徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

曲线的微分几何

指数 曲线的微分几何

曲线的微分几何是几何学的一个分支,使用微分与积分专门研究平面与欧几里得空间中的光滑曲线。 从古代开始,许多具体曲线已经用综合方法深入研究。微分几何采取另外一种方式:把曲线表示为参数形式,将它们的几何性质和各种量,比如曲率和弧长,用向量分析表示为导数和积分。分析曲线最重要的工具之一为 Frenet 标架,是一个活动标架,在曲线每一点附近给出“最合适”的坐标系。 曲线的理论比曲面理论及其高维推广的范围要狭窄得多,也简单得多。因为欧几里得空间中的正则曲线没有内蕴几何。任何正则曲线可以用弧长(“自然参数”)参数化,从曲线上来看不能知道周围空间的任何信息,所有曲线都是一样的。不同空间曲线只是由它们的弯曲和扭曲程度区分。数量上,这由微分几何不变量曲线的“曲率”和“挠率”来衡量。曲线基本定理断言这些不变量的信息完全确定了曲线。.

42 关系: 单射双射向量向量分析导数常微分方程幂级数弧长伪黎曼流形弗勒内-塞雷公式作用量当且仅当微分微分几何微分流形切线切点几何学光滑函数四頂點定理倒数环绕数积分等价关系等价类線性無關黎曼流形轨迹零向量集合格拉姆-施密特正交化次切距欧几里得空间正交活动标架法挠率张量测地线拓扑空间曲率曲线曲线的挠率

单射

在數學裡,單射函數(或稱嵌射函數,國家教育研究院雙語詞彙、學術名詞暨辭書資訊網、一對一函數,英文稱 injection、injective function或 one-to-one function)為一函數,其將不同的輸入值對應到不同的函數值上。更精確地說,函數f被稱為是單射的,當對每一陪域內的y,存在至多一個定義域內的x使得f(x).

新!!: 曲线的微分几何和单射 · 查看更多 »

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

新!!: 曲线的微分几何和双射 · 查看更多 »

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

新!!: 曲线的微分几何和向量 · 查看更多 »

向量分析

向量分析(或向量微積分)是數學的分支,关注向量場的微分和积分,主要在3维欧几里得空间 \mathbb^3 中。「向量分析」有时用作多元微积分的代名词,其中包括向量分析,以及偏微分和多重积分等更广泛的问题。向量分析在微分几何与偏微分方程的研究中起着重要作用。它被广泛应用于物理和工程中,特别是在描述电磁场、引力場和流体流动的时候。 向量分析从四元數分析发展而来,由约西亚·吉布斯和奧利弗·黑維塞於19世纪末提出,大多数符号和术语由吉布斯和黑維塞在他们1901年的书《向量分析》中提出。向量演算的常规形式中使用外积,不能推广到更高维度,而另一种的方法,它利用可以推广的外积,下文将会讨论。.

新!!: 曲线的微分几何和向量分析 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

新!!: 曲线的微分几何和导数 · 查看更多 »

常微分方程

在数学分析中,常微分方程(ordinary differential equation,簡稱ODE)是未知函数只含有一个自变量的微分方程。对于微积分的基本概念,请参见微积分、微分学、积分学等条目。 很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移 s 和时间 t 的关系就可以表示为如下常微分方程: 其中 m 是物体的质量,f(s) 是物体所受的力,是位移的函数。所要求解的未知函数是位移 s,它只以时间 t 为自变量。.

新!!: 曲线的微分几何和常微分方程 · 查看更多 »

幂级数

在数学中,幂级数(power series)是一类形式简单而应用广泛的函数级数,变量可以是一个或多个(见“多元幂级数”一节)。单变量的幂级数形式为: 其中的c和a_0,a_1,a_2 \cdots a_n \cdots是常数。a_0,a_1,a_2 \cdots a_n \cdots称为幂级数的系数。幂级数中的每一项都是一个幂函数,幂次为非负整数。幂级数的形式很像多项式,在很多方面有类似的性质,可以被看成是“无穷次的多项式”。 如果把(x-c)看成一项,那么幂级数可以化简为\sum_^\infty a_n x^n 的形式。后者被称为幂级数的标准形式。一个标准形式的幂级数完全由它的系数来决定。 将一个函数写成幂级数\sum_^\infty a_n \left(x-c \right)^n的形式称为将函数在c处展开成幂级数。不是每个函数都可以展开成幂级数。 幂级数是分析学研究的重点之一,然而在组合数学中,幂级数也占有一席之地。作为母函数,由幂级数概念发展出来的形式幂级数是许多组合恒等式的来源。在电力工程学中,幂级数则被称为Z-变换。实数的小数记法也可以被看做幂级数的一种,只不过这里的x被固定为\frac。在p-进数中则可以见到x被固定为10的幂级数。.

新!!: 曲线的微分几何和幂级数 · 查看更多 »

弧是一條平面曲線,它是圓上兩點間的一段,包含兩個端點。 連接弧的兩個端點之間的線段被命名為弦。 若圓心位於弧與弦連接成的封閉圖形之內,這段弧稱為優弧。若圓心位於弧與弦連接成的封閉圖形之外,這段弧稱為劣弧。.

新!!: 曲线的微分几何和弧 · 查看更多 »

弧长

曲线的弧长也称曲线的长度,是曲线的特征之一。不是所有的曲线都能定义长度,能够定义长度的曲线称为可求长曲线。最早研究的曲线弧长是圆弧的长度。为了计算圆周的长度,数学家发明了用直线段近似的方法,并应用到其他的曲线上。微积分出现后,数学家开始用积分的方式计算曲线的弧长,得出了许多特殊曲线的弧长的精确表达式。.

新!!: 曲线的微分几何和弧长 · 查看更多 »

伪黎曼流形

伪黎曼流形(Pseudo-Riemannian manifold)是一光滑流形,其上有一光滑、对称、点点非退化的(0,2) 張量。此張量稱為伪黎曼度量或伪度量張量。 伪黎曼流形与黎曼流形的区别是它不需要正定(通常要求非退化)。因为每個正定形式都是非退化的,所以黎曼度量也是一个伪黎曼度量,亦即黎曼流形是伪黎曼流形的一种特例。 每一個非退化對稱,雙線性形式有一個固定的度量符号(p,q)。這裡p與q記作正特徵值及負特徵值的个数。注意p + q.

新!!: 曲线的微分几何和伪黎曼流形 · 查看更多 »

弗勒内-塞雷公式

#重定向 弗莱纳公式.

新!!: 曲线的微分几何和弗勒内-塞雷公式 · 查看更多 »

作用量

在物理學裏,作用量(英语:action)是一個很特別、很抽象的物理量。它表示著一個動力物理系統內在的演化趨向。雖然與微分方程式方法大不相同,作用量也可以被用來分析物理系統的運動,所得到的答案是相同的。只需要設定系統在兩個點的狀態,初始狀態與最終狀態,然後,經過求解作用量的平穩值,就可以得到系統在兩個點之間每個點的狀態。.

新!!: 曲线的微分几何和作用量 · 查看更多 »

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

新!!: 曲线的微分几何和当且仅当 · 查看更多 »

微分

在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数\textstyle f的自变量\textstyle x有一个微小的改变\textstyle h时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量\textstyle h,可以表示成\textstyle h和一个与\textstyle h无关,只与函数\textstyle f及\textstyle x有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在\textstyle h上的值。另一部分是比\textstyle h更高阶的无穷小,也就是说除以\textstyle h后仍然会趋于零。当改变量\textstyle h很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在\textstyle x处的微分,记作\displaystyle f'(x)h或\displaystyle \textrmf_x(h)。如果一个函数在某处具有以上的性质,就称此函数在该点可微。 不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。 在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量\textstyle h映射到变化量的线性部分的线性映射\displaystyle \textrmf_x。这个映射也被称为切映射。.

新!!: 曲线的微分几何和微分 · 查看更多 »

微分几何

微分幾何研究微分流形的幾何性質,是現代數學中一主流;是廣義相對論的基礎,與拓撲學、代數幾何及理論物理關係密切。 古典微分几何起源于微积分,主要内容为曲线论和曲面论。歐拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。.

新!!: 曲线的微分几何和微分几何 · 查看更多 »

微分流形

光滑流形(),或称-微分流形()、-可微流形(),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是类的微分流形。可微流形在物理學中非常重要。特殊種類的可微流形構成了經典力學、廣義相對論和楊-米爾斯理論等物理理論的基礎。可以為可微流形開發微積分。可微流形上的微積分研究被稱為微分幾何。.

新!!: 曲线的微分几何和微分流形 · 查看更多 »

切线

切線(tangent line),為一幾何名詞,應用於曲線及平面圓時意義有所不同。 设L为一条曲线,A,B为此曲线上的点,过此二点作曲线的割线,令B趋向A,如果割线的极限存在,则称此极限(一条直线)为曲线在A的切线.

新!!: 曲线的微分几何和切线 · 查看更多 »

切点

数学上,函数的k阶切点,或称触点、接点(point of contact,tangent point)是一个等价关系,表示函数在点P有同样的取值并且有直到k阶的相同的导数。等价类通常称为射流。 曲线和几何对象也可以有k阶切点:这也称为密切(也就是吻合),它是相切的性质的推广。例如,密切圆。 切触形式是奇数维流形上的特殊的1阶微分形式;参看切触几何。切触变换和坐标变换相关,在经典力学中很重要。参看勒让德变换。 Category:多变量微积分 Q.

新!!: 曲线的微分几何和切点 · 查看更多 »

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

新!!: 曲线的微分几何和几何学 · 查看更多 »

光滑函数

光滑函数(smooth function)在数学中特指无穷可导的函数,也就是说,存在所有有限阶导数。若一函数是连续的,则称其为C^0函数;若函数存在导函数,且其導函數連續,則稱為连续可导,記为C^1函数;若一函数n阶可导,并且其n阶导函数连续,则为C^n函数(n\geq 1)。而光滑函数是对所有n都属于C^n函数,特称其为C^\infty函数。 例如,指数函数显然是光滑的,因为指数函数的导数是指数函数本身。.

新!!: 曲线的微分几何和光滑函数 · 查看更多 »

四頂點定理

四頂點定理是微分幾何關於平面曲線的整體性質的定理。這定理指出,一條簡單閉曲線的曲率函數,如果不是常值,便有至少四個局部極值。更確切地說,這函數有至少兩個局部極大值和兩個局部極小值。 1909年斯亞馬達斯·穆科帕迪亞亞最先證明這定理對凸曲線(即有嚴格正曲率)成立。他的證明用到了以下結果:曲線上一點的曲率是極值,當且僅當在該點的密切圓與曲線有4點切觸。(密切圓與曲線一般只有3點切觸。)1912年阿道夫·克內澤爾證明了定理在一般情況成立。 四頂點定理的逆定理指,在圓上定義任意連續實值函數,使得有兩個局部極大值和兩個局部極小值,那麼這函數是一條簡單平面閉曲線的曲率函數。1971年赫爾曼·格盧克證出嚴格正函數的情形。他證明在n維球面預先定義曲率的更一般定理,以上結果是其特例。比約恩·達爾貝里在他1998年1月去世前不久,證明逆定理的完整版本。他的證法用到卷繞數,類似代數基本定理的拓撲證明。 這定理的一個推論是,任何在平面上滾動受重力作用的均勻板,都有至少四個平衡點。它的三維推廣並不容易,實際上,存在少於四個平衡點的三維凸均勻體,見Gömböc。.

新!!: 曲线的微分几何和四頂點定理 · 查看更多 »

倒数

數學上,一个数\displaystyle x的倒数(reciprocal),或稱乘法逆元(multiplicative inverse),是指一個与\displaystyle x相乘的积为1的数,记为\displaystyle \tfrac或\displaystyle x^。在抽象代数中,倒数所对应的抽象化概念是乘法群的某个元素的“乘法逆”,也就是相对于群中“乘法”运算的逆元素。注意这个名词只当相应的群中的运算被称为“乘法”后才使用。如果群中的运算被称为“加法”,那么同样的概念称为“加法逆”。乘法逆的具体定义可以参见群的逆元素概念。 汉语中,名词倒数一般用来表示数字的乘法逆,一般在各种数域如:有理数、实数、复数,以及模n的同余类所构成的乘法群中使用。在复数域(实数域)中,每个除了0以外的复数(实数)都存在倒数:只要用某个数自身除1(也就是说用1除以某个数),即可得到它的倒数。用数学记号表示的话: 每个复数(实数)只有一个倒数。一般来说,并不是对所有的代数结构中的乘法运算,每个元素都存在其乘法逆,如对矩阵乘法来说,秩小于阶数的矩阵就没有乘法逆。一个环中的一个元素有乘法逆当且仅当它是可逆元,而它的乘法逆是唯一的当且仅当它不是一个零因子,或者说当它是一个正则元。每个非零元素都有乘法逆的环称为除环。每个非零元素都至多有一个乘法逆的环称为无零因子环。.

新!!: 曲线的微分几何和倒数 · 查看更多 »

环绕数

在数学中,环绕数(linking number)是描述三维空间中两条闭曲线环绕的一个数值不变量。直观上,环绕数表示每一条曲线缠绕另一条曲线的次数。环绕数总是整数,但有可能取正数或负数,取决于这两条曲线的定向。 环绕数由高斯以环绕积分的形式引入。它在纽结理论、代数拓扑和微分几何的研究中是重要的对象,并在数学和科学中有许多应用,包括量子力学、电磁学以及 DNA超螺旋的研究。.

新!!: 曲线的微分几何和环绕数 · 查看更多 »

积分

积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.

新!!: 曲线的微分几何和积分 · 查看更多 »

等价关系

等價關係(equivalence relation)即设R是某個集合A上的一个二元关系。若R满足以下條件:.

新!!: 曲线的微分几何和等价关系 · 查看更多 »

等价类

在数学中,假設在一个集合X上定義一个等价关系(用 \sim來表示),则X中的某個元素a的等价类就是在X中等价于a的所有元素所形成的子集: 等价类的概念有助于从已经构造了的集合构造新集合。在X中的给定等价关系 \sim的所有等价类的集合表示为X/ \sim并叫做X除以\sim的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是,如果X是有限的并且等价类都是等势的,则X/ \sim的序是X的序除以一个等价类的序的商。商集被认为是带有所有等价点都识别出来的集合X。 对于任何等价关系,都有从X到X/ \sim的一个规范投影映射\pi,给出为\pi(x).

新!!: 曲线的微分几何和等价类 · 查看更多 »

線性無關

在線性代數裡,向量空間的一組元素中,若沒有向量可用有限個其他向量的線性組合所表示,则稱為線--性無關或線--性獨立(linearly independent),反之稱為線性相關(linearly dependent)。例如在三維歐幾里得空間R3的三個向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)線性無關。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)線性相關,因為第三個是前兩個的和。.

新!!: 曲线的微分几何和線性無關 · 查看更多 »

黎曼流形

黎曼流形(Riemannian manifold)是一個微分流形,其中每點p的切空間都定義了點積,而且其數值隨p平滑地改變。它容許我們定義弧線長度、角度、面積、體積、曲率、函數梯度及向量域的散度。 每個Rn的平滑子流形可以导出黎曼度量:把Rn的點積都限制於切空間內。實際上,根据纳什嵌入定理,所有黎曼流形都可以這樣产生。 我們可以定義黎曼流形為和Rn的平滑子流形是等距同构的度量空間,等距是指其内蕴度量(intrinsic metric)和上述从Rn导出的度量是相同的。这對建立黎曼幾何是很有用的。 黎曼流形可以定义为平滑流形,其中给出了一个切丛的正定二次形的光滑截面。它可產生度量空間: 如果γ: → M是黎曼流形M中一段連續可微分的弧線,我們可以定義它的長度L(γ)為 (注意:γ'(t)是切空間M在γ(t)點的元素;||·||是切空間的內積所得出的範數。) 使用这个长度的定义,每个连通的黎曼流形M很自然的成为一个度量空間(甚至是長度度量空間):在x與y兩點之間的距離d(x, y)定義為: 虽然黎曼流形通常是弯曲的,“直線”的概念依然存在:那就是測地線。 在黎曼流形中,測地線完备的概念,和拓撲完备及度量完备是等价的:每个完备性都可以推出其他的完备性,这就是Hopf-Rinow定理的内容。.

新!!: 曲线的微分几何和黎曼流形 · 查看更多 »

轨迹

在数学中,轨迹指的是含有某种性质的所有点的集合。它是一种几何形状。 常见的轨迹:.

新!!: 曲线的微分几何和轨迹 · 查看更多 »

零向量

在线性代数及相关数学领域中,零向量(也称退化向量)即欧几里得空间里的中所有元素都为 0 的向量 (0, 0, …, 0)。零向量的表式法於印刷体会打成稍微斜一点的粗黑体數字\mathit 或粗黑體大寫英文字母\boldsymbol,手写的為避免與數字0混淆,因此會在數字0上面加上一个向右的(半)箭头表示这是一个零向量,如:\vec、\overset。 在一般的向量空間中,零向量是唯一確定的向量。它是向量加法的單位元素。 Category:向量 Category:零.

新!!: 曲线的微分几何和零向量 · 查看更多 »

集合

集合可以指:.

新!!: 曲线的微分几何和集合 · 查看更多 »

格拉姆-施密特正交化

在线性代数中,如果内积空间上的一组向量能够组成一个子空间,那么这一组向量就称为这个子空间的一个基。Gram-Schmidt正交化提供了一种方法,能够通过这一子空间上的一个基得--子空间的一个正交基,并可进一步求出对应的标准正交基。 这种正交化方法以和命名,然而比他们更早的拉普拉斯(Laplace)和柯西(Cauchy)已经发现了这一方法。在李群分解中,这种方法被推广为岩泽分解(Iwasawa decomposition)。 在数值计算中,Gram-Schmidt正交化是数值不稳定的,计算中累积的舍入误差会使最终结果的正交性变得很差。因此在实际应用中通常使用豪斯霍尔德变换或Givens旋转进行正交化。.

新!!: 曲线的微分几何和格拉姆-施密特正交化 · 查看更多 »

次切距

在微積分中,次切距(subtangent)是切線與切點垂線在橫坐標軸上的距離。.

新!!: 曲线的微分几何和次切距 · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

新!!: 曲线的微分几何和欧几里得空间 · 查看更多 »

正交

正交是线性代数的概念,是垂直這一直觀概念的推廣。作為一個形容詞,只有在一個確定的內積空間中才有意義。若內積空間中兩向量的內積為0,則稱它們是正交的。如果能夠定義向量間的夾角,則正交可以直觀的理解為垂直。物理中:運動的獨立性,也可以用正交來解釋。.

新!!: 曲线的微分几何和正交 · 查看更多 »

活动标架法

数学上,光滑流形上的标架可以理解为从一点到一点变化的标架。给定一个这样的流形M和一个其中的点P,在P点的一个标架表示一个M在P点的切空间的向量空间基底。也就是说,若M维数为n,我们给定n个切向量t1,..., tn,属于M在P的切空间,而且线性獨立。在P的某个邻域U的一个活动标架要求我们给定 每个都是定义在U上的向量场,全都假设为作为Q的函数在U中光滑,并且在每一点Q线性无关(为简单起见假设M处处维数为n)。 用非常一般的术语来讲,这样一个活动标架是广义相对论中的一个观测者的要求,在那里每个从P到附近点的连续对ti的选择都是平等的。而狭义相对论中,M被取为一个四维的向量空间V。在那种情况下,ti可以简单的从P平移到其它点Q。 在相对论和黎曼几何中,最重要的活动标架是正交和单位正交标架,也就是在每一点(单位长度的)互相垂直的向量的有序集。在给定一点P可以通过正交化将任意标架变成正交;事实上,这可以以光滑的方式达到,因而一个活动标架的存在也就隐含了活动正交标架的存在。 活动标架在M上局部的存在性是很显然的;但是在M上的全局存在性要求拓扑条件的满足。例如,当M是一个圆圈,或者是一个环,这样的标架存在;但是当M是一个二维球时却不存在。存在一个全局活动标架的流形称为可平行化的。注意,例如将纬度和经度的单位方向作为地球表面上的活动标架在北极和南极会有问题。 埃里·嘉当的活动标架法基于对于所研究的特定问题取一个相应的活动标架。例如,给定一个空间中的曲线,曲线的前三个导数通常可以给出其上一点一个标架(参看定量的形式参看挠率-它假设挠率非0)。更一般地,活动标架的抽象含义是将切丛作为一个向量丛时,其伴随丛主丛GLn的一个截面。一般的嘉当方法利用了这点,并在嘉当联络中讨论。 对于球面只有S^1、S^3和S^7是可平行化的。 H H.

新!!: 曲线的微分几何和活动标架法 · 查看更多 »

挠率张量

#重定向 扭率張量.

新!!: 曲线的微分几何和挠率张量 · 查看更多 »

测地线

测地线又称大地线或短程线,数学上可视作直线在弯曲空间中的推广;在有度规定义存在之时,测地线可以定义为空间中两点的局域最短路径。测地线(geodesic)的名字来自对于地球尺寸与形状的大地测量学(geodesy)。.

新!!: 曲线的微分几何和测地线 · 查看更多 »

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

新!!: 曲线的微分几何和拓扑空间 · 查看更多 »

曲率

曲率,符号以Kappa:κ表示,是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意義。 曲率半径,符号以Rho:ρ表示,是曲率的倒数,单位为米。.

新!!: 曲线的微分几何和曲率 · 查看更多 »

曲线

曲线的普通定义就是在几何空间中的“弯曲了的线”。而直线是一种特殊的曲线,只不过它的曲率为零。在《解析几何》中,曲线用一组连续函数的方程组来表示。 曲线和直线都是指欧几里得几何所定义的欧几里得空间中的相关概念。此外,还存在多种不为多数人所知的非欧几里得几何,其中的直线和曲线的定义和欧几里得几何的定义有很大差别,甚至不能类比。想深入学习数学的人切忌将不同几何空间中的同名概念相互混淆。.

新!!: 曲线的微分几何和曲线 · 查看更多 »

曲线的挠率

在初等三维曲线的微分几何中,一条曲线的挠率(或译扭率)度量了它扭曲的程度。将一个空间曲线的曲率和挠率放在一块与一个平面曲线的曲率类似。例如,他们都是弗莱纳标架的弗莱纳公式的微分方程组中的系数。.

新!!: 曲线的微分几何和曲线的挠率 · 查看更多 »

重定向到这里:

参数曲线曲线微分几何曲线论

传出传入
嘿!我们在Facebook上吧! »