徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

氯化铍

指数 氯化铍

氯化铍(化学式:BeCl2)是碱土金属铍的氯化物,室温下为雪白色易升华的固体。.

22 关系: 二氯化二硫价层电子对互斥理论化学式傅-克反应光气碱土金属碘化钡焦炭直线形分子构型氟化钡氟化钙氧化铍氯化物氯化锶氯化鋇氯化氢混成軌域溴化鋇

二氯化二硫

二氯化二硫,有時亦作一氯化硫,化学式S2Cl2。.

新!!: 氯化铍和二氯化二硫 · 查看更多 »

价层电子对互斥理论

价层电子对互斥理论(英文:Valence Shell Electron Pair Repulsion,簡稱為VSEPR),是一个用来预测单个共价分子形态的化学模型。理论通过计算中心原子的价层电子数和配位数来预测分子的几何构型,并构建一个合理的路易斯结构式来表示分子中所有键和孤对电子的位置。.

新!!: 氯化铍和价层电子对互斥理论 · 查看更多 »

化学式

化學式(chemische Formel/chemical formula),是一種用來表示化學物質(也可能為元素或化合物)組成的式子。 一般情況下,由元素符號、數字或其他符號組成;這些符號單一行列,被限制在一個排版,並會出現上標和下標。 下為常用符號:.

新!!: 氯化铍和化学式 · 查看更多 »

傅-克反应

傅里德-克拉夫茨反应,简称傅-克反应,是一类芳香族亲电取代反应,1877年由法国化学家查尔斯·弗里德爾(Charles Friedel)和美国化学家詹姆斯·克拉夫茨(James Mason Crafts)共同发现。该反应主要分为两类:烷基化反应和酰基化反应。 相关的综述文献如下:.

新!!: 氯化铍和傅-克反应 · 查看更多 »

光气

碳酰氯,俗稱光成气(;化学式:COCl2),簡稱光气,从化学结构上看是碳酸的二酰氯衍生物,是非常活泼的亲电试剂,容易水解,是剧烈窒息性毒气,高浓度吸入可致肺水肿,毒性比氯气约大10倍,但在体内无蓄积作用。其俗名譯自希臘文φως(光)+Γίνει(產生)。光气最初是由氯仿受光照分解产生,故有此名。.

新!!: 氯化铍和光气 · 查看更多 »

碱土金属

碱土金属指的是元素週期表上第 2 族(ⅡA族)的六个金属元素,包括鈹、鎂、鈣、鍶、鋇 和放射性元素鐳。 鹼土金屬都是銀白色的,比較軟的金屬,密度比較小。鹼土金屬在化合物中是以+2的氧化態存在。鹼土金屬原子失去電子變為陽離子時,最外層一般是8個電子,但铍離子最外層只有2個電子。 碱土金属具有很好的延展性、可以制成许多合金、如鎂鋁合金。 碱土金属都是活泼金属。.

新!!: 氯化铍和碱土金属 · 查看更多 »

碘化钡

碘化鋇(英文:Barium iodide)是分子式為BaI2的無機化合物,為白色固體。分兩種型態,一種是水合物,另一種是無水物,都是白色的固體,无水物可由含水碘化鋇加熱得到。 Category:碘化物 Category:碱土金属卤化物 Category:钡化合物.

新!!: 氯化铍和碘化钡 · 查看更多 »

焦炭

炭是一種低雜質的高碳含量燃料,一般為煤炭或焦煤干馏後残存的固态产物。形态呈不规则块状,富含大小不等的气孔结构,质地坚硬,颜色为银灰或黑色。焦炭主要成分是碳元素,含少量氢、氧、氮、硫及少量其它元素。焦炭主要用于冶金工业,是高炉冶炼的重要原料;同时也被广泛用于铸造行业,少量也被化肥或燃气工业用于制造水煤气,近年来也有焦炭应用于电弧炉炼钢操作。 目前生产焦炭的方式主要有室式炼焦炉和无回收焦炉(或称热回收焦炉、清洁焦炉等)。总体上,炼焦生产会给环境带来诸多压力,如空气及水资源的污染。中國目前是焦炭产量最大的国家,2007年产量约为3.3亿吨,约占世界总产量的60%。 1961年,在中国广东新会发掘南宋末年(大约1270年前后)炼铁遗址时,除找到炉渣、石灰石、铁矿石外,还找到了焦炭。目前所知,这是世界上冶铁用焦炭的最早实例。英国在1709年,由 Abraham Darby I 采用焦炭替代木炭炼铁,获得成功,并获得了这项技术专利。 Category:煤炭 Category:冶金 it:Carbone#Coke.

新!!: 氯化铍和焦炭 · 查看更多 »

直线形分子构型

化学中,直线形分子构型描述了三个或更多个原子排列在一直线上,键角为180º的现象。通常认为,直线形的有机分子(例如乙炔)中的中心碳原子采用sp杂化。许多常见分子是直线形的,例如CO2、HCN和二氟化氙。直线形的阴离子由N3−和SCN−。直线形的阳离子有NO2+。.

新!!: 氯化铍和直线形分子构型 · 查看更多 »

鈹(舊譯作鋍、鑉、鋊)是一種化學元素,符號為Be,原子序為4,屬於鹼土金屬。鈹通常在宇宙射线散裂過程中產生,是宇宙中較為稀有的元素之一。所有自然界中的鈹都與其他元素結合,形成礦物,如綠柱石(海藍寶石、祖母綠)和金綠寶石等。單質鈹呈鋼灰色,輕、硬而易碎。 在鋁、銅、鐵和鎳中加入鈹作為合金材料,可以加強其物理性質。用鈹銅合金製成的工具十分堅硬,在敲擊鋼鐵表面時也不會產生火花。由於鈹的抗彎剛度、熱穩定性、熱導率都很高,密度卻很低(只有水的1.85倍),所以適合做航空航天材料,用於導彈、航天器和衛星之中。X射線等電離輻射能夠穿透低密度和低原子量的鈹,所以在X光儀器和粒子物理學實驗中都常用鈹作為窗口材料。鈹和氧化鈹可以很好地傳導熱量,因此被用於控制器械的溫度。 在處理鈹的時候,必須使用適當的措施控制粉塵,因為吸入含鈹粉塵會引致可致命的慢性過敏性鈹中毒。.

新!!: 氯化铍和铍 · 查看更多 »

醚(漢語拼音:mí,Ether)是具有醚官能团的一类有机化合物。醚官能团是由一个氧原子连接两个烷基或芳基所形成,醚的通式为:R–O–R。它还可看作是醇或酚羟基上的氢被烃基所取代的化合物。 醚类中最典型的化合物属:乙醚,它常用于有机溶剂与医用麻醉剂。由于其在化学中的常用性(乙醚是最常用的醚类提取溶剂),我们还有时将乙醚直接简称为“醚”。醚类化合物的应用常见于有机化学和生物化学,它们还可作为糖类和木质素的连接片段。.

新!!: 氯化铍和醚 · 查看更多 »

醇是有機化合物的一大類,是脂肪烴、脂環烴或芳香烴側鏈中的氫原子被羥基取代而成的化合物。在化學中,醇是任何有機化合物,其中羥基官能團(-OH)被綁定到一個飽和碳原子。通常意义上泛指的醇,是指羟基与一个脂肪族烃基相连而成的化合物;羥基與苯環相連,則由于化学性质与普通的醇有所不同而分类为酚;羥基與sp2雜化的双键碳原子相連,属烯醇类,该类化合物由于会互变异构为醛(只有乙烯醇能變乙醛)或酮,因此大多无法稳定存在。.

新!!: 氯化铍和醇 · 查看更多 »

氟化钡

氟化钡(化学式:BaF2)是钡生成的氟化物。.

新!!: 氯化铍和氟化钡 · 查看更多 »

氟化钙

氟化钙(化学式:CaF2)是钙的氟化物,为白色晶体,难溶于水,单晶是透明的。它是萤石矿物的主要成分,也是氟元素的主要来源,可用于制取氟化氢、氟气、氟化物等重要化学试剂,年产量达50万吨(1990年代后期)。 氟化钙型结构是晶体结构中的一种重要结构。立方体晶胞中,Ca2+与八个F−以立方体型配位,F−与四个Ca2+以四面体型配位。 由于晶格中F心存在,矿物中的氟化钙常带很深的颜色。 工业上和实验室中都以氟化钙为原料制取氟化氢。氟化钙与浓硫酸在铅皿中反应,便会有氟化氢气体放出: 氟化氢是化工中极为重要的中间体,可以配制氢氟酸,也是制取有机氟化合物、氟化物等多种化学试剂的原料。.

新!!: 氯化铍和氟化钙 · 查看更多 »

氧化铍

氧化鈹是一種結晶狀的氧化物,它可以直接從燃燒鈹化合物或鈹獲得。它跟氧化鋁一樣都是很好的抗火材料,經過燒結的氧化鈹非常的堅硬,有陶瓷的特性。氧化铍非常穩定,但如果跟氟化氫銨或硫酸一起加熱就輕易被分解。.

新!!: 氯化铍和氧化铍 · 查看更多 »

氯是一种卤族化学元素,化学符号為Cl,原子序数為17。.

新!!: 氯化铍和氯 · 查看更多 »

氯化物

氯化物在无机化学领域里是指带负电的氯离子和其它元素带正电的阳离子结合而形成的盐类化合物。最常见的氯化物比如氯化钠(俗称食盐)。常见的氯化物列在右表。但有時金屬(如金)溶解在王水時會產生一種叫氯某酸(如氯金酸),一氧化氮和水。.

新!!: 氯化铍和氯化物 · 查看更多 »

氯化锶

氯化鍶(SrCl2)是鍶和氯的鹽。這是一種典型的鹽,水溶液为中性。与其他鍶化合物类似,氯化鍶在火焰下呈紅色,因此它被用於製造紅色煙火。其化學性質介於氯化鋇(毒性更強)和氯化鈣間。.

新!!: 氯化铍和氯化锶 · 查看更多 »

氯化鋇

氯化鋇(化学式:BaCl2)是钡的氯化物,有毒,灼烧時產生黃綠色的光。.

新!!: 氯化铍和氯化鋇 · 查看更多 »

氯化氢

氯化氢(hydrogen chloride),分子式为HCl,室温下为无色气体,遇空气中的水汽形成白色盐酸酸雾。氯化氢及其水溶液盐酸在化工中非常重要。二者分子式均可写为HCl。.

新!!: 氯化铍和氯化氢 · 查看更多 »

混成軌域

混成軌域(Hybrid orbital)是指原子軌域經混成(hybridization)後所形成的能量简并的新轨道,用以定量描述原子間的鍵結性質。與價層電子對互斥理論可共同用來解釋分子軌域的形狀。混成概念是萊納斯·鮑林於1931年提出。.

新!!: 氯化铍和混成軌域 · 查看更多 »

溴化鋇

溴化鋇是一種鋇的化合物,是一種溴化鹽類,分子式為BaBr2,通常外觀為白色固體。性質類似氯化鋇,它溶解在水中,是有毒的水溶液。.

新!!: 氯化铍和溴化鋇 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »