程和純量勢 · 查看更多 »

線性無關

在線性代數裡,向量空間的一組元素中,若沒有向量可用有限個其他向量的線性組合所表示,则稱為線--性無關或線--性獨立(linearly independent),反之稱為線性相關(linearly dependent)。例如在三維歐幾里得空間R3的三個向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)線性無關。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)線性相關,因為第三個是前兩個的和。.

新!!: 薛定谔方程和線性無關 · 查看更多 »

線性關係

在现代学术界中,線性關係一詞存在2种不同的含义。其一,若某數學函數或数量关系的函数图形呈現為一條直線或線段,那么这种关系就是一种線性的關係。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。.

新!!: 薛定谔方程和線性關係 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

新!!: 薛定谔方程和线性代数 · 查看更多 »

线性组合

線性組合(Linear combination)是線性代數中具有如下形式的表达式。其中v_i为任意类型的项,a_i为标量。這些純量稱為線性組合的係數或權。.

新!!: 薛定谔方程和线性组合 · 查看更多 »

统计学

统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

新!!: 薛定谔方程和统计学 · 查看更多 »

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

新!!: 薛定谔方程和经典力学 · 查看更多 »

绝对值

絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.

新!!: 薛定谔方程和绝对值 · 查看更多 »

维尔纳·海森堡

维尔纳·海森堡(Werner Heisenberg,),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。1932年,海森堡因為“创立量子力学以及由此导致的氢的同素异形体的发现”而榮获诺贝尔物理学奖。 他对物理学的主要贡献是给出了量子力学的矩阵形式(矩阵力学),提出了“不确定性原理”(又称“海森堡不确定性原理”)和S矩阵理论等。他的《量子论的物理学原理》是量子力学领域的一部經典著作。.

新!!: 薛定谔方程和维尔纳·海森堡 · 查看更多 »

罗德里格公式

罗德里格公式(Rodrigues' formula)是通过对某些函数进行反复的求导以获得一个表达式序列的公式。该公式典型的应用是在正交多项式的推导中,如对于某两个函数W、Q和常数an,能得到以下正交多项式序列: 此公式由法国数学家最早得出。 Category:數學公式.

新!!: 薛定谔方程和罗德里格公式 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 薛定谔方程和电子 · 查看更多 »

無限深方形阱

在物理學裏,無限深方形阱(infinite square potential),又稱為無限深位勢阱(infinite potential well),是一個阱內位勢為 0 ,阱外位勢為無限大的位勢阱。思考一個或多個粒子,永遠地束縛於無限深位勢阱內,無法逃出。關於這些粒子的量子行為的問題,稱為無限深方形阱問題,又稱為無限深位勢阱問題,盒中粒子問題(particle in a box problem),是一個理論問題。假若,阱內只有一個粒子,則稱為單粒子無限深方形阱問題。假若,阱內有兩個粒子,則稱為雙粒子無限深方形阱問題。假若,這兩個粒子是完全相同的粒子,則問題又複雜許多,稱為雙全同粒子無限深方形阱問題。在這裏,只討論單粒子無限深方形阱問題。 在經典力學裏,應用牛頓運動定律,可以非常容易地求得無限深方形阱問題的解答。假設粒子與阱壁的碰撞是彈性碰撞,粒子的動能保持不變。則這粒子在方形阱的兩阱壁之間來回移動,碰撞來,碰撞去,而速率始終保持不變。在任意時間,粒子在阱內各個位置的機率是均勻的。 在量子力學裏,這問題突然變得很有意思。許多基要的概念,在這問題的解析中,呈現了出來。由於問題的理想化與簡易化,應用薛丁格方程,可以很容易地,雖然並不是很直覺地,求得解答。滿足這薛丁格方程的能量本徵函數,是表達粒子量子態的波函數。每一個能量本徵函數的能量,只能是離散能級譜中的一個能級。很令人驚訝的是,離散能級譜中最小的能級不是 0 ,而是一個有限值,稱為零點能量!這系統的最小能級量子態的能級不是 0 。 更加地,假若測量粒子的位置,則會發現粒子在阱內各個位置的機率大不相同。在有些位置,找到粒子的機率是 0 ,絕對找不到粒子。這些結果與經典力學的答案迥然不同。可是,這些結果所根據的原理,早已在許多精心設計的實驗中,廣泛地證明是正確無誤的。.

新!!: 薛定谔方程和無限深方形阱 · 查看更多 »

物質波

物理学中,物質波(即德布羅意波)係指所有物質的波(见波粒二象性)。 德布羅意說明了波長和動量成反比;頻率和總能成正比之關係,是路易·德布羅意於1923年在他的博士論文提出的。 第一德布羅意方程指出,粒子波長λ(亦稱「德布羅意波長」)和動量p的關係:(下式中普朗克常數h、粒子靜質量m、粒子速度v、勞侖茲因子γ和真空光速c) 第二德布羅意方程指出頻率ν和總能E的關係: 這兩個式子通常寫作.

新!!: 薛定谔方程和物質波 · 查看更多 »

牛頓第二運動定律

牛頓第二運動定律(Newton's second law of motion)闡明,物體的加速度與所受的凈力成正比,與質量成反比,物體的加速度與凈力同方向。 牛頓第二定律亦可以表述為「物体的动量对时间的变化率和所受外力成正比」。即动量对时间的一阶导数等于外力。.

新!!: 薛定谔方程和牛頓第二運動定律 · 查看更多 »

牛顿运动定律

牛頓運動定律(Newton's laws of motion)描述物體與力之間的關係,被譽為是經典力學的基礎。這定律是英國物理泰斗艾薩克·牛頓所提出的三條運動定律的總稱,其現代版本通常這樣表述:.

新!!: 薛定谔方程和牛顿运动定律 · 查看更多 »

狭义相对论

-- 狭义相对论(英文:Special relativity)是由爱因斯坦、洛仑兹和庞加莱等人创立的,應用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦在1905年完成的《論動體的電動力學》論文中提出了狭义相对论Albert Einstein (1905) "", Annalen der Physik 17: 891; 英文翻譯為George Barker Jeffery和 Wilfrid Perrett翻譯的(1923); 另一版英文翻譯為Megh Nad Saha翻譯的On the Electrodynamics of Moving Bodies(1920).

新!!: 薛定谔方程和狭义相对论 · 查看更多 »

狄拉克方程式

論物理中,相對於薛丁格方程式之於非相對論量子力學,狄拉克方程式是相對論量子力學的一項描述自旋-½粒子的波函數方程式,由英国物理学家保羅·狄拉克於1928年建立,不帶矛盾地同時遵守了狹義相對論與量子力學兩者的原理,实则为薛定谔方程的洛伦兹协变式。這條方程預言了反粒子的存在,隨後1932年由卡爾·安德森發現了正电子(positron)而證實。 帶有自旋-½的自由粒子的狄拉克方程式的形式如下: 其中m \,是自旋-½粒子的質量,\mathbf與t分別是空間和時間的座標。.

新!!: 薛定谔方程和狄拉克方程式 · 查看更多 »

相对论

对论(Theory of relativity)是关于时空和引力的理论,主要由愛因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。.

新!!: 薛定谔方程和相对论 · 查看更多 »

相位

位(phase),是描述訊號波形變化的度量,通常以度(角度)作為單位,也稱作相角或相。當訊號波形以週期的方式變化,波形循環一周即為360º。常應用在科學領域,如數學、物理學、電學等。.

新!!: 薛定谔方程和相位 · 查看更多 »

相位因子

在量子力學裏,相位因子是一個絕對值為 1 的複數因子。假若,兩個量子態 |\psi_1\rangle\,\! 與 |\psi_2\rangle\,\! 的機率相等: 則這兩個量子態只差別於相位因子 e^\,\! ,也就是說,|\psi_1\rangle.

新!!: 薛定谔方程和相位因子 · 查看更多 »

相速度

波的相速度或相位速度(phase velocity),或簡稱相速,是指波的相位在空間中傳遞的速度,換句話說,波的任一頻率成分所具有的相位即以此速度傳遞。可以挑選波的任一特定相位來觀察(例如波峰),則此處會以相速度前行。相速度可藉由波的頻率f與波長λ,或者是角頻率ω與波數(wave number)k的關係式表示: 注意到波的相速度不必然與波的群速度相同,相速是波包中某一单频波的相位移动速度;群速度代表的是「振幅變化」(或說波包)的傳遞速度,表示一段波包的包络面上具有某特性(如幅值最大或最小)的点的传播速度。 群速和相速只有是混合波(非单频波)在频散介质中传播时才有差别。 電磁輻射的相速度可能在一些特定情況下(例如:出現異常色散的情形)超過真空中光速,但這不表示任何超光速的--或者是能量移轉。物理學家阿諾·索末菲與里昂·布里於因(Léon Brillouin)對此皆有理論性描述。 參閱色散以對波的各種速度有更完整的了解。.

新!!: 薛定谔方程和相速度 · 查看更多 »

隨機

#重定向 随机性.

新!!: 薛定谔方程和隨機 · 查看更多 »

運動常數

在經典力學裏,對於一個動力系統,隨著時間的演進,所有保持不變的物理量都稱為運動常數(constant of motion),又稱為守恆量。它的作用有點類似運動的約束。可是,運動常數是數學的約束,自然地從運動方程式中顯現出來,而不是物理的約束;物理的約束會有相應的約束力來維持這約束。常見的運動常數例子有能量、動量、角動量、拉普拉斯-龍格-冷次向量。.

新!!: 薛定谔方程和運動常數 · 查看更多 »

類氫原子

類氫原子(hydrogen-like atom)是只擁有一個電子的原子,與氫原子同為等電子體,例如,He+, Li2+, Be3+與B4+等等都是類氫原子,又稱為「類氫離子」。類氫原子只含有一個原子核與一個電子,是個簡單的二體系統,系統內的作用力只跟二體之間的距離有關,是反平方連心力。這反平方連心力二體系統不需再加理想化,簡單化。描述這系統的(非相對論性的)薛丁格方程式有解析解,也就是說,解答能以有限數量的常見函數來表達。滿足這薛丁格方程式的波函數可以完全地描述電子的量子行為。在量子力學裏,類氫原子問題是一個很簡單,很實用,而又有解析解的問題。所推演出來的基本物理理論,又可以用簡單的實驗來核對。所以,類氫原子問題是個很重要的問題。 稱滿足上述系統的薛丁格方程式的波函數為單電子波函數,或類氫原子波函數。類氫原子波函數是單電子角動量算符 L 與其 z-軸分量算符 L_z 的本徵函數。由於能量本徵值 E_n 跟量子數 l ,m 無關,而只跟主量子數 n 有關。所以,類氫原子波函數可以由主量子數 n 、角量子數 l 、磁量子數 m ,獨特地決定。因為構造原理,還必須加上自旋量子數 m_s.

新!!: 薛定谔方程和類氫原子 · 查看更多 »

衍射

--(diffraction),又稱--,是指波遇到障碍物时偏离原来直线传播的物理现象。 在古典物理学中,波在穿过狭缝、小孔或圆盘之类的障碍物后會发生不同程度的弯散传播。假設將一个障碍物置放在光源和观察屏之间,則會有光亮区域與陰暗区域出現於观察屏,而且這些区域的边界並不銳利,是一种明暗相间的复杂图样。這现象称为衍射,當波在其传播路径上遇到障碍物时,都有可能發生这种现象。除此之外,当光波穿过折射率不均匀的介质时,或当声波穿过声阻抗不均匀的介质时,也会发生类似的效应。在一定条件下,不仅水波、光波能够产生肉眼可见的衍射现象,其他类型的电磁波(例如X射线和无线电波等)也能够发生衍射。由於原子尺度的實際物體具有類似波的性質,它們也會表现出衍射现象,可以通过量子力学进行研究其性质。 在適當情况下,任何波都具有衍射的固有性质。然而,不同情况中波发生衍射的程度有所不同。如果障碍物具有多个密集分布的孔隙,就会造成较为复杂的衍射强度分布图样。这是因為波的不同部分以不同的路径传播到观察者的位置,发生波叠加而形成的現象。 衍射的形式論还可以用來描述有限波(量度為有限尺寸的波)在自由空间的传播情况。例如,激光束的發散性質、雷达天线的波束形状以及超声波传感器的视野范围都可以利用衍射方程来加以分析。.

新!!: 薛定谔方程和衍射 · 查看更多 »

駐波

波(standing wave或stationary wave)為兩個波長、週期、頻率和波速皆相同的正弦波相向行進干涉而成的合成波。与行波不同,駐波的波形無法前進,因此無法傳播能量,故名之。 駐波通過時,每一個質點皆作簡諧運動。各質點振盪的幅度不相等,振幅為零的點稱為節點或波節(Node),振幅最大的點位於兩節點之间,稱為腹點或波腹(Antinode)。由於節點靜止不動,所以波形沒有傳播。能量以動能和勢能的形式交換儲存,亦傳播不出去。两列传播方向相反的相干波相遇而产生干涉,或介质沿波速的相反方向运动时,均可产生这个现象。常见的驻波现象是谐振器中,一列波与自身的反射波产生干涉而形成的。 1860年,首次发现,并创造了“驻波”(stehende Welle或Stehwelle)一词。.

新!!: 薛定谔方程和駐波 · 查看更多 »

角频率

在物理学(特别是力学和电子工程)中,角频率ω有时也叫做角速率、角速度标量,是对旋转快慢的度量,它是角速度向量\vec的模。角频率的国际单位是弧度每秒。由于弧度是无量纲的,所以角频率的量纲为T −1。 因为旋转一周的弧度是2π,所以.

新!!: 薛定谔方程和角频率 · 查看更多 »

角量子数

角量子數(Azimuthal quantum number),即軌域角動量的量子數,通常用小寫英文字母l來表示。從經典力學的概念可知,任何旋轉體都有繞軸的角動量。它是一個矢量。當它不是連續變動時,會取不同的離散值,是量子化的。在原子物理中,这个量子数决定了電子雲的形状。例如,电子所处的s, p, d, f, g分别对应的角量子数分别是l.

新!!: 薛定谔方程和角量子数 · 查看更多 »

马克斯·普朗克

克斯·卡尔·恩斯特·路德维希·普朗克(Max Karl Ernst Ludwig Planck,),德国物理学家,量子力学的创始人,20世纪最重要的物理学家之一,因发现能量量子而对物理学的发展做出了重要贡献,並在1918年獲得诺贝尔物理学奖。 作为一个理论物理学家,普朗克最大的贡献是首先提出了(舊)量子论。这个理论彻底改变人类对原子與次原子的认识,正如爱因斯坦的相对论改变人类对时间和空间的认识,这两个理论一起构成了20世纪物理学的基础。 波耳、愛因斯坦與普朗克被稱為舊量子論的奠基者。.

新!!: 薛定谔方程和马克斯·普朗克 · 查看更多 »

譜線

譜線是在均勻且連續的光譜上明亮或黑暗的線條,起因於光子在一個狹窄的頻率範圍內比附近的其他頻率超過或缺乏。 譜線通常是量子系統(通常是原子,但有時會是分子或原子核)和單一光子交互作用產生的。當光子的能量確實與系統內能階上的一個變化符合時(在原子的情況,通常是電子改變軌道),光子被吸收。然後,它將再自發地發射,可能是與原來相同的頻率或是階段式的,但光子發射的總能量將會與當初吸收的能量相同,而新光子的方向不會與原來的光子方向有任何關聯。 根據氣體、光源和觀測者三者的幾何關係,看見的光譜將會是吸收譜線或發射譜線。如果氣體位於光源和觀測者之間,在這個頻率上光的強度將會減弱,而再發射出來的光子絕大多數會與原來光子的方向不同,因此觀測者看見的將是吸收譜線。如果觀測者看著氣體,但是不在光源的方向上,這時觀測者將只會在狹窄的頻率上看見再發射出來的光子,因此看見的是發射譜線。 吸收譜線和發射譜線與原子有特定的關係,因此可以很容易的分辨出光線穿越過介質(通常都是氣體)的化學成分。有一些元素,像是氦、鉈、鈰等等,都是透過譜線發現的。光譜線也取決於氣體的物理狀態,因此它們被廣泛的用在恆星和其他天體的化學成分和物理狀態的辨識,而且不可能使用其他的方法完成這種工作。 同核異能位移是由於吸收光子的原子核與發射的原子核有不同的電子密度。 除了原子-光子的交互作用外,其他的機制也可以產生譜線。根據確實的物理交互作用(分子、單獨的粒子等等)所產生的光子在頻率上有廣泛的分佈,並且可以跨越從無線電波到伽馬射線,所有能觀測的電磁波頻譜。.

新!!: 薛定谔方程和譜線 · 查看更多 »

費馬原理

費馬原理(Fermat principle)最早由法国科学家皮埃爾·德·費馬在1662年提出:光传播的路径是光程取极值的路径。这个极值可能是最大值、最小值,甚至是函数的拐点。 最初提出时,又名「最短時間原理」:光線傳播的路徑是需時最少的路徑。 費馬原理更正確的稱謂應是「平穩時間原理」:光沿着所需时间为平稳的路径传播。所谓的平稳是数学上的微分概念,可以理解为一阶导数为零,它可以是极大值、极小值甚至是拐点。 費馬原理是几何光学的基本定理。用微分或变分法可以从費馬原理导出以下三个几何光学定律:.

新!!: 薛定谔方程和費馬原理 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 薛定谔方程和质量 · 查看更多 »

路徑積分

路徑積分可能指的是:.

新!!: 薛定谔方程和路徑積分 · 查看更多 »

路徑積分表述

量子力學的路徑積分表述(path integral formulation)是一個從經典力學裡的作用原則延伸出來對量子物理的一種概括和公式化的方法。它以包括两點間所有路徑的和或泛函積分而得到的量子幅來取代經典力學裡的單一路徑。 路径积分表述的基本思想可以追溯到諾伯特·維納,他介绍的维纳积分解决扩散和布朗运动的问题。在1933年他的论文中,由保罗·狄拉克把这个基本思想被扩展到量子力学中的利用拉格朗日算符 。路徑積分表述是理論物理學家理查德·費曼在1948年發展出來。一些早期結果是在约翰·惠勒指导下的費曼的博士论文中在早些时候已经被摸索出。 因爲路徑積分的表述法顯然地把時間和空間同等處理,它成為以後理論物理學發展的重要工具之一。 路徑積分表述也把量子現像和随機現像联系起來。為1970年代量子場論和概括二級相變附近序參數波動的統計場論統一奠下基礎。薛定諤方程式是虛擴散系數的擴散方程,而路徑積分表述是把所有可能的随機移動路徑加起來的方法的解析延拓。因此路徑積分表述在應用於量子力學前,已經在布朗運動和擴散問題上被應用。.

新!!: 薛定谔方程和路徑積分表述 · 查看更多 »

路易·德布罗意

路易·维克多·德布罗意,第七代布罗意公爵(Louis Victor de Broglie, prince, puis duc de Broglie,),简称路易·德布罗意(Louis de Broglie),法國物理學家,法國外交和政治世家布羅意公爵家族的後代。从1928年到1962年在索邦大學擔任理論物理學教授,1929年因發現了電子的波動性,以及他對量子理論的研究而獲諾貝爾物理學獎。1952年獲聯合國教科文組織頒發的。 於1944年,德布羅意膺選為法蘭西學術院第一席位的院士,是第十六位得到此殊榮的人士。他也是法國科學院的永久秘書。.

新!!: 薛定谔方程和路易·德布罗意 · 查看更多 »

軌道

軌道可以指:.

新!!: 薛定谔方程和軌道 · 查看更多 »

黑体辐射

黑体辐射指处于热力学平衡态的黑体发出的电磁辐射。黑体辐射的电磁波谱只取决于黑体的温度。 另一方面,所謂黑體輻射其實就是光和物質達到平衡所表現出的現象。物質達到平衡,所以可以用一個溫度來描述物質的狀態,而光和物質的交互作用很強,如此光和光之間也可以用一個溫度來描述(光和光之間本身不會有交互作用,但光和物質的交互作用很強)。而描述這關係的便是普朗克分佈(Planck distribution)。黑体辐射能量按波长的分布仅与温度有关。 黑体不仅仅能全部吸收外来的电磁辐射,且散射电磁辐射的能力比同温度下的任何其它物体强。 对于黑体的研究,使自然现象中的量子效应被發现。 黑体作为一个理想化的物体,在现实中是不存在的,因此现实中物体的辐射也与理论上的黑体辐射有所出入。但是,可以观察一些非常类似黑体的物质发出的辐射,例如一顆恆星或一個只有單一開口的空腔所发出的辐射。舉個例來說,人們觀測到宇宙背景輻射,對應到一個約3K的黑體輻射,這暗示宇宙早期光是和物質達到平衡的。而隨著時間演化,溫度慢慢降了下來,但方程式依然存在。(頻率和溫度的效應抵銷).

新!!: 薛定谔方程和黑体辐射 · 查看更多 »

达朗贝尔算符

达朗贝尔算子是拉普拉斯算子在闵可夫斯基时空中的形式,此算子符號為正方形的,以表示是在四維的闵可夫斯基时空中。.

新!!: 薛定谔方程和达朗贝尔算符 · 查看更多 »

运动方程

运动方程是刻划系统运动的物理参量所满足的方程或方程组。它们以这些参量对于时间的微分方程形式出现。.

新!!: 薛定谔方程和运动方程 · 查看更多 »

能级

能级(Energy level)理论是一种解释原子核外电子运动轨道的一种理论。它认为电子只能在特定的、分立的轨道上运动,各个轨道上的电子具有分立的能量,这些能量值即为能级。电子可以在不同的轨道间发生跃迁,电子吸收能量可以从低能级跃迁到高能级或者从高能级跃迁到低能级从而辐射出光子。氢原子的能级可以由它的光谱显示出来。.

新!!: 薛定谔方程和能级 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 薛定谔方程和能量 · 查看更多 »

能量守恒定律

能量守恒定律(law of conservation of energy)闡明,孤立系统的总能量 E 保持不变。如果一个系统处于孤立环境,即不能有任何能量或質量从该系统输入或输出。能量不能无故生成,也不能无故摧毁,但它能够改变形式,例如,在炸弹爆炸的过程中,化学能可以转化为动能。 从能量守恒定律可以推导出第一類永动机永远無法實現。没有任何孤立系统能够持續對外提供能量。.

新!!: 薛定谔方程和能量守恒定律 · 查看更多 »

舊量子論

舊量子論是一些比現代量子力學還早期,出現於1900年至1925年之間的量子理論。雖然並不很完整或一致,這些啟發式理論是對於經典力學所做的最初始的量子修正。舊量子論最亮麗輝煌的貢獻無疑應屬波耳模型。自從夫朗和斐於1814年發現了太陽光譜的譜線之後,經過近百年的努力,物理學家仍舊無法找到一個合理的解釋。而波耳的模型居然能以簡單的算術公式,準確地計算出氫原子的譜線。這驚人的結果給予了科學家無比的鼓勵和振奮,他們的確是朝著正確的方向前進。很多年輕有為的物理學家,都開始研究量子方面的物理。因為,可以得到很多珍貴的結果。 直到今天,舊量子論仍舊有聲有色地存在著。它已經轉變成一種半古典近似方法,稱為WKB近似。許多物理學家時常會使用WKB近似來解析一些極困難的量子問題。在1970年代和1980年代,物理學家Martin Gutzwiller發現了怎樣半經典地解析混沌理論之後,這研究領域又變得非常熱門。(參閱量子混沌理論 (quantum chaos))。.

新!!: 薛定谔方程和舊量子論 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

新!!: 薛定谔方程和阿尔伯特·爱因斯坦 · 查看更多 »

薛定谔猫

薛定谔猫(Schrödinger's Cat)是奥地利物理學者埃尔温·薛定谔於1935年提出的一個思想实验。通過這思想实验,薛定諤指出了應用量子力學的哥本哈根詮釋於宏觀物體會產生的問題,以及這問題與物理常識之間的矛盾。在這思想實驗裏,由於先前發生事件的隨機性質,貓會處於生存與死亡的疊加態。 根據退相干理論,貓不可能永遠處於生存與死亡的疊加態,由於環境的影響,很快地會產生退相干效應,貓改而處於生存或死亡的經典統計學狀態,因此,一般而言,絕對無法觀察到這生存與死亡的疊加態。至今為止,物理學者只能精心製備出一些介觀物體的疊加態。 雖然這是個思想實驗,類似原理已被研究與運用在實際應用領域。當理論研討量子力學的詮釋問題時,這思想實驗也時常會被特別提出為試金石。.

新!!: 薛定谔方程和薛定谔猫 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

新!!: 薛定谔方程和薛定谔方程 · 查看更多 »

薛丁格繪景

薛丁格繪景(Schrödinger picture)是量子力學的一種表述,為紀念物理學者埃爾溫·薛丁格而命名。在薛丁格繪景裏,量子系統的態向量隨著時間流易而演化,而像位置、自旋一類的對應於可觀察量的算符則與時間無關。 薛丁格繪景與海森堡繪景、狄拉克繪景不同。在海森堡繪景裏,對應於可觀察量的算符會隨著時間流易而演化,而描述量子系統的態向量則與時間無關。在狄拉克繪景裏,態向量與算符都會隨著時間流易而演化。 這三種繪景殊途同歸,所獲得的結果完全一致。這是必然的,因為它們都是在表達同樣的物理現象。 在薛丁格繪景裏,負責時間演化的算符是一種么正算符,稱為時間演化算符。假設時間從t_0流易到t,而經過這段時間間隔,態向量|\psi(t_0)\rang演化為態向量|\psi(t)\rang,這時間演化過程以方程式表示為 其中,U(t, t_0)是時間演化算符。 假設系統的哈密頓量H不含時,則時間演化算符為 其中,\hbar是約化普朗克常數,指數函數 e^必須通過其泰勒級數計算。 在初級量子力學教科書裏,時常會使用薛丁格繪景。.

新!!: 薛定谔方程和薛丁格繪景 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 薛定谔方程和量子力学 · 查看更多 »

量子力學的數學表述

量子力学的数学表述是对量子力学进行严谨描述的数学表述体系。与20世纪初发展起来的旧量子论的数学形式不同,它使用了一些抽象的代数结构,如无穷维希尔伯特空间和这些空间上的算子。这些结构中有许多源于泛函分析。这一纯粹数学研究领域的发展过程既平行于又受影响于量子力学的需要。简而言之,物理可观察量的值,如能量和动量的值不再作为相空间上的函数值,而是作为本征值,或者更为精确地来说是希尔伯特空间中线性算子的谱值。 这一表述体系一直沿用至今。该体系的核心为“量子态”和“可观察量”这两个概念。对于原子尺度的系统来说,这两个概念与之前用来描述物理现实的模型大相径庭。虽然数学上允许对许多量的计算结果进行实验测量,但是实际上,在对于符合一定条件的两个物理量同时进行精确测量时,却存在一个理论性限制——不确定性原理。这一原理由维尔纳·海森堡通过思想实验首次阐明,且在该体系中以可观察量的不可交换性进行表述。 在量子力学作为一支独立理论形成之前,物理学中用到的数学理论主要是以微积分为源头、后来又添以微分几何与偏微分方程的数学分析。统计力学中还用到概率论。几何直观在这两个理论中扮演重要角色。相对论中的许多概念和方法也是基于几何理论。量子物理学中对于实验现象的一系列不同以往的理解在1895年到1915年间开始逐步形成。其中具有代表性的思想为波粒二象性。但在量子理论形成之前的10至15年中,物理学家仍然在经典物理学的框架内思考量子理论,所基于的数学结构也是完全相同的。其中具有代表性的例子是玻尔-索末菲量子化条件。这一原理完全建构于经典框架中的相空间。.

新!!: 薛定谔方程和量子力學的數學表述 · 查看更多 »

量子力學詮釋

量子力學已通過全面、嚴謹的實驗驗證,但應該如何詮釋這些實驗結果,從此又可對大自然的根本運作方式得出如何的結論,眾說紛紜。林林總總的理解方式,統稱為量子力學詮釋。諸多學派的爭議點包括,量子力學可否理解為決定性理論,量子力學的哪些方面是「真實存在」的,等等。 物理學家和物理哲學家都對這一問題特別關注。對量子力學的詮釋,一般被視為對量子力學之數學表述的詮釋,也就是為理論中的各個數學概念賦予現實的物理意義。.

新!!: 薛定谔方程和量子力學詮釋 · 查看更多 »

量子场论

在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.

新!!: 薛定谔方程和量子场论 · 查看更多 »

量子化

在物理學裏,量子化是一種從經典場論建構出量子場論的程序。使用這程序,時常可以直接地將經典力學裏的理論量身打造成嶄新的量子力學理論。物理學家所談到的場量子化,指的就是電磁場的量子化。在這裡,他們會將光子分類為一種場量子(例如,稱呼光子為光量子)。對於粒子物理學,核子物理學,固態物理學和量子光學等等學術領域內的理論,量子化是它們的基礎程序。.

新!!: 薛定谔方程和量子化 · 查看更多 »

量子穿隧效應

在量子力學裏,量子穿隧效應(Quantum tunnelling effect)指的是,像电子等微观粒子能夠穿入或穿越位勢壘的量子行為,儘管位勢壘的高度大於粒子的總能量。在經典力學裏,這是不可能發生的,但使用量子力學理論卻可以給出合理解釋。 量子穿隧效應是太陽核聚變所倚賴的機制。量子穿隧效應限制了太陽燃燒的速率,是太陽聚變循環的瓶頸,因此維持太陽的長久壽命。許多現代器件的運作都倚賴這效應,例如,隧道二極管、場致發射、約瑟夫森結、等等。扫描隧道显微镜、原子鐘也應用到量子穿隧效應。量子穿隧理論也被應用在半導體物理學、超導體物理學等其它領域。 至2017年為止,由於對於量子穿隧效應在半導體、超導體等領域的研究或應用,已有5位物理學者獲得諾貝爾物理學獎。.

新!!: 薛定谔方程和量子穿隧效應 · 查看更多 »

量子数

量子數描述量子系統中動力學上各守恒數的值。它們通常按性質描述原子中電子的各能量,但也會描述其他物理量(如角動量、自旋等)。由於任何量子系統都能有一個或以上的量子數,列出所有可能的量子數是件沒有意義的工作。.

新!!: 薛定谔方程和量子数 · 查看更多 »

量子態

在量子力學裏,量子態(quantum state)指的是量子系統的狀態。態向量可以用來抽像地表示量子態。採用狄拉克標記,態向量表示為右矢|\psi\rangle;其中,在符號內部的希臘字母\psi可以是任何符號,字母,數字,或單字。例如,在計算氫原子能譜時,能級與主量子數n有關,所以,每個量子態的態向量可以表示為|n \rangle。 一般而言,量子態可以是純態或混合態。上述案例是純態。混合態是由很多純態組成的機率混合。不同的組合可能會組成同樣的混合態。當量子態是混合態時,可以用密度矩陣做數學描述,這密度矩陣實際給出的是機率,不是密度。純態也可以用密度矩陣表示。 哥本哈根詮釋以操作定義的方法對量子態做定義:量子態可以從一系列製備程序來辨認,即這程序所製成的量子系統擁有這量子態。例如,使用z-軸方向的斯特恩-革拉赫實驗儀器,如右圖所示,可以將入射的銀原子束,依照自旋的z-分量S_z分裂成兩道,一道的S_z為上旋,量子態為|\uparrow\rangle或|z+\rangle,另一道的S_z為下旋,量子態為|\downarrow\rangle或|z-\rangle,這樣,可以製備成量子態為|\uparrow\rangle的銀原子束,或量子態為|\downarrow\rangle的銀原子束。銀原子自旋態向量存在於二維希爾伯特空間。對於這純態案例,相關的態向量|\psi\rangle.

新!!: 薛定谔方程和量子態 · 查看更多 »

自旋

在量子力学中,自旋(Spin)是粒子所具有的内稟性質,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由、喬治·烏倫貝克與三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以透過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。.

新!!: 薛定谔方程和自旋 · 查看更多 »

自旋1/2

在量子物理中,自旋½表示一粒子所具有的內稟角動量(自旋)為 \frac ,\hbar\,是約化普朗克常數,其中包括了電子、質子、中子、中微子與虧子(夸克)。自旋-½粒子在量子統計上屬於費米子,並遵守包立不相容原理。 對自旋½粒子進行自旋性質的量子測量會得到兩個值。有兩個結果肇因於所存有的向量空間的維度。自旋½粒子的自旋量子態可以用一種兩個維度的複數值向量來描述,稱之為二元旋量。利用這種表示法,量子力學中的算符可寫成2乘2(2 x 2)的複數厄米矩陣。 自旋投影算符S_z意義上代表了沿著z\,方向對自旋做的測量: 1&0\\ 0&-1 \end S_z算符有兩個本徵值—— \pm \frac ,有各自對應的本徵向量: 其構成描述自旋之希爾伯特空間的完整基底,即自旋的態可用這兩個態的線性組合來代表。這兩個態方便上稱之為「自旋向上」(spin up)與「自旋向下」(spin down)。 自旋算符S有些特質和角動量算符L相同,但其他特質則不相同。 可為自旋½物體建構升降算符;其遵守和其他角動量算符相同的對易關係(交換關係)。 自旋投影算符的旋轉的兩個本徵值與前面相同(相應於測量的可能結果),但本徵向量則不同——為向量自旋算符 \mathbf \cdot \hat ;其中n\,是一個順沿投影方向的單位向量,而 這些\sigma\,為包立矩陣或稱包立旋量。.

新!!: 薛定谔方程和自旋1/2 · 查看更多 »

苏黎世

苏黎世(Zürich ;瑞士德語:Züri )是瑞士联邦的最大城市(2012年城市人口約38万,市区人口近110万,包括郊区在内的苏黎世都会区人口达190万。),苏黎世州的首府。苏黎世是瑞士主要的商业和文化中心(瑞士的政治中心和首都在伯尔尼)。苏黎世是瑞士银行业的代表城市,世界金融中心之一,瑞士聯合銀行、瑞士信贷银行和许多私人银行都将总部设在苏黎世。苏黎世国际机场是瑞士全国最大的机场。国际足球联合会总部也设在苏黎世。根据2006年和2007年的部分调查显示,苏黎世在这两年的世界最佳居住城市评选中高居全球首位。 「苏黎世」的名称可能来源于凯尔特语中的“Turus”,一项有力的证据就是在出土的公元2世纪罗马帝国占领时期的墓志铭上发现了古代该城名称的罗马化形式——“Turicum”。.

新!!: 薛定谔方程和苏黎世 · 查看更多 »

離心力

离心力(centrifugal force)是一种虚拟力或称惯性力,它使旋转的物体远离它的旋转中心。在牛顿力学里,离心力曾被用于表述两个不同的概念:在一个非惯性参考系下观测到的一个惯性力,和向心力的反作用力。在拉格朗日力学下,离心力有时被用来描述在某个广义坐标下的广义力。 在通常语境下,離心力並非真實的存在。它的作用只是为了在旋转参考系(非惯性参考系)下,牛顿运动定律依然能够使用。在惯性参考系下是没有惯性力的,在非惯性参考系下(如旋转参考系)才需要有惯性力,否则牛顿运动定律不能使用。.

新!!: 薛定谔方程和離心力 · 查看更多 »

零點能量

零點能量(可簡稱零點能)物理學中是量子力學所描述的物理系統會有的最低能量,此時系統所處的態稱為基態;所有量子力學系統都有零點能量。這個辭彙起源於量子諧振子處在基態時,量子數為零的考量。 在量子場論中,這個辭彙和真空能量是等義詞,指的空無一物的空間仍有此一定能量存在,對一些系統可以造成擾動,並且導致一些量子電動力學會出現的現象,例如蘭姆位移與卡西米爾效應;它的效應可在納米尺度的元件直接觀測的到。 在宇宙論中,真空能量被視為宇宙常數的來源,和造就宇宙加速膨脹的暗能量相關。 因為零點能量是一系統可能持有的最低能量,因此此項能量是無法自系統移除。儘管如此,零點能量的概念以及自真空汲取「免費能量」的可能性引起業餘發明者的注目——許多「永動機」或稱「免費能量裝置」等的提案都運用這項概念來解釋,但由於從較低或相同的能量狀態之中汲取能量違反了熱力學第二定律並造成熵的降低,運用零點能量被科學界認為是不可能的。這項熱潮以及相伴的趣味理論詮釋促成了大眾文化中「零點能量」概念的成長,常出現在科幻書刊、遊戲、電影等處。.

新!!: 薛定谔方程和零點能量 · 查看更多 »

電磁波

#重定向 电磁辐射.

新!!: 薛定谔方程和電磁波 · 查看更多 »

電荷密度

在電磁學裏,電荷密度是一種度量,描述電荷分佈的密度。電荷密度又可以分類為線電荷密度、面電荷密度、體電荷密度。 假設電荷分佈於一條曲線或一根直棒子,則其線電荷密度是每單位長度的電荷密度,單位為庫侖/公尺 (coulomb/meter) 。假設電荷分佈於一個平面或一個物體的表面,則其面電荷密度是每單位面積的電荷密度,單位為庫侖/公尺2。假設電荷分佈於一個三維空間的某區域或物體內部,則其體電荷密度是每單位體積的電荷密度,單位為庫侖/公尺3。 由於在大自然裏,有兩種電荷,正電荷和負電荷,所以,電荷密度可能會是負值。電荷密度也可能會跟位置有關。特別注意,不要將電荷密度與電荷載子密度 (charge carrier density) 搞混了。 電荷密度與電荷載子的體積有關。例如,由於鋰陽離子的半徑比較小,它的體電荷密度大於鈉陽離子的體電荷密度。.

新!!: 薛定谔方程和電荷密度 · 查看更多 »

雙縫實驗

在量子力學裏,雙縫實驗(double-slit experiment)是一種演示光子或電子等等微觀物體的波動性與粒子性的實驗。雙縫實驗是一種「雙路徑實驗」。在這種更廣義的實驗裏,微觀物體可以同時通過兩條路徑或通過其中任意一條路徑,從初始點抵達最終點。這兩條路徑的程差促使描述微觀物體物理行為的量子態發生相移,因此產生干涉現象。另一種常見的雙路徑實驗是马赫-曾德尔干涉仪實驗。 雙縫實驗的基本儀器設置很簡單,如右圖所示,將像激光一類的相干光束照射於一塊刻有兩條狹縫的不透明板,通過狹縫的光束,會抵達照相膠片或某種探測屏,從記錄於照相膠片或某種探測屏的輻照度數據,可以分析光的物理性質。光的波動性使得通過兩條狹縫的光束相互干涉,形成了顯示於探測屏的明亮條紋和暗淡條紋相間的圖樣,明亮條紋是相長干涉區域,暗淡條紋是相消干涉區域,這就是雙縫實驗著名的干涉圖樣。 在古典力學裏,雙縫實驗又稱為「楊氏雙縫實驗」,或「楊氏實驗」、「楊氏雙狹縫干涉實驗」,專門演示光波的干涉行為,是因物理學者托馬斯·楊而命名。假若,光束是以粒子的形式從光源移動至探測屏,抵達探測屏任意位置的粒子數目,應該等於之前通過左狹縫的粒子數量與之前通過右狹縫的粒子數量的總和。根據定域性原理(principle of locality),關閉左狹縫不應該影響粒子通過右狹縫的行為,反之亦然,因此,在探測屏的任意位置,兩條狹縫都不關閉的輻照度應該等於只關閉左狹縫後的輻照度與只關閉右狹縫後的輻照度的總和。但是,當兩條狹縫都不關閉時,結果並不是這樣,探測屏的某些區域會比較明亮,某些區域會比較暗淡,這種圖樣只能用光波動說的相長干涉和相消干涉來解釋,而不是用光微粒說的簡單數量相加法。 雙縫實驗也可以用來檢試像中子、原子等等微觀物體的物理行為,雖然使用的儀器不同,仍舊會得到類似的結果。每一個單獨微觀物體都離散地撞擊到探測屏,撞擊位置無法被預測,演示出整個過程的機率性,累積很多撞擊事件後,總體又顯示出干涉圖樣,演示微觀物體的波動性。 2013年,一個檢試分子物理行為的雙縫實驗,成功演示出含有810個原子、質量約為10000amu的分子也具有波動性。 理查德·費曼在著作《費曼物理學講義》裏表示,雙縫實驗所展示出的量子現象不可能、絕對不可能以任何古典方式來解釋,它包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。透過雙縫實驗,可以觀察到量子世界的奧秘。.

新!!: 薛定谔方程和雙縫實驗 · 查看更多 »

虛數單位

在數學、物理及工程學裏,虛數單位標記為 i\,\!,在电机工程和相关领域中则标记为j\,,这是为了避免与电流(记为i(t)\,或i\,)混淆。虛數單位的發明使實數系統 \mathbb\,\! 能夠延伸至复数系統 \mathbb\,\! 。延伸的主要動機為有很多實係數多項式方程式無實數解。例如方程式 x^2+1.

新!!: 薛定谔方程和虛數單位 · 查看更多 »

Α粒子

α粒子(Alpha particle)是一種放射性粒子,由兩個質子及兩個中子組成,並不帶任何電子,亦即等同于氦-4的内核,或電離化後的氦-4,He2+。 通常具有放射性而原子量较大的化学元素,会透過α衰变放射出α粒子,從而變成較輕的元素,直至該元素穩定為止。由於α粒子的體積比較大,又帶兩個正電荷,很容易就可以電離其他物質。因此,它的能量亦散失得較快,穿透能力在眾多電離輻射中是最弱的,人類的皮膚或一張紙已能隔阻α粒子。.

新!!: 薛定谔方程和Α粒子 · 查看更多 »

Α衰变

-- α衰變(Alpha decay,又名阿爾法衰變)是一種放射性衰變(核衰變);發生α衰變時,一顆α粒子會從原子核中射出(附註:α粒子,又名阿爾法粒子,即氦-4核, ,即一顆由2顆質子和2顆中子組成的原子核); α衰變發生後,原子核的質量數會減少4個單位,其原子序也會減少了2個單位。 下面之反應式式(I)是α衰變的一個例子。例如,鈾-238通過α粒子發射的衰減以形成釷-234可以表示為:Suchocki, John.

新!!: 薛定谔方程和Α衰变 · 查看更多 »

WKB 近似

#重定向 WKB近似.

新!!: 薛定谔方程和WKB 近似 · 查看更多 »

概率

--率,舊稱--率,又称或然率、機會率或--、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。 概率常用來量化對於某些不確定命題的想法"Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), ISBN 978-0-534-24312-8,命題一般會是以下的形式:「某個特定事件會發生嗎?」,對應的想法則是:「我們可以多確定這個事件會發生?」。確定的程度可以用0到1之間的數值來表示,這個數值就是機率William Feller, "An Introduction to Probability Theory and Its Applications", (Vol 1), 3rd Ed, (1968),Wiley,ISBN 978-0-471-25708-0。因此若事件發生的機率越高,表示我們越認為這個事件可能發生。像丟銅板就是一個簡單的例子,正面朝上及背面朝上的兩種結果看來機率相同,每個的機率都是1/2,也就是正面朝上及背面朝上的機率各有50%。 這些概念可以形成機率論中的數學公理(參考概率公理),在像數學、統計學、金融、博弈論、科學(特別是物理)、人工智慧/機器學習、電腦科學及哲學等學科中都會用到。機率論也可以描述複雜系統中的內在機制及規律性。.

新!!: 薛定谔方程和概率 · 查看更多 »

概率分布

概率分布(Wahrscheinlichkeitsverteilung,probability distribution)或簡稱分布,是概率論的一個概念。使用時可以有以下兩種含義:.

新!!: 薛定谔方程和概率分布 · 查看更多 »

標準差

標準差(又稱标准偏差、--,,缩写SD),数学符号σ(sigma),在概率統計中最常使用作為測量一組數值的離散程度之用。標準差定義:為方差開算术平方根,反映组内个体间的离散程度;标准差与期望值之比为标准离差率。測量到分佈程度的結果,原則上具有兩種性質:.

新!!: 薛定谔方程和標準差 · 查看更多 »

機率幅

在量子力學裏,機率幅,又稱為量子幅,是一個描述粒子的量子行為的複函數。例如,機率幅可以描述粒子的位置。當描述粒子的位置時,機率幅是一個波函數,表達為位置的函數。這波函數必須符合薛丁格方程。 一個機率幅\psi\,\!的機率密度函數是 \psi^*\psi\,\!,等於 \mid\psi\mid^2\,\!,又稱為機率密度。在使用前,不一定要將機率密度函數歸一化。尚未歸一化的機率密度函數可以給出關於機率的相對大小的資訊。 假若,在整個三維空間內,機率密度 \mid\psi\mid^2\,\!是一個有限積分。那麼,可以計算一個歸一常數 c\,\!,替代 \psi\,\!為 c\psi\,\!,使得有限積分等於1。這樣,就可以將機率幅歸一化。粒子存在於某一個特定區域V\,\!內的機率是 \mid\psi\mid^2\,\!在區域V\,\!的積分。這句話的含義是,根據量子力學的哥本哈根詮釋,假若,某一位觀察者試著測量這粒子的位置。他找到粒子在 \varepsilon\,\!區域內的機率 P(\varepsilon)\,\!是 不光局限於粒子觀,機率幅的絕對值平方可以詮釋為「在某時間、某位置發生相互作用的概率」。.

新!!: 薛定谔方程和機率幅 · 查看更多 »

正整數

正整數,在数学中是指大於0的整數。正整數是正数与整数的交集。和整數一样,正整數也是一個可數的無限集合。這個集合在数学上通常用粗體Z+或\mathbb^+来表示。在数论中,正整數也可稱為自然数,即1、2、3……;但在集合论和计算机科学中,自然数则通常是指非负整数,即正整數与0的 集合。.

新!!: 薛定谔方程和正整數 · 查看更多 »

歸一條件

在量子力學裏,表達粒子的量子態的波函數必須滿足歸一條件(歸一化,be normalized),也就是說,在空間內,找到粒子的機率必須等於 1 。這性質稱為歸一性。用數學公式表達, 其中,x 是粒子的位置,\psi(x) 是波函數。.

新!!: 薛定谔方程和歸一條件 · 查看更多 »

氫原子

氫原子是氫元素的原子。電中性的原子含有一個正價的質子與一個負價的電子,被庫侖定律束縛於原子核內。在大自然中,氫原子是豐度最高的同位素,稱為氫,氫-1 ,或氕。氫原子不含任何中子,別的氫同位素含有一個或多個中子。這條目主要描述氫-1 。 氫原子擁有一個質子和一個電子,是一個的簡單的二體系統。系統內的作用力只跟二體之間的距離有關,是反平方連心力,不需要將這反平方連心力二體系統再加理想化,簡單化。描述這系統的(非相對論性的)薛丁格方程式有解析解,也就是說,解答能以有限數量的常見函數來表達。滿足這薛丁格方程式的波函數可以完全地描述電子的量子行為。因此可以這樣說,在量子力學裏,沒有比氫原子問題更簡單,更實用,而又有解析解的問題了。所推演出來的基本物理理論,又可以用簡單的實驗來核對。所以,氫原子問題是個很重要的問題。 另外,理論上薛丁格方程式也可用於求解更複雜的原子與分子。但在大多數的案例中,皆無法獲得解析解,而必須藉用電腦(計算機)來進行計算與模擬,或者做一些簡化的假設,方能求得問題的解析解。.

新!!: 薛定谔方程和氫原子 · 查看更多 »

決定論

決定論(Determinism),又称拉普拉斯信条,是一种哲学立场,認為每個事件的發生,包括人類的認知、舉止、決定和行動,都有条件决定它发生,而非另外的事件发生。”决定论有很多种,取决于什么样的预先条件成为决定的因素。“各种有关决定论的理论贯穿在哲学史中,往往出于不同但有时会重叠的动机与考虑。有些形式的决定论可以从物理学上得到经验地证实或证否。与决定论直接对立的是非决定论。决定论也常常与自由意志相对比。 如果從原始宇宙以來,有一連串的事件註定地、從未中斷地發生,自由意志則是不可能的。Van Inwagen, Peter, 1983, An Essay on Free Will, Oxford: Clarendon Press.

新!!: 薛定谔方程和決定論 · 查看更多 »

沃爾夫岡·包立

#重定向 沃尔夫冈·泡利.

新!!: 薛定谔方程和沃爾夫岡·包立 · 查看更多 »

泡利矩陣

在數學和數學物理中,包立矩陣是一組三個2×2的么正厄米複矩陣,一般都以希臘字母σ來表示,但有時當他們在和同位旋的對稱性做連結時,會被寫成τ。他們在包立表像(σz表像)可以寫成: \end 這些矩陣是以物理學家沃爾夫岡·包立命名的。在量子力學中,它們出現在包立方程式中描述磁場和自旋之間交互作用的一項。所有的包立矩陣都是厄米矩陣,它們和單位矩陣(有時候又被稱為為第零號包立矩陣),的線性張成為2×2厄米矩陣的向量空間。 從量子力學的角度來看,哈密頓矩陣(算符)代表可觀測的物理量,因此,σk, k.

新!!: 薛定谔方程和泡利矩陣 · 查看更多 »

波包

在任意時刻,波包(wave packet)是局限在空間的某有限範圍區域內的波動,在其它區域的部分非常微小,可以被忽略。波包整體隨著時間流易移動於空間。波包可以分解為一組不同頻率、波數、相位、波幅的正弦波,也可以從同樣一組正弦波構成;在任意時刻,這些正弦波只會在空間的某有限範圍區域相長干涉,在其它區域會相消干涉。 描繪波包輪廓的曲線稱為包絡線。依據不同的演化方程,在傳播的時候,波包的包絡線(描繪波包輪廓的曲線)可能會保持不變(沒有色散),或者包絡線會改變(有色散)。 在量子力學裏,波包可以用來代表粒子,表示粒子的機率波;也就是說,表現於位置空間,波包在某時間、位置的波幅平方,就是找到粒子在那時間、位置的機率密度;在任意區域內,波包所囊括面積的絕對值平方,就是找到粒子處於那區域的機率。粒子的波包越狹窄,則粒子位置的不確定性越小,而動量的不確定性越大;反之亦然。這位置的不確定性和動量的不確定性,兩者之間無可避免的關係,是不確定性原理的一個標準案例。 描述粒子的波包滿足薛定諤方程,是薛定諤方程的數學解。通過含時薛定諤方程,可以預測粒子隨著時間演化的量子行為。這與在經典力學裏的哈密頓表述很類似。.

新!!: 薛定谔方程和波包 · 查看更多 »

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

新!!: 薛定谔方程和波函数 · 查看更多 »

波函數塌縮

#重定向 波函数坍缩.

新!!: 薛定谔方程和波函數塌縮 · 查看更多 »

波前

#重定向 波阵面.

新!!: 薛定谔方程和波前 · 查看更多 »

波動力學

波動力學是量子力學的一種表述形式,主要是以波函數及其模數的平方去表示物體的狀態及該狀態出現的機率。對於波函數隨時間的變化,是遵從薛丁格方程式。.

新!!: 薛定谔方程和波動力學 · 查看更多 »

波矢

波向量是波的向量表示方法。波向量是一个向量,其大小表示波数(k.

新!!: 薛定谔方程和波矢 · 查看更多 »

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

新!!: 薛定谔方程和波粒二象性 · 查看更多 »

波數

在物理學裏,波數是波動的一種性質,定義為每  長度的波長數量(卽每單位長度的波長數量乘以 )。更明確地說,波數是每  長度內,波動重複的次數(一個波動取同樣相位的次數)。波數與波長成反比。用方程的語言說, 其中,\lambda\,\! 是波長。 角频率是單位時間內的角度變化,而波數為單位長度內的角度變化,因此波數即是空間上的角频率。波數對應向量爲波向量。 有時候,波數也會定義為每單位長度的波長的數目。但這樣定義比較不好使用。 從隨著時間而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個頻率譜;而從隨著位置而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個波數譜。 採用國際單位制,波數的單位是m^\,\!。.

新!!: 薛定谔方程和波數 · 查看更多 »

洛伦兹变换

洛伦兹变换是观测者在不同惯性参照系之间对物理量进行测量时所进行的转换关系,在数学上表现为一套方程組。洛伦兹变换因其创立者——荷兰物理学家亨德里克·洛伦兹而得名。洛伦兹变换最初用来调和19世纪建立起来的经典电动力学同牛顿力学之间的矛盾,后来成为狭义相对论中的基本方程组。.

新!!: 薛定谔方程和洛伦兹变换 · 查看更多 »

期望值

在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合裡。) 例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下: \operatorname(X)&.

新!!: 薛定谔方程和期望值 · 查看更多 »

本徵函數

在数学中,函数空间上定义的线性算子 A 的本征函数(Eigenfunction,又稱--)就是对该空间中任意一个非零函数 f 进行变换仍然是函数 f 或者其标量倍数的函数。更加精确的描述就是 \mathcal A f.

新!!: 薛定谔方程和本徵函數 · 查看更多 »

最小作用量原理

物理學中 最小作用量原理(least action principle),或更精確地,平穩作用量原理(stationary action principle),是一種變分原理,當應用於一個機械系統的作用量時,可以得到此機械系統的運動方程式。這原理的研究引導出經典力學的拉格朗日表述和哈密頓表述的發展。卡爾·雅可比特稱最小作用量原理為分析力學之母。 在現代物理學裏,這原理非常重要,在相對論、量子力學、量子場論裏,都有廣泛的用途。在現代數學裏,這原理是莫爾斯理論的研究焦點。本篇文章主要是在闡述最小作用量原理的歷史發展。關於數學描述、推導和實用方法,請參閱條目作用量。最小作用量原理有很多種例子,主要的例子是莫佩爾蒂原理(Maupertuis' principle)和哈密頓原理。 在最小作用量原理之前,有很多類似的點子出現於測量學和光學。古埃及的拉繩測量者(rope stretcher)在測量兩點之間的距離時,會將固定於這兩點的繩索拉緊,這樣,可以使間隔距離減少至最低值。托勒密在他的著作《地理學指南》(Geographia)第一册第二章裏強調,測量者必須對於直線路線的誤差做出適當的修正。古希臘數學家歐幾里得在《反射光學》(Catoptrica)裏表明,將光線照射於鏡子,則光線的反射路徑的入射角等於反射角。稍後,亞歷山卓的希羅證明這路徑的長度是最短的。.

新!!: 薛定谔方程和最小作用量原理 · 查看更多 »

惠更斯-菲涅耳原理

惠更斯-菲涅耳原理(Huygens–Fresnel principle)是研究波传播问题的一种分析方法,因荷蘭物理學者克里斯蒂安·惠更斯和法国物理学者奥古斯丁·菲涅耳而命名。這个原理同时适用于远场极限和近场衍射。 惠更斯-菲涅耳原理能夠正確地解釋與計算波的傳播。基爾霍夫衍射公式給衍射提供了一個嚴格的數學基礎,這基礎是建立於波動方程式和格林第二恒等式。從基爾霍夫衍射公式,可以推導出惠更斯-菲涅耳原理。菲涅耳在惠更斯-菲涅耳原理裏憑空提出的假定,在這推導過程中,會自然地表現出來。 舉一個簡單例子來解釋這原理。假设有两个相邻房间A、B,这两个房间之間有一扇敞开的房门。当声音从房间A的角落裏发出时,则处於房间B的人所听到的这声音有如是位於门口的波源传播而来的。對於房间B的人而言,位於门口的空气振动是声音的波源。 光波对於狹縫或孔徑的衍射也可以用這方式處理,但直观上并不明显,因为可见光的波长很短,因此很难观测到这种效应。.

新!!: 薛定谔方程和惠更斯-菲涅耳原理 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 薛定谔方程和时间 · 查看更多 »

旋量

在數學幾何學與物理中,旋量是複向量空間中的的元素。旋量乃自旋群的表象,類似於歐幾里得空間中的向量以及更廣義的張量,當歐幾里得空間進行無限小旋轉時,旋量做相應的線性轉換。當如此一系列這樣的小旋轉組合成一定量的旋轉時,這些旋量轉換的次序會造成不同的組合旋轉結果,與向量或張量的情形不同。當空間從0°開始,旋轉了完整的一圈(360°),旋量發生了正負號變號(見圖),這個特徵即是旋量最大的特點。在一給定維度下,需要旋量才能完整地描述旋轉,如此引入了額外數量的維度。 在閔考斯基空間的情形,也可以定義出相似的旋量,其中狹義相對論的勞侖茲轉換扮演旋轉的角色。旋量最先是由埃利·嘉當於1913年引入幾何學。Quote from Elie Cartan: The Theory of Spinors, Hermann, Paris, 1966, first sentence of the Introduction section of the beginning of the book (before the page numbers start): "Spinors were first used under that name, by physicists, in the field of Quantum Mechanics.

新!!: 薛定谔方程和旋量 · 查看更多 »

拉普拉斯算子

在數學以及物理中,拉普拉斯算子或是拉普拉斯算符(Laplace operator, Laplacian)是由欧几里得空间中的一個函数的梯度的散度给出的微分算子,通常寫成 \Delta 、 \nabla^2 或 \nabla \cdot \nabla 。 這名字是為了紀念法国数学家皮耶-西蒙·拉普拉斯(1749–1827)而命名的。他在研究天体力学在數學中首次应用算子,当它被施加到一个给定的重力位(Gravitational potential)的时候,其中所述算子给出的质量密度的常数倍。經拉普拉斯算子運算為零∆f.

新!!: 薛定谔方程和拉普拉斯算子 · 查看更多 »

曲率

曲率,符号以Kappa:κ表示,是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意義。 曲率半径,符号以Rho:ρ表示,是曲率的倒数,单位为米。.

新!!: 薛定谔方程和曲率 · 查看更多 »

普朗克-愛因斯坦關係式

在量子力學裏,普朗克-愛因斯坦關係式French & Taylor (1978), pp.

新!!: 薛定谔方程和普朗克-愛因斯坦關係式 · 查看更多 »

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

新!!: 薛定谔方程和普朗克常数 · 查看更多 »

重定向到这里:

不含時薛丁格方程式含時薛丁格方程式水丁格方程薛丁格波動方程式薛丁格方程薛丁格方程式薛定諤方程薛定諤方程式薛定谔波动方程

传出传入
嘿!我们在Facebook上吧! »