徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

核酸結構

指数 核酸結構

核酸結構(Nucleic acid structure)是指如DNA与RNA的核酸。从化学角度上讲,DNA与RNA是非常相似的。DNA与RNA的结构常分为四个不同水平:一级、二级、三级及四级。 能夠直接計算出DNA機械性質的實驗技術相對較新,且要在溶液中進行高解析度觀察也較困難,不過科學家仍然解出了許多關於DNA機械性質的數據。關於DNA機械性質的研究,包括不同型態的DNA雙螺旋、DNA超螺旋、非螺旋型態、鹼基配對鍵結、熔點等。.

28 关系: A-DNA尿嘧啶位阻效应嘧啶嘌呤碱基对磷酸二酯键組織蛋白熔点DNA纳米技术DNA超螺旋鳥嘌呤胞嘧啶胸腺嘧啶脱氧核糖核酸腺嘌呤蛋白质四级结构蛋白质结构雙股螺旋Z-DNA染色质核糖体核糖核酸核鹼基核酸核酸热力学核苷酸氢键

A-DNA

A-DNA又稱A型DNA,為DNA雙股螺旋的一種形式,擁有與較普遍的B-DNA相似的右旋結構,但其螺旋較短較緊密。A-DNA是三種具有生物活性的DNA雙螺旋結構,另兩種則為B-DNA及Z-DNA。一般只有脫水的DNA樣本中才會出現,可用來作晶體學實驗。此外當DNA與RNA混合配對時,也可能出現A-DNA形式的螺旋。.

新!!: 核酸結構和A-DNA · 查看更多 »

尿嘧啶

-- -- -- 尿嘧啶(Uracil,简写U),是組成RNA的四种鹼基之一。在DNA的轉錄時取代 DNA 中的胸腺嘧啶,與腺嘌呤配對。将尿嘧啶甲基化即得胸腺嘧啶 (T)。.

新!!: 核酸結構和尿嘧啶 · 查看更多 »

位阻效应

位阻效应(也叫空间效应、空间位阻效应、立体效应)是研究分子中不同基团间電子團重疊形成的電磁力而造成的分子结构或反应取向的立体化学分枝。广泛应用于有机化学中分子结构及反应机理的定性讨论,但在有些情况下可能导致偏差或谬误。 Category:立体化学 Category:物理有机化学.

新!!: 核酸結構和位阻效应 · 查看更多 »

嘧啶

嘧啶(,音同「密定」,英語:Pyrimidine)為1,3-二氮杂苯,是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。.

新!!: 核酸結構和嘧啶 · 查看更多 »

嘌呤

嘌呤(,大陆:piào lìng,台湾:「飄齡」,英語:Purine),又稱普林,是新陈代谢過程中的一種代謝物。它是一种带有四个氮原子的杂环芳香有机化合物,嘌呤和嘧啶是核酸中最重要的组成部分。 如果身體未能將嘌呤進一步代謝并從腎臟中經尿液排出的話,而這些物質最終形成尿酸,再經血液流向軟組織,以結晶體積存於其中,假若有誘因引起沉積在軟組織如關節膜或肌腱裡的尿酸結晶釋出,那便導致身體免疫系統過度反應(敏感)而造成炎症(痛風症)。.

新!!: 核酸結構和嘌呤 · 查看更多 »

碱基对

碱基对是形成核酸DNA、RNA单体以及编码遗传信息的化学结构。组成碱基对的碱基包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)、尿嘧啶(U)。在DNA或某些双链RNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使碱基配对遵循一定的规律,腺嘌呤一定与胸腺嘧啶或者在RNA中的尿嘧啶配对,鸟嘌呤与胞嘧啶配对。这就是碱基互补配对原则。它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳糖、磷酸和一个碱基组成。 鹼基對通常簡寫做bp(base pair);千鹼基對 為kbp,或簡寫作kb(對於雙鏈核酸。對於單鏈核酸,kb指千鹼基);兆鹼基对即百萬對鹼基簡寫作Mbp。 人类也成功的将人造碱基对加入到了DNA中。.

新!!: 核酸結構和碱基对 · 查看更多 »

磷酸二酯键

#重定向 磷酸二酯鍵.

新!!: 核酸結構和磷酸二酯键 · 查看更多 »

組織蛋白

組織蛋白(histone )是真核生物体细胞染色质中的碱性蛋白质,其将DNA包装和组织成被命名为核小体的结构单元。它们是染色质的主要蛋白质组分,作为DNA缠绕的线轴,并在中发挥作用。没有组织蛋白,染色体中未缠绕的DNA将非常长(人类DNA中的长宽比超过1000万比1)。例如,每个人类二倍体细胞(含有23对染色体)具有约1.8米长的DNA,但是在组織蛋白上缠绕它具有大约90微米(0.09毫米)的染色质,当在有丝分裂期间复制和浓缩时,其导致约120微米的染色体。.

新!!: 核酸結構和組織蛋白 · 查看更多 »

熔点

點、液化點(M.P.)是在大氣壓下晶体將其物態由固態轉變為液態的过程中固液共存状态的溫度;各种晶体的熔点不同,对同一种晶体,熔点又与所受压强有关,壓強越大,熔點越高。不過,與沸點不同,熔點受壓强的影響很小,因爲由固態轉變(熔化)為液態的过程中,物質的體積幾乎不變化。 進行相反動作(即由液態轉為固態)的溫度,稱之為凝固点、結晶點(對水而言也称為冰点),在一定大氣壓下,任何晶体的凝固点和熔点相同。習慣上,根據常溫(25℃)時物質的狀態使用凝固点或熔点稱呼這一個溫度:對於常溫下為固態的物質,這個溫度稱爲凝固点;對於常溫下為液態的物質,這個溫度稱爲熔点。 一般的,非晶体并没有固定的熔点和凝固点。.

新!!: 核酸結構和熔点 · 查看更多 »

DNA纳米技术

DNA纳米技术專門研究利用脫氧核糖核酸或其他核酸的分子性質(如自組裝的特性),來建構出可操控的新型纳米尺度結構或機械。在这个领域,核酸被用作非生物的材料而不是在活细胞中那样作为遗传信息的载体。严格的核酸碱基配对法则(使链上特定的碱基列相互连接以形成牢固的双螺旋结构)使这一技术成为可能。这一技术允许合理的碱基链设计,从而严格地组合形成具有精密控制的纳米级特性的复杂的目标结构。脫氧核糖核酸是常使用的优势材料,但包括其他核酸如核糖核酸和肽核酸也被用来构造结构,所以偶尔也用“核酸纳米技术”来概括这个领域。 DNA纳米技术概念的基础最先由纳德里安·西曼(Nadrian Seeman)在1980年代早期阐述,在2000年后开始引起广泛的关注。这一领域的研究者已经构建了静止结构如二维和三维晶体结构、毫微管、多面体和其他任意的造型;和功能结构如纳米机器和DNA運算。一些组建方法被用来构建拼装结构、折叠结构和动态可重构结构。现在,这种科技开始被用作解决在结构生物学和生物物理学中基础科学问题的工具;同时也被应用在结晶学和光谱学中来测定蛋白质结构。这项技术在分子电子学(molecular scale electronics)和纳米医学中的应用仍在研究中。.

新!!: 核酸結構和DNA纳米技术 · 查看更多 »

DNA超螺旋

DNA超螺旋(英語:DNA supercoil)指雙螺旋環狀DNA扭轉後再進一步地扭轉,產生的結構類似電話線被扭轉之後的樣子。 所谓的超螺旋就是:原本已经是螺旋形态的结构进一步再次螺旋缠绕。对DNA而言,原本已经是双股螺旋的结构,如果进一步再次缠绕成为螺旋形,就叫超螺旋。就正常的DNA而言都会维持在超螺旋的状态,乃至将DNA从细胞中萃取出来时也是维持在超螺旋结构。 而DNA维持在超螺旋状态的方法是通过减低回转turn数目来达成。通过减低回转数,引入结构性张力而使得DNA发生超螺旋以缓解张力。 超螺旋的发生是因为有结构性张力被引入DNA而导致:为了疏解张力,所以进一步缠绕成为双螺旋。(此处引入张力的前提是:在连续性变形中,如果DNA 扭转的数目减少,但是碱基数仍然不变,则代表每一回转中碱基数目会增加,不同于一般 B DNA 的10.5碱基/回转,则代表有张力被引入结构。注意此处的前提不包括非连续性变形,因为非连续性变形讲的是双股发生断裂而使得碱基数减少,此处讨论的前提是碱基数不变情况下,回转数减少而使的张力增加。) 至于结构性张力被引入的原因,是因为有拓扑異構酶的存在。拓扑酶的作用原理是:对于放松状态的DNA进行切割后,移位,再粘回去,从而将张力引入螺旋之中,导致超螺旋的形成。 拓扑酶引入张力有两种方式:减少连环数(linking number)或增加连环数,都会使张力被引入。而拓扑酶有两种:第一型主要是增加 1个连环数,而第二型主要是减少两个连环数。 举个例子:如果放松状态的DNA透过某方法增加2个 连环数,导入张力,进而形成双螺旋结构,则打开双螺旋结构时就会由第二型拓扑酶减少两个连环数使得每一回转中碱基数目回复放松时的碱基数目,进而导致回复放松状态。 在机制方面,是由于拓扑酶经由在原本右手螺旋的DNA导入右手螺旋或左手螺旋的回转而使得连环数发生对应的增或减。 对细胞的DNA而言,会随时在两种拓扑酶的调控下在放松状态以及超螺旋状态之间变化。然而当DNA 要自我复制或转译时,非得放松的状态不可,因此拓扑酶的调控便对DNA的功能行使有举足轻重的影响。 與DNA雙螺旋的旋轉方向相同的扭轉稱為正超螺旋;反之稱為負超螺旋。是一種三級構造。 DNA超螺旋有两种存在形式:具绞旋线超螺旋以及螺管式超螺旋。具绞旋线是发生在当DNA从细胞中独立出来后形成的超螺旋状态,而螺管式则是当DNA处于染色质中维持的超螺旋状态。其中以螺管式缠绕的更加紧密,且需要蛋白质的辅助方能形成——染色质中组蛋白。 由于拓扑酶对于DNA双螺旋结构的形成以及放松起关键性作用,换句话说,就是对DNA的表达以及自我复制有调控作用。 因此许多药物被开发来作为拓扑酶的抑制剂,就可以将该药物作为抗生素或抗癌药应用。 扭轉数(T;twisting number)纏繞数(W;writhing number)與连环数(L;Linking number)之間的關係可寫成: 其中,L(连环数)定义为当一个环状双螺旋DNA分子平铺在平面时,一条链跨越另一条链的次数,T(扭转数),指一条链绕双螺旋假想轴缠绕的圈数,W(缠绕数)亦称为超螺旋数(Number Of Turns Of Superhelix) 一般情况下,大多数生物体的DNA是负超螺旋。.

新!!: 核酸結構和DNA超螺旋 · 查看更多 »

鳥嘌呤

鳥嘌呤(Guanine,又稱鳥糞嘌呤)是五種不同碱基中的其中之一,並同時存在於脱氧核醣核酸(DNA)及核醣核酸(RNA)中。鳥嘌呤是嘌呤的一種,並與胞嘧啶(cytosine)以三個氫鍵相連。.

新!!: 核酸結構和鳥嘌呤 · 查看更多 »

胞嘧啶

胞嘧啶(cytosine, C),學名為2-羰基-4-氨基嘧啶,是组成DNA的四种基本碱基之一。胞嘧啶核苷、胞嘧啶核苷酸均可作为升高白细胞(白血球)的药物。可由二巯基脲嘧啶、浓氨水和氯乙酸为原料合成制得。 Category:胺 Category:嘧啶酮.

新!!: 核酸結構和胞嘧啶 · 查看更多 »

胸腺嘧啶

胸腺嘧啶(Thymine,簡寫為 T),又稱為5-甲基尿嘧啶(5-methyluracil),為嘧啶類鹼基,是形成DNA核苷酸中四種鹼基(G-C-A-T)的其中一種。.

新!!: 核酸結構和胸腺嘧啶 · 查看更多 »

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

新!!: 核酸結構和脱氧核糖核酸 · 查看更多 »

腺嘌呤

腺嘌呤(Adenine,簡稱A,旧称维生素B4)是一種嘌呤,在生物化學上具有許多不同的功用。於細胞呼吸中,是以富有能量的腺苷三磷酸(ATP),以及輔因子煙醯胺腺嘌呤二核苷酸(NAD)、黃素腺嘌呤二核苷酸(FAD)等形式發生作用。並且在蛋白質生物合成過程裡作為DNA與RNA的組成物。.

新!!: 核酸結構和腺嘌呤 · 查看更多 »

蛋白质四级结构

蛋白质四级结构(Protein quaternary structure)是生物化学中用于描述多亚基蛋白质复合物中各个折叠蛋白质亚基的排列组合。.

新!!: 核酸結構和蛋白质四级结构 · 查看更多 »

蛋白质结构

蛋白质结构是指蛋白质分子的空间结构。作为一类重要的生物大分子,蛋白质主要由碳、氢、氧、氮、硫等化学元素组成。所有蛋白质都是由20种不同的L型α氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。蛋白质和多肽之间的界限并不是很清晰,有人基于发挥功能性作用的结构域所需的残基数认为,若残基数少于40,就称之为多肽或肽。要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。由研究蛋白质结构而发展起来了结构生物学,采用了包括X射线晶体学、核磁共振等技术来解析蛋白质结构。 一定数量的残基对于发挥某一生物化学功能是必要的;40-50个残基通常是一个功能性结构域大小的下限。蛋白质大小的范围可以从这样一个下限一直到数千个残基。目前估计的蛋白质的平均长度在不同的物种中有所区别,一般约为200-380个残基,而真核生物的蛋白质平均长度比原核生物长约55%。更大的蛋白质聚合体可以通过许多蛋白质亚基形成;如由数千个肌动蛋白分子聚合形成蛋白纤维。.

新!!: 核酸結構和蛋白质结构 · 查看更多 »

雙股螺旋

雙股螺旋由两条螺旋曲线相互缠绕而成'。最常见的雙股螺旋是表现生态遗传的DNA。核酸复合物的双螺旋结构出现作为其的结果,并且是在确定其的基本组成部分。該術語隨著1968年的出版物《雙螺旋:發現DNA結構的故事》(The Double Helix: A Personal Account of the Discovery of the Structure of DNA)是美國生物學家詹姆斯·杜威·沃森所寫的一本科學研究自傳,進入流行文化。.

新!!: 核酸結構和雙股螺旋 · 查看更多 »

Z-DNA

Z-DNA又稱Z型DNA,是DNA雙螺旋結構的一種形式,具有左旋型態的雙股螺旋(與常見的B-DNA相反),並呈現鋸齒形狀。Z-DNA為三種具生物活性的DNA雙螺旋結構之一,另兩種為A-DNA與B-DNA。.

新!!: 核酸結構和Z-DNA · 查看更多 »

染色质

染色質(Chromatin,或称核染質)是在細胞中發現的大分子復合物,由DNA,蛋白質和RNA組成。它也是構成染色體的結構。染色質的主要功能是1)將DNA包裝成更緊湊,更緻密的形狀; 2)增強DNA大分子以允許有絲分裂; 3)防止DNA損傷; 4)控制基因表達和DNA複製。 染色質的主要蛋白質組件是緻密DNA的組織蛋白。 染色質僅在真核細胞(具有確定的細胞核的細胞)中發現。 原核細胞具有不同的DNA組織(原核染色體等同物稱為拟核,並且位於類核區內)。真核細胞的核染質位在細胞核內;原核生物的則位於類核(nucleoid)當中。 儘管經過深入調查,但目前對染色質的結構了解甚少。 其結構取決於幾個因素。 整體結構取決於細胞週期的階段。 在間期,染色質在結構上是鬆散的,以允許獲得轉錄和復制DNA的RNA和DNA聚合酶。 間期染色質的局部結構取決於DNA上存在的基因。.

新!!: 核酸結構和染色质 · 查看更多 »

核糖体

核糖体,旧称“核糖核蛋白体”或“核蛋白体”,是细胞中的一种细胞器因为在某些场合“细胞器”一词也会被用于专指具有磷脂双分子层膜结构的亚细胞结构,而核糖体虽然已是一种公认的细胞器,却是没有被膜包裹、完全裸露的大分子,所以核糖体有时会被严格地定义为“无膜细胞器”(non-membranous organelles)。,由一大一小两个-zh-tw:次單元;zh-cn:亚基-结合形成,主要成分是相互缠绕的RNA(称为“核糖体RNA”,ribosomal RNA,简称“rRNA”)和蛋白质(称为“核糖体蛋白质”,ribosomal protein,简称“RP”)。核糖体是细胞内蛋白质合成的场所,能读取信使RNA核苷酸序列所包含的遗传信息,并使之转化为蛋白质中氨基酸的序列信息以合成蛋白质。在原核生物及真核生物(地球上的两种具有细胞结构的主要生命形式,前者可细分为古菌、真细菌两类)的细胞中都有核糖体存在。一般而言,原核细胞只有一种核糖体,而真核细胞具有两种核糖体(线粒体和叶绿体中的核糖体与细胞质核糖体不相同)。 核糖体在细胞中负责完成“中心法则”裡由RNA到蛋白质这一过程,此过程在生物学中被称为“翻译”。在进行翻译前,核糖体小次單元会先与从细胞核中转录得到的信使RNA(messenger RNA,简称“mRNA”)结合,再结合核糖体大次單元构成完整的核糖体之后,便可以利用细胞质基质中的转运RNA(transfer RNA,简称“tRNA”)运送的氨基酸分子合成多肽。当核糖体完成对一条mRNA单链的翻译后,大小--会再次分离。 英语中的“核糖体”(ribosome)一词是由“核糖核酸”(“ribo”)和希腊语词根“soma”(意为“体”)组合而成的。.

新!!: 核酸結構和核糖体 · 查看更多 »

核糖核酸

核糖核酸(Ribonucleic acid),簡稱RNA,是一類由核糖核苷酸通過3',5'-磷酸二酯鍵聚合而成的線性大分子。自然界中的RNA通常是單鏈的,且RNA中最基本的四種鹼基爲A(腺嘌呤)、U(尿嘧啶)、G(鳥嘌呤)、C(胞嘧啶)通過轉錄後修飾,RNA可能會帶上(Ψ)這樣的稀有鹼基,相對的,與RNA同爲核酸的DNA通常是雙鏈分子,且含有的含氮鹼基爲A(腺嘌呤)、T(胸腺嘧啶)、G(鳥嘌呤)、C(胞嘧啶)四種。 RNA有着多種多樣的功能,可在遺傳編碼、翻譯、調控、基因表達等過程中發揮作用。按RNA的功能,可將RNA分爲多種類型。比如,在細胞生物中,mRNA(信使RNA)爲遺傳信息的傳遞者,它能夠指導蛋白質的合成。因爲mRNA有編碼蛋白質的能力,它又被稱爲編碼RNA。而其他沒有編碼蛋白質能力的RNA則被稱爲非編碼RNA(ncRNA)。它們或通過催化生化反應,或通過調控或參與基因表達過程發揮相應的生物學功能。比如,tRNA(轉運RNA)在翻譯過程中起轉運RNA的作用,rRNA(核糖體RNA)於翻譯過程中起催化肽鏈形成的作用,(小RNA)起到調控基因表達的作用。此外,RNA病毒甚至以RNA作爲它們的遺傳物質。 RNA通常由DNA通過轉錄生成。RNA在細胞中廣泛分佈,真核生物的細胞核、細胞質、粒線體中都有RNA。.

新!!: 核酸結構和核糖核酸 · 查看更多 »

核鹼基

核鹼基(英語:Nucleobase)是指一類含氮鹼基(nitrogenous base),在生物學上通常簡單地稱之鹼基(base)。是在DNA和RNA中,起配对作用的部分。核鹼基都是杂环化合物,其氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参與碱基配对。 常見的核鹼基共有5种:胞嘧啶(缩写C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,通常為DNA专有)和尿嘧啶(U,通常為RNA专有)。腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置。胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。 核碱基通过糖苷键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。.

新!!: 核酸結構和核鹼基 · 查看更多 »

核酸

核酸(nucleic acids)是一种通常位于细胞核内的大型生物分子,負責生物体遗传信息的携带和传递。核酸有兩大類,分別是脱氧核糖核酸(DNA)和核糖核酸(RNA)。 核酸的单体结构为核苷酸。每一个核苷酸分子由三部分组成:一个五碳糖、一个含氮碱基、和一个磷酸基。如果其五碳糖是脱氧核糖則為脱氧核糖核苷酸,此單體之聚合物是DNA。如果其五碳糖是核糖則為核糖核苷酸,此單體之聚合物是RNA。核苷酸也被称为核苷酸磷酸盐。 核酸是最重要的生物大分子(其余为氨基酸/蛋白质,糖/碳水化合物,脂质和/脂肪)。它们大量存在于所有活的东西,功能有编码,传递和表达遗传信息 - 换句话说,信息通过核酸序列被传递。DNA分子含有生物物种的所有遗传信息,为双链分子,其中大多数是链状结构大分子,也有少部分呈环状结构,分子量一般都很大。RNA主要是负责DNA遗传信息的翻译和表达,为单链分子,分子量要比DNA小得多。 核酸存在于所有动植物细胞、微生物和病毒、噬菌体内,是生命的最基本物质之一,对生物的生长、遗传、变异等现象起着重要的决定作用。 核酸是在1869年被科学家弗雷德里希·米歇尔发现。核酸实验研究构成了现代生物学和医学研究的重要组成部分,形成了基因组和法医学,以及生物技术和制药行业的基础。.

新!!: 核酸結構和核酸 · 查看更多 »

核酸热力学

核酸熱力學是指溫度影響雙鏈DNA(dsDNA)的核酸結構。DNA变性(DNA denaturation)又稱DNA融化(DNA melting)是DNA雙螺旋解開成為兩條單股長鏈的過程。在過程中,使兩股長鏈上的鹼基相連的氫鍵會斷裂。 DNA的變性可以是溫度升高而產生的作用,也可能是其他化學物質如尿素的誘導。使DNA解開的融化溫度(Tm)是依DNA鏈的長度,以及特定核苷酸序列的組成形式而定。.

新!!: 核酸結構和核酸热力学 · 查看更多 »

核苷酸

核苷酸(Nucleotide)为核酸的基本组成单位。核苷酸由一個含氮鹼基作為核心,加上一個五碳糖和一個或者多个磷酸基團組成。含氮碱基有五种可能,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶。五碳糖为脱氧核糖者称为脱氧核糖核苷酸(DNA的單體),五碳糖为核糖者称为核糖核苷酸(RNA的單體)。 根据构成核酸的核苷酸数量分为寡核苷酸(少于或等于15个核苷酸)和多核苷酸(15个核苷酸以上)。.

新!!: 核酸結構和核苷酸 · 查看更多 »

氢键

氫鍵是分子間作用力的一種,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是电负性较强的原子。氢键既可以是分子间氢键,也可以是分子内的。其键能最大约为200kJ/mol,一般为5-30kJ/mol,比一般的共价键、离子键和金属键键能要小,但强于静电引力。 氢键对于生物高分子具有尤其重要的意义,它是蛋白质和核酸的二、三和四级结构得以稳定的部分原因。.

新!!: 核酸結構和氢键 · 查看更多 »

重定向到这里:

DNA 結構RNA 結構

传出传入
嘿!我们在Facebook上吧! »