徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

蛋白质

指数 蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

229 关系: 动力蛋白动物基因基因工程基因組學基因识别埃德曼降解法原子质量单位原核生物单体反应机理双键变性 (生物化学)受体后天免疫系统吡咯赖氨酸多糖大腸桿菌天冬氨酸失水反应奶制品威廉·阿斯特伯里实验式寡毛纲小麦屠宰场两栖动物三羧酸循环人類免疫缺陷病毒二級結構底物代谢弹性蛋白弗雷德里克·桑格异化作用侧链微管蛋白微生物必需氨基酸化学反应化学构象分子动力学分子伴侣分子量分布式计算分泌催化内体免疫共生...共振 (化学)元素分析光谱学B细胞球蛋白硒半胱氨酸碱基对磷酸酶离子通道等電位聚焦精子糖异生細胞器細胞質細胞週期纤维纤维素约翰·肯德鲁绿色荧光蛋白结缔组织结构基因组学组织 (生物学)细胞细胞分化细胞分裂细胞凋亡细胞生物学细胞骨架细胞膜细胞核缬氨酸羧基羽毛翻译 (遗传学)翻译后修饰真核生物絮凝疏水核心疏水性病毒生物生物大分子生物化学生物分子甲基甲硫氨酸电泳異亮氨酸盐析DNA复制DNA修復螯合物聚酰胺遗传密码道尔顿荧光萊納斯·鮑林面筋頭髮蠕虫顯微鏡血红蛋白血液血清白蛋白馬達蛋白解离常数角蛋白视紫红质訊息傳遞马克斯·佩鲁茨驱动蛋白詹姆斯·B·萨姆纳高分子變形菌門计算机科学诺贝尔化学奖貝殼鳥嘌呤质谱法跨膜蛋白转录转录后修饰软骨辅因子辅酶胞嘧啶胰岛素胸腺嘧啶能動性蘇氨酸赖氨酸葡萄糖肽键肌动蛋白肌球蛋白肌红蛋白肌节肌联蛋白肌肉肌肉收缩脯氨酸脱氧核糖核酸脲酶脂類膠原蛋白膜蛋白重組DNA量子力学配體 (生物化學)酶动力学酶抑制剂酶激活剂腺嘌呤酵母色谱法蛋白蛋白質三級結構蛋白质蛋白质复合体蛋白质工程蛋白质亚基蛋白质微阵列蛋白质列表蛋白质四级结构蛋白质结构蛋白质结构预测蛋白质组蛋白质组学蛋白质折叠蛋白酶蛋白酶体通道蛋白Folding@homeIn silicoIn vitroIn vivoMRNARNA聚合酶TRNAX射线晶体学抗原抗体极性核磁共振核糖体核糖核酸核膜核酸核苷酸標準蛋白胺基酸列表毒素氢键氧气氨基酸氨酰-tRNA合成酶水解永斯·贝采利乌斯沉淀活性位点液胞消化作用消化系统溶酶体激酶朊毒體指甲有机合成浆细胞支序分類學数量级 (时间)扩散作用拟核 扩展索引 (179 更多) »

动力蛋白

动力蛋白(Dynein)是一种马达蛋白(或分子马达),可将ATP高能磷酸键的化学能转化为机械能。动力蛋白依靠在微管上向负端的“行走”运输细胞内的货物。细胞骨架微管的负端指向细胞中心,因此动力蛋白也被称为负端指向的分子马达。,而移动向微管正端的驱动蛋白则被称为是正端指向的分子马达,动力蛋白可以朝微管两极运动.

新!!: 蛋白质和动力蛋白 · 查看更多 »

动物

動物是多細胞真核生命體中的一大類群,統稱為動物界。動物身體的基本形態會隨著其發育而變得固定,通常是在其胚胎發育時,但也有些動物會在其生命中有變態的過程。 大多數動物能自發且獨立地移動探索,只有極少數的動物(如珊瑚)是固定在一點無法移動。動物行為學是研究動物行為的科學,較著名的行為理論為康納德·洛倫茨提出的本能理論。 已發現的動物化石,多是在五億四千萬年前的寒武紀大爆發時的海洋物種。.

新!!: 蛋白质和动物 · 查看更多 »

基因

基因一词来自希腊语,意思为“生”。是指控制生物性状的遗传信息,通常由DNA序列来承载。基因也可视作基本遗传单位,亦即一段具有功能性的DNA或RNA序列。弄清其序列本身的过程叫基因测序。基因的结构由增强子,启动子及蛋白编码序列组成:即基因产物可以是蛋白质(蛋白质编码基因)及RNA,从而控制生物个体的性状(差異)表现。在一个个体当中所有的基因总和叫基因组。在一个物种中所有等位基因的总合叫基因库。在大多数真核生物中,基因分为细胞核基因及线粒体基因,绿色植物的叶绿体也含有独立于细胞核的叶绿体基因组。人類約有一万九千至兩萬两千個基因。 在真核生物中,染色体在体细胞中是成对存在的。每条染色体上都带有一定数量的基因。一个基因在细胞有丝分裂时有两个对列的位点,称为等位基因,分别来自父与母。依所攜帶性状的表現,又可分为显性基因和隐性基因。 一般来说,同一生物体中的每个细胞體都含有相同的基因(除了已经分化的免疫细胞),但并不是每个细胞中的所有基因携带的遗传信息都会被表現出来。控制基因表达的因素分为传统的遗传学(增强子,启动子序列相关)因素及表观遗传学(DNA甲基化,组蛋白乙酰化和脱乙酰化及RNA干扰相关)因素。職司不同功能的細胞或不同的细胞类型中,活化而表現的基因也不同。在某一细胞类型当中所有被表达的基因叫转录组,所有编码蛋白质的基因叫蛋白质组。通过即时聚合酶链式反应或染色质免疫沉淀-测序可得到转录组及蛋白质组的信息。用电脑处理基因序列的学科叫生物信息学。 人类基因组计划(human genome project, HGP)是一项规模宏大,跨国跨学科的生物信息学项目。其宗旨在于测定组成人类染色体(指单倍体)的30亿个碱基对形成的核苷酸序列,从而繪製人类基因组圖譜,並且辨識其载有的基因,达到破译人类遗传信息的最终目的。该计划起始于1990年于2000年完成。.

新!!: 蛋白质和基因 · 查看更多 »

基因工程

基因工程(genetic engineering,又称为遺傳工程、转基因、基因修饰)是一组使用生物技术直接操纵有机体基因组、用于改变细胞的遗传物质的技术。包括了同一物种和跨物种的基因转移以产生改良的或新的生物体。可以通过使用分子克隆技术分离和复制需要的遗传物质以产生DNA序列,或通过合成DNA,然后插入宿主生物体,以此将新的遗传物质插入宿主基因组中。可以使用核酸酶除去或“敲除”基因。基因靶向是使用同源重组来改变内源基因的不同技术,并且可以用于缺失基因,去除外显子,添加基因或引入点突变。 通过基因工程产生的生物体被认为是转基因生物体(GMO)。第一种转基因生物是1973年产生的细菌和1974年的转基因小鼠。利用细菌产生胰岛素在1982年商业化,转基因食品自1994年以来一直销售。作为宠物设计的第一种转基因生物GloFish于2003年12月首先在美国销售。 遗传工程技术已经应用于许多领域,包括研究、农业、工业生物技术和医学。用于洗衣洗涤剂和药物如胰岛素和人生长激素的酶现在在转基因(GM)细胞中制造,实验性转基因细胞系和转基因动物例如小鼠或斑马鱼正用于研究目的,并且转基因作物已经商业化。.

新!!: 蛋白质和基因工程 · 查看更多 »

基因組學

基因组学(Genomics),或基因體學,是研究生物基因组和如何利用基因的一门学科。该学科提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题。 基因组学能为一些疾病提供新的诊断、治疗方法。例如,对刚诊断为乳腺癌的女性,一个名为“Oncotype DX”的基因组测试,能用来评估病人乳腺癌复发的个体危险率以及化疗效果,这有助于医生获得更多的治疗信息并进行个性化医疗。基因组学还被用于食品与农业部门。 基因组学的主要工具和方法包括:生物信息学,遗传分析,基因表达测量和基因功能鉴定。.

新!!: 蛋白质和基因組學 · 查看更多 »

基因识别

#重定向 基因预测.

新!!: 蛋白质和基因识别 · 查看更多 »

埃德曼降解法

Edman降解(埃德曼降解),也根据所使用试剂而被称为“PTC法”或“PTH法”,是肽链或蛋白质中N-端氨基酸序列分析方法之一。由菲尔·埃德曼(Pehr Edman)首先创立。.

新!!: 蛋白质和埃德曼降解法 · 查看更多 »

原子质量单位

原子质量单位(Atomic mass unit,amu),现称统一原子质量单位(Unified atomic mass unit,u)或道爾頓(dalton,Da),是用来衡量原子质量的单位,定义为靜止未鍵結且處於基態碳12原子质量的1/12。.

新!!: 蛋白质和原子质量单位 · 查看更多 »

原核生物

原核生物(英文:prokaryote)是通常由單一原核细胞形成的生物。相对于真核细胞,原核细胞一般没有细胞内膜、没有核膜包裹的成型细胞核,细胞内无染色体,DNA链未螺旋化,並以游離的形成存在於細胞質中,细胞质内也无任何有膜的细胞器(如粒線體或葉綠體)。有些分類學者將原核生物歸於原核生物域(Prokaryota),但現行的三域系統不採此說,而是將古菌域和細菌域的生物視為原核生物,原核生物本身不作為生物分類的層級。 大部分原核生物为单细胞生物。根据《伯杰氏细菌鉴定手册》,原核生物分为四大类,“有细胞壁的革兰氏阴性真细菌”,“有细胞壁的革兰氏阳性真细菌”,“无细胞壁的真细菌”,“古细菌”。环境中常见的原核生物有细菌、放线菌、古细菌、螺旋体、衣原体、支原体、立克次氏体和蓝细菌等光合性细菌。 Prokaryota亦拼寫為"procaryotes-ß"Campbell, N. "Biology:Concepts & Connections".

新!!: 蛋白质和原核生物 · 查看更多 »

单体

在高分子化学中,单体是可与同种或他种分子通过共价键连接生成聚合物的小分子。英文的“单体”(monomer)一词来源于希腊语的“一”(mono)和“部分”(meros)。.

新!!: 蛋白质和单体 · 查看更多 »

反应机理

-- 化学中,反应--用来描述某一化学变化所经由的全部基元反应。虽然整个化学变化所发生的物质转变可能很明显,但为了探明这一过程的反应机理,常常需要实验来验证。 机理详细描述了每一步转化的过程,包括过渡态的形成,键的断裂和生成,以及各步的相对速率大小,等等。完整的反应机理需要考虑到反应物、催化剂、反应的立体化学、产物以及各物质的用量。 反应机理中各步的顺序也是很重要的。有些化学反应看上去是一步反应,但实际上却经由了多步,例如如下反应: 该反应中,实验测得的速率方程为:\ R.

新!!: 蛋白质和反应机理 · 查看更多 »

双键

#重定向雙鍵.

新!!: 蛋白质和双键 · 查看更多 »

变性 (生物化学)

变性(Denaturation)在生物化学中是指蛋白质或核酸受到某些理化因素的作用,其高级结构发生破坏从而丧失生物活性的现象。.

新!!: 蛋白质和变性 (生物化学) · 查看更多 »

受体

受體可以是指:.

新!!: 蛋白质和受体 · 查看更多 »

后天免疫系统

後天性免疫(adaptive immunity)也稱為獲得性免疫、適應性免疫、特異性免疫、專一性防禦,是一種經由與特定病原體接觸後,產生能識別並針對特定病原體啟動的免疫反應。和後天性免疫相對的是先天性免疫。後天免疫系統主要存在於有頜下門的脊椎動物中,近年來也在細菌以及古菌中發現,即 CRISPR/Cas 系統。脊椎動物的後天免疫系統可粗略分為體液免疫和细胞免疫。.

新!!: 蛋白质和后天免疫系统 · 查看更多 »

吡咯赖氨酸

吡咯賴胺酸(Pyrrolysine;簡稱:Pyl 或 O)是一種自然存在而少見的編碼胺基酸,其編碼爲UAG(琥珀),該密碼子通常爲終止密碼子。這是人們到目前爲止發現的第22種,也是最後一種編碼胺基酸(第21種爲硒半胱胺酸)。.

新!!: 蛋白质和吡咯赖氨酸 · 查看更多 »

多糖

多醣(Polysaccharide)由多個單醣分子脫水聚合,以糖苷键连接而成,可形成直鏈或者有分支的長鏈,水解后得到相应的單醣和寡糖。例如用来储存能量的淀粉和糖原,以及用来组成生物结构的纤维素和甲壳素。 多糖常常由略带修饰的重复单元构成。由于结构不同,多糖高分子和构成它的单糖分子性质迥异,可能无定形,甚至不溶于水。 自然界中存在的糖类(如葡萄糖、果糖和甘油醛)一般为单糖,通式为(CH2O)n,其中 n\ge 3。与此相对,多糖的通式为为CxH2O)y,其中x通常在200到2500之间。鉴于多糖通常由六碳糖构成,多糖的通式也可写作(C6H10O5)n,其中 40\le n\le 3000,不过多糖和寡糖的分界见仁见智。 多糖是一种重要的生物高分子,在生物中有储存能量和组成结构的作用。淀粉(包括直链淀粉和支链淀粉)是葡萄糖的聚合物,在植物中用来储存能量。动物将能量储存在糖原(也叫动物淀粉)中。糖原也是由葡萄糖聚合而成,但分子中支链更多。动物更活跃,所以利用的是代谢更快的糖原。 纤维素和甲壳素是两种组成生物结构的多糖。纤维素构成植物的细胞壁,可谓地球上数量最多的有机分子。纤维素应用广泛,不仅在造纸业和纺织业中举足轻重,而且是生产人造丝、醋酸纤维素、赛璐珞、硝化纤维等的原料。甲壳素结构和纤维素类似,但支链中含有氮,所以强度更高。其存在于节肢动物的外骨骼和真菌的细胞壁中。甲壳素也有很多作用,比如可用作手术缝合线。.

新!!: 蛋白质和多糖 · 查看更多 »

大腸桿菌

大腸桿菌(學名:Escherichia coli,通常簡寫:E.

新!!: 蛋白质和大腸桿菌 · 查看更多 »

天冬氨酸

天冬氨酸(aspartic acid,可簡寫為Asp或D)是一种α-氨基酸,其化學式為HOOCCH2CH(NH2)COOH。天冬氨酸的L-異構物是20种蛋白胺基酸之一,即蛋白質的构造单位。它的密碼子是GAU和GAC。它与谷氨酸同為酸性氨基酸。天冬氨酸普遍存在于生物合成作用中。.

新!!: 蛋白质和天冬氨酸 · 查看更多 »

失水反应

失水反应,也称脱水反应,是消除反应的一类,反应中反应物发生化学反应脱去水。加速失水反应进行的化学试剂一般称为失水剂。醇失水成烯或醚的反应是常见的失水反应之一,反应通常需要借助布朗斯特酸催化,以使不好的离去基团羟基(-OH)转化为易离去的水(-OH2+)。 有机合成中的失水反应主要有:.

新!!: 蛋白质和失水反应 · 查看更多 »

奶制品

奶制品,奶类制品的简称,亦称乳製品、奶类食品或奶食品,以奶为基本原料加工而成的食品。除各种直接使用奶制成的饮料外还包括通过发酵获得的食品(奶酪和奶油)以及对奶进行干燥或者提炼后获得的高浓度制品(比如奶粉、炼乳等)。奶制品的来源可以有牛奶、羊奶、人奶等。.

新!!: 蛋白质和奶制品 · 查看更多 »

威廉·阿斯特伯里

威廉·阿斯特伯里,FRS(William Thomas Astbury,Bill Astbury,)是一位英国物理學家與分子生物學家,是最早利用X光繞射研究生物分子的人。他對角蛋白的研究,為萊納斯·鮑林發現α螺旋的基礎。於1937年,他為DNA結構研究踏出了第一步。.

新!!: 蛋白质和威廉·阿斯特伯里 · 查看更多 »

实验式

实验式(或稱简式、最简式)不能区分最简个数比相同的几种化学物质,更不能解释结构或区分同分异构体。如,对于正己烷而言,它的示性式为CH3CH2CH2CH2CH2CH3,可以表明它的直链结构及分子中的碳氢原子个数;而它的最簡式则为C3H7,3和7最大公因数为1。.

新!!: 蛋白质和实验式 · 查看更多 »

寡毛纲

寡毛纲又称贫毛纲,是环节动物门的一个纲,寡毛类环节动物的头部不明显,感官也不发达;有刚毛,但没有疣足,雌雄同体,直接发育。这类动物大多穴居陆地上的土壤中,称为陆蚓;少数生活底栖在淡水中,称水蚓。目前发现的寡毛类环节动物大约有6700多种。.

新!!: 蛋白质和寡毛纲 · 查看更多 »

小麦

小麥是小麥屬(学名:Triticum)植物的統稱Belderok, Bob & Hans Mesdag & Dingena A. Donner.

新!!: 蛋白质和小麦 · 查看更多 »

屠宰场

#重定向 屠房.

新!!: 蛋白质和屠宰场 · 查看更多 »

两栖动物

兩棲動物(學名:),又名两生动物,包括所有生没有卵殼的卵,拥有四肢的脊椎动物。两栖动物的皮肤裸露,表面没有鳞片、毛发等覆盖,但是可以分泌黏液以保持身体的湿润;其幼体在水中生活,用鳃进行呼吸,长大后用肺兼皮肤呼吸。两栖动物可以爬上陆地,但是不能一生离水,因为可以在两处生存,称为两栖。牠是脊椎动物从水栖到陆栖的过渡类型。现在大约有七千多种两栖动物。兩棲動物是冷血動物(冷血动物也就是变温动物)。.

新!!: 蛋白质和两栖动物 · 查看更多 »

三羧酸循环

三羧酸循環(tricarboxylic acid cycle) ,亦作檸檬酸循環(citric cycle),是有氧呼吸的第二階段。該循環以循環中一個重要中間體檸檬酸命名,又因爲檸檬酸是一種,該反應又稱爲三羧酸循環。該循環亦因由德國生物化學家克雷布斯(Krebs)發現而稱爲克雷布斯循環(Krebs cycle),克雷布斯亦因此項貢獻獲1953年諾貝爾生理學或醫學獎。丙酮酸在經過丙酮酸脫氫酶系氧化,生成乙酰輔酶A(acetyl-CoA)後,與四碳二元羧酸草酰乙酸化合,生成檸檬酸,進入檸檬酸循環。隨後,經過一系列反應,兩個碳原子轉化爲二氧化碳(CO2)分子,檸檬酸中蘊藏的化學能轉化至還原的輔酶中。檸檬酸循環的終產物仍然是草酰乙酸,這使得該循環能源源不斷地氧化輸入循環的乙酰輔酶A。 一般情況下,檸檬酸循環產生的還原輔酶會連同糖酵解過程產生的還原輔酶一同,在氧化磷酸化過程中氧化,生成大量的ATP。一分子的乙酰輔酶A在被檸檬酸循環代謝後,可產生兩分子的CO2分子、三分子NADH、一分子FADH2,以及一分子GTP。 檸檬酸循環可以代謝糖類、脂質,以及大部分氨基酸,因爲這三類物質都能轉換爲乙酰輔酶A或檸檬酸循環的中間體,從而進入檸檬酸循環之中。另外,檸檬酸循環的許多中間體可供生物體利用。當中間產物不足時,可通過添補反應對中間產物進行補充。生物體最重要的填補反應是在丙酮酸羧化酶催化下,以一分子丙酮酸和一分子二氧化碳分子爲原料,合成一分子草酰乙酸的反應。 檸檬酸循環發生於線粒體基質中,但也會部分地在線粒體內膜或嵴膜上發生。.

新!!: 蛋白质和三羧酸循环 · 查看更多 »

人類免疫缺陷病毒

人類免疫缺乏病毒(human immunodeficiency virus,缩写为HIV)是一種感染人類免疫系統細胞的慢病毒,屬反轉錄病毒的一種。普遍認為,人類免疫缺陷病毒的感染導致艾滋病,艾滋病是後天性細胞免疫功能出現缺陷而導致嚴重隨機感染及/或繼發腫瘤並致命的一種疾病。愛滋病毒起源於1920年代的非洲金沙萨,自1981年在美國被識別並發展為全球大流行。人類免疫缺陷病毒通常也俗稱為「艾滋病病毒」或「艾滋病毒」。 人類免疫缺陷病毒作為反轉錄病毒,在感染後會整合入宿主細胞的基因組中,而目前的抗病毒治療並不能將病毒根除。世界衛生組織(WHO)在2016年估計全球約有3670萬名愛滋病毒感染者,流行狀況最為嚴重的仍是撒哈拉以南非洲,其次是南亞與東南亞,成長幅度最快的地區是東亞、東歐及中亞。 在人類免疫缺陷病毒感染病程的一些時期,特別是早期及末期,具有感染性的病毒顆粒會存在於含有免疫細胞、血漿、淋巴液或組織液的某些體液中,如血液、精液、 前列腺液、陰道分泌液、乳汁或傷口分泌液;另一方面,病毒在體外環境中極不穩定。因此,人類免疫缺陷病毒的傳播途徑主要是不安全的性接觸、靜脈注射、輸血、分娩、哺乳等;而通常的工作、學習、社交、或家庭接觸,比如完整皮膚間的接觸、共用坐便器、接觸汗液等,不會傳播人類免疫缺陷病毒;與唾液或淚液的通常接觸(如社交吻禮或短暫接吻)也未有導致傳播人類免疫缺陷病毒的報告;但美國疾病控制與預防中心說已感染病毒的母親,可將病毒透過先嚼過的食物(唾液內含血液)傳給孩子。.

新!!: 蛋白质和人類免疫缺陷病毒 · 查看更多 »

二級結構

蛋白質二級結構(Protein secondary structure)在生物化學及結構生物學中,是指一個生物大分子,如蛋白質及核酸(DNA或RNA),局部區段的三維通式。然而它並不描述任何特定的原子位置(在三級結構中描述)。 二級結構是由生物大分子在原子分辨率結構中所观察到的氫鍵來定義的。蛋白質的二級結構通常是以主鏈中氨基之間的氫鍵模式來定義〈与主链-侧链间以及侧链-侧链间的氢键无关〉,亦即DSSP的定義。而核酸的二級結構是以鹼基之間的氫鍵來定義。 在二级结构中,特定的氫鍵模式往往伴随着其他一些結構特徵;但如果只考虑这些结构特征而忽略氢键本身,则会导致所定義的二級結構不准确。例如,蛋白質的螺旋中的残基都分布在拉氏图(以主鏈二面角为坐标)的特定區域,因此二面角位于这一区域的残基都會被认为参与形成「螺旋」,而不論它是否真正的存在对应氫鍵。其他稍微不准确的定義多是應用曲線微分幾何的觀念,如曲率及扭量。也有一些結構生物學家以肉眼观察通过软件显示的蛋白质结构來決定其二級結構。 對生物大分子的二級結構含量可以以光譜來初步估計。對於蛋白質,最常用的方法是圓二色性(Circular dichroism), (利用長紫外線,波長范围170-250nm)。在获得的光谱吸收曲线上,α螺旋結構会在208nm及222nm两处同时出现极小值,而204nm和207nm处出现单个极小值則分別表示存在无规卷曲和β折疊結構。另一個較常用的方法是紅外光譜,它可以偵測因氫鍵所造成胺基的震盪。而光譜中,测定二級結構最準確的方法是利用核磁共振光谱所纪录的化學位移,由于仪器和样品制备上的原因,这一方法较为少用。.

新!!: 蛋白质和二級結構 · 查看更多 »

底物

#重定向 酶底物 (生物学).

新!!: 蛋白质和底物 · 查看更多 »

代谢

代谢是生物体维持生命的化学反应总称。这些反应使得生物体能够生长和繁殖、保持它们的结构以及对环境作出反应。代谢通常被分为两类:分解代谢可以对大的分子进行分解以获得能量(如细胞呼吸);合成代谢则可以利用能量来合成细胞中的各个组分,如蛋白质和核酸等。代谢是生物体不断进行物质和能量的交换过程,一旦物质和能量交换停止,生物体的生命就會結束。 代谢中的化学反应可以归纳为代謝途徑,通过一系列酶的作用将一种化学物质转化为另一种化学物质。酶对于代谢反應来说是非常重要的,因为酶可以通过一個熱力學上易於發生的反應來驅動另一個難以進行的反應,使之變得可行;例如,利用ATP的水解所产生的能量来驱动其他化学反应。一个生物体的代谢机制决定了哪些物质对于此生物体是有营养的,而哪些是有毒的。例如,一些原核生物利用硫化氢作为营养物质,但这种气体对于动物来说却是致命的。代谢速度,或者说代谢率,也影响了一个生物体对于食物的需求量。 代谢有一個特点:無論是任何大小的物种,基本代谢途径也是相似的。例如,羧酸,作为柠檬酸循环(又称为“三羧酸循环”)中的最为人们所知的中间产物,存在于所有的生物体,无论是微小的单细胞的细菌还是巨大的多细胞生物如大象。代谢中所存在的这样的相似性很可能是由于相关代谢途径的高效率以及这些途径在进化史早期就出现而形成的结果。.

新!!: 蛋白质和代谢 · 查看更多 »

弹性蛋白

弹性蛋白(Elastine)是一种维持结缔组织弹性的蛋白质,使体内许多组织在拉伸或收缩后,能恢复它们的形状。 弹性蛋白也使皮肤在被戳或被挤压后恢复到其本来形状。弹性蛋白是脊椎动物身体的重要承载,也是储存机械能的地方。在人类基因组中,弹性蛋白由ELN基因编码。.

新!!: 蛋白质和弹性蛋白 · 查看更多 »

弗雷德里克·桑格

弗雷德里克·桑格,OM,CH,CBE,FRS(Frederick Sanger,),英國生物化學家,曾經在1958年及1980年兩度獲得諾貝爾化學獎,是第四位兩度獲得諾貝爾獎,以及唯一獲得兩次化學獎的人。.

新!!: 蛋白质和弗雷德里克·桑格 · 查看更多 »

异化作用

异化作用(Catabolism)是生物的新陈代谢途径,将分子分解成更小的单位,并被氧化释放能量的过程,或用于其他合成代谢反应释放能量的过程。 异化作用将大分子(例如多糖、脂类、核酸和蛋白质)分解成更小的单元(例如分别为单糖、脂肪酸、核苷酸和氨基酸)。 细胞使用从分解聚合物释放的单体来构建新的聚合物分子,或进一步将单体降解为简单的废物产物,释放能量。 细胞废物包括乳酸、乙酸、二氧化碳、氨和尿素。 呼吸作用是异化作用中重要的过程。根据生物的呼吸作用是否需要氧气,可将生物分为需氧生物、厌氧生物和兼性生物。 异化作用的实质是生物体内的大分子,包括蛋白质、脂类和糖类被氧化并在氧化过程中放出能量。能量中的部分为ADP转化为ATP的反应吸收,并由ATP作为储能物质供其他需要。 有氧的异化作用中,糖、脂类、蛋白质等变为含羧基的化合物并进行了脱羧的酶促反应,生成二氧化碳;而氢则由脱氢酶激活在线粒体内经过呼吸链的传递将底物还原逐步释放能量,自身被氧化生成水。 无氧的异化作用缺乏氧这一氧化剂,不能完全将大分子分解,释放出其中的能量。.

新!!: 蛋白质和异化作用 · 查看更多 »

侧链

侧链指有机分子完整结构上的侧支,所以又可称之为“支链”。 区块链中的侧链(sidechains)实质上不是特指某个区块链,而是指遵守侧链协议的所有区块链,该名词是相对与比特币主链来说的。侧链协议是指:可以让比特币安全地从比特币主链转移到其他区块链,又可以从其他区块链安全地返回比特币主链的一种协议。.

新!!: 蛋白质和侧链 · 查看更多 »

微管蛋白

微管蛋白(Tubulin)是一类含有多个成员的蛋白质家族。其最常见的成员是α-微管蛋白和β-微管蛋白,它们是组成微管的主要成分。微管由α-微管蛋白和β-微管蛋白所形成的二聚体为单位聚集而成。细胞内微管蛋白的聚集程度会影响微管的长度,并进一步影响细胞形态。微管蛋白的分子量约为55kDa,为弱酸性蛋白质,等电点在5.2至5.8之间。微管蛋白和同属于运动性蛋白的肌动蛋白和肌球蛋白在一级结构上有许多相似性。 很长一段时间,微管蛋白被认为只存在于真核生物中;但近来,一种原核细胞分裂蛋白FtsZ被发现在进化上与微管蛋白有联系。.

新!!: 蛋白质和微管蛋白 · 查看更多 »

微生物

微生物通常是所有难以用肉眼直接看到或看不清楚的一切微小生物的总称,包括细菌、真菌、放线菌、原生动物、藻类等有细胞结构的微生物,也包括病毒、支原体、衣原体等无完整细胞结构的微生物。一般需要借助显微镜来观察研究。微生物个体微小(直径小于0.1毫米),种类繁多(99%都是未知品種,且不斷增加),之於生態圈卻非常重要(能量來源與物質循環利用),是地球最多的生命形式,可以佔據上所有生物(這裡包含植物、海草等)總重量的一半之多,与人类日常生活、健康关系密切。微生物应用领域日益拓展,广泛应用在食品、医药、环保等领域。.

新!!: 蛋白质和微生物 · 查看更多 »

必需氨基酸

必需氨基酸(essential amino acid、indispensable amino acid),指只存在食物中,動物無法合成,只能由食物中攝取,則這些氨基酸被稱為必需氨基酸。動物需攝取必需氨基酸以製造蛋白質。由於不同物种的化合能力不同,對於某一物种是必需氨基酸的,對另一物种則不一定是必需氨基酸。.

新!!: 蛋白质和必需氨基酸 · 查看更多 »

化学反应

化學反應是一個或一個以上的物質(又稱作反應物)經由化學變化转化為不同於反應物的产物的過程。 化學變化定義為當一個接觸另一個分子合成大分子;或者分子經斷裂分開形成兩個以上的小分子;又或者是分子內部的原子重組。為了形成變化,化學反應通常和化學鍵的形成與斷裂有關。特別注意化學反應不會以任何方式改變原子核,而仅限於在原子外的電子雲交互作用。雖然核變形後可能會引發化學反應,但是核反應與化學反應無關。 化學性質是物質只能在化學變化中表現出來的性質,例如有酸鹼性、氧化还原性质、熱穩定性、反应性等等。.

新!!: 蛋白质和化学反应 · 查看更多 »

化学构象

#重定向 構相異構.

新!!: 蛋白质和化学构象 · 查看更多 »

分子动力学

分子动力学是一套分子模拟方法,该方法主要是依靠计算机来模拟分子、原子体系的运动,是一种多体模拟方法。通过对分子、原子在一定时间内运动状态的模拟,从而以动态观点考察系统随时间演化的行为。通常,分子、原子的轨迹是通过数值求解牛顿运动方程得到,势能(或其对笛卡尔坐标的一阶偏导数,即力)通常可以由分子间相互作用势能函数、分子力学力场、全始計算给出。对于考虑分子本身的量子效应的体系,往往采用波包近似处理或采用量子力学的费恩曼路径积分表述方式处理。 分子动力学也常常被采用作为研究复杂体系热力学性质的采样方法。以在由分子体系的不同状态构成的系综中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 分子动力学最早在20世纪50年代由物理学家提出,如今广泛应用与物理、化学、生物体系的理论研究中。.

新!!: 蛋白质和分子动力学 · 查看更多 »

分子伴侣

分子伴侣(英文:Chaperone,又见称为:molecular chaperone,中文又可译为侣伴蛋白。英文单词原意是指,即负责监管、教育年轻未婚少女的行为的老年婦女。)是一类协助细胞内分子组装和协助蛋白质折叠的蛋白质。注意,分子伴侣与伴侣素(英文:Chaperonin)的区别。后者只是分子伴侣中的一种,前者還包括热休克蛋白Hsp60和Hsp10两个家族。另外,使用ATP协助蛋白质折叠只是一部分分子伴侣的功能,分子伴侣如Asf1者,能在细胞分裂过程中提升DNA解螺旋酶的活性并且将母链的组蛋白传递到子链。.

新!!: 蛋白质和分子伴侣 · 查看更多 »

分子量

分子量,又称“相对分子质量”,指组成分子的所有原子的原子量的总和,分子量的符号为Mr。定义为物质分子或特定单元的平均质量与12C质量的1/12之比值。由于是相对值,所以为无量纲量,单位为1。.

新!!: 蛋白质和分子量 · 查看更多 »

分布式计算

在計算機科學中,分布式计算(Distributed computing),又譯為--。這個研究領域,主要研究分散式系統(Distributed system)如何進行計算。分散式系統是一組電腦,透過網路相互连接傳遞訊息與通訊後并协调它们的行为而形成的系統。组件之间彼此进行交互以实现一个共同的目标。把需要进行大量计算的工程数据分割成小块,由多台计算机分别计算,再上传运算结果後,將結果统一合并得出数据结论的科学。分布式系统的例子来自有所不同的面向服务的架构,大型多人線上遊戲,对等网络应用。 目前常见的分布式计算项目通常使用世界各地上千万志愿者计算机的闲置计算能力,通过互联网进行数据传输(志愿计算)。如分析计算蛋白质的内部结构和相关药物的Folding@home项目,該项目結構庞大,需要惊人的计算量,由一台电脑计算是不可能完成的。虽然现在有了计算能力超强的超级計算機,但這些設備造價高昂,而一些科研机构的经费却又十分有限,藉助分佈式計算可以花費較小的成本來達到目標。.

新!!: 蛋白质和分布式计算 · 查看更多 »

分泌

分泌(Secretion)是物质,比如细胞、腺体分泌的化学物质,从一个点向另一点移动的过程。与之相对的是排泄作用,指的是从细胞或生命体中移除某些特定物质的过程。细胞分泌一般是通过,细胞质膜处的分泌通道,来完成的。.

新!!: 蛋白质和分泌 · 查看更多 »

催化

催化是利用催化剂改变化学反应速度的一种工艺。许多化学工业要利用催化作用来获得需要的反应速度。催化也是一种化工单元过程,催化剂本身在反应中不会被消耗,但催化剂会改变反应速度,一催化劑亦可能參與複數的催化反應。正催化劑可加速反應;負催化劑或抑制劑則會與反應物反應進而降低化學反應。可提高催化劑活性的物質稱為促進劑;降低催化劑活性者則稱為催化毒。 相較於未催化的反應,同溫度的催化反應擁有較低的活化能。催化劑可以藉由結合反應物達到極化的效果,如酸催化劑之於羰基化合物的合成;催化劑也可產生非自然的反應中間物,如以四氧化鋨催化烯烴的雙羥基化中產生的鋨酸鹽酯;催化劑亦可造成反應物的裂解,如製氫時產生的單原子氫。 很多物质都可以做催化剂,在无机物反应中,通常利用酸、碱、金属或金属化合物作为催化剂,在有机物反应中多用有性的蛋白质分子——酶作为催化剂,生物体内许多化学反应都依赖酶來进行的。 催化反应可以发生在单相和多相中,也可以发生在复相中:.

新!!: 蛋白质和催化 · 查看更多 »

内体

#重定向 胞內體.

新!!: 蛋白质和内体 · 查看更多 »

免疫

免疫(immunity),指生物机体识别和排除抗原物质的一种保护性反应。其中包括特异性免疫(後天免疫系統)与非特异性免疫(先天免疫系統)。.

新!!: 蛋白质和免疫 · 查看更多 »

共生

共生一詞在英文或是希臘文,字面意義就是「共同」和「生活」,這是兩生物體之間生活在一起的交互作用,甚至包含不相似的生物體之間的吞噬行為。術語「宿主」通常被用來指共生關係中較大的成員,較小者稱為「共生體」。共生依照位置可以分為外共生、內共生,就外共生而言,共生體生活在宿主的表面,包括消化道的內表面或是外分泌腺體的導管;而在內共生,共生體生活在宿主的細胞內或是個體身體內部但是在細胞外都有可能,而20世紀末的科學家研究結果推測,細胞內的葉綠體和粒線體也可能是內共生的形式之一。 美國微生物學家瑪葛莉絲(L.

新!!: 蛋白质和共生 · 查看更多 »

共振 (化学)

共振论是化学中表示分子结构的一种方法,是价键理论的重要组成部分。该方法认为,对于结构无法用一个经典结构式来表达的分子、离子或自由基,可以通过若干经典结构式的共振来表达其结构。共振中的结构并不存在,真实粒子也并非这些共振结构的混合物或是平衡体系,只是价键理论中无法用单一结构式来准确表达物质结构,必须要借助共振的思想。.

新!!: 蛋白质和共振 (化学) · 查看更多 »

元素分析

元素分析(Elemental analysis,缩写:EA)是一种或一系列确定样品元素组成的化学步骤,是分析化学研究中常用的方法。元素分析可以仅为定性分析,也可以是定量分析。元素分析中最常见的方法是燃烧法,即充分燃烧样品使其中元素转化为与其相对应的氧化物后,定性或定量测定样品中的元素组成,在有机化学中尤其常用。 对于有机化学家,元素分析或“EA”几乎总是指CHNX分析 - 样品的碳(C),氢(H),氮(N),和杂原子(X)(卤素,硫)的质量成分的测定。 该信息对于帮助确定未知化合物的结构以及帮助确定合成化合物的结构和纯度是非常重要的。在今天,有机化学光谱技术(如核磁共振(NMR),1H和13C)中,质谱法和色谱法已经取代元素分析作为结构测定的主要技术,尽管它仍然提供非常有用的补充信息。它也是确定样品纯度的最快和最便宜的方法。 安托万·拉瓦锡(Antoine Lavoisier)被认为是元素分析的发明者,作为评估化合物化学成分的量化实验工具。在当时元素分析是基于在选择性吸附燃烧气体之前和之后的比吸附剂材料的重量测定。今天,基于燃烧气体热导率或红外光谱学检测的全自动系统或其他光谱方法被使用。 其它方法有质谱法、重量分析法、电磁波谱法、中子活化分析法等。元素分析在制药工程、采矿工程等领域有广泛的应用。.

新!!: 蛋白质和元素分析 · 查看更多 »

光谱学

光谱学(Spectroscopy)是研究物质发射、吸收或散射的光、声或粒子来研究物质的方法。 光谱学也可以被定义为研究光和物质之间相互作用的学科。历史上,光谱学指用可见光来对物质结构的理论研究和定量和定性的分析的科学分支。但是,近来,光谱学的定义已经被扩展为一种不只用可见光,也用许多其他电磁或非电磁辐射(如微波,无线电波,X射线,电子,声子(声波)等)的新技术。阻抗光谱学则研究交流电的频率响应。 光谱学被频繁的用在物理和分析化学中,通过发射或吸收光谱来鉴定物质。一种记录光谱的仪器叫分光计。光谱学可以通过其测量或计算的物理属性或测量过程来分类。 光谱学也同样大量运用在天文学和遥感。大多数大型天文望远镜配有光谱摄制仪,用来测量天体的化学组成和物理属性,或通过测量光谱线的多普勒偏移来测量天体的速度。.

新!!: 蛋白质和光谱学 · 查看更多 »

B细胞

B细胞(B淋巴球)有時稱之為「朝囊定位細胞」(bursa oriented cells),這是因為它們首次在雞的腔上囊(Bursa of Fabricius)被提及的關係。 在腸道的派亞氏腺體(Peyer's glands)中的淋巴組織,被認為具有與鳥類的Fabricius組織中的鳥囊(avian bursa)同樣的功能。在魚類,它們可能就是那位於腸中的淋巴樣組織,因為口服疫苗時,會刺激魚血液中產生相對應的抗體蛋白。 它是一种在骨髓中成熟的细胞,在體液免疫中產生抗體,起到重要作用。當遇到抗原時,會分化成核比例較大的大淋巴球,叫漿細胞。漿細胞的細胞質中且會出現一些顆粒,這些顆粒容易被甲基藍等天青染料所染色,同時會出現抗體,表現在細胞膜或釋放出去。另一部分B细胞经过抗原激活后并不成为浆细胞,而是成为记忆B细胞。当再次遇到相同抗原时,记忆B细胞能迅速做出反应,大量分化增殖。.

新!!: 蛋白质和B细胞 · 查看更多 »

球蛋白

球蛋白(Globulin)是一类蛋白质,一般不溶于水但溶于稀盐、稀酸和稀碱溶液,能被饱和硫酸铵溶液沉淀。是酶的本質。.

新!!: 蛋白质和球蛋白 · 查看更多 »

硒半胱氨酸

半胱氨酸(Selenocysteine;簡稱:Sec 或 U;其它出版刊物亦簡稱為:Se-Cys))是一種氨基酸,存在於少數一些酶中,如穀胱甘肽過氧化酶、甲狀腺素5'-脫碘酶、硫氧還蛋白還原酶、甲酸脫氫酶、甘氨酸還原酶和一些氫化酶等。硒半胱氨酸的結構和半胱氨酸類似,只是其中的硫原子被硒取代。包含硒半胱氨酸殘基的蛋白都稱爲硒蛋白。 在遺傳密碼中,硒半胱氨酸的編碼是UGA(即乳白密碼子,opal stop codon),通常用作終止密碼子。但如果在mRNA中有一個硒半胱氨酸插入序列(SElenoCysteine Insertion Sequence, SECIS),UGA就用作硒半胱氨酸的編碼。SECIS序列是由特定的核苷酸序列和鹼基配對形成的二級結構決定的。在真細菌中,SECIS直接跟在UGA密碼子之後,和UGA在同一個閲讀框裏。而在古細菌和真核生物中,SECIS在mRNA的3'-不翻譯區域(3'-UTR)中,可以引導多個UGA密碼子編碼硒半胱氨酸殘基。當細胞生長缺乏硒時,硒蛋白的翻譯會在UGA密碼子處中止,成爲不完整而沒有功能的蛋白。 和細胞中的其它氨基酸一樣,硒半胱氨酸也有個特異的tRNA。這個tRNASec,和其它標準的tRNA相比有一些不同之處,最明顯的是具有一個包含8個鹼基(細菌)或9個鹼基(真核生物)的接收莖(stem),一個長的可變臂,以及幾個高度保守鹼基的替換。tRNASec起初由絲氨酸-tRNA連接酶加載一個絲氨酸,但這個Ser-tRNASec並不能用於翻譯,因爲它不能被通常的翻譯因子識別(細菌中的EF-Tu,真核生物中的eEF-1α)。而這個絲氨酰可以被一個含有磷酸吡哆醛的硒半胱氨酸合成酶替換成硒半胱氨酰。最後,這個Sec-tRNASec特異性地和另外一個翻譯延伸因子SelB或者mSelB結合,被輸送到正在翻譯硒蛋白mRNA的核糖體上。 另一種不含在20種常見氨基酸內的編碼氨基酸為吡咯賴氨酸。.

新!!: 蛋白质和硒半胱氨酸 · 查看更多 »

碱基对

碱基对是形成核酸DNA、RNA单体以及编码遗传信息的化学结构。组成碱基对的碱基包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)、尿嘧啶(U)。在DNA或某些双链RNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使碱基配对遵循一定的规律,腺嘌呤一定与胸腺嘧啶或者在RNA中的尿嘧啶配对,鸟嘌呤与胞嘧啶配对。这就是碱基互补配对原则。它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳糖、磷酸和一个碱基组成。 鹼基對通常簡寫做bp(base pair);千鹼基對 為kbp,或簡寫作kb(對於雙鏈核酸。對於單鏈核酸,kb指千鹼基);兆鹼基对即百萬對鹼基簡寫作Mbp。 人类也成功的将人造碱基对加入到了DNA中。.

新!!: 蛋白质和碱基对 · 查看更多 »

磷酸酶

磷酸酶是一种能够将对应底物去磷酸化的酶,即通过水解磷酸单酯将底物分子上的磷酸基团除去,并生成磷酸根离子和自由的羟基。磷酸酶的作用与激酶的作用正相反,激酶是磷酸化酶,可以利用能量分子,如ATP,将磷酸基团加到对应底物分子上。在许多生物体中都普遍存在的一种磷酸酶是碱性磷酸酶。 磷酸酶可以被分为两类:半胱氨酸依赖的磷酸酶和金属磷酸酶(其活性依赖位于活性位点上的金属离子)。.

新!!: 蛋白质和磷酸酶 · 查看更多 »

离子通道

离子通道(英语:Ion channel)是一种成孔蛋白,它通过允许某种特定类型的离子依靠电化学梯度穿过该通道,来帮助细胞建立和控制质膜间的微弱电压压差(参见细胞电势)。这些离子通道存在于所有细胞的细胞膜上。针对离子通道的研究叫做通道学,这一研究涉及了许多许多科学技术,例如电流生理学的电压钳位(尤其是膜片钳位技术)、免疫组织化学以及逆转录。.

新!!: 蛋白质和离子通道 · 查看更多 »

等電位聚焦

等电位聚焦(Isoelectric focusing)是一种根据分子携带的电荷不同来分离分子的技术。等电位聚集通常在凝胶中进行。 分子会被集中在一个具有pH梯度的介质中,通过介质的电流将产生带正电荷的氧化极和带负电荷的还原极。带电分子会向相反电荷的一极运动,直到到周围pH值与其等电点相同时带电分子才停止在凝胶中运动。介质中的pH值梯度通常用脂肪族两性离子产生,这些药品需要在样品加入之前加入。.

新!!: 蛋白质和等電位聚焦 · 查看更多 »

精子

精蟲或精子(spermatozoon、spermatozoön、複數 spermatozoa)是男性或其他雄性生物的生殖细胞。精子与卵子结合从而形成受精卵,进而发育为胚胎。精子最初由雷文霍克于1677年观察到。 对后代(二倍体)而言,精子细胞提供大约一半的遗传物质。在哺乳动物中,后代的性别由精子决定:含有Y染色体的精子受精后发育为男性/雄性后代(XY型),含有X染色体的精子受精后发育为女性/雌性后代(XX型),卵子只提供X染色体。.

新!!: 蛋白质和精子 · 查看更多 »

糖异生

糖异生(Gluconeogenesis)又稱糖質新生作用、糖原異生作用,指的是非碳水化合物(乳酸、丙酮酸、甘油、生糖氨基酸等)转变为葡萄糖的过程。糖异生保证了机体的血糖水平处于正常水平。糖异生的主要器官是肝。肾在正常情况下糖异生能力只有肝的十分之一,但长期饥饿时肾糖异生能力可大为增强。.

新!!: 蛋白质和糖异生 · 查看更多 »

細胞器

细胞器(organelle,或稱--)是细胞的一部分, 是细胞中通过生物膜与细胞中其他部分分隔开来的、功能上独立的亚细胞结构,与细胞质基质和细胞骨架统称为“细胞质”。 细胞器可依各自拥有膜的层数大致分为三类(广义的細胞器还包括囊泡及核小体等):.

新!!: 蛋白质和細胞器 · 查看更多 »

細胞質

細胞質是一種使細胞充滿的凝膠狀物質。細胞質包含有胞質溶膠及除細胞核外的細胞器。原生質是由水、鹽、有機分子及各種催化反應的酶所組成。細胞質在細胞內有著重要的角色,就是用作「分子液」,使各種細胞器能在其中懸浮及透過脂肪膜聚集一起。它在細胞膜內包圍著細胞核及細胞器。.

新!!: 蛋白质和細胞質 · 查看更多 »

細胞週期

細胞週期(cell cycle),是指能持续分裂的真核细胞从一次有丝分裂结束后生长,再到下一次分裂结束的循环过程。細胞週期的长短反映了细胞所处状态,这是一个细胞物质积累与细胞分裂的循环过程。癌变的细胞以及特定阶段的胚胎细胞常常有异常的分裂週期。.

新!!: 蛋白质和細胞週期 · 查看更多 »

纤维

纖維(美:fiber;英:fibre)是指由連續或不連續的細絲組成的物質。在动植物体内,纤维在维系组织方面起到重要作用。纖維用途广泛,可織成細線、線頭和麻繩,造纸或织毡时还可以织成纤维层;同時也常用來製造其他物料,及与其他物料共同组成复合材料。 纖維可被分作天然纤维及人造纤维。.

新!!: 蛋白质和纤维 · 查看更多 »

纤维素

纤维素(cellulose)是一类有機化合物,其化學通式为,是由幾百至幾千個β(1→4)連接的D-葡萄糖單元的線性鏈(糖苷键)組成的多醣。纖維素是綠色植物的,許多形式的藻類的和卵菌的原代細胞壁的重要結構組分;一些種類的細菌分泌它以形成生物膜。纖維素是地球上最豐富的有機聚合物,是自然界中分布最广、含量最多的一种多醣,是组成植物细胞壁的主要成分。棉花、亚麻、苧麻和黄麻部含有大量优质的纤维素。棉花纤维中的纤维素含量是90%,木头中纤维素含量是40%-50%,干燥的麻中纤维素含量是57%。 天然纤维素为无味的白色丝状物。纤维素不溶于水、稀酸、稀碱和有机溶剂,但在加热的条件下会被酸水解,主要的生物学功能是构成植物的支持组织。.

新!!: 蛋白质和纤维素 · 查看更多 »

约翰·肯德鲁

约翰·肯德鲁爵士,CBE,FRS(Sir John Kendrew,),英国生物学家,1962年获诺贝尔化学奖。.

新!!: 蛋白质和约翰·肯德鲁 · 查看更多 »

绿色荧光蛋白

綠色螢光蛋白(Green fluorescent protein,簡稱GFP),是一个由约238个氨基酸组成的蛋白質,從藍光到紫外线都能使其激發,發出綠色螢光。虽然许多其他海洋生物也有类似的绿色荧光蛋白,但傳統上,绿色荧光蛋白(GFP)指首先从維多利亞多管發光水母中分离的蛋白质。這種蛋白質最早是由下村脩等人在1962年在維多利亞多管發光水母中發現。這個發光的過程中還需要冷光蛋白質水母素的幫助,且這個冷光蛋白質與鈣離子(Ca2+)可產生交互作用。 在維多利亞多管發光水母中發現的野生型綠色螢光蛋白,395nm和475nm分別是最大和次大的激发波长,它的发射波長的峰點是在509nm,在可見光譜中處於綠光偏藍的位置。绿色荧光蛋白的荧光(QY)为0.79。而從(sea pansy)所得的綠色螢光蛋白,僅在498nm有一個較高的激發峰點。 在細胞生物學與分子生物學中,綠色螢光蛋白(GFP)基因常用做報導基因(reporter gene)。,綠色螢光蛋白基因也可以轉殖到脊椎動物(例如:兔子)上進行表現,並拿來映證某種假設的實驗方法。通過基因工程,綠色螢光蛋白(GFP)基因能穩轉進不同物種的基因組,在後代中持續表達。現在,綠色螢光蛋白(GFP)基因已被导入并表达在许多物種,包括细菌,酵母和其他真菌,鱼(例如斑马鱼),植物,苍蝇,甚至人等的哺乳动物细胞。 2008年10月8日,日本科学家下村脩、美国科学家马丁·查尔菲和钱永健因为发现和改造绿色荧光蛋白而获得了当年的诺贝尔化学奖。.

新!!: 蛋白质和绿色荧光蛋白 · 查看更多 »

结缔组织

結締組織(connective Tissue)爲脊椎動物基本組織之一,由細胞和大量細胞外基質組成。廣義上的結締組織包括固有結締組織、軟骨組織和骨組織、血液以及淋巴。一般所指的結締組織指固有結締組織。其中,固有結締組織又分爲疏鬆結締組織(蜂窩組織)、、脂肪組織,以及。 結締組織在生物體內起連接、支持、營養、運輸和保護等作用。在胚胎發育中,結締組織係由中胚層的間充質發育而來。.

新!!: 蛋白质和结缔组织 · 查看更多 »

结构基因组学

結構基因組學是一門用结构生物学方法研究整个生物体、整个细胞或整个基因组中所有的蛋白質和相关蛋白質复合物的三维結構的学科。主要利用實驗方式(X射線晶體学、核磁共振波谱法和电子显微学)来测定蛋白质结构,同时结合同源建模(homology modelling)这一計算方式来推测蛋白质结构。和傳統結構生物學不同的是,利用結構基因組學所測定的蛋白質結構通常是功能未知的蛋白質。這令科學家創立了結構生物信息學,利用三維結構信息來预测蛋白質功能。結構基因組學重視快速、高通量(high throughput)的蛋白質結構測定,而同步辐射装置是实现这一目标的重要实验装置之一。.

新!!: 蛋白质和结构基因组学 · 查看更多 »

组织 (生物学)

组织是生物学中介于细胞和器官之间的层次,它由许多属于同一器官的形态相似的细胞以及细胞间质组成,并且具有一定功能。不同的组织分工合作形成器官。研究组织的学科是组织学,研究其病态的学科是组织病理学。.

新!!: 蛋白质和组织 (生物学) · 查看更多 »

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

新!!: 蛋白质和细胞 · 查看更多 »

细胞分化

细胞分化(cellular differentiation),是发育生物学的研究课题之一,指的是在多细胞生物中,一个干细胞在分裂的时候,其子细胞的基因表达受到调控,例如DNA甲基化,变成不同細胞类型的过程。类如全能(totipotent)的受精卵在分裂到一定程度时,其子细胞就会开始向特定的方向分化,形成胎儿的肌肉,骨骼,毛发等器官。分化后的细胞在其结构,功能上都会出现差异,而且成为了所谓的“单能性”细胞(unipotent),就是其只能分裂得出同等细胞类型的子细胞。但是所有这些子细胞的基因组(Genome)却是与“祖宗”的干细胞一样的。研究细胞分化,对理解疾病的发生,如癌症的出现有着重要意义。.

新!!: 蛋白质和细胞分化 · 查看更多 »

细胞分裂

细胞分裂(cell division)是生物体生长和繁殖的基础,通常由一个母细胞产生两个或若干子细胞,是細胞週期的一部分。产生两个不同子细胞的分裂被称为不对称细胞分裂,也称为异裂。 根据类型常可区分为有丝分裂(mitosis)和无丝分裂,在真核生物中以有丝分裂尤为重要,它不改变染色体的倍数。 细胞分裂的另外一种形式是减数分裂(meiosis)。减数分裂产生染色体倍数减半的生殖细胞,即配子,这是有性生殖的必要条件。 如果细胞分裂失去控制,常常导致特定细胞团的增生,异生或肿瘤。严重的情况下发生恶性肿瘤,其中上皮组织来源的被称为癌症。.

新!!: 蛋白质和细胞分裂 · 查看更多 »

细胞凋亡

细胞凋亡(apoptosis,源自απόπτωσις,有堕落,死亡之意),為一種細胞程序性死亡。相对于细胞坏死(necrosis),细胞凋亡是细胞主动实施的。細胞凋亡一般由生理或病理性因素引起。而細胞壞死則主要為缺氧造成,两者可以很容易通过观察区分开来。在细胞凋亡过程中,细胞缩小,DNA被核酸内切酶降解成180bp-200bp片段屬於有層次之斷裂,(可以通过凝胶电泳证明),而细胞坏死时,细胞肿胀,细胞膜被破坏,通透性改变。细胞器散落到细胞间质,需要巨噬细胞去清除,结果是该局部组织发炎。相比起细胞坏死,细胞凋亡是更常见的细胞死亡形式。 细胞凋亡受到抑凋亡因子和促凋亡因子的调控。.

新!!: 蛋白质和细胞凋亡 · 查看更多 »

细胞生物学

细胞生物学(cell biology)舊稱细胞学(cytology),是研究细胞的形态结构、生理機能、細胞週期,细胞分裂, 细胞凋亡, 以及各種胞器及訊息傳遞路徑的学科。研究範圍專注在生物學的微觀下與分子層次。細胞生物學研究包括極大的多樣性的單細胞生物,如細菌和原生動物,以及在多細胞生物如人類,植物,和海綿的許多專門的細胞。 细胞生物学在显微、亚显微和分子水平三个层次上进行研究,并不断向探究细胞与细胞间、细胞与细胞外界相互作用等领域拓展,向探究细胞增殖、分裂、死亡等生命活动内在规律纵深。从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。 細胞是生命的基本單位,細胞的特殊性決定了個體的特殊性,因此,對細胞的深入研究是揭開生命奧秘、改造生命和征服疾病的關鍵。細胞生物學已經成為當代生物科學中發展最快的一門尖端學科,是生物、農學、醫學、畜牧、水產和許多生物相關專業的一門必修課程。 50年代以來諾貝爾生理與醫學獎大都授予了從事細胞生物學研究的科學家。 細胞生物學是研究細胞結構、功能及生活史的一門科學。細胞生物學由细胞学(cytology)發展而來,细胞学是關於細胞結構與功能(特別是染色體)的研究。現代細胞生物學從顯微水平,超微水平和分子水平等不同層次研究細胞的結構、功能及生命活動。 對於所有的生物科學,了解細胞的成分和細胞是如何工作是至關重要的。賞析細胞類型之間的異同,對於細胞和分子生物學領域以及生物醫學領域,如和發育生物學尤為重要。這些基本的相似性和差異提供了一個統一的主題,有時允許從研究一種細胞類型學到的原則進行外推並推廣到其他類型的細胞。因此,細胞生物學的研究和以下學科密切相關:遺傳學,生物化學,分子生物學,免疫學和發育生物學。.

新!!: 蛋白质和细胞生物学 · 查看更多 »

细胞骨架

细胞骨架(Cytoskeleton)一般是指细胞内細胞質中的由蛋白质构成的纤维的网络结构。它是一个动态结构,其中有一部分是不断的被破坏,更新或新建的。 在生命的所有生物领域(古菌,细菌,真核生物)的细胞里都有细胞骨架被发现(特别是在所有真核细胞,包括人类,动物和植物细胞,甚至於噬菌體中都有細胞骨架被發現)。不同生物体的细胞骨架系统是由相似的蛋白质组成。但是,细胞骨架的结构,功能和动态行为可以是非常不同的,这取决于生物体和细胞类型。类似地,在同一细胞类型内细胞骨架的结构,动态行为和功能可以通过与其他蛋白质和网络的以前的历史关联发生变化。 细胞骨架的发现较晚,主要是因为一般電子顯微鏡制样采用低温(0-4℃)固定,而细胞骨架会在低温下解聚。直到20世纪60年代后,采用戊二醛常温固定,才逐渐认识到细胞骨架的客观存在。真核细胞借以维持其基本形态的重要结构,被形象地称为细胞骨架,它通常也被认为是广义上细胞器的一种。 细胞骨架不仅在维持细胞形态,承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动,如:在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中,各类小泡和细胞器可沿着细胞骨架定向转运;在肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞(白血球)的迁移、精子的游动、神经细胞轴突和树突的伸展等方面都与细胞骨架有关。另外,在植物细胞中细胞骨架指导细胞壁的合成。 通过细胞骨架运行的一个大规模的例子是肌肉收缩。在肌肉收缩期间,肌肉的每一个细胞内肌球蛋白分子马达在并行肌动蛋白微丝上集体产生力量。这个行动收缩肌肉细胞,并通过在许多肌肉细胞的同步过程,收缩整个肌肉。.

新!!: 蛋白质和细胞骨架 · 查看更多 »

细胞膜

细胞膜,又称原生質膜(英語:cell membrane),为细胞結構中分隔细胞内、外不同介质和组成成份的界面。原生質膜普遍认为由磷脂質双层分子作为基本单位重复而成,即磷脂双分子层,其上镶嵌有各种类型的膜蛋白以及与膜蛋白结合的糖和糖脂。原生質膜是细胞与周围环境和细胞与细胞间进行物质交换和信息传递的重要通道。原生質膜通过其上的孔隙和跨膜蛋白的某些性质,达到有选择性的,可调控的物质运输作用。.

新!!: 蛋白质和细胞膜 · 查看更多 »

细胞核

细胞核(nucleus)是存在於真核細胞中的封閉式膜狀细胞器,內部含有細胞中大多數的遺傳物質,也就是DNA。這些DNA與多種蛋白質,如組織蛋白複合形成染色質。而染色質在細胞分裂時,會濃縮形成染色體,其中所含的所有基因合稱為核基因組。細胞核的作用,是維持基因的完整性,並藉由調節基因表現來影響細胞活動。 細胞核的主要構造為核膜,是一種將細胞核完全包覆的雙層膜,可使膜內物質與細胞質、以及具有細胞骨架功能的網狀結構核纖層分隔開來。由於多數分子無法直接穿透核膜,因此需要核孔作為物質的進出通道。這些孔洞可讓小分子與離子自由通透;而如蛋白質般較大的分子,則需要攜帶蛋白的幫助才能通過。核運輸是細胞中最重要的功能;基因表現與染色體的保存,皆有賴於核孔上所進行的輸送作用。 細胞核內不含有任何其他膜狀的結構,但也並非完全均勻,其中存在許多由特殊蛋白質、RNA以及DNA所複合而成的次核體。而其中受理解最透徹的是核仁,此結構主要參與核糖體的組成。核糖體在核仁中產出之後,會進入細胞質進行mRNA的轉譯。.

新!!: 蛋白质和细胞核 · 查看更多 »

缬氨酸

纈氨酸(Valine)是二十種蛋白胺基酸中的其中一種。其英文名稱Valine的命名是源自於纈草(Valerian),而中文名稱也因此稱為纈氨酸。 从營養學的觀點來看,纈氨酸是一種必需胺基酸。它的密码子是GUU、GUA、GUC和GUG。它是一种非极性氨基酸,因此纈氨酸是疏水性的。 纈氨酸是完全地電中性,當其側鏈也是中性,而且由其氨基和羧基所產生的電荷剛好平衡,這種分子稱為兩性離子。 在鐮刀型紅血球疾病裡,血紅蛋白內的纈氨酸替代了親水性胺基酸-穀氨酸(Glutamate):因為纈氨酸是疏水性的,血紅蛋白因此而無法正確折疊。 含有豐富的纈氨酸的食物來源有:白乾酪、魚、禽類、牛、花生、芝麻籽和濱豆。.

新!!: 蛋白质和缬氨酸 · 查看更多 »

羧基

基(化學式–COOH)是羧酸所具有的官能团。一般而言,羧基上的氢有较大的电离倾向,从而使羧酸在水溶液中显酸性。羧酸根负离子所具有共轭结构可以看作是氢易电离的潜在动力。.

新!!: 蛋白质和羧基 · 查看更多 »

羽毛

羽毛是鸟类及一些獸腳亞目恐龍特有的结构,是表皮的角质化衍生物。曾经被认为其与爬行类的鳞片同源,但自从大量羽毛恐龙化石在中国辽宁热河生物群以及侏罗猎龙在德国巴伐利亚被发掘和研究以来,这一观点被主流古生物学界所推翻。羽毛的真正起源至今仍没有定论。.

新!!: 蛋白质和羽毛 · 查看更多 »

翻译 (遗传学)

#重定向 翻譯 (生物學).

新!!: 蛋白质和翻译 (遗传学) · 查看更多 »

翻译后修饰

翻译后修饰(英語:Post-translational modification,縮寫PTM;又稱後轉譯修飾)是指蛋白質在翻译後的化學修飾。對於大部份的蛋白質來說,這是蛋白質生物合成的較後步驟。PTM是細胞信號傳導中的重要組成部分。 蛋白質,或是多肽,是多條或一條胺基酸的鏈。當合成蛋白質時,20種不同的胺基酸會合併成為蛋白質。胺基酸的翻译後修飾會附在蛋白質其他的生物化學官能團(如醋酸鹽、磷酸鹽、不同的脂類及碳水化合物)、改變胺基酸的化學性質,或是造成結構的改變(如建立雙硫鍵),來擴闊蛋白質的功能。 再者,酶可以從蛋白質的N末端移除胺基酸,或從中間將肽鏈剪開。舉例來說,胰島素是肽的激素,它會在建立雙硫鍵後被剪開兩次,並在鏈的中間移走多肽前體,而形成的蛋白質包含了兩條以雙硫鍵連接的多肽鏈。 其他修飾,就像磷酸化,是控制蛋白質活動機制的一部份。蛋白質活動可以是令酶活性化或鈍化。.

新!!: 蛋白质和翻译后修饰 · 查看更多 »

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

新!!: 蛋白质和真核生物 · 查看更多 »

絮凝

水處理時,會透過常不同藥劑進行絮凝以利除去水中懸浮物質,例如為混擬使用之硫酸鋁、氯化鐵、PAC等混擬劑等,以及強化膠凝作用之各種助凝劑等,為調整酸鹼度之石灰、蘇打等鹼劑,或硫酸等酸劑、消毒用之氯劑,吸附用之活性炭等等,該等藥劑,或為液體,或為固體均應依一定之劑量連續或間歇性注入處理水體進行淨化工作,為此淨水廠內就需要不同用途之加藥設備。 藥品處理設備處應不同水質處理之需要,根據實驗比較效果與經濟所得最合適之藥品及劑量配置外,應同時考慮選用其他藥品及劑量之可能性,為藥劑應在衛生上對水質無不良影響者為限。 Category:冶金 Category:化学过程 Category:排水系统 Category:水处理 Category:分离过程.

新!!: 蛋白质和絮凝 · 查看更多 »

疏水核心

#重定向 疏水效应.

新!!: 蛋白质和疏水核心 · 查看更多 »

疏水性

在化學裡,疏水性指的是一個分子与水互相排斥的物理性質。这种分子称为疏水物。 疏水性分子偏向於非極性,並因此較會溶解在中性和非極性溶液(如有机溶剂)。疏水性分子在水裡通常會聚成一團,而水在疏水性溶液的表面時則會形成一個很大的接觸角而成水滴状。 舉例來說,疏水性分子包含有烷烴、油、脂肪和多數含有油脂的物質。 疏水性通常也可以稱為親脂性,但這兩個詞並不全然是同義的。即使大多數的疏水物通常也是親脂性的,但還是有例外,如矽橡膠和碳氟化合物(Fluorocarbon)。.

新!!: 蛋白质和疏水性 · 查看更多 »

病毒

病毒(virus,中文舊稱“濾過性病毒”)是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态,靠寄生生活的介於生命体及非生命體之間的有機物種,它既不是生物亦不是非生物,目前不把它歸於五界(原核生物、原生生物、真菌、植物和動物)之中。它是由一个保护性外壳包裹的一段DNA或者RNA,藉由感染的機制,这些简单的有機体可以利用宿主的细胞系统进行自我复制,但无法独立生长和复制。病毒可以感染几乎所有具有细胞结构的生命体。第一个已知的病毒是烟草花叶病毒,由马丁乌斯·贝杰林克于1899年发现并命名,迄今已有超过5000种类型的病毒得到鉴定。研究病毒的科学称为病毒学,是微生物学的一个分支。 病毒由两到三个成份组成:病毒都含有遺傳物質(RNA或DNA,只由蛋白质组成的朊毒體并不属于病毒);所有的病毒也都有由蛋白质形成的衣壳,用来包裹和保护其中的遗传物质;此外,部分病毒在到达细胞表面时能够形成脂质包膜环绕在外。病毒的形态各异,从简单的螺旋形和正二十面體形到複合型结构。病毒颗粒大约是细菌大小的百分之一。Collier pp.

新!!: 蛋白质和病毒 · 查看更多 »

生物

生物(拉丁语,德语: Organismus, ,又称有機體)是指稱類生命的个体。在生物学和生态学中, 地球上约有870萬種物種(±130萬),其中650萬種物種在陆地上,220万种生活在水中。 生物最重要和基本的特徵在生物會進行新陳代謝及遺傳兩點,前者說明所有生物一定會具備合成代谢以及分解代谢(兩個是完全相反的兩個生理反應過程),並且可以將遺傳物質複製,透過自我分裂生殖(無性生殖)或有性生殖,交由下一代繁殖下去以避免滅絕,这是類生命现象的基础。 生命的起源和生命各个分支之间的关系一直存在争议,古早的生命分類已經過時,近代古典生物學的分類又受到分子生物學的挑戰。一般而言,我們將生物分為兩大類:原核生物和真核生物。原核生物分为兩大域:细菌(Bacteria)和古菌(Archaea),这两个域相互之间的关系并不比他们和真核生物的关系更为接近。在演化史的研究上,原核生物和真核生物之间一直缺乏联系。類似麻煩的還有病毒與內共生細菌等的分類,隨著現代生物化學的研究逐漸深入,出現了有如物理學中存在量子現象一般,在特定微觀世界下許多傳統認知出現錯誤,導致以往常理被顛覆的情況。 真核生物的特徵是有細胞核以及其他膜狀細胞器(例如動物和植物體內的粒線體粒線體也可以說是植物動物體的發電廠因為他可以製造很多的能量,以及植物及藻類中的葉綠素),一種假說是叶绿体和线粒体是由内共生细菌(endosymbiotic bacteria)演化而来T.Cavalier-Smith (1987) The origin of eukaryote and archaebacterial cells, Annals of the New York Academy of Sciences 503, 17–54 。多细胞生物(又稱至於生物實在30班一年且出來則指包含多于一个细胞的生物,在地質學上直到五億年前才出現大爆發。.

新!!: 蛋白质和生物 · 查看更多 »

生物大分子

生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。常见的生物大分子包括蛋白质、核酸 (DNA、RNA等)、糖类。 这只是一個概念性定義,与生物大分子对立的是小分子物质(二氧化碳、甲烷等)和无机物质,实际上生物大分子的特点在于其表现出的各种生物活性和在生物新陈代谢中的作用。 比如:某些多肽和某些脂类物质的分子量并未达到惊人的地步,但其在生命过程中同样表现出了重要的生理活性。与一般的生物大分子并无二致。 生物大分子大多数是由简单的组成结构聚合而成的,蛋白质的组成单位是氨基酸,核酸的组成单位是核苷酸。 生物大分子都可以在生物体内由简单的结构合成,也都可以在生物体内经过分解作用被分解为简单结构,一般在合成的过程中消耗能量,分解的过程中释放能量。 蛋白质、核酸和多糖是3类主要的生物大分子,它们在分子结构和生理功能上差别很大,然而,在以下几个方面又显出共性:.

新!!: 蛋白质和生物大分子 · 查看更多 »

生物化学

生物化学(biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。 虽然存在着大量不同的生物分子,但实际上有很多大的复合物分子(称为“聚合物”)是由相似的亚基(称为“单体”)结合在一起形成的。每一类生物聚合物分子都有自己的一套亚基类型。例如,蛋白质是由20种氨基酸所组成,而脱氧核糖核酸(DNA)由4种核苷酸构成。生物化学研究集中于重要生物分子的化学性质,特别着重于酶促反应的化学机理。 在生物化学研究中,对细胞代谢和内分泌系统的研究进行得相当深入。生物化学的其他研究领域包括遗传密码(DNA和RNA)、 蛋白质生物合成、跨膜运输(membrane transport)以及细胞信号转导。.

新!!: 蛋白质和生物化学 · 查看更多 »

生物分子

生物分子(Biomolecule)是自然存在于生物体中的分子的总称,包括大分子例如蛋白质,碳水化合物,脂质和核酸,以及小分子例如代謝產物,次级代谢产物和天然产物。这类材料的更通用的名称是生物材料。大多数生物分子都为有机化合物,含有碳和氢,多数含氮、氧、磷和硫,有时也有其他元素出现,但例子不多,参见生物无机化学。.

新!!: 蛋白质和生物分子 · 查看更多 »

甲基

基(Methyl group),为化學名词,指一种和甲烷對應的疏水性烷基官能團,化學式為-CH3,常簡寫做-Me。甲基常見於許多的有機化合物中,多半是相當穩定的官能團。甲基多半是較大化學分子中的一部份,不過偶爾也會以以下三種形式出現:陰離子、陽離子及自由基。其陽離子有八個價電子,陰離子有十個價電子,這三種形式都非常不穩定,很容易和其他化學物質反應。.

新!!: 蛋白质和甲基 · 查看更多 »

甲硫氨酸

硫氨酸(Methionine,又稱蛋胺酸),在所有後生動物中它是一種必需氨基酸。與半胱氨酸一起,甲硫氨酸是兩個含硫蛋白原氨基酸之一。對人而言是唯一的含硫必需氨基酸,有L型及D型兩種,與生物體內各種含硫化合物(如:蛋白質)的代謝密切相關。是体内活性甲基和硫的主要来源。 DL-蛋氨酸可利用化學法生產。蛋氨酸是強肝解毒劑、促進發育劑,當缺乏甲硫氨酸時,會引起食慾減退。甲硫氨酸廣泛應用於營養補充與畜產飼料,由於甲硫氨酸容易被雞吸收而轉變為雞肉蛋白,在雞飼料中添加甲硫氨酸,可少耗飼料,並使雞肉生長健全。目前甲硫氨酸主要有四類:固體甲硫氨酸、液態羥基甲硫氨酸(MHA)、液體甲硫氨酸鈉和固體羥基甲硫氨酸鈣,其中固體甲硫氨酸的市場最大。但在美國甲硫氨酸市場,液態羥基甲硫氨酸(MHA)為第一大。 甲硫胺酸在人體中由mRNA上的起始密碼子(含氮鹼基序列AUG)經核糖體轉譯後生成。.

新!!: 蛋白质和甲硫氨酸 · 查看更多 »

电泳

电泳是空间匀强电场作用下,分散粒子在流体中发生移动的现象。由于各物质的迁移速率有差别,故电泳是分离物质的常用方法。它又可分为:.

新!!: 蛋白质和电泳 · 查看更多 »

異亮氨酸

异亮氨酸(Isoleucine、簡寫:三字母: Ile;一字母: I)是二十種基本胺基酸的其中一種,幾乎在所有蛋白質的結構裡都存在著。其化學組成和亮氨酸完全一樣,但原子连接/排列顺序不同,因此与亮氨酸有不同的性質。异亮氨酸屬於疏水性胺基酸。 异亮氨酸有兩個對掌中心,所以有四種立體異構物和兩個L-异亮氨酸的非對映體。但無論如何,自然所存在的异亮氨酸只有一種類型,即L-异亮氨酸。 營養學上,异亮氨酸是人類的必需胺基酸,人体无法合成异亮氨酸,只能通过体外摄取。异亮氨酸的豐富來源有:蛋、雞、豬肉、羊肉、豆、大豆、白乾酪、牛奶、腰果、穀物。.

新!!: 蛋白质和異亮氨酸 · 查看更多 »

盐析

蛋白质的分子颗粒直径在0.1—0.001μm,属于胶体範圍。在蛋白质中加入无机盐(如硫酸铵、硫酸钠、氯化钠等),會吸引大量水分子與這些無機鹽離子水合,於是蛋白質表面暴露出來的疏水性區域增加,彼此靠著疏水性作用力結合,而從溶液中沉澱,这种作用便称为盐析。 值得注意的是,盐析是一个可逆过程,可将盐析出来的蛋白质再次溶于水而不影响原蛋白质的性质。不同的無機鹽對鹽析的作用是不同的,同一种盐对于不同蛋白质的作用效果也是不同的。所以,在某些实验,可利用盐析分离出不同的蛋白质。.

新!!: 蛋白质和盐析 · 查看更多 »

DNA复制

DNA复制是指DNA双链在细胞分裂分裂间期进行的以一个亲代DNA分子为模板合成子代DNA链的过程。复制的结果是一条双链变成两条一样的双链(如果复制过程正常的话),每条双链都与原来的双链一样(排除突变等不定因素)。 DNA复制是一种在所有的生物体内都会发生的生物学过程,是生物遗传的基础。对于双链DNA,即绝大部分生物体内的DNA来说,在正常情况下,这个过程开始于一个亲代DNA分子,最后产生出两个相同的子代DNA分子。亲代双链DNA分子的每一条单链都被作为模板,用以合成新的互补单链,这一过程被称为半保留复制。细胞的校正机制确保了DNA复制近乎完美的准确性。 在细胞当中,DNA复制起始于基因组的特殊位点,称为“起始位点”。起始于起始位点的DNA解链和新链的合成会形成复制叉。除了DNA聚合酶外,一些酶通过添加和模板相配的核苷酸来合成新DNA,一些和复制叉连接的其他蛋白对DNA的复制起始和延伸起辅助作用。 DNA复制也可以在体外(即人工地)进行,从细胞中分离的DNA聚合酶和人造的DNA复制引物可以用来启动以已知序列的DNA分子为模板的复制,聚合酶链式反应(PCR)是一种常见的实验室技术,这种采用了循环方式的人工合成,在一个DNA池中扩增出特定的DNA片段。.

新!!: 蛋白质和DNA复制 · 查看更多 »

DNA修復

DNA修复是细胞中经常运行的一种进程。它使基因组免受损伤和突变,因此对细胞的生存是很重要的。在人的细胞中,一般的代谢活动和环境因素(如紫外线和放射線)都能造成DNA损伤,导致每个细胞每天多达1,000,000处的分子损害。这些损害给DNA分子造成结构上的破坏,由此可大大的改变细胞阅读信息和基因编码的方式,其餘的損害引發在細胞基因體中的潛在有害突變,進而影響子細胞在進行有絲分裂後的存活。因此,DNA修复必须经常运作,以快速地改正DNA结构上的任何错误之处。當正常修復程序失效與細胞凋亡沒有發生,則不可回復的DNA損傷可能會發生,包含了雙股斷裂與DNA與DNA交互連結。 DNA修復的速度與許多因素有關,如細胞類型、細胞老化以及外在環境等。然而當細胞累積大量的DNA損傷老化時,DNA修复的速度下降,直至赶不上正在进行的DNA损伤的速度。这时,细胞可能遭受以下三种命运之一:.

新!!: 蛋白质和DNA修復 · 查看更多 »

螯合物

螯合物(Chelation)是配合物的一种,在螯合物的结构中,一定有一个或多个多齿配体提供多对电子与中心体形成配位键。“螯”指螃蟹的大钳,此名称比喻多齿配体像螃蟹一样用两只大钳紧紧夹住中心体。 螯合物通常比一般配合物要稳定,其结构中经常具有的五或六元环结构更增强了稳定性。正因为这样,螯合物的稳定常数都非常高,许多螯合反应都是定量进行的,可以用来滴定。使用螯合物还可以掩蔽金属离子。 可形成螯合物的配体叫螯合剂。常见的螯合剂如下:.

新!!: 蛋白质和螯合物 · 查看更多 »

聚酰胺

聚酰胺(Polyamide,PA)是由含有羧基和氨基的單體通過醯胺鍵聚合成的高分子。他們可能是自然生成,例如羊毛,絲等等的各種蛋白質,也可能是人工通過逐步聚合或固相聚合,例子是尼龍,芳香聚酰胺和鈉聚(天冬氨酸)。由於其極端的耐用性和強度,人工聚酰胺聚合物通常用於紡織品,汽車零件,地毯,運動裝,食物包裝,眼鏡架,鏡片,飛機,自行車輪胎,護甲,防護手套,防火衣,防火頭盔等用途。.

新!!: 蛋白质和聚酰胺 · 查看更多 »

遗传密码

遺傳密碼(英文:Genetic code)是一組規則,將DNA或mRNA序列以三個核苷酸為一組的密碼子轉譯為蛋白質的胺基酸序列,以用於蛋白質合成。幾乎所有的生物都使用同樣的遺傳密碼,稱為標準遺傳密碼;即使是非細胞結構的病毒,它們也是使用標準遺傳密碼。但是也有少數生物使用一些稍微不同的遺傳密碼。朊毒體以蛋白質為遺傳密碼。 密码子简并性是遗传密码的突出特征。 舒建军的遗传密码对称表 提供了可能的密码子-胺基酸关系的新视角, 并解释了密码子简并性遗传密码背后的隐含含义/逻辑。.

新!!: 蛋白质和遗传密码 · 查看更多 »

道尔顿

* 英国化学家约翰·道尔顿.

新!!: 蛋白质和道尔顿 · 查看更多 »

荧光

荧光(fluorescence)是一种光致冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出出射光(通常波长比入射光的的波长长,在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。一般以持續發光時間來分辨荧光或磷光,持續發光時間短於10-8秒的稱為荧光,持續發光時間長於10-8秒的稱為磷光。在日常生活中,人们通常广义地把各种微弱的光亮都称为荧光。.

新!!: 蛋白质和荧光 · 查看更多 »

萊納斯·鮑林

萊納斯·卡爾·鮑林(Linus Carl Pauling,),美國化学家,量子化學和結構生物學的先驱者之一。1954年因在化學鍵方面的工作取得诺贝尔化学奖,1963年因反對核彈在地面測試的行動获得1962年度的诺贝尔和平奖,成為获得不同诺贝尔奖项的兩人之一(另一人為居里夫人);也是唯一的一位每次都是独立地获得诺贝尔奖的获奖人。其後他主要的行動為支持維他命C在醫學的功用。鮑林被认为是20世纪对化学科学影响最大的人之一,他所撰写的《化学键的本质》被认为是化学史上最重要的著作之一。他以量子力學入手分析化學問題,結論卻以直觀、淺白的概念重新闡述,即便未受量子力學訓練的化學家亦可利用準確的直觀圖像研究化學問題,影響至為深遠,比如他所提出的許多概念:电负度、共振論、价键理论、混成軌域、蛋白质二級結構等概念和理论,如今已成為化学領域最基础和最广泛使用的觀念。 他晚年过度吹捧营养补充品的药用价值,并提倡使用高剂量的维生素C治疗感冒,给自己的声誉带来了负面影响。.

新!!: 蛋白质和萊納斯·鮑林 · 查看更多 »

面筋

麵筋由麵團裡的不溶於水的各种蛋白质——麸质组成,通常由小麦、大麦等谷物中所提取。如果把麵團放於水裡沖洗,當把所有可被水冲走的物質沖走後,剩下的就是麵筋(如果把被沖洗到水中的部份沉澱濾乾,就是淀麵)。早在宋朝,沈括的《梦溪笔谈》中已有“濯尽柔麵,面筋乃见”的記載。 在東亞食品和素食品中,面筋常被用作肉类的替代物。但有些人也會對其麸质產生過敏反應(如乳糜泻患者),所以在美國等地也有出售針對該等人士、不含麵筋的代用食品(例如意大利粉),通常以馬鈴薯、稻米等製成。.

新!!: 蛋白质和面筋 · 查看更多 »

頭髮

頭髮,或稱髮,是指長在人類頭部上的毛髮。頭髮的顏色及其他特徵是由基因決定,一般而言常見的有黑色、金黃色、棕色及紅色等,當人類老化時,頭髮通常會變成銀白色。不同民族的頭髮硬度、自然卷曲度也不同。頭髮由角蛋白所組成。 只有人类的头发才会始终生长,所以人类需要时常理发,而动物界则没有这种现象。其中原因尚不清楚。 头发可以保护头部和大脑。夏天可防烈日,冬天可御寒冷。细软蓬松的头发具有弹性,可以抵挡较轻的碰撞;还可以帮助头部汗液的蒸发。目前尚不清楚头发在人类进化中的作用。.

新!!: 蛋白质和頭髮 · 查看更多 »

蠕虫

蠕虫是一类长条状,软体无脊椎动物。蠕虫并不是严格的生物学上的分类,其中的一些彼此属于完全不同的物种,包括一些昆虫的幼虫、蜈蚣、蚯蚓等。全球现有超过一百万种的蠕虫,它们存在于自然界的各个角落。 巨型蠕虫藉由身体的肌肉收缩而作蠕形运动,故通称为蠕虫。在动物分类学史上,蠕虫曾被认为是独立的,具有特殊性的一类动物。但在分类学研究不断发展之后,人们发现蠕虫,实际上与人体有关系的包括扁形动物门(Phylum Platyhelminthes)、线形动物门(Phylum Nemathelminthes)和棘头动物门(Phylum Acanthocephala)所属的各种动物。因此在分类学上,蠕虫这个名称已无意义;但习惯上仍沿用此词。由蠕虫引起的疾病称为蠕虫病,具有重要意义的蠕虫种类几乎全部属于前两门。 Category:寄生蟲.

新!!: 蛋白质和蠕虫 · 查看更多 »

顯微鏡

顯微鏡泛指將微小不可見或難見物品之影像放大,而能被肉眼或其他成像儀器觀察之工具。日常用語中之顯微鏡多指光學顯微鏡。放大倍率和清析度(聚焦)為顯微鏡重要因素。 显微镜是在1590年由荷兰的詹森父子所首创。顯微鏡的類型有許多。最常見的(和第一個被發明的)是光學顯微鏡,其使用樣品的光圖像。其他主要的顯微鏡類型是電子顯微鏡(透射電子顯微鏡和掃描電子顯微鏡),超顯微鏡,和各種類型的掃描探針顯微鏡。.

新!!: 蛋白质和顯微鏡 · 查看更多 »

血红蛋白

血红蛋白,俗稱血色素,(Hemoglobin(美國) 或 haemoglobin(英國);縮寫︰Hb 或 Hgb)是高等生物体内负责运载氧的一种蛋白质。可以用平均細胞血紅蛋白濃度測出濃度。 血红蛋白存在于几乎所有的脊椎动物体内,在某些无脊椎动物组织也有分布。血液中的血红蛋白从呼吸器官中将氧气运输到身体其他部位释放,以满足机体氧化营养物质支持功能运转之需要,并将由此生成的二氧化碳带回呼吸器官中以排出体外。在哺乳动物中,血红蛋白占红细胞干重的97%、总重的35%。平均每克血红蛋白可结合1.34ml的氧气,是血浆溶氧量的70倍。一个哺乳动物血红蛋白分子可以结合最多四个氧分子。 血红蛋白也参与其他气体的转运:它能携带机体的部分二氧化碳(大约10%)。亦可将重要的调节分子一氧化氮结合在球状蛋白的某个硫醇基团上,在释放氧气的同时将其释放。 在红细胞及其祖系细胞以外也发现了血红蛋白——包括黑质中的A9多巴胺神经元、巨噬细胞、肺泡细胞以及肾脏中的系膜细胞。在这些组织中,血红蛋白作为抗氧化剂和铁代谢的调节因子存在。 血红蛋白和类血红蛋白分子在许多无脊椎动物、真菌和植物中也有分布。在这些机体中,血红蛋白可能携带氧气,抑或扮演转移和调节诸如二氧化碳、一氧化氮、硫化氢和硫化物的角色。其中一种称作豆血红蛋白(Leghemoglobin)的变体分子是用来清除氧气以免毒害诸如豆科植物的固氮根瘤的厌氧系统的。 血红蛋白化学式:C3032H4816O812N780S8Fe4。人体内的血红蛋白由四个亚基构成,分别为两个α亚基和两个β亚基,在与人体环境相似的电解质溶液中血红蛋白的四个亚基可以自动组装成α2β2的形态。 血红蛋白的每个亚基由一条肽链和一个血红素分子构成,肽链在生理条件下会盘绕折叠成球形,把血红素分子抱在里面,这条肽链盘绕成的球形结构又被称为珠蛋白。血红素分子是一个具有卟啉结构的小分子,在卟啉分子中心,由卟啉中四个吡咯环上的氮原子与一个亚铁离子配位结合,珠蛋白肽链中第8位的一个组氨酸残基中的吲哚侧链上的氮原子从卟啉分子平面的上方与亚铁离子配位结合,当血红蛋白不与氧结合的时候,有一个水分子从卟啉环下方与亚铁离子配位结合,而当血红蛋白载氧的时候,就由氧分子顶替水的位置。 血紅蛋白與氧的結合可受到2,3-二磷酸甘油酸(2,3-BPG)的調控,成人的血紅素組成為α2β2,使成人血紅蛋白對氧的親和性降低,而胎兒血紅蛋白的組成為α2γ2,不受2,3-二磷酸甘油酸影響。 血红蛋白与氧结合的过程是一个非常神奇的过程。首先一个O2与血红蛋白四个亚基中的一个结合,与氧结合之后的珠蛋白结构发生变化,造成整个血红蛋白结构的变化,这种变化使得第二个氧氣分子相比于第一个氧氣分子更容易寻找血红蛋白的另一个亚基结合,而它的结合会进一步促进第三个氧氣分子的结合,以此类推直到构成血红蛋白的四个亚基分别与四个氧氣分子结合。而在组织内释放氧的过程也是这样,一个氧氣分子的离去会刺激另一个的离去,直到完全释放所有的氧氣分子,这种有趣的现象称为协同效应。 由于协同效应,血红蛋白与氧气的结合曲线呈S形,在特定范围内随着环境中氧含量的变化,血红蛋白与氧分子的结合率有一个剧烈变化的过程,生物体内组织中的氧浓度和肺组织中的氧浓度恰好位于这一突变的两侧,因而在肺组织,血红蛋白可以充分地与氧结合,在体内其他部分则可以充分地释放所携带的氧分子。可是当环境中的氧气含量很高或者很低的时候,血红蛋白的氧结合曲线非常平缓。 除了运载氧,血红蛋白还可以与二氧化碳、一氧化碳、氰离子结合,结合的方式也与氧完全一样,所不同的只是结合的牢固程度,一氧化碳、氰离子一旦和血红蛋白结合就很难离开,这就是煤气中毒和氰化物中毒的原理,遇到这种情况可以使用其他与这些物质结合能力更强的物质来解毒,比如一氧化碳中毒可以用静脉注射亚甲基蓝的方法来救治。.

新!!: 蛋白质和血红蛋白 · 查看更多 »

血液

血液(英語:blood)是在動物的循環系統、心脏和血管腔内循环流动的一种组织,可以將氧氣及營養素送到各器官,並將細胞的代謝廢棄物帶離細胞。血液組織是結締組織的一種,由血浆和血球组成。血浆内含血浆蛋白(白蛋白、球蛋白、纤维蛋白原)、脂蛋白等各种营养成分以及无机盐、氧、激素、酶、抗體和细胞代謝產物等。血细胞有红血球、白血球和血小板。哺乳類的血液具有凝血機制,血管破裂時,血小板會結集,堵塞血管破口,此時血漿中原本可水溶的血纖維蛋白等凝固成為血塊,剩餘的透明液體就叫做血清。 生物體的生理变化和病理变化往往引起血液成分的改变,所以血液成分的检测有重要的临床意义。 以人類的血液為例,成人的血液约占体重的十三分之一,相对密度为1.050~1.060,pH值为7.3~7.4,渗透压为313毫摩每升。ABO血型是人类的主要血型分類,可分為A型、B型、AB型及O型,另外還有Rh血型系统,MNS血型系统,P血型系统等血型系统。 另外,人類還有淋巴循環系統,跟血液和組織液有關係的。蚯蚓、昆虫等的循環系統液體稱為血淋巴,作用不是免疫而是类似血液运输营养和废物。.

新!!: 蛋白质和血液 · 查看更多 »

血清白蛋白

血清白蛋白(Serum albumin),常简称为白蛋白(albumin)是一种由人类基因 ALB 所编码的球状蛋白质。 血清白蛋白由肝臟细胞生产,通常溶解在血浆中,是哺乳动物最常见的血浆蛋白。白蛋白对维持血液的膨胀压有重要作用。.

新!!: 蛋白质和血清白蛋白 · 查看更多 »

馬達蛋白

达蛋白是一类分子马达,它们可以沿着合适底物的表面进行移动。马达蛋白是利用ATP水解所产生的化学能量转化为自身的运动。 马达蛋白是细胞内物质运输颗粒和囊泡的载体。马达蛋白分为两大类:微管马达蛋白和肌球蛋白。微管马达蛋白有驱动蛋白(Kinesin)和动力蛋白(Dynein)两个家族;肌球蛋白又称微丝马达蛋白。这三类马达蛋白都是以细胞骨架为路径来运输物质,其中肌球蛋白在微丝运输物质,而驱动蛋白和动力蛋白则在微管上运输物质。.

新!!: 蛋白质和馬達蛋白 · 查看更多 »

解离常数

在化学、生物化学及药理学中,解离常数(dissociation constant,K_)是一种特定类型的平衡常数,用于衡量一较大物体与另一较小组分分开(解离)的倾向,也可以描述配合物解体成组分分子或盐分裂为其组分离子。解离常数是缔合常数的倒数。对于一些特定的盐,解离常数亦可被称为电离常数。 对于一般的反应: \mathrm_\mathrm_ \rightleftharpoons x\mathrm + y\mathrm 其中复合物\mathrm_\mathrm_分解为x份A亚单位及y份B亚单位,则解离常数被定义为: K_.

新!!: 蛋白质和解离常数 · 查看更多 »

角蛋白

角蛋白屬於硬蛋白,是組成人類皮膚角质层的主要構成物質,亦是頭髮和指甲的主要構成物質。角蛋白單體結合成中間纖維,具堅硬和不可溶的特性,並可組成爬蟲類、鳥類、兩棲類和哺乳類動物的非礦化組織。與其有相似韌性的生物物質有甲殼素。 表皮角化層的角質形成細胞含豐富的角質蛋白纖維。角蛋白可在以下組織找到:哺乳動物的頭髮和指甲;爬行動物的爪和鱗片;鳥的羽毛、喙和爪等。 角蛋白的超分子聚集特性使它十分有用。這種特性視乎其多肽鏈的特性,而這又視乎角蛋白的氨基酸組成和序列。α螺旋和β折叠圖案和二硫鍵對球狀蛋白質如酶的構成十分重要,而這些蛋白質對角蛋白的結構和聚集具主導作用。 Category:结构蛋白.

新!!: 蛋白质和角蛋白 · 查看更多 »

视紫红质

#重定向 视紫质.

新!!: 蛋白质和视紫红质 · 查看更多 »

訊息傳遞

訊息傳遞可以指.

新!!: 蛋白质和訊息傳遞 · 查看更多 »

马克斯·佩鲁茨

马克斯·费迪南德·佩鲁茨,OM(Max Ferdinand Perutz,),奥地利-英国分子生物学家,1962年获诺贝尔化学奖。 Category:奥地利生物学家 Category:英国生物学家 Category:诺贝尔化学奖获得者 Category:功績勳章成員 Category:X射线晶体学 Category:欧洲分子生物学组织会员 Category:劍橋大學彼得學院校友 Category:維也納大學校友 Category:科普利獎章獲得者.

新!!: 蛋白质和马克斯·佩鲁茨 · 查看更多 »

驱动蛋白

驱动蛋白(Kinesin)是一类蛋白质超级家族,属于分子马达的一种,其成员代表驱动蛋白-1(Kinesin-1)在1985年被发现。驱动蛋白是由单体组成的多聚体,其“头部”具有ATP酶活性,能通过水解ATP获得能量,改变构型,进行运动。它和动力蛋白一样,以微管构成的轨道进行滑行。与可以朝微管两极运动的动力蛋白有些不一样,一种驱动蛋白只能朝一个方向运动,如驱动蛋白-1可以沿着微管的+运动,而另一些驱动蛋白则沿着-极运动,在细胞内起运输作用,比如牵拉染色体,参与有丝分裂、减数分裂和细胞迁移过程。 最近的研究又发现一批与驱动蛋白-1结构相关的蛋白质,它们一起构成驱动蛋白超级家族。这些蛋白质存在于绝大多数真核生物中。它们共有一保守的“马达”域,含有约350氨基酸残基,内有ATP结合位点和微管结合位点。即使在植物中,如拟南芥(Arabidopsis thaliana)中,目前也发现了A,B,C和D四种类驱动蛋白蛋白。.

新!!: 蛋白质和驱动蛋白 · 查看更多 »

詹姆斯·B·萨姆纳

詹姆斯·巴彻勒·萨姆纳(James Batcheller Sumner,1887年11月19日 - 1955年8月12日),美国化学家,1946年获诺贝尔化学奖。 S S S S S.

新!!: 蛋白质和詹姆斯·B·萨姆纳 · 查看更多 »

高分子

分子(Macromolecule)化合物是一個非常大的分子,如蛋白質,通常由較小的亞基(單體)的聚合產生。它們一般由數千或更多的原子組成。通过一定形式的聚合反应生成具有非常高的分子量的大分子,一般指聚合物和结构上包括聚合物的分子。在生物化学中,这个术语被应用于三个传统的生物聚合物(核酸、蛋白质、和碳水化合物),以及具有大分子量的非聚合分子,例如脂类和。这些分子有时也被称为生物大分子。 聚合物高分子的各个构成分子被称为单体。 人工合成的高分子包括塑料。金属和晶体虽然也是由许多原子组成的,其内部通过类似分子的键联合在一起,但是它们一般不被认为是高分子。有时不同的高分子之间通过分子间力(但不是通过化学键)组合到一起,尤其是假如这样的组合是自然发生的,而且其组成部分一般不单独出现的话,那么这样的混合物也会被称为高分子。实际上这样的混合物更应该被称为高分子复合物。在这种情况下组成这个复合物的单个高分子往往被称为下单位。由高分子组成的物质往往有不寻常的物理特性。液晶和橡胶就是很好的例子。许多高分子在水中需要特殊的小分子帮助才能溶解。许多需要盐或者特殊的离子来溶解。.

新!!: 蛋白质和高分子 · 查看更多 »

變形菌門

變形菌門(Proteobacteria)是細菌中主要的一門,包括很多病原菌,如大腸杆菌、沙門氏菌、霍乱弧菌、幽门螺杆菌等著名的属。也有自由生活(非寄生)的種類,包括很多可以進行固氮的細菌。 卡尔·乌斯於1987年建立這個群組,非正式的稱這是“紫細菌及其親屬”。變形菌門主要是由核糖體RNA序列定義的,名稱取自希臘神話中能夠變形的神普羅透斯(這同時也是變形菌門中變形桿菌屬的名字),因爲該門細菌的形狀具有極爲多樣的形狀。.

新!!: 蛋白质和變形菌門 · 查看更多 »

计算机科学

计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.

新!!: 蛋白质和计算机科学 · 查看更多 »

诺贝尔化学奖

诺贝尔化学奖(Nobelpriset i kemi)是诺贝尔奖的奖项之一,由瑞典皇家科学院從1901年开始负责颁发。每年于12月10日,即阿尔弗雷德·诺贝尔逝世周年纪念日颁发。 根據诺贝尔的遺囑,化学奖是为了表彰「在化學領域作出最重要發現或發明的人」。.

新!!: 蛋白质和诺贝尔化学奖 · 查看更多 »

貝殼

海貝殼(Seashell,簡稱貝殼或海貝,是生活在海裏的動物的堅硬的保護外層。外殼是該動物的身體的一部分。空貝殼經常被海岸巨浪冲上海灘。貝殼是空的,因為內裏的生物通常已死亡,軟體部位已被其他動物食用或已經腐爛,在沖上岸前已消失。 术语“海贝壳”通常泛指无脊椎动物的外骨骼。貝殼通常可以在海灘發現到,大多数海滩上被发现的海贝壳都是海洋软体动物的外殼,部分是因为这些海贝壳比其他海貝殼更坚固。 除了軟體動物的殼,海灘上還可以發現藤壶 、鲎以及腕足动物的壳。海洋的环节动物蠕虫龙介虫科创建管状碳酸钙形成的壳,它们可以粘结在其它物品的表面上。蟹和龙虾脱落的壳被称为“蜕壳”。虽然大多数壳都在生物外部,一些头足类有内部壳。 在历史上和史前期,贝壳被人们用于许多不同目的。然而,海贝壳不是唯一的一种贝壳;在不同的生态环境中,淡水中也可以找到贝壳,如淡水蚌和田螺 。陆地上的蜗牛也有保护壳。.

新!!: 蛋白质和貝殼 · 查看更多 »

鳥嘌呤

鳥嘌呤(Guanine,又稱鳥糞嘌呤)是五種不同碱基中的其中之一,並同時存在於脱氧核醣核酸(DNA)及核醣核酸(RNA)中。鳥嘌呤是嘌呤的一種,並與胞嘧啶(cytosine)以三個氫鍵相連。.

新!!: 蛋白质和鳥嘌呤 · 查看更多 »

质谱法

质谱(mass spectrometry,缩写:MS)是一种电离化学物质并根据其质荷比(质量-电荷比)对其进行排序的分析技术。简单来说,质谱测量样品内的质量。 质谱法被用于许多不同领域,并被用于纯样品和复杂混合物。 质谱是离子信号作为质荷比的函数的曲线图。这些频谱被用于确定样品的元素或,颗粒和分子的质量,并阐明分子的化学结构,如肽和其他化合物。 在典型的质谱法中,可以是固体,液体或气体的样品被电离,例如用电子轰击它。 这可能导致一些样品的分子破碎成带电的碎片。 然后,这些离子根据其质荷比被分离,通常通过加速它们并使其经受电场或磁场:相同质荷比的离子将经历相同数量的偏转。离子通过能够探测带电粒子的机制被探测到,例如一个电子倍增管。 结果被显示为作为质荷比的函数的已经探测离子的相对丰度的频谱。 样品中的原子或分子可以通过将已知质量与鉴定的质量相关联或通过特征分解模式来鉴定。.

新!!: 蛋白质和质谱法 · 查看更多 »

跨膜蛋白

跨膜蛋白(transmembrane protein,TP)是一種貫穿生物膜(細胞膜)兩端的蛋白。許多跨膜蛋白的功能是作為通道或“裝載碼頭”來實施拒絕或允許某種特定的物質跨過生物膜的運輸、進入細胞,同時,也使要廢棄的副產品運出細胞。當對某種分子做出相應時,這些“負責運載”的跨膜蛋白通過特定的摺疊和彎曲方式,實現該分子的跨過生物膜的運輸。 “跨膜蛋白”是一種跨越整個生物膜一次或多次的蛋白。跨膜蛋白在水中凝聚并沉淀。大多數跨膜蛋白要用去污劑或非極性溶劑提取,少數貝塔-折筒狀蛋白也可以用某些變性劑提取。 所有的跨膜蛋白是整合膜蛋白(也叫內嵌膜蛋白),但是不是所有的整合膜蛋白都是跨膜蛋白。.

新!!: 蛋白质和跨膜蛋白 · 查看更多 »

蹄 马蹄断面 蹄是某些哺乳动物四肢前端的角质器官。.

新!!: 蛋白质和蹄 · 查看更多 »

转录

转录()是遗传信息由DNA转换到RNA的过程。作为蛋白质生物合成的第一步,转录是mRNA以及非編碼RNA(tRNA、rRNA等)的合成步骤。 转录中,一段基因会被读取、複製为mRNA;就是说一特定的DNA片段作为模板,以DNA依赖的核糖核酸聚合酶(RNA聚合酶或RNA合成酶)作为催化剂而合成前mRNA的过程。 转录尚有未清楚的部分,例如是否需要DNA解旋酶,一般来说是需要的,但某些地区称RNA聚合酶可代替其行使识别DNA上的有关碱基以开始转录的功能。 mRNA转录时,DNA分子双链打开,在RNA聚合酶的作用下,游离的4种核糖核苷酸按照碱基互补配对原则结合到DNA单链上,并在RNA聚合酶的作用下形成单链mRNA分子。至此,转录完成。 转录通常是多起点多向复制。 转录时所转录的仅为DNA上有遗传效应的片段(DNA),不包括内含子。 转录按以下一般步骤进行:.

新!!: 蛋白质和转录 · 查看更多 »

转录后修饰

转录后修饰(RNA修飾,或稱修飾RNA)是真核细胞中,将初级转录RNA转化为成熟RNA的加工过程。一个很好的例子就是前mRNA转化为成熟的mRNA,其中包括剪接,并发生在蛋白质生物合成之前。这一加工过程对于真核生物基因组的正确翻译至关重要,这是因为真核生物的初级转录RNA中包含既包括用于编码蛋白质的外显子又包含非编码的內含子。.

新!!: 蛋白质和转录后修饰 · 查看更多 »

软骨

軟骨(cartilage)是人和脊椎动物特有的胚胎性骨骼,一種無血管組織,略带弹性的坚韧组织,在机体内起支持和保护作用。由於軟骨沒有血液供應,在基質中含有大量的第二型膠原和葡萄糖胺聚合醣(GAG)來幫助物質擴散。在胎儿和年幼期,软骨组织分布较广,后来逐渐被骨组织代替。 软骨可分为、和。成年人软骨存在于骨的关节面、肋软骨、气管、耳廓、椎间盘等处。.

新!!: 蛋白质和软骨 · 查看更多 »

辅因子

輔因子(cofactor)指與酶(酵素)結合且在催化反應中必要的非蛋白質化合物。某些分子如水和部分常見的離子所扮演的角色和輔因子相當類似,但由於含量不受限制且普遍存在,因此不歸類為輔因子。 辅因子可以被分类为或称为"辅酶"的复合有机分子,后者主要衍生自少量的维生素和其他有机必需营养素。 一個不含輔因子的酶稱為脫輔基酶(apoenzyme),脫輔基酶加上輔因子並產生完整作用時,稱為全酶(holoenzyme): 金屬離子是常見的輔因子,這些金屬離子反映在生物必須的微量元素名單當中。例如鈣、鎂、錳、鐵、鈷、鎳、銅、鋅與鉬等。除了這些無機化學物之外,輔因子也包括一些有機物質,例如血紅蛋白中的鐵。另外有些維生素也可作為輔因子如維生素C;或是輔因子的前趨物,如維生素B1。.

新!!: 蛋白质和辅因子 · 查看更多 »

辅酶

輔酶是有機非蛋白小分子,其用途為在酵素(酶)內載運化學基。許多輔酶是磷化水溶性維他命。但非維他命物質也可能是輔助,如ATP-磷酸基的生化載具。 輔酶被消耗在其幫助的反應上,如NADH輔酶被氧化還原反應轉化至NAD+。但輔酶是會再產生的,且其在細胞內的濃度會維持在一穩定的程度。 輔酶的一特殊子集為輔基。其輔因子(或稱輔助因子)會緊緊黏在酵素上,且不會在反應中被消耗。輔基包含有鉬蝶呤、硫辛胺和生物素。 酶蛋白與輔酶單獨存在時,一般無催化能力,只有二者結合成完整的分子時,才具有活性 ,此完整的酶分子稱為全酶。.

新!!: 蛋白质和辅酶 · 查看更多 »

胞嘧啶

胞嘧啶(cytosine, C),學名為2-羰基-4-氨基嘧啶,是组成DNA的四种基本碱基之一。胞嘧啶核苷、胞嘧啶核苷酸均可作为升高白细胞(白血球)的药物。可由二巯基脲嘧啶、浓氨水和氯乙酸为原料合成制得。 Category:胺 Category:嘧啶酮.

新!!: 蛋白质和胞嘧啶 · 查看更多 »

胰岛素

胰島素()是一種蛋白質激素,由胰臟內的胰島β細胞分泌。胰島素參與調節碳水化合物和脂肪代謝,控制血糖平衡,可促使肝臟、骨骼肌將血液中的葡萄糖轉化為糖原。缺乏胰島素會導致血糖過高、糖尿病。因此胰島素可用於治療糖尿病。其分子量為5808道爾頓。 胰島素應用於臨床數十年,從抗原性較強的第一代動物胰島素到基因重組但餐前需要等待30分鐘的第二代人胰島素,再發展到現在可以很好模擬生理性人胰島素分泌模式的胰島素類似物。目前更好的模擬正常人體生理降糖模式的胰島素是第三代胰島素——胰島素類似物。.

新!!: 蛋白质和胰岛素 · 查看更多 »

胸腺嘧啶

胸腺嘧啶(Thymine,簡寫為 T),又稱為5-甲基尿嘧啶(5-methyluracil),為嘧啶類鹼基,是形成DNA核苷酸中四種鹼基(G-C-A-T)的其中一種。.

新!!: 蛋白质和胸腺嘧啶 · 查看更多 »

胺(英語:amine)是氨分子(NH3)中的氢被烃基取代后形成的一类有机化合物。氨基(-NH2、-NHR、-NR2)是胺的官能团。 如果氮原子连着羰基(C.

新!!: 蛋白质和胺 · 查看更多 »

能動性

能動性是一個生物學術語,意指能自發且獨立地移動。此一名詞可以應用在單細胞和多細胞的生命體上頭。 在細胞生物學和生醫工程中,能動性通常是指細胞隨著生物聚合物形成的梯度而有方向性的移動。例子如下:.

新!!: 蛋白质和能動性 · 查看更多 »

蘇氨酸

蘇氨酸(Threonine)是一種必需的氨基酸,為白色斜方晶系或結晶性粉末,微甜。因結構與蘇糖相似而得名。主要用於醫藥、化學試劑、營養強化劑,可以強化乳製品,具有恢復人體疲勞,促進生長發育的效果。L-蘇氨酸是一種飼料的原料。 Category:蛋白氨基酸 Category:生糖氨基酸 Category:生酮氨基酸 Category:必需氨基酸.

新!!: 蛋白质和蘇氨酸 · 查看更多 »

赖氨酸

#重定向 離胺酸.

新!!: 蛋白质和赖氨酸 · 查看更多 »

葡萄糖

葡萄糖(法语、德语、英語:glucose;又称血糖、玉米葡糖、玉蜀黍糖)是自然界分布最广、且最为重要的一種单糖。 因為擁有6個碳原子,被歸為己糖或六碳糖。葡萄糖是一种多羟基醛,分子式為C6H12O6。其水溶液旋光向右,故亦称“右旋糖”。葡萄糖在生物学领域具有重要地位,是活細胞的能量來源和新陳代謝的中间产物。植物可通过行光合作用產生葡萄糖。.

新!!: 蛋白质和葡萄糖 · 查看更多 »

肺是很多进行空气呼吸的动物的呼吸系统中重要的一个器官,大部分四足类动物、一些鱼类和蜗牛都有肺。哺乳动物和其他身体结构较为复杂的动物则拥有两个肺,其位于胸腔中靠近脊柱,并分别位于心脏的左右两侧。 肺的主要功能是将氧气从空氣运输到血液中,并将二氧化碳从血液中排出至大气中。气体交换过程是在一种特殊细胞中进行的,而这些细胞是由成千上万的微小薄壁泡囊组成的,这些微小泡囊被称作"肺泡"。 为了能够完整解释肺部的结构,需要首先对从口腔到肺泡的这一呼吸道进行讨论。当空气通过嘴或者鼻子被吸入后,会通过咽、喉头、气管和逐渐分化的支气管和小支气管,并最终到达肺泡,在那里将发生二氧化碳和氧气的气体交换过程。 空气的呼入与排出(也称换气)是由肌肉进行控制和驱动的。在早期的四足类动物中,空气是由咽部肌肉通过泵抽的形式被驱动的,而爬行动物、鸟类和哺乳动物则使用一个更为复杂的肌肉骨骼系统。 与肺相关的英语医学术语通常都以pulmo-作为词根,这个词根来自于拉丁语pulmonarius,意为“肺部的”;或者以pneumo-作为词根,这个词根来自于希腊语πνεύμων,意思为“肺”。.

新!!: 蛋白质和肺 · 查看更多 »

肽键

肽鍵(Peptide bond,)是一分子胺基酸的α-羧基(-COOH)和另一分子胺基酸的α-胺基(-NH2)脱水缩合形成的酰胺键,即-CO-NH-,為連結兩單體胺基酸之共價鍵,氨基酸借肽键联结成多肽链。由於共振而無法自由旋轉,具部分雙鍵特性。.

新!!: 蛋白质和肽键 · 查看更多 »

肌动蛋白

肌动蛋白(actin)是一类分子量大约在42,000的球状蛋白质。除了线虫类精子细胞,在所有的真核细胞当中均发现有该蛋白质,浓度约在100μM以上。肌动蛋白是生物体中微丝的两个单体亚基之一,而微丝则是细胞骨架三大组成结构之一,肌动蛋白还构成了肌细胞中具有收缩功能的组织。所以,肌动蛋白对于细胞活动起到很大的作用,比如肌肉的收缩,细胞的转移、分裂和原质的流动,动物胞囊和器官的运动,细胞间信息的传递,以及细胞的形状和连结的建立和维持等等。 有许多疾病是由调控肌动蛋白基因表达活性的蛋白及其相关蛋白的等位基因突变引起的。肌动蛋白基因表达也是一些病原微生物感染过程中的关键因素。一些肌动蛋白调孔蛋白的突变会导致,包括心脏大小与功能的变化以及耳聋等。细胞骨架的组装也与细胞内细菌与病毒的致病性有关,特别是在逃避免疫系统作用有关的过程中。.

新!!: 蛋白质和肌动蛋白 · 查看更多 »

肌球蛋白

#重定向 肌凝蛋白.

新!!: 蛋白质和肌球蛋白 · 查看更多 »

肌红蛋白

肌红蛋白(Myoglobin)是由153个胺基酸环绕中央的血基质组成的单链蛋白质。分子量为16700道尔顿。其对氧气的亲合力大于血红蛋白,所以在肌肉组织中有儲存氧气的功能。因為只需要一點氧分壓便可以使其對氧氣的結合力達到飽和,所以比血红蛋白更適合儲存氧氣。血基质對一氧化碳的親和力比氧氣大20000倍,但是因為肌紅蛋白三級結構上His64(His E7)胺基酸不但可以與氧氣產生氫鍵還可以使一氧化碳偏離原來的結合時的自然狀態,在這一來一往的情形下,使得肌紅蛋白對一氧化碳的親和力只比氧氣高出200倍。由於不具有四級構造,所以不像血紅素一樣,產生協同效應。 若严重过度运动,有可能使肌细胞溶解并导致肌红蛋白进入血液,在肾脏堵住肾小管,引起肾损伤,称为横纹肌溶解症。肌细胞溶解还会释放出大量的钾,引起高钾血症。.

新!!: 蛋白质和肌红蛋白 · 查看更多 »

肌节

#重定向 肌小節.

新!!: 蛋白质和肌节 · 查看更多 »

肌联蛋白

肌联蛋白(titin)是人体中是由肌联蛋白基因(TTN)编码的蛋白质。肌联蛋白是一个巨大的蛋白质,为肌肉收缩的弹性元件。它由244个结构域以及之间的肽序列连接组成。这些结构域在蛋白拉伸时去折叠,而在张力去除后重新折叠。 肌联蛋白是已知最大的蛋白质,同时肌联蛋白基因也拥有已知的单基因中最多的外显子(363个)。 肌联蛋白对横纹肌的收缩很重要,它横跨肌节从Z线到M线的区域,同粗肌丝的装配和位置固定有关。在这个基因的突变能引起肌肉疾病,例如肢带型肌营养不良。 肌聯蛋白有已知最長的IUPAC命名(如氧的IUPAC命名是oxygen)有18萬個字母長,關於它的化學名稱請參考Titin#Noun。.

新!!: 蛋白质和肌联蛋白 · 查看更多 »

肌肉

肌肉(英語:muscle)是一種能收縮的動物組織,屬於,由胚胎的中胚層發育而來。肌肉細胞有收縮纖維,會在細胞間移動並改變細胞的大小。 肌肉分為骨骼肌、心肌和平滑肌三種,其功能皆為產生力並導致運動。心肌和平滑肌的收縮不由意識控制且為生存所必需,例如心臟的收縮或是腸胃道的蠕動等。骨胳肌的自主收縮用來移動身體且能夠被精細地控制,例如眼睛的運動或大腿股四頭肌的總體運動。自主肌肉纖維分成快慢兩種,慢肌纖維可以持續較長的時間,但力量較小;快肌纖維收縮地較快,力量也較大,但也較快感到疲勞。.

新!!: 蛋白质和肌肉 · 查看更多 »

肌肉收缩

肌肉伸缩(Muscle contraction)是通过肌动蛋白和肌球蛋白共同完成的。当突触发生动作电位的时候,钙离子就会进入肌肉,肌肉通过三磷酸腺苷(ATP)产生能量从而扭曲肌肉纤维,因此导致肌球蛋白的进入。 Category:运动生理学 Category:肌肉系统 Category:骨骼肌.

新!!: 蛋白质和肌肉收缩 · 查看更多 »

脯氨酸

脯氨酸(Proline,縮寫為Pro 或P )是一個α-氨基酸,20個DNA編碼的其中之一。其對應密碼子為CCU,CCC,CCA和CCG。 脯氨酸不是一種必需氨基酸,人體可以自行合成。在20個蛋白質形成氨基酸中,其最特別之處在於胺氮被綁定到並非一個而是兩個烷基基團,因此使它具有仲氨,L型較常具有S立體化學。.

新!!: 蛋白质和脯氨酸 · 查看更多 »

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

新!!: 蛋白质和脱氧核糖核酸 · 查看更多 »

脲酶

脲酶(Urease,)是一种含镍的寡聚酶,它催化的是尿素水解为二氧化碳和氨的反应: 脲酶存在于细菌、酵母和一些高等植物中。1926年,詹姆斯·巴彻勒·萨姆纳得到脲酶的结晶,并用实验证明脲酶为蛋白质。.

新!!: 蛋白质和脲酶 · 查看更多 »

脂類

脂類(英語:Lipid),又稱脂質,这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂,由脂肪酸与醇作用脱水缩合生成的酯及其衍生物统称为脂类,其中包括脂肪、蠟、类固醇、脂溶性維生素(如維生素A,D,E和K)、、、磷脂等。它的主要生理功能包括儲存能量、構成細胞膜以及膜的訊息傳導等。如今,脂类已经被用于美容和食品工业,以及纳米技术。 脂質可以廣義定義為疏水性或雙親性小分子;某些脂質因為其雙親性的特質(兼具親水性與疏水性),能在水溶液環境中形成囊泡、脂質體或膜等構造。生物體內的脂質完全或部分源自兩種截然不同的生物次單元:酮酸基與異戊二烯。由此,脂質可以概分為八類:脂肪酸、甘油酯、甘油磷脂、鞘脂(神經脂質)、、聚酮类(由酮乙基次單元聚合而成)、固醇脂类,以及孕烯醇酮脂类(由異戊二烯次單元縮合聚合而成)。 脂類常被視為是脂肪的同義詞,但脂肪只是一種稱為三酸甘油脂的脂類。脂類也包括脂肪酸及其衍生物,包括單酸甘油酯、二酸甘油酯、磷脂等,也包括其他含有固醇的代謝產物,像是膽固醇。雖然人類和其他動物有許多不同的代謝方式,可以切斷脂肪鏈及合成脂質,不過仍有一些必需脂質無法自行合成,需要在食物中攝取。 有生物以前脂質的化學反應,以及原始生命體的形成,現已認為是生命起源模型中的關鍵。.

新!!: 蛋白质和脂類 · 查看更多 »

膠原蛋白

膠原蛋白(collagen)佔哺乳類動物總蛋白質約20%,是人體的一種非常重要的蛋白質,主要存在於结缔组织中。它有很强的伸张能力,是韧带的主要成份,胶原蛋白也是细胞外基质的主要组成成分。它使皮膚保持彈性,而膠原蛋白的老化,則使皮膚出現皺紋。膠原蛋白亦是眼睛角膜的主要成份,但以結晶形式組成。同其他蛋白质相同,膠原蛋白無法被人体直接吸收,口服会被分解为氨基酸。.

新!!: 蛋白质和膠原蛋白 · 查看更多 »

膜蛋白

#重定向 膜蛋白质.

新!!: 蛋白质和膜蛋白 · 查看更多 »

重組DNA

重組DNA是一种人工合成的脱氧核糖核酸。它是把一般不同时出现的DNA序列组合到一起而产生的。从遺傳工程的观点来看重組DNA是把相关的DNA添加到已有生物的基因組中,比如细菌的质粒中,其目的是为了改变或者添加特别是的特性,比如免疫。重組DNA与遺傳重組不是一回事。它不是重组细胞内或者染色体上已经存在的基因组,而完全是通过外部工程达到的。重组蛋白质是从重組DNA合成出来的蛋白质。 重組DNA技术是1973年由斯坦利·诺曼·科恩和赫伯特·玻意尔设计的。1974年他们发表了他们的设计。在这篇论文中他们描述了分离和放大基因或者DNA片段,然后精确地把它们插入其它细胞中,由此制造出转基因细菌。沃納·亞伯、丹尼爾·那森斯和漢彌爾頓·史密斯发明了限制酶才使得重組DNA技术可行,为此他们获得了1978年诺贝尔医学奖。.

新!!: 蛋白质和重組DNA · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 蛋白质和量子力学 · 查看更多 »

是一種化學元素,化學符號為Ni,原子序數為28。它是一種有光澤的銀白色金屬,其銀白色帶一點淡金色。鎳屬於過渡金屬,質硬,具延展性。純鎳的化學活性相當高,這種活性可以在反應表面積最大化的粉末狀態下看到,但大塊的鎳金屬與周圍的空氣反應緩慢,因為其表面已形成了一層帶保護性質的氧化物。即使如此,由於鎳與氧之間的活性夠高,所以在地球表面還是很難找到自然的金屬鎳。地球表面的自然鎳都被封在較大的鎳鐵隕石裏面,這是因為隕石在太空的時候接觸不到氧氣的緣故。在地球上,這種自然鎳總會和鐵結合在一起,這點反映出它們都是超新星核合成主要的最終產物。一般認為地球的地核就是由鎳鐵混合物所組成的。 鎳的使用(天然的隕鎳鐵合金)最早可追溯至公元前3500年。阿克塞尔·弗雷德里克·克龙斯泰特於1751年最早分離出鎳,並將它界定為化學元素,儘管他最初把鎳礦石誤認為銅的礦物。鎳的外語名字來自德國礦工傳說中同名的淘氣妖精(Nickel,與英語中魔鬼別稱"Old Nick"相近),這是由於鎳銅礦不能用煉銅的方法煉出銅來,所以被比擬成妖魔。鎳最經濟的主要來源為鐵礦石褐鐵礦,含鎳量一般為1-2%。鎳的其他重要礦物包括硅鎂鎳礦及鎳黃鐵礦。鎳的主要生產地包括加拿大的索德柏立區(一般認為該處是隕石撞擊坑)、太平洋的新喀里多尼亞及俄羅斯的諾里爾斯克。 由於鎳在室溫時的氧化緩慢,所以一般視為具有耐腐蝕性。歷史上,因為這一點鎳被用作電鍍各種表面,例如金屬(如鐵及黃銅)、化學裝置內部及某些需要保持閃亮銀光的合金(例如鎳銀)。世界鎳生產量中的約6%仍被用於抗腐蝕純鎳電鍍。鎳曾經是硬幣的常見成份,但現時這方面已大致上被較便宜的鐵所取代,尤其是因為有些人的皮膚對鎳過敏。儘管如此,英國還是在皮膚科醫生的反對下,於2012年開始再使用鎳鑄造錢幣。 只有四種元素在室溫時具有鐵磁性,鎳就是其中一種。含鎳的鋁鎳鈷合金永久磁鐵,其磁力強度介乎於含鐵的永久磁鐵與稀土磁鐵之間。鎳在現代世界的的地位主要來自於它的各種合金。全世界鎳產量中的約60%被用於生產各種鎳鋼(特別是不鏽鋼)。其他常見的合金,還有一些的新的高溫合金,就幾乎就佔盡了餘下的世界鎳用量。用於製作化合物的化學用途只佔了鎳產量的不到3%。作為化合物,鎳在化學製造有好幾種特定的用途,例如作為氫化反應的催化劑。某些微生物和植物的酶用鎳作為活性位點,因此鎳是它們重要的養分。.

新!!: 蛋白质和镍 · 查看更多 »

配體 (生物化學)

在生物化學和藥理學中,配體(ligand)是指一種能與受体結合以產生某種生理效果的物質。在蛋白質—配體複合物中,配體通常是與靶蛋白特定結合位點相連的信號觸發分子。而在DNA—配體複合物中,與DNA雙鏈相連的配體在一般情況下可以是任何的小分子或離子甚至是蛋白質。值得注意的是,生物化學中的配體和化學中定義的配體(比如銅氨絡離子中,氨是銅離子的配體)並無實際聯繫,配體未必要結合在金属原子上。 配體與受體的連接由諸如離子鍵的化學鍵或氫鍵、范德華力等分子間作用力維繫。它們的連接過程通常是可逆的,配體與受體之間形成的真正難以斷開的共價鍵在生物界是相當罕見的。 配體在與受體結合後,可以改變它們的立體構型,而立體構型又常常決定了蛋白質的功能。配體包括底物、酶抑制劑、酶激活劑、以及神經遞質。配體與受體結合的難易度與結合後的強度叫做親和力。兩者越容易結合,結合後結合的強度越大,則親和力越強,反之亦然。親和力不僅由配體和受體間的直接的相互作用決定,還由溶劑效應決定,后者間接主導溶液中的非共價性結合。 用放射性同位素標記的已被用作正電子發射計算機斷層掃描(PET)中的放射性示蹤劑。此外,這種物質還被用於在體外進行的配體—受體結合研究。.

新!!: 蛋白质和配體 (生物化學) · 查看更多 »

酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.

新!!: 蛋白质和酶 · 查看更多 »

酶动力学

酶动力学,又被称为酶催化动力学、酶反应动力学或酵素動力學,是研究酶催化的化学反应速率的学科。酶动力学对于某一特定酶的研究,可以提供许多重要信息。如该种酶的催化机理、在代谢途径中的作用、其在细胞中的活性如何被调控以及相关药物和毒药如何抑制其活性。 当酶结合多个底物,如二氢叶酸还原酶(右图所示)时,酶动力学也可以显示这些底物结合的顺序和释放产物的顺序。 酶的结构的知识有助于解释动力学数据。 例如,结构可以表明底物和产物如何在催化过程中结合; 反应发生什么变化; 甚至特定氨基酸残基的作用机制。机制中有些酶显着改变形态; 在这种情况下,确定具有和不具有不经历酶反应的结合底物类似物的酶结构是有帮助的。.

新!!: 蛋白质和酶动力学 · 查看更多 »

酶抑制剂

酶抑制剂是一类可以结合酶并降低其活性的分子。由于抑制特定酶的活性可以杀死病原体或校正新陈代谢的不平衡,许多相关药物就是酶抑制剂。一些酶抑制剂还被用作除草剂或农药。并非所有能和酶结合的分子都是酶抑制剂,酶激活剂也可以与酶结合并提高其活性。大概可分為競爭性抑制劑及。.

新!!: 蛋白质和酶抑制剂 · 查看更多 »

酶激活剂

酶激活剂是一类能够与酶结合并增强酶活性的分子。这类分子常常在控制代谢的酶的协同调控中发挥作用。例如,激活剂2,6-二磷酸果糖可以激活磷酸果糖激酶1,提高糖酵解的速率,以对胰高血糖素(一种激素)做出反应。.

新!!: 蛋白质和酶激活剂 · 查看更多 »

腺嘌呤

腺嘌呤(Adenine,簡稱A,旧称维生素B4)是一種嘌呤,在生物化學上具有許多不同的功用。於細胞呼吸中,是以富有能量的腺苷三磷酸(ATP),以及輔因子煙醯胺腺嘌呤二核苷酸(NAD)、黃素腺嘌呤二核苷酸(FAD)等形式發生作用。並且在蛋白質生物合成過程裡作為DNA與RNA的組成物。.

新!!: 蛋白质和腺嘌呤 · 查看更多 »

酵母

酵母(拼音:中國大陆:jiàomǔ、台灣:xiàomǔ;台語:kànn-bó;注音:中國大陆:ㄐㄧㄠˋ ㄇㄨˇ、台灣:ㄒㄧㄠˋ ㄇㄨˇ;德文: Hefen;英文:Yeast)是非分类学术语,泛指能发酵糖類的各种单细胞真菌,不同的酵母菌在进化和分类地位上有异源性。酵母菌种类很多,已知的约有56属500多种。一些酵母菌能夠通過出芽的方式進行無性生殖,也可以通過形成孢子的形式進行有性生殖。酵母經常被用於酒精釀造或者麵包烘培行業。目前已知有1500多種酵母,大部分被分類到子囊菌門。酵母菌屬兼性厭氧菌。.

新!!: 蛋白质和酵母 · 查看更多 »

色谱法

--(chromatography,--)是一种分离和分析方法,在分析化学、有机化学、生物化学等领域有着非常广泛的应用。色谱法利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。色谱法起源于20世纪初,1950年代之后飞速发展,并发展出一个独立的三级学科——色谱学。历史上曾经先后有两位化学家因为在色谱领域的突出贡献而获得诺贝尔化学奖,此外色谱分析方法还在12项获得诺贝尔化学奖的研究工作中起到关键作用。.

新!!: 蛋白质和色谱法 · 查看更多 »

蛋,是鳥類、爬蟲類和兩棲動物所生、帶有硬殼的卵,受精之後可孵出小動物,為人類食用已有幾千年歷史。蛋由蛋殼保護,而當中的蛋白和蛋黃被各種薄膜包裹。 蛋黃和全蛋存儲大量的蛋白質、膽鹼和其他營養素。故此,美國農業部將蛋在飲食金字塔中界定為肉類。 最常為人類食用的蛋是雞蛋,其他較常作食用的蛋有鴨蛋、鵪鶉蛋、鵝蛋等。.

新!!: 蛋白质和蛋 · 查看更多 »

蛋白

蛋白(Egg white、albumen、glair/glaire)是指蛋(尤其指雞蛋)內的半透明液體,故又称为蛋清,與蛋黃相對。蛋白遇熱後會凝固成白色固體,因而得名。 蛋白就如同哺乳類的羊水一樣有防震、保溼及保護的作用。如果用高速打蛋器把蛋白攪拌,會呈現泡沫狀像海棉般有彈性,是做蛋糕的首要步驟。.

新!!: 蛋白质和蛋白 · 查看更多 »

蛋白質三級結構

蛋白質三級結構(Protein tertiary structure)是在生物化學裡指蛋白質整體几何形狀,亦稱為其摺疊。蛋白質分子是一連串的胺基酸一條線地接結,基本上假定其會有一可作用其生物功能的三維結構。對蛋白質三級結構的研究稱為結構生物學。蛋白质的三级结构是由它的原子坐标定义的。这些坐标可参照或一个蛋白质结构域或整个三级结构。Branden C. and Tooze J. "Introduction to Protein Structure" Garland Publishing, New York.

新!!: 蛋白质和蛋白質三級結構 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

新!!: 蛋白质和蛋白质 · 查看更多 »

蛋白质复合体

蛋白质复合体(protein complex)是有兩個以上功能相关的多肽链通过二硫键或其它蛋白质相互作用所形成的复合物。蛋白質複合體的種類繁多,許多種的性質與功能都還不為人所知,而成為蛋白質组研究的重要的研究對象。一般蛋白質複合體可區分為结构型的蛋白质复合体和功能型蛋白质复合体兩大類。.

新!!: 蛋白质和蛋白质复合体 · 查看更多 »

蛋白质工程

#重定向 蛋白质组学.

新!!: 蛋白质和蛋白质工程 · 查看更多 »

蛋白质亚基

蛋白质亚基(英语:Protein subunit)、蛋白亚基或亚基蛋白在结构生物学中是指参与组成蛋白质复合物(寡聚体或多聚体)的单个蛋白质分子。一个蛋白质亚基就是一条多肽链,而一条多肽链是由一組基因所编码,这就意味着每个亚基都由一組基因编码。.

新!!: 蛋白质和蛋白质亚基 · 查看更多 »

蛋白质微阵列

蛋白质微阵列(Protein microarray,亦称为蛋白质芯片)是将不同的具有生物活性的蛋白质分别置于微量板的不同孔内来进行蛋白质功能筛选的文库。它实质上是cDNA阵列文库的继续。.

新!!: 蛋白质和蛋白质微阵列 · 查看更多 »

蛋白质列表

关于蛋白质(包括蛋白质复合物)的列表。此表旨在编理蛋白质界的相关信息。 除了标示有“*”的蛋白质,其余的蛋白质均存在于人类蛋白质组中。 若某一蛋白质拥有EC编号,那么该蛋白质已列入酶列表中,所以本页不再收入(不论该蛋白质是否属于以下某个分类)。 更多关于蛋白质的分类的资料,见蛋白质分类列表。.

新!!: 蛋白质和蛋白质列表 · 查看更多 »

蛋白质四级结构

蛋白质四级结构(Protein quaternary structure)是生物化学中用于描述多亚基蛋白质复合物中各个折叠蛋白质亚基的排列组合。.

新!!: 蛋白质和蛋白质四级结构 · 查看更多 »

蛋白质结构

蛋白质结构是指蛋白质分子的空间结构。作为一类重要的生物大分子,蛋白质主要由碳、氢、氧、氮、硫等化学元素组成。所有蛋白质都是由20种不同的L型α氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。蛋白质和多肽之间的界限并不是很清晰,有人基于发挥功能性作用的结构域所需的残基数认为,若残基数少于40,就称之为多肽或肽。要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。由研究蛋白质结构而发展起来了结构生物学,采用了包括X射线晶体学、核磁共振等技术来解析蛋白质结构。 一定数量的残基对于发挥某一生物化学功能是必要的;40-50个残基通常是一个功能性结构域大小的下限。蛋白质大小的范围可以从这样一个下限一直到数千个残基。目前估计的蛋白质的平均长度在不同的物种中有所区别,一般约为200-380个残基,而真核生物的蛋白质平均长度比原核生物长约55%。更大的蛋白质聚合体可以通过许多蛋白质亚基形成;如由数千个肌动蛋白分子聚合形成蛋白纤维。.

新!!: 蛋白质和蛋白质结构 · 查看更多 »

蛋白质结构预测

蛋白质结构预测(Protein structure prediction)是指从蛋白质的氨基酸序列中预测蛋白质的三维结构。也就是说,从蛋白质的一级结构预测它的折叠和二级、三级、四级结构。结构预测与的反问题有着根本的不同。蛋白质结构预测是生物信息学与理论化学所追求的最重要目标之一;它在医学上(例如,在药物设计)和在生物技术上(例如,新的酶的设计)都是非常重要的。每隔两年,当前蛋白质结构预测技术的性能在(CASP)实验中被评测。蛋白质结构预测的网络服务器连续的评测是由社区项目执行。.

新!!: 蛋白质和蛋白质结构预测 · 查看更多 »

蛋白质组

蛋白質組(proteome,又譯作蛋白質體),這個字最早出現的時間是1995年,漸漸應用到不同生物系統的研究中。蛋白質组是指組織或細胞中所有的蛋白質的集合。蛋白質組學是蛋白質組的研究。.

新!!: 蛋白质和蛋白质组 · 查看更多 »

蛋白质组学

蛋白质组学(proteomics,又譯作蛋白質體學),是對蛋白质特别是其结构和功能的大规模研究,是在90年代初期,由Marc Wikins和學者們首先提出的新名詞。更重要的是,基因组是相当稳定的实体,而蛋白质组通过与基因组的相互作用而不断发生着改变。一个生命体在其机体的不同部分以及生命周期的不同阶段,其蛋白表达可能存在巨大的差异。 蛋白质组是由有机体或系统产生或修饰的整套蛋白质。 这随着时间和细胞或有机体经历的不同要求或压力而变化。蛋白质组学是一个跨学科的领域,它从人类基因组计划的遗传信息中受益匪浅,它还涵盖了新兴的科学研究和从细胞内蛋白质组成,结构和其独特活动模式的整体水平探索蛋白质组学。它是功能基因组学的重要组成部分。 蛋白质组学研究的关键技术包括质谱分析、X射线晶体学、核磁共振和凝胶电泳。 有两种蛋白质组学方法:活体样品研究和重组蛋白合成。在第二种情形下,用遗传工程方法来克隆待合成的DNA模板,以及把这些基因剪切到宿主细胞(典型的是细菌)中,后者被培养用于大规模蛋白表达。 接着,被合成蛋白需要被从宿主细胞中提取和纯化。纯化的蛋白随后通过结晶(及X-射线晶体衍射)或核磁共振来确定其结构。.

新!!: 蛋白质和蛋白质组学 · 查看更多 »

蛋白质折叠

蛋白质折叠(Protein folding)是蛋白质获得其功能性结构和构象的过程。通过这一物理过程,蛋白质从无规则卷曲折叠成特定的功能性三维结构。在从mRNA序列翻译成线性的氨基酸链时,蛋白质都是以去折叠多肽或无规则卷曲的形式存在。 蛋白質的基本單位為胺基酸,而蛋白質的一級結構指的就是其胺基酸序列,蛋白質會由所含胺基酸残基的親水性、疏水性、帶正電、帶負電……等等特性通过残基间的相互作用而摺疊成一立體的三级結構。 根据克里斯琴·B·安芬森(1972年的諾貝爾化學獎得主)的研究,蛋白質可由加熱或置於某些化學環境而变性,三级结构解体;而當環境回復到原本的狀態時,蛋白質可於不到一秒的時間折疊至原先的立體結構,不論試驗幾次,蛋白質都僅此一種立體結構,於是Anfinsen提出一個結論:蛋白质分子的一级结构决定其立體结构。 安芬森的研究结果非常重要,因為蛋白質的功能取決於其立體結構,而目前根据已知某基因序列可翻译获得对应蛋白质的胺基酸序列,既蛋白質的一級結構;如果從蛋白質的一級結構就能知道立體結構,那麼即可直接從基因推测其编码蛋白质所對應的生物学功能。虽然蛋白質可在短時間中從一級結構摺疊至立體結構,研究者卻無法在短時間中從胺基酸序列計算出蛋白质結構,甚至无法得到准确的三维结构。因此,研究蛋白质折叠的过程,可以说是破译“第二遗传密码”——折叠密码(folding code)的过程。 目前蛋白质的再折叠依然遵从先使用胍或脲变性,然后逐渐降低胍或者脲的浓度,也就是逐渐降低对蛋白质天然“回缩”能力的干扰。使其自然回到天然的最低能量状态。只是这个过程无法很好的控制肽链与肽链之间和肽链内部形成错误折叠的干扰。.

新!!: 蛋白质和蛋白质折叠 · 查看更多 »

蛋白酶

蛋白酶(protease)是生物體內的一類酶(酵素),它們能夠分解蛋白質。分解方法是打斷那些將氨基酸連結成多肽鏈的肽鍵。 抑制蛋白酶活性的小分子化合物被称蛋白酶抑制剂。许多病毒蛋白酶的抑制剂是很有效的抗病毒药。.

新!!: 蛋白质和蛋白酶 · 查看更多 »

蛋白酶体

蛋白酶体(Proteasomes)是一种巨型筒状蛋白质复合物,主要作用是通过打断肽键来实现降解细胞不需要的或受到损伤的蛋白质。 目前所有已知的真核生物和古菌皆有蛋白酶體,在一些原核生物中也存在。在真核生物中,它位于细胞核和细胞质中。能够发挥这一作用的酶被称为蛋白酶。蛋白酶体是细胞用来调控特定蛋白质的浓度和除去错误折叠蛋白质的主要机制。经过蛋白酶体的降解,蛋白质被切割为约7-8个氨基酸长的肽段;这些肽段可以被进一步降解为单个氨基酸分子,然后被用于合成新的蛋白质Lodish, H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. (2004).

新!!: 蛋白质和蛋白酶体 · 查看更多 »

通道蛋白

通道蛋白是一类跨越细胞膜磷脂双分子层的蛋白质,可以指:.

新!!: 蛋白质和通道蛋白 · 查看更多 »

Folding@home

Folding@home(簡稱FAH或F@h)是一个研究蛋白质折叠、误折、聚合及由此引起的相关疾病的分布式计算工程。由斯坦福大学化學系的潘德实验室(Pande Lab)主持,於2000年10月1日正式啟動。Folding@home現時是世界上最大的分布式計算計劃,於2007年為吉尼斯世界纪录所承認。 2004年3月8日,研究基因結構的計劃終止,併入Folding@home。.

新!!: 蛋白质和Folding@home · 查看更多 »

In silico

In silico是指「在矽之中」,也就是說「進行於電腦中,或是經由電腦模擬」之意,此用語是衍生自另外兩個在生物學上常用的片語:in vivo(生物活體內)及in vitro(生物活體外)。.

新!!: 蛋白质和In silico · 查看更多 »

In vitro

In vitro是拉丁語中「在玻璃裡」的意思,意指進行或發生於試管內的實驗與實驗技術。更廣義的意思,則指活生物體之外的環境中的操作。常見的例子是人工受精。在細胞生物學等領域中,由於此類實驗的環境與生物體內可能有所不同,因此可能與實際發生於生物體內的結果也不同。與此相反的用語是in vivo。.

新!!: 蛋白质和In vitro · 查看更多 »

In vivo

In vivo為拉丁文「在活體內」之意。在科學文献中,in vivo常指進行於完整且存活的個體內的組織的實驗,以区别在生物体上移除下来的組織或死亡的组织上进行的实验(对应的拉丁文為in vitro)。.

新!!: 蛋白质和In vivo · 查看更多 »

MRNA

#重定向 信使核糖核酸.

新!!: 蛋白质和MRNA · 查看更多 »

RNA聚合酶

RNA聚合酶(RNA polymerase、RNAP、RNApol、DNA-dependent RNA polymerase,EC2.7.7.6)或稱核糖核酸聚合酶,是一種負責從DNA或RNA模板製造RNA的酶。RNA聚合酶是通過稱為轉錄的過程來建立RNA鏈,以完成這個工程。在科學上,RNA聚合酶是一個在RNA轉錄本3'端聚合核糖核甘酸的核苷轉移酶。RNA聚合酶是一種非常重要的酶,且可在所有生物、細胞及多種病毒中可見。 RNA聚合酶是於1960年分別由山姆·懷斯及霍維茲同時發現。但在此之前,於1959年,諾貝爾獎頒發給了塞韋羅·奧喬亞,因為他的發現當時認為是RNA聚合酶,但其實是核糖核酸酶。.

新!!: 蛋白质和RNA聚合酶 · 查看更多 »

TRNA

#重定向 转运核糖核酸.

新!!: 蛋白质和TRNA · 查看更多 »

X射线晶体学

X射線晶體學是一門利用X射線來研究晶體中原子排列的學科。更準確地說,利用電子對X射線的散射作用,X射線晶體學可以獲得晶體中電子密度的分佈情況,再從中分析獲得关于原子位置和化学键的資訊,即晶體結構。 由于包括盐类、金属、矿物、半导体在内的许多物质都可以形成晶体,X射线晶体学已经是许多学科的基本技术。在前十年这项技术主要被用于测量原子大小、化学键的类型和键长,以及其他的许多物质,尤其是矿物和合金。X射线晶体学也揭示了许多生物分子的结构和功能,例如维生素、药物、蛋白质以及脱氧核糖核酸(DNA)。X射线晶体学如今仍然是从原子尺度研究物质结构的主要方法。.

新!!: 蛋白质和X射线晶体学 · 查看更多 »

抗原

抗原(antigen,縮寫Ag)為任何可誘發免疫反應的物質,不只是從病原體那裡取得,一般來說體內發現分子夠大的有機物就有可能作為一個適合的抗原,這樣也就會導致例如過敏等問題。外來分子可經過B細胞上免疫球蛋白的辨識或經抗原呈現細胞的處理並與主要組織相容性複合體結合成複合物再活化T細胞,引發連續的免疫反應。.

新!!: 蛋白质和抗原 · 查看更多 »

抗体

抗體,又稱免疫球蛋白(immunoglobulin,簡稱Ig),是一种主要由浆细胞分泌,被免疫系统用来鉴别与中和外来物质如细菌、病毒等病原体的大型Y形蛋白质,仅被发现存在于脊椎动物的血液等体液中,及其B细胞的细胞膜表面。抗体能通过其可变区唯一识别特定外来物的一个独特特征,该外来目标被称为抗原。蛋白上Y形的其中两个分叉顶端都有一被称为互补位(抗原結合位)的锁状结构,该结构仅针对一种特定的抗原表位。这就像一把钥匙只能开一把锁一般,使得一种抗体仅能和其中一种抗原相结合。 抗体和抗原的结合完全依靠非共价键的相互作用,这些非共价键的相互作用包括氢键、范德华力、电荷作用和疏水作用。这些相互作用可以发生在侧链或者多肽主干之间。正因这种特异性的结合机制,抗体可以“标记”外来微生物以及受感染的细胞,以诱导其他免疫机制对其进行攻击,又或直接中和其目标,例如通过与入侵和生存至关重要的部分相结合而阻断微生物的感染能力等,就像通緝犯上了手銬和腳鐐一樣。针对不同的抗原,抗体的结合可能阻断致病的生化过程,或者召唤巨噬细胞消灭外来物质。而抗体能够与免疫系统的其它部分交互的能力,是通过其Fc区底部所保留的一个糖基化座实现的 。体液免疫系统的主要功能便是制造抗体。抗体也可以与血清中的补体一起直接破壞外来目标。 抗體主要由一種B细胞所分化出来的叫做漿細胞的淋巴細胞所製造。抗体有两种物理形态,一种是从细胞分泌到血浆中的可溶解物形态,另一种是依附于B细胞表面的膜结合形态。抗体与细胞膜结合后所形成的复合体又被称为B细胞感受器(B Cell Receptor,BCR),这种复合体只存在于B细胞的细胞膜表面,是激活B细胞以及后续分化的重要结构。B细胞分化后成为生产抗体的工厂的浆细胞,或者长期存活于体内以便未来能迅速抵抗相同入侵物的记忆B细胞。在大多数情况下,与B细胞进行互动的辅助型T细胞对于B细胞的完全活化是至关重要的,因为辅助型T细胞负责识别抗原,并促使B细胞能分化出能与该抗原相结合的抗体的浆细胞和记忆型B细胞。而可溶性抗体则被释放到血液等体液当中(包括各种分泌物),持续抵抗正在入侵的外来微生物。 抗体是免疫球蛋白超家族中的一种醣蛋白 。它们是血浆中丙种球蛋白的主要构成成分。抗体通常由一些基础单元组成,每一个抗体包括:两个長(大)的重链,以及两个短(小)的轻链。而輕鏈和重鏈之間以雙硫鍵連接。輕鏈和重鏈又分為可變區和恆定區,而不同类型的重链恆定區,将会导致抗体种型的不同。在哺乳类动物身上已知的不同种型的抗体有五种,它们分别扮演不同的角色,并引导免疫系统对所遇到的不同类型外来入侵物产生正确的免疫反應。 尽管所有的抗体大体上都很相似,然而在蛋白质Y形分叉的两个顶端有一小部分可以发生非常丰富的变化。这一高变区上的细微变化可达百万种以上,该位置就是抗原结合位。每一种特定的变化,可以使该抗体和某一个特定的抗原结合。这种极丰富的变化能力,使得免疫系统可以应对同样非常多变的各种抗原。之所以能产生如此丰富多样的抗体,是因为编码抗体基因中,编码抗原结合位(即互补位)的部分可以随机组合及突变。此外,在免疫种型转换的过程中,可以修改重链的类型,从而制造出对相同抗原專一性的不同种型的抗体,使得同种抗体可以用于不同的免疫系统过程中。.

新!!: 蛋白质和抗体 · 查看更多 »

极性

極性(polarity),在化學中指一根共價鍵或一個共價分子中電荷分佈的不均勻性。如果電荷分佈得不均勻,則稱該鍵或分子為極性;如果均勻,則稱為非極性。 物質的一些物理性質(如溶解性、熔沸點等)與分子的極性相關。.

新!!: 蛋白质和极性 · 查看更多 »

核磁共振

核磁共振(NMR,Nuclear Magnetic Resonance)是基於原子尺度的量子磁物理性質。具有奇數質子或中子的核子,具有內在的性質:核自旋,自旋角動量。核自旋產生磁矩。NMR觀測原子的方法,是將樣品置於外加強大的磁場下,現代的儀器通常採用低溫超導磁鐵。核自旋本身的磁場,在外加磁場下重新排列,大多數核自旋會處於低能態。我們額外施加電磁場來干涉低能態的核自旋轉向高能態,再回到平衡態便會釋放出射頻,這就是NMR訊號。利用這樣的過程,可以進行分子科學的研究,如分子結構、動態等。.

新!!: 蛋白质和核磁共振 · 查看更多 »

核糖体

核糖体,旧称“核糖核蛋白体”或“核蛋白体”,是细胞中的一种细胞器因为在某些场合“细胞器”一词也会被用于专指具有磷脂双分子层膜结构的亚细胞结构,而核糖体虽然已是一种公认的细胞器,却是没有被膜包裹、完全裸露的大分子,所以核糖体有时会被严格地定义为“无膜细胞器”(non-membranous organelles)。,由一大一小两个-zh-tw:次單元;zh-cn:亚基-结合形成,主要成分是相互缠绕的RNA(称为“核糖体RNA”,ribosomal RNA,简称“rRNA”)和蛋白质(称为“核糖体蛋白质”,ribosomal protein,简称“RP”)。核糖体是细胞内蛋白质合成的场所,能读取信使RNA核苷酸序列所包含的遗传信息,并使之转化为蛋白质中氨基酸的序列信息以合成蛋白质。在原核生物及真核生物(地球上的两种具有细胞结构的主要生命形式,前者可细分为古菌、真细菌两类)的细胞中都有核糖体存在。一般而言,原核细胞只有一种核糖体,而真核细胞具有两种核糖体(线粒体和叶绿体中的核糖体与细胞质核糖体不相同)。 核糖体在细胞中负责完成“中心法则”裡由RNA到蛋白质这一过程,此过程在生物学中被称为“翻译”。在进行翻译前,核糖体小次單元会先与从细胞核中转录得到的信使RNA(messenger RNA,简称“mRNA”)结合,再结合核糖体大次單元构成完整的核糖体之后,便可以利用细胞质基质中的转运RNA(transfer RNA,简称“tRNA”)运送的氨基酸分子合成多肽。当核糖体完成对一条mRNA单链的翻译后,大小--会再次分离。 英语中的“核糖体”(ribosome)一词是由“核糖核酸”(“ribo”)和希腊语词根“soma”(意为“体”)组合而成的。.

新!!: 蛋白质和核糖体 · 查看更多 »

核糖核酸

核糖核酸(Ribonucleic acid),簡稱RNA,是一類由核糖核苷酸通過3',5'-磷酸二酯鍵聚合而成的線性大分子。自然界中的RNA通常是單鏈的,且RNA中最基本的四種鹼基爲A(腺嘌呤)、U(尿嘧啶)、G(鳥嘌呤)、C(胞嘧啶)通過轉錄後修飾,RNA可能會帶上(Ψ)這樣的稀有鹼基,相對的,與RNA同爲核酸的DNA通常是雙鏈分子,且含有的含氮鹼基爲A(腺嘌呤)、T(胸腺嘧啶)、G(鳥嘌呤)、C(胞嘧啶)四種。 RNA有着多種多樣的功能,可在遺傳編碼、翻譯、調控、基因表達等過程中發揮作用。按RNA的功能,可將RNA分爲多種類型。比如,在細胞生物中,mRNA(信使RNA)爲遺傳信息的傳遞者,它能夠指導蛋白質的合成。因爲mRNA有編碼蛋白質的能力,它又被稱爲編碼RNA。而其他沒有編碼蛋白質能力的RNA則被稱爲非編碼RNA(ncRNA)。它們或通過催化生化反應,或通過調控或參與基因表達過程發揮相應的生物學功能。比如,tRNA(轉運RNA)在翻譯過程中起轉運RNA的作用,rRNA(核糖體RNA)於翻譯過程中起催化肽鏈形成的作用,(小RNA)起到調控基因表達的作用。此外,RNA病毒甚至以RNA作爲它們的遺傳物質。 RNA通常由DNA通過轉錄生成。RNA在細胞中廣泛分佈,真核生物的細胞核、細胞質、粒線體中都有RNA。.

新!!: 蛋白质和核糖核酸 · 查看更多 »

核膜

核膜(nuclear membrane 或 karyotheca),又称核被膜或核封套(nuclear envelope)是包圍真核细胞細胞核,分隔開细胞核和细胞质的生物膜。.

新!!: 蛋白质和核膜 · 查看更多 »

核酸

核酸(nucleic acids)是一种通常位于细胞核内的大型生物分子,負責生物体遗传信息的携带和传递。核酸有兩大類,分別是脱氧核糖核酸(DNA)和核糖核酸(RNA)。 核酸的单体结构为核苷酸。每一个核苷酸分子由三部分组成:一个五碳糖、一个含氮碱基、和一个磷酸基。如果其五碳糖是脱氧核糖則為脱氧核糖核苷酸,此單體之聚合物是DNA。如果其五碳糖是核糖則為核糖核苷酸,此單體之聚合物是RNA。核苷酸也被称为核苷酸磷酸盐。 核酸是最重要的生物大分子(其余为氨基酸/蛋白质,糖/碳水化合物,脂质和/脂肪)。它们大量存在于所有活的东西,功能有编码,传递和表达遗传信息 - 换句话说,信息通过核酸序列被传递。DNA分子含有生物物种的所有遗传信息,为双链分子,其中大多数是链状结构大分子,也有少部分呈环状结构,分子量一般都很大。RNA主要是负责DNA遗传信息的翻译和表达,为单链分子,分子量要比DNA小得多。 核酸存在于所有动植物细胞、微生物和病毒、噬菌体内,是生命的最基本物质之一,对生物的生长、遗传、变异等现象起着重要的决定作用。 核酸是在1869年被科学家弗雷德里希·米歇尔发现。核酸实验研究构成了现代生物学和医学研究的重要组成部分,形成了基因组和法医学,以及生物技术和制药行业的基础。.

新!!: 蛋白质和核酸 · 查看更多 »

核苷酸

核苷酸(Nucleotide)为核酸的基本组成单位。核苷酸由一個含氮鹼基作為核心,加上一個五碳糖和一個或者多个磷酸基團組成。含氮碱基有五种可能,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶。五碳糖为脱氧核糖者称为脱氧核糖核苷酸(DNA的單體),五碳糖为核糖者称为核糖核苷酸(RNA的單體)。 根据构成核酸的核苷酸数量分为寡核苷酸(少于或等于15个核苷酸)和多核苷酸(15个核苷酸以上)。.

新!!: 蛋白质和核苷酸 · 查看更多 »

標準蛋白胺基酸列表

標準氨基酸(英語:Standard amino acids)或稱蛋白氨基酸(proteinogenic amino acids),是生物細胞中用來合成蛋白質的共20種氨基酸。本列表主要描述其名稱、標示方法、結構與性質。还包括次要编码氨基酸,硒半胱氨酸和吡咯赖氨酸,分别用通常的終止密码子UGA和UAG编码,出现在少数蛋白质中。参见。.

新!!: 蛋白质和標準蛋白胺基酸列表 · 查看更多 »

毒素

本文所指的毒素(英語:Toxin),是指生物體所生產出來的毒物(poison),這個術語最早是由有機化學家路德維希(Ludwig Brieger)所提出。這些物質通常是一些會干擾生物體中其他大分子作用的蛋白質,例如蓖麻毒蛋白。由生物體産生的、極少量即可引起動物中毒的物貭。毒素在其嚴重程度差異很大,從一般輕微的急性(如蜂蜇)或是幾乎立即致命的(如肉毒毒素)。 據紅十字國際委員會的審查生物武器公約,“生物毒素是有毒的產品,不像生物製劑,它們是沒有生命的,而不是複製自己的能力。”和“自公約簽署後,不斷有各方面的生物製劑或毒素的定義各方沒有爭議……”.

新!!: 蛋白质和毒素 · 查看更多 »

氢键

氫鍵是分子間作用力的一種,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是电负性较强的原子。氢键既可以是分子间氢键,也可以是分子内的。其键能最大约为200kJ/mol,一般为5-30kJ/mol,比一般的共价键、离子键和金属键键能要小,但强于静电引力。 氢键对于生物高分子具有尤其重要的意义,它是蛋白质和核酸的二、三和四级结构得以稳定的部分原因。.

新!!: 蛋白质和氢键 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 蛋白质和氧气 · 查看更多 »

氨基酸

胺基酸是生物學上重要的有機化合物,它是由胺基(-NH2)和羧基(-COOH)的官能團組成的,以及一個側鏈连到每一個胺基酸。胺基酸是構成蛋白質的基本單位。賦予蛋白質特定的分子結構形態,使他的分子具有生化活性。蛋白質是生物体內重要的活性分子,包括催化新陳代謝的酶(又称“酵素”)。 不同的胺基酸脱水缩合形成肽(蛋白質的原始片段),是蛋白質生成的前.

新!!: 蛋白质和氨基酸 · 查看更多 »

氨酰-tRNA合成酶

氨酰tRNA合成酶(aminoacyl tRNA synthetase,通常简写为aaRS)是一类催化特定氨基酸或其前体与对应tRNA发生酯化反应而形成氨酰tRNA的酶。由于每一种的氨基酸与tRNA的连接都需要专一性的氨酰tRNA合成酶来催化,因此氨酰tRNA合成酶的种类与标准氨基酸的数量一样都为20种。 氨酰tRNA合成酶也是自然界中最古老的蛋白质之一。.

新!!: 蛋白质和氨酰-tRNA合成酶 · 查看更多 »

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

新!!: 蛋白质和氮 · 查看更多 »

水解

水解是一种化工单元过程,是物質與水反應,利用水形成新的物质的过程。通常是指鹽類的水解平衡。.

新!!: 蛋白质和水解 · 查看更多 »

永斯·贝采利乌斯

永斯·雅各布·貝采利烏斯男爵(Jöns Jacob Berzelius,),又譯--、柏濟力阿斯、貝齊里烏斯、白則里,瑞典化學家。他就讀烏普薩拉大學,獲得後投身於研究工作,並先後在醫學外科學院(卡羅琳學院前身)擔任教師(無薪)和教授(有薪)。貝采利烏斯發現了鈰、硒、矽和釷這四種化學元素,成功測定幾乎所有已知化學元素的原子量,提出了同分異構物、聚合物、同素異形體和催化這些重要化學術語,提出了近似現制的元素符號系統,還在化學教育、學術機構管理、礦物學、分析化學作出貢獻;但是,他主張和活力論後來被確認是錯誤的。貝采利烏斯在1848年逝世,他被譽為現代化學發展的關鍵人物之一、以及「瑞典化學之父」,在生前以至死後均獲享多種榮譽及紀念。.

新!!: 蛋白质和永斯·贝采利乌斯 · 查看更多 »

沉淀

沉淀在化学上指从溶液中析出固体物质的过程;也指在沉淀过程中析出的固体物质。事实上沉淀多为难溶物(20°C时溶解度2+CO2→CaCO3↓+H2O 从液相中产生可分离固相物的过程.

新!!: 蛋白质和沉淀 · 查看更多 »

活性位点

活性位点(Active site),又称活化位置,是指一個酵素中具有催化能力與結合位置的部位。其結構與化學性質可供辨識受質,並與受質結合。活化位置通常是酵素表面上一個類似口袋的區域,內部含有可與特定受質發生反應的殘基。.

新!!: 蛋白质和活性位点 · 查看更多 »

液胞

液胞(、 法语、英语、荷兰语:vacuole、 ),又稱為液泡,是一種囊狀的單層膜胞器,在其中有细胞液,为酸性环境。液泡的作用在于存储并降解细胞中的废物和有害物质。液泡也可以参与自体吞噬,以维持许多细胞内结构的生成和降解平衡。液胞佔據了植物细胞體積的大部分。.

新!!: 蛋白质和液胞 · 查看更多 »

消化作用

消化作用是指將食物(大分子)分解成足夠小的水溶性分子(小分子),可以溶解在血漿,讓身體能夠吸收利用的過程。有些生物體會透過小腸吸收小分子,帶到血液系統中。消化作用是生物异化作用(分解代謝)的一環,可以分為兩個階段,首先藉由機械性的作用(機械消化,mechanical digestion)將食物碎裂成小裂片,其次是化學性的作用(化學消化,chemical digestion),經由酵素的催化,將大分子水解成小分子單體。而無法消化的殘渣則會再排出體外。 大多數食物中所含的有機物包括蛋白質、脂肪和碳水化合物。由於這些大分子聚合物無法穿過細胞膜進入細胞內,而且動物需要用單體來合成自身身體所需的聚合物,因此動物需要藉由消化作用將食物中的大分子分解成單體。例如將蛋白質分解為胺基酸,多醣及雙醣分解為單醣,脂肪分解為甘油及脂肪酸等。.

新!!: 蛋白质和消化作用 · 查看更多 »

消化系统

消化系统(digestive system)是多細胞生物用以進食、消化食物、獲取能量和營養、排遺剩餘废物的一组器官,其主要功能為攝食、消化、吸收、同化和排遺。其中有關排遺的部分,也可歸類到的一部分。.

新!!: 蛋白质和消化系统 · 查看更多 »

溶酶体

溶酶体(lysosome),又稱--,存在於細胞(多存在于动物细胞中,植物细胞内不常见)中,是單層膜的囊狀胞器,內部含有數十種從高基氏體送來的水解酶,這些酶在弱酸性環境之下(通常為PH值5.0)能有效分解生命所需的有機物質。.

新!!: 蛋白质和溶酶体 · 查看更多 »

激酶

在生物化学裡,激酶是一类从高能供体分子(如ATP)转移磷酸基团到特定靶分子(受質)的酶;这一过程谓之磷酸化。 一般而言,磷酸化的目的是“激活”或“能化”受質,增大它的能量,以使其可参加随后的自由能负变化的反应。所有的激酶都需要存在一个二价金属离子(如Mg2+或Mn2+),该离子起稳定供体分子高能键的作用,且为磷酸化的发生提供可能性。.

新!!: 蛋白质和激酶 · 查看更多 »

朊毒體

朊毒体(prion,;又譯為--、蛋白质侵染因子、毒朊、感染性蛋白质、普恩蛋白等)是一类具感染性的致病因子,并能引发人及哺乳动物的传染性海绵状脑病(Transmissible spongiform encephalopathies, TSEs) 。朊毒体在过去有时也被称为朊病毒。但它严格来说不是病毒,而是一类不含核酸,仅由蛋白质构成的致病因子,但可自我复制并具感染性。 错误结构的普利昂蛋白(prion protein, PrP)能够诱导在神经细胞上原本是正常结构的普利昂蛋白转变为错误结构并进行聚集反应,藉由这个机制引入新的普利昂蛋白,不断自我复制并传递至邻近细胞,最终扩散至整个脑部。由组织染色法发现。聚集的普利昂蛋白会于神经细胞外形成类淀粉沉淀,并伴随神经细胞死亡,造成脑组织空洞化。朊毒体虽然是蛋白质,但相较于普通蛋白质更为稳定,无法以一般物理或化學消毒法去除感染性。以120 ~ 130℃加热4小时、紫外线照射、甲醛均不能将这种蛋白质变性。它对蛋白酶有抗性,但不能抵抗高浓度的蛋白质强变性剂,如苯酚、尿酸。 朊毒体最早发现于哺乳动物的传染性海绵状脑病,包括羊瘙痒症、狂牛症、慢性消耗病。人类的传染性海绵状脑病包含庫賈氏症(自发性、遗传性、与变种庫賈氏症),致死性家族失眠症,和于食人部落发现的库鲁病。目前均無法医治。变种庫賈氏症为由牛传染人的跨物种疾病,透过食用已感染狂牛症的牛只的肉或其内脏制品感染。该病原體由饮食摄入后能够穿越血脑屏障,缓慢破坏脑组织结构,最终导致患者死亡。.

新!!: 蛋白质和朊毒體 · 查看更多 »

指甲

指(趾)甲,亦称指(趾)蓋、指(趾)甲蓋、指(趾)頭蓋等,分為手指甲(簡稱手甲)或脚趾甲(簡稱脚甲),是哺乳类动物长于肢体指前端的由皮肤角质层硬化的一层硬物,指(趾)甲的作用是保護末節指腹避免受損傷,維護其稳定性,增強手指触觉的敏感性。協助手抓、挟、捏、挤等。甲床血供豐富,有調節末梢血供、体温的作用。其次,指甲又是手部美容的重点,漂亮的指甲增添女性的魅力。.

新!!: 蛋白质和指甲 · 查看更多 »

有机合成

有機合成是合成化學的一個分支,主要是經由各式各樣的有機反應來建構有機分子。和無機分子相比,有機分子通常在結構上複雜許多,包括官能基、立體化學、多環構造等結構性細節。現今有機合成已經發展成為有機化學一個十分重要的分支,也是製藥、生醫、材料等產業重要的基礎。有機合成中有兩個主要的領域:全合成與合成方法的研究。.

新!!: 蛋白质和有机合成 · 查看更多 »

浆细胞

浆细胞(Plasma cell),亦称为效应B细胞(effector B cell),是免疫系统中释放大量抗体的细胞。直径10-20μm,细胞核较小,占细胞的一半以下,多偏于一侧,偶尔可有双核。浆细胞的染色质粗密、 聚集成堆、常呈紫丁香色、不均匀,在近核处一边常伸出半月状淡染区;浆中偶见有空泡或有泡沫感。 浆细胞系统包括原始浆细胞、幼浆细胞、Russell小体、Dutcher小体和火焰状细胞等部分。 浆细胞是由B细胞对于CD4+淋巴细胞的刺激异化而来,因此也称浆B细胞(Plasma B cell)。抗原入侵后,B细胞起到一个APC(抗原呈递细胞)的作用,吞噬了相应的抗原。此抗原被B细胞的吞噬作用(phagocytosis)吸收后,在吞噬体(phagosomes)中因和溶酶體(lysosomes)结合而分解,释放出付着在抗原上的蛋白酶。此酶分解了抗原后,抗原的碎片就付着在MHC II(主要组织相容性复合体 II)分子上,并出现在其外表面。一旦出现在MHC II分子外表面,CD4+輔助型T細胞就和MHC II/抗原分子结合,并激活B细胞。该激活过程包括B细胞异化为浆细胞以及紧接下来的抗体生成过程以消灭抗原。 Category:免疫学.

新!!: 蛋白质和浆细胞 · 查看更多 »

支序分類學

支序分類學(英語:Cladistics)又稱親緣分支分類學,是一種生物分類的哲學,其指只依據演化樹分支的順序,而不參考形態上的相似性來排列物種。此一學派的主要貢獻者一般認為是德國昆蟲學家威利·漢寧根,他稱此為種系發生系統學。 分支研究的最終結果是由被稱之為「分支圖」的樹狀關係圖來描繪出其假定的關係。 現代的系統學研究會收集各方面的資料,包括DNA序列、生化數據和形態學上的數據等。 在一個「分支圖」中,所有的生物體都如同一片樹葉,且每個內節點理想上都是二元(有兩條分歧)的,在此一分歧點兩端的分類群即稱為「旁系分類群」或「旁系群」。每一枝幹,不論其包含了上萬種類別或只有一種類別,都被稱做是一個分支。一個自然的類群應該會有包含在任一分支裡的所有生物體,這個分支會有著屬於此一分支的唯一祖先(一個不會是此一分支外的其他生命體的祖先)。每一分支都會有一些只共同出現在分支內每一個成員上,而不會出現在其他生命體上的特徵。這些特徵稱之為衍徵。例如,堅硬的前翅(鞘翅)是鞘翅目的衍徵,而幼葉卷疊式-由卷曲的幼芽舒展成叶子則是蕨類植物的衍徵。.

新!!: 蛋白质和支序分類學 · 查看更多 »

数量级 (时间)

本页按时间长短从小到大列出一些例子,以帮助理解不同时间长度的概念,比较时间单位的数量级区别。.

新!!: 蛋白质和数量级 (时间) · 查看更多 »

扩散作用

扩散作用是一个基于分子热运动的输运现象,是分子通过布朗运动从高浓度区域向低浓度区域的输运的过程。它是趋向于热平衡态的驰豫过程,是熵驱动的过程。菲克定律是扩散作用的近似描述,实际过程是从高化学势区域向低化学势区域的转移。扩散作用的速率和混合物的浓度梯度一般不太大,因此通常可以用近平衡态热力学理论进行处理。 扩散作用有多种微观解释,较有影响力的是分子动理论的解释和随机行走模型的解释。.

新!!: 蛋白质和扩散作用 · 查看更多 »

拟核

擬核(英語:nucleoid;意指「與核相似」,又譯類核),也稱核區(nuclear region)、核體(nuclear body)或染色質體(chromatin body)。 存在於原核生物,是没有由核膜包被的细胞核,也没有染色体,只有一个位于形狀不規則且边界不明显区域的环形DNA分子。內含遺傳物質。裡面的核酸為雙股螺旋形式的環狀DNA,且同時具有多個相同的複製品。 实验显示,拟核的主要成分是占60%的DNA和少量RNA以及蛋白质。后两种成分主要是信使RNA和转录因子蛋白质。拟核蛋白质使核酸保持超螺旋结构,尽管在功能上与真核中的组蛋白类似,但实际上并不相同。 類核可於高倍數電子顯微鏡下觀測,外表並不一定,但可明顯與細胞質基質區分,有時還可見其中的DNA。若DNA經過福爾根染色(Feulgen stain)處理,那麼將使類核可見於光學顯微鏡中。.

新!!: 蛋白质和拟核 · 查看更多 »

重定向到这里:

蛋白質重组蛋白质

传出传入
嘿!我们在Facebook上吧! »