徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

无机化学

指数 无机化学

无机化学是研究无机化合物的化学分支学科。通常,无机化合物与有机化合物相对,指不含C-H键的化合物,因此一氧化碳、二氧化碳、二硫化碳、氰化物、硫氰酸盐、碳酸及碳酸盐等都属于无机化学研究的范畴。但这二者界限并不严格,之间有较大的重叠,有机金属化学即是一例。.

148 关系: 原子簇半导体十二羰基三铁十硼烷双氢配合物双氮配合物合金复分解反应學科列表富勒烯導體尿素尿酸主族元素三甲基胂一氧化二氮一氧化碳乙二胺四乙酸乙硼烷乙酸铜二元化合物二硫化碳二茂铁二氧化硅二氧化碳五羰基铁五氧化二钒价层电子对互斥理论弗里德里希·维勒弗里茨·哈伯化合反应化學價電子分子对称性分子结构分子轨道理论分解反应哈柏法冶金学凝聚态物理学六羰基钼元素周期表光气四氢呋喃四氮化四硫四氯化钛石膏矽氧樹脂理论化学硝酸铵...硫光气硫酸鹽硫酸钙硫氰酸盐硅烷碳化物碳纳米管碳酸碳酸盐磷酸鹽礦物离子离子化合物离子键结晶置换反应群论烷烃生物分子生物无机化学甲基汞电子电子亲合能电化学电离能电解质电池熔点相變聯氨药物順磁性顺铂血紅素计算化学負離子超導體路易士碱黄铁矿软硬酸碱理论还原剂能量阿尔弗雷德·维尔纳钇钡铜氧铁硫蛋白脱氧核糖核酸醇盐量子力学金屬互化物金屬羰基配合物镧系元素配位场理论配體酸碱理论酸碱电子理论雷酸盐雄黄逆磁性Hexol材料科学氢化物氧化氧化剂氧化物氧化铁氧化数氯化物氯化錫氯化钠氯化镁氰化物氰酸盐氰酸铵水解沸石溶解性溶解性表有机化合物有机化学有机金属化学方铅矿无机合成化学无机化合物手性拆分晶体学晶体场理论 扩展索引 (98 更多) »

原子簇

原子簇(),在物理學中,術語「簇」是用於表示多原子的小粒子。.

新!!: 无机化学和原子簇 · 查看更多 »

半导体

半导体(Semiconductor)是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。 一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度电离的原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。 材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIA、VA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成N型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成P型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。.

新!!: 无机化学和半导体 · 查看更多 »

十二羰基三铁

十二羰基三铁 (Triiron dodecacarbonyl),分子式为Fe3(CO)12。它是第一种人工合成的金属-羰基簇合物。相比五羰基铁的化学性质更活泼,更易于分解为单质铁。.

新!!: 无机化学和十二羰基三铁 · 查看更多 »

十硼烷

十硼烷是含有10个硼原子的硼氢化合物。十硼烷(14)的分子式是B10H14,为无色挥发性晶体《硼氢化合物》.郑学家 主编.化学工业出.

新!!: 无机化学和十硼烷 · 查看更多 »

双氢配合物

双氢配合物是包含完整氢分子作为配体的配位化合物。最典型的这类化合物是W(CO)3(PCy3)2(H2)。这类化合物的发现解释了金属元素催化的氢分子参与的化学反应。文献已经报道了数百个双氢配合物,大多数都是过渡金属的离子形成的八面体配合物。 络合以后,通过中子衍射发现H-H键的键长增加到81-82pm,相比自由的氢分子增加了约10%。一些有多个氢配体的配合物,也就是聚合型氢化物 (例如氢化铝),也展现出更弱的H-H作用。科学家建议键长小于100pm意味着明显的双氢特征,而距离大于100pm更应该被认为是氢负离子配合物。.

新!!: 无机化学和双氢配合物 · 查看更多 »

双氮配合物

双氮配合物,又称分子氮配合物,是指含有分子氮作为配体的配合物。这类配合物比较少见,不过自首次制得以来,已有数以百计的双氮配合物被制得,几乎涵盖元素周期表上从IVB到VIII族所有的过渡元素。双氮配合物的发现在固氮研究方面有一些意义,不少人希望通过形成双氮配合物来削弱氮分子的叁键,活化分子氮,从而达到将氮还原为氨的目的。.

新!!: 无机化学和双氮配合物 · 查看更多 »

合金

合金,就是两种或两种以上化学物质(至少有一组分为金属)混合而成具有金属特性的物质,一般由各组分熔合成均匀的液体,再经冷凝而得。 合金至少會以下三種中的一種:元素形成的單一相固態溶液,許多金屬相形成的混合物,金屬形成的金屬互化物。固態溶液的合金其有單一相,部份為溶液的合金則是有二相或二相以上,其分佈可能是勻相,也可能不是勻相,依材料冷卻過程的溫度變化而定。金屬互化物一般會有一種合金或純金屬包在另一種純金屬內。 由於合金一些特性比純金屬元素要好,因此會用在特定的應用中。合金的例子包括鋼、銲料、黃銅、、磷青銅及汞齊等。 合金的成份一般是以質量比例來計算。合金依其原子組成的方式,可以區分為替代合金或间质合金,又可以進一步區分為勻相(只有一相)、非勻相(不止一相)及金屬互化物(兩相之間沒有明顯的邊界)。.

新!!: 无机化学和合金 · 查看更多 »

复分解反应

複分解反应又稱雙置換反應,是由两种化合物,通過互相交换成分並生成两种新化合物的反应,模式为AB+CD→AD+CB。必发生在水溶液中,它是基本类型的化学反应之一。複分解都不是氧化还原反应(有些反应是複分解产物再发生氧化还原,而不是複分解的结果)。 硝酸银+盐酸→硝酸+氯化银↓ 上图是一个复分解反应示例。图中的各种物质组成元素、原子团的化合价在反应前后保持不变。 有机化学中的类似反应为取代反应。.

新!!: 无机化学和复分解反应 · 查看更多 »

學科列表

這是一個學科的列表。學科是在大學教學(教育)與研究的知識分科。學科是被發表研究和學術雜誌、學會和系所所定義及承認的。 領域通常有子領域或分科,而其之間的分界是隨便且模糊的。 在中世紀的歐洲,大學裡只有四個學系:神學、醫學、法學和藝術,而最後一個的地位稍微低於另外三個的地位。在中世紀至十九世紀晚期的大學世俗化過程中,傳統的課程開始增輔進了非古典的語言及文學、物理、化學、生物和工程等學科,現今的學科起源便源自於此。到了二十世紀初期,教育學、社會學及心理學也開始出現在大學的課程裡了。 以下簡表展示出各大類科目,以及各大類科目中的主要科目。 "*"記號表示此一領域的學術地位是有爭議的。注意有些學科的分類也是有爭議的,如人類學和語言學究竟屬於社會科學亦或是人文學科,以及计算机技术是工程学科亦或是形式科学。.

新!!: 无机化学和學科列表 · 查看更多 »

富勒烯

富勒烯(Fullerene)是一種完全由碳组成的中空分子,形狀呈球型、椭球型、柱型或管状。富勒烯在结构上与石墨很相似,石墨是由六元环组成的石墨烯层堆积而成,而富勒烯不仅含有六元环还有五元环,偶尔还有七元环。 1985年英国化学家哈罗德·沃特尔·克罗托博士和美国科学家理查德·斯莫利在萊斯大學制备出了第一种富勒烯,即「C60分子」或「富勒烯」,因为这个分子与建筑学家巴克明斯特·富勒的建筑作品很相似,为了表达对他的敬意,将其命名为「巴克明斯特·富勒烯」(巴克球)。饭岛澄男早在1980年之前就在透射电子显微镜下观察到这样洋葱状的结构。自然界也是存在富勒烯分子的,2010年科学家们通过史匹哲太空望远镜发现在外太空中也存在富勒烯。 “也许外太空的富勒烯为地球提供了生命的种子”。 在富勒烯发现之前,碳的同素异形体的只有石墨、钻石、无定形碳(如炭黑和炭),它的发现极大地拓展了碳的同素异形体的数目。富勒烯和碳纳米管独特的化学和物理性质以及在技术方面潜在的应用,引起了科学家们强烈的兴趣,尤其是在材料科学、电子学和纳米技术方面。 Biosphère Montréal.jpg|建筑学家理查德·巴克明斯特·富勒设计的加拿大1967年世界博覽會球形圆顶薄壳建筑 Buckminsterfullerene-perspective-3D-balls.png|拥有60个碳原子的巴克明斯特·富勒烯C60 Football (soccer ball).svg|现代足球与C60有着非常类似结构.

新!!: 无机化学和富勒烯 · 查看更多 »

導體

導體(conductor)為能夠讓電流通過的材料,依其導電性,能夠細分為超導體、導體、半導體及絕緣體。在科學及工程上常用利用歐姆來定義某材料的導電程度。它们使電力極容易地通过它们。例如:金属、人体、大地、石墨、食鹽水溶液等都是導電體。 當電流在導體內流過時,事實上是因為導體內的自由电荷(在金属中的自由电荷是电子,而在溶液中的自由电荷则为阴、阳產生漂移而造成的,根據材料的不同,自由电荷的漂移方式也不相同:在超導體中,電子幾乎不受原子核的干擾而能夠快速移動;而在導體內電子的移動受限於該材料所造成的電子海的能階大小;而在半導體內,電子能夠移動是因為電子-空穴效應;而絕緣體則是電子受限於分子所構成的共價鍵,使得電子要脫離原子是非常困難的事。因此,沒有絕對絕緣的絕緣體,只要有足夠大的能量就可以使電子得以通過某絕緣體。 Category:材料 Category:熱力學 Category:電學.

新!!: 无机化学和導體 · 查看更多 »

尿素

尿素(Urea) 是由碳、氮、氧和氢组成的有机化合物,又稱脲(與尿同音)。其化学公式为 CON2H4、(NH2)2CO 或 CN2H4O,分子质量60,国际非专利药品名称为 Carbamide(碳酰胺)。外观是无色晶体或粉末。它是动物蛋白质代谢后的产物,通常用作植物的氮肥。 尿素在肝合成,是哺乳类动物排出的体内含氮代谢物。這代謝过程称为尿素循环。 尿素是第一种以人工合成无机物质而得到的有机化合物。活力论從此被推翻。.

新!!: 无机化学和尿素 · 查看更多 »

尿酸

尿酸是一種含有碳、氮、氧、氫的雜環化合物,其分子式為C5H4N4O3。尿酸在人體內是嘌呤的最終代謝物。爬蟲類和鳥類會將代謝廢物氨轉換成尿酸在糞便中排出。尿酸是一種強抗氧化劑,在有些靈長類中可以取代維生素C的功能。.

新!!: 无机化学和尿酸 · 查看更多 »

主族元素

主族元素是化學上對元素的一種分類,是指週期表中s區及p區的元素。週期表中除了過渡金屬、鑭系元素、錒系元素之外的都是主族元素。 主族元素包括:.

新!!: 无机化学和主族元素 · 查看更多 »

三甲基胂

三甲基胂(Trimethylarsine,简称TMA)是一种分子式为(CH3)3As(常缩写为AsMe3)的有机砷化合物。它是胂的衍生物,且是最简单的三烷基胂,具有类似大蒜的气味。早在1854年人们已经发现了这种化合物。.

新!!: 无机化学和三甲基胂 · 查看更多 »

一氧化二氮

一氧化二氮或氧化亞氮(Nitrous oxide),无色有甜味气体,又称笑气,是一种氧化剂,化学式N2O,在一定条件下能支持燃烧,但在室温下稳定,有轻微麻醉作用,其麻醉作用于1799年由英国化学家汉弗莱·戴维发现。该气体早期被用于牙科手术的麻醉,現用在外科手術和牙科。“笑氣”的名稱是由於吸入它會感到欣快,并能致人发笑。一氧化二氮能溶于水、乙醇、乙醚及浓硫酸,但不与水反应。它也可以用來作為火箭和賽車的氧化劑,以及增加發動機的輸出功率。一氧化二氮是强温室气体。现笑气被用在很多娱乐场所。.

新!!: 无机化学和一氧化二氮 · 查看更多 »

一氧化碳

一氧化碳,分子式CO,是無色、無嗅、無味的无机化合物氣體,比空氣略輕。在水中的溶解度甚低,但易溶于氨水。空气混合爆炸极限为12.5%~74%。 一氧化碳是含碳物质不完全燃烧的产物。也可以作为燃料使用,煤和水在高温下可以生成水煤气(一氧化碳与氢气的混合物)。有些現代技術,如煉鐵,還是會產生副產品的一氧化碳。一氧化碳是可用作身體自然調節炎症反應的三種氣體之一(其他兩種是一氧化氮和硫化氫)。 由于一氧化碳与体内血红蛋白的亲和力比氧与血红蛋白的亲和力大200-300倍,而碳氧血红蛋白较氧合血红蛋白的解离速度慢3600倍,当一氧化碳浓度在空气中达到35ppm,就会对人体产生损害,會造成一氧化碳中毒(又称煤气中毒)。 雖然一氧化碳有毒,但動物代謝亦會產生少量一氧化碳,並認為有一些正常的生理功能。.

新!!: 无机化学和一氧化碳 · 查看更多 »

乙二胺四乙酸

乙二胺四乙酸(Ethylenediaminetetraacetic acid),常缩写为EDTA,是一种有机化合物。它是一個六齿配體,可以螯著多種金屬離子。它的4個酸和2個胺的部分都可作為配體的齿,與錳(II)、銅(II)、鐵(III)及鈷(II)等金屬離子組成螯合物。.

新!!: 无机化学和乙二胺四乙酸 · 查看更多 »

乙硼烷

乙硼烷是化学式为B2H6的无机化合物,是目前能分离出的最简单的硼烷。乙硼烷室温下为无色气体,可以与空气形成爆炸性混合物,并且在潮湿空气中自燃。有剧毒。 乙硼烷具有较高的化学活性,容易与各种无机分子和有机分子起反应。这不仅是因为乙硼烷生成热为正值(即所谓吸热化合物),还由于硼对氟、氧、氮、磷等电负性强的元素有很大的亲合力张青莲等。《无机化学丛书》第二卷。北京:科学出版社。。.

新!!: 无机化学和乙硼烷 · 查看更多 »

乙酸铜

乙酸铜(乙酸铜(II)),是化学式为Cu2(CH3COO)4的化合物,其中CH3COO−指乙酸根CH3COO−。Cu2(CH3COO)4是深绿色晶体,一水合物Cu2(CH3COO)4(H2O)2略带蓝绿色。 乙酸铜在古代被用作杀菌剂和绿色颜料,目前多用作无机合成中铜(II)的来源,也可在有机合成中作为催化剂或氧化剂。和所有铜化合物一样,乙酸铜的焰色反应为蓝绿色。.

新!!: 无机化学和乙酸铜 · 查看更多 »

二元化合物

二元化合物指包含兩种不同元素的化合物,如NaCl(氯化钠)和NaF(氟化鈉)。.

新!!: 无机化学和二元化合物 · 查看更多 »

二硫化碳

二硫化碳是一种分子式为CS2的无色有毒液体。纯的二硫化碳有类似氯仿的芳香甜味,但是通常不纯的工业品因为混有其他硫化物(如羰基硫等)而变为微黄色,并且有令人不愉快的烂萝卜味。CS2可溶解硫單質或白磷。 由于二硫化碳结构简单,虽然它的分子中含有碳原子,但是被认为是无机物。 二硫化碳通过以下反应制备:.

新!!: 无机化学和二硫化碳 · 查看更多 »

二茂铁

二茂铁(英文:Ferrocene),或称环戊二烯基铁,是分子式为Fe(C5H5)2的有机金属化合物,室溫下會微量昇華因而帶有似樟腦的特殊氣味 。二茂铁是最重要的金属茂基配合物,也是最早被发现的夹心配合物,包含两个环戊二烯负离子以π电子与铁原子成键。.

新!!: 无机化学和二茂铁 · 查看更多 »

二氧化硅

二氧化硅(化学式:Si)是一种酸性氧化物,对应水化物为硅酸(Si)。它从古代以来就已经被人们知道了。 二氧化硅在自然界中最常见的是石英,以及在各种生物体中。在世界的许多地方,二氧化硅是砂的主要成分。二氧化硅是最复杂和最丰富的材料家族之一,既是多种矿物质,又是被合成生产的。 值得注意的实例包括熔融石英,水晶,热解法二氧化硅,硅胶和气凝胶。 应用范围从结构材料到微电子学到食品工业中使用的成分。 二氧化硅是硅最重要的化合物,约占地壳质量的12%。自然界中二氧化硅的存在形态有结晶形和无定形两大类,统称硅石。.

新!!: 无机化学和二氧化硅 · 查看更多 »

二氧化碳

二氧化碳(IUPAC名:carbon dioxide,分子式:CO2)是空氣中常見的化合物,由两个氧原子与一个碳原子通过共价键连接而成。空氣中有微量的二氧化碳,約佔0.04%。二氧化碳略溶於水中,形成碳酸,碳酸是一種弱酸。 在二氧化碳分子中,碳原子的成键方式是sp杂化轨道与氧原子成键。碳原子的两个sp杂化轨道分别与两个氧原子生成两个σ键。碳原子上两个没有参加杂化(混成)的p轨道与成键的sp杂化轨道成90°的直角,并同氧原子的p轨道分别发生重叠,故缩短了碳氧键的间距。 二氧化碳平均约占大气体积的400ppm,不過每年因為人為的排放增加,比率還在逐步上升。2018年4月大氣二氧化碳月均濃度超過410ppm,為過去80萬年來最高。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。 二氧化碳常壓下為無色、無味、不助燃、不可燃的氣體。二氧化碳是一種溫室氣體。二氧化碳的濃度自1900年至2016年11月增長了約127ppm。.

新!!: 无机化学和二氧化碳 · 查看更多 »

五羰基铁

五羰基铁,铁与羰基的化合物,化学式为Fe(CO)5。.

新!!: 无机化学和五羰基铁 · 查看更多 »

五氧化二钒

五氧化二钒,IUPAC名称为氧化钒(V),是钒(V)的氧化物,化学式为V2O5。它是一种有毒的橙黄色固体,微溶于水,加热时失去氧而分解。可作化学工业中的催化剂,最重要的是对硫酸工业中二氧化硫转化为三氧化硫一步的催化。 五氧化二钒中的钒(+5)为最高氧化态,具有两性和氧化性。.

新!!: 无机化学和五氧化二钒 · 查看更多 »

价层电子对互斥理论

价层电子对互斥理论(英文:Valence Shell Electron Pair Repulsion,簡稱為VSEPR),是一个用来预测单个共价分子形态的化学模型。理论通过计算中心原子的价层电子数和配位数来预测分子的几何构型,并构建一个合理的路易斯结构式来表示分子中所有键和孤对电子的位置。.

新!!: 无机化学和价层电子对互斥理论 · 查看更多 »

弗里德里希·维勒

弗里德里希·维勒(Friedrich Wöhler,),德国化学家。他因人工合成了尿素,打破了有机化合物的“生命力”学说而闻名。.

新!!: 无机化学和弗里德里希·维勒 · 查看更多 »

弗里茨·哈伯

弗里茨·哈伯(Fritz Haber,),犹太裔德国化学家,由于发明从氮气和氢气合成氨的工业哈柏法,荣获1918年度的诺贝尔化学奖。哈柏法对于制造化肥和炸药很重要。全球一半人口的食品生产目前依赖于用这种方法生产的肥料。哈伯和玻恩共同提出了玻恩-哈伯循环作为评估的离子固体晶格能的方法。 因为在第一次世界大战期间他开发和部署氯气和其他毒气的化学武器工作,他也被称为“化學武器之父”。.

新!!: 无机化学和弗里茨·哈伯 · 查看更多 »

化合反应

化合反应是一类化学反应的总称(通常是指无机反应),是指两个或多个反应物经过化学反应生成一种产物。例如,氢气和氧气燃烧生成水就是化合反应。通常化合反应都是放热反应。.

新!!: 无机化学和化合反应 · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

新!!: 无机化学和化學 · 查看更多 »

價電子

在化學中,價電子(,又名最外電子層),是表示原子最外電子層的電子,或者原子價的電子。 價電子在決定一元素如何與其他元素進行化學反應時起了重要作用:原子價電子愈少,原子就愈不穩定亦愈容易反應。.

新!!: 无机化学和價電子 · 查看更多 »

分子对称性

分子對稱性描述分子的對稱性表現並根據分子的對稱性對分子作分類。分子對稱性在化學中是一項基礎概念,因為它可以預測或解釋許多分子的化學性質,例如分子振動、分子的偶極矩和它的光譜学数据(以拉波特规则之類的选择定则為基礎)。在大學程度的物理化學、量子化學與無機化學教科書中,都有關於對稱性的章節。 在各種不同的分子對稱性研究架構中,群論是一項主流。這個架構在分子軌域的對稱性研究中也很有用,例如應用Hückel分子轨道法、配位場理論和Woodward-Hoffmann规则等。另一個規模較大的架構,是利用晶體系統來描述材料的晶體對稱性。 實際测定分子的對稱性有許多技術,包括X射線晶體學和各種形式的光譜。光谱学符号是以各種對稱條件為基礎。.

新!!: 无机化学和分子对称性 · 查看更多 »

分子结构

分子结构,或称分子立体结构、分子形状、分子几何、分子几何构型,建立在光谱学数据之上,用以描述分子中原子的三维排列方式。分子结构在很大程度上影响了化学物质的反应性、极性、相态、颜色、磁性和生物活性。 分子结构最好在接近绝对零度的温度下测定,因为随着温度升高,分子转动也增加。量子力学和半实验的分子模拟计算可以得出分子形状,固态分子的结构也可通过X射线晶体学测定。体积较大的分子通常以多个稳定的构象存在,势能面中这些构象之间的能垒较高。 分子结构涉及原子在空间中的位置,与键结的化学键种类有关,包括键长、键角以及相邻三个键之间的二面角。.

新!!: 无机化学和分子结构 · 查看更多 »

分子轨道理论

分子轨道理论(),簡稱MO理论,是处理双原子分子及多原子分子结构的一种有效的近似方法,是化学键理论的重要内容。它与价键理论不同,后者着重于用原子轨道的重组杂化成键来理解化学,而前者则注重于分子轨道的了解,即认为分子中的电子围绕整个分子运动。 计算化学中常以原子轨道线性组合近似来计算分子轨道波函数: 式中的cij系数可由将等式代入薛定谔方程以及应用变分原理求得。简单地讲,该方法意即,分子轨道由原子轨道组合而成。原子轨道波函数各乘以某一系数相加或相减,得到分子轨道波函数。组合时原子轨道对分子轨道的贡献体现在系数上,组合前后轨道总数不变。 利用分子轨道理论与价键理论通常只是从一个问题的两个方面去看问题,常常会得到相同的结论。只是有时分子轨道理论的思想与计算过于复杂,在研究简单问题时,价键理论反而更显得简单明了。或者说,价键理论对于分子定态的性质(键长,键角等)的解释和分子轨道理论相近,而分子轨道理论在研究和电子激发相关的性质时(分子颜色,光电子能谱等)更为有效。.

新!!: 无机化学和分子轨道理论 · 查看更多 »

分解反应

分解反应(decomposition reaction),是化学反应的常见类型之一。它是指一种化合物在特定条件下分解成二种或二种以上元素或化合物的反应。 例如:水在通电的情况下会分解成氢气和氧气;氯酸钾加热分解成氯化钾和氧气等。 大多数分解反应是常见的吸热反应。.

新!!: 无机化学和分解反应 · 查看更多 »

哈柏法

哈伯法(也稱哈伯-博施法,德文:Haber-Bosch-Verfahren,英文:Haber Process,也稱Haber-Bosch process或Fritz-Haber Process)是通過氮氣及氫氣產生氨氣(NH3)的過程。Max Appl "Ammonia" in Ullmann's Encyclopedia of Industrial Chemistry 2006 Wiley-VCH, Weinheim.

新!!: 无机化学和哈柏法 · 查看更多 »

冶金学

冶金学(metallurgy)屬於材料科學,是研究从矿石中提取金属,并用各种加工方法制成具有一定性能的金属材料的学科。冶金学也研究金属、金屬互化物或其混合物(稱為合金)的物理及化學特性。冶金學也是一門金屬的技術,有關金屬製造的科學,也和金屬零件的工程特性有關。金屬的製造包括從礦石中提煉金屬,以及金屬混合物(或金屬和其他元素的混合物)以製造合金。冶金學和金屬加工的工藝不同,不過金屬加工和冶金學有關,正如隨著技術的發展,醫學和醫學科學有關一樣。 冶金学可以分為鋼鐵冶金學(有時也稱為黑色冶金學)及非鐵金屬冶金學(有時也稱為有色金屬冶金學)。鋼鐵冶金學是有關鐵的合金及其製造,而非鐵金屬冶金學是以不含鐵的合金及其製造為主,世界上的金屬生產中,鐵、鈷、鎳及其有關合金的黑色金屬佔了95%.

新!!: 无机化学和冶金学 · 查看更多 »

凝聚态物理学

凝聚态物理学專門研究物质凝聚相的物理性质。该领域的研究者力图通过物理学定律来解释凝聚相物质的行为。其中,量子力学、电磁学以及统计力学的相关定律对于该领域尤为重要。 固相以及液相是人们最为熟悉的凝聚相。除了这两种相之外,凝聚相还包括一些特定的物质在低温条件下的超导相、自旋有关的铁磁相及反铁磁相、超低温原子系统的玻色-爱因斯坦凝聚相等等。对于凝聚态的研究包括通过实验手段测定物质的各种性质,以及利用理论方法发展数学模型以深入理解这些物质的物理行为。 由于尚有大量的系统及现象亟待研究,凝聚态物理学成为了目前物理学最为活跃的领域之一。仅在美国,该领域的研究者就占到该国物理学者整体的近三分之一,凝聚态物理学部也是美国物理学会最大的部门。此外,该领域还与化学,材料科学以及纳米技术等学科领域交叉,并与原子物理学以及生物物理学等物理学分支紧密相关。该领域研究者在理论研究中所采用的一些概念与方法也适用于粒子物理学及核物理学等领域。 晶体学、冶金学、弹性力学以及磁学等等起初是各自独立的学科领域。这些学科在二十世纪四十年代被物理学家统合为固体物理学。时间进入二十世纪六十年代后,有关液体物理性质的研究也被纳入其中,形成凝聚态物理学这一新学科。据物理学家菲利普·安德森所述,术语“凝聚态物理学”是他和首创。1967年,他们把位于卡文迪许实验室的研究组名称由“固体理论”改为“凝聚态理论”。二人觉得原来的名称并没有涵盖液体及等方面研究。但是,“凝聚态”这一术语此前已在欧洲学界出现,只是由他们普及而已。较为著名的例子是施普林格公司于1963年创建的期刊《凝聚态物理学》(Physics of Condensed Matter)。二十世纪六、七十年代的资金环境以及各国政府采取的冷战政策促使相关领域物理学家接纳了“凝聚态物理学”这一术语。他们认为这一术语相对于“固体物理学”而言更为突出了固体、液体、等离子体以及其他复杂物质研究之间的共通性。这些研究与金属和半导体在工业上的应用息息相关。贝尔实验室是最早开展凝聚态物理学研究项目的研究机构之一。 “凝聚态”这一术语在更早的文献中即已出现。例如,在1947年出版的由雅科夫·弗伦克尔撰写的专著《液体动力学理论》(Kinetic theory of liquids)的绪论中,他提出:“液体动力学理论日后也将发展为固体动力学理论的推广与延伸。实际上,更为正确的做法或许是将液体与固体统归为‘--’。”.

新!!: 无机化学和凝聚态物理学 · 查看更多 »

六羰基钼

六羰基钼是一种配位化合物,屬於金屬羰基配合物,化学式为Mo(CO)6。它和同族的羰基化合物六羰基铬、六羰基钨一样,是具有挥发性的、在空气中相对稳定的白色固体,其中钼原子为0价。.

新!!: 无机化学和六羰基钼 · 查看更多 »

元素周期表

化學元素週期表是根據原子序從小至大排序的化學元素列表。列表大體呈長方形,某些元素週期中留有空格,使化学性质相似的元素处在同一族中,如鹵素及惰性氣體。這使週期表中形成元素分區。由於週期表能夠準確地預測各種元素的特性及其之間的關係,因此它在化學及其他科學範疇中被廣泛使用,作為分析化學行為時十分有用的框架。 現代的週期表由德米特里·門捷列夫於1869年創造,用以展現當時已知元素特性的週期性。自此,隨--新元素的發現和理論模型的發展,週期表的外觀曾經過改變及擴張。通過這種列表方式,門捷列夫也預測一些當時未知元素的特性以填補週期表中的空格。其後發現的新元素的確有相似的特性,使他的預測得到証實。 化學元素週期表将各个化学元素依据原子序编号,并依此排列。原子序從1(氫)至118(Og)的所有元素都已被发现或成功合成,其中第113、115、117、118号元素在2015年12月30日獲得IUPAC的确认。 而其中直到鉲的元素都在自然界中存在,其--的(亦包括眾多放射性同位素)都是在實驗室中合成的。目前Og之後的元素的合成正在進行中,帶出如何擴展元素週期表的問題。.

新!!: 无机化学和元素周期表 · 查看更多 »

光气

碳酰氯,俗稱光成气(;化学式:COCl2),簡稱光气,从化学结构上看是碳酸的二酰氯衍生物,是非常活泼的亲电试剂,容易水解,是剧烈窒息性毒气,高浓度吸入可致肺水肿,毒性比氯气约大10倍,但在体内无蓄积作用。其俗名譯自希臘文φως(光)+Γίνει(產生)。光气最初是由氯仿受光照分解产生,故有此名。.

新!!: 无机化学和光气 · 查看更多 »

四氢呋喃

四氢呋喃 (THF)无色、可与水混溶、在常温常压下有较小粘稠度的有机液体。这种环狀醚的化学式可写作(CH2)4O。由于它的液态范围很长,所以是一种常用的中等极性非质子性溶剂。它的主要用途是作高分子聚合物的前体。.

新!!: 无机化学和四氢呋喃 · 查看更多 »

四氮化四硫

四氮化四硫(分子式:S4N4)是最重要的硫-氮二元化合物,室温下为橙黄色的固体。它的结构和成键较特殊,也是制备其他含S-N键化合物时最主要的原料,因此成为化学家研究的焦点之一。Greenwood, N. N.; Earnshaw, A. Chemical Elements; 2nd edition; Butterworth-Heinemann: Boston, MA, 1997, pp 721-725.

新!!: 无机化学和四氮化四硫 · 查看更多 »

四氯化钛

四氯化钛,或氯化钛(IV),是化学式为 TiCl4 的无机化合物。 四氯化钛是生产金属钛及其化合物的重要中间体。室温下,四氯化钛为无色液体,并在空气中发烟,生成二氧化钛固体和盐酸液滴的混合物。.

新!!: 无机化学和四氯化钛 · 查看更多 »

石膏

石膏是一种礦物名,主要化学成分是硫酸钙(CaSO4),主要是古代盐湖或潟湖的沉积物。 石膏用作一种农业肥料,可以改良碱性土壤,用于一般中性或酸性土壤,可以改善土壤结构,供给钙和硫成分。广泛用于工业材料、醫學材料和建筑材料。可用于水泥缓凝剂、石膏建筑制品、模型制作、医用食品添加剂、硫酸生产、纸张填料、油漆填料、骨折固定等,也能做為黑板用的粉筆。 天然二水石膏(CaSO4·2H2O)又称为「生石膏」,经过煅烧、磨细可得β型半水石膏(CaSO4·1/2H2O),即「建筑石膏」,又称熟石膏、灰泥。若煅烧温度为190 °C可得「模型石膏」,其细度和白度均比建筑石膏高。若将生石膏在400~500 °C或高于800 °C下煅烧,即得「地板石膏」,其凝结、硬化较慢,但硬化后强度、耐磨性和耐水性均较普通建筑石膏为好。 工業級和食品級的石膏僅有製造過程上嚴謹度的差別,因此造成其純度的不同。.

新!!: 无机化学和石膏 · 查看更多 »

矽氧樹脂

矽氧聚合物亦稱為矽酮、矽利康(polymerized siloxanes或polysiloxanes,俗稱silicone),是一個介於有機與無機的聚合物,其化學式為n,其R.

新!!: 无机化学和矽氧樹脂 · 查看更多 »

理论化学

论化学 运用非实验的推算来解释或预测化合物的各种现象。近年来,理论化学主要包括量子化学,即应用量子力学来解决化学问题。理论化学可以泛泛地分为电子结构、动力学和统计力学几个方面。在解决预测化合物的反应活性的问题时,这几个方面都可能不同程度地涉及到。理论化学其他“五花八门的” 研究领域包括对处于各物态的大块物质化学的数学表征(例如,化学动力学的研究)和研究更晚近的数学进展在基础研究的适用性(例如拓扑学原理在研究电子结构方面的可能应用)。理论化学的这一方面有时被称为数学化学。 理论化学的很大一部分可以被归类为计算化学,虽然计算化学通常指的是理论化学的具体应用并设计一些近似处理,例如一些后哈特里-福克类型的方法,密度泛函理论, 半经验方法 (如PM3) 或 各种力场方法。有些化学理论家应用统计力学提供了联系量子世界的微观现象和体系大块物质的宏观性质的桥梁。 理论上解决化学问题可以追溯到化学发展的早期,但直到奥地利物理学家埃尔温·薛定谔导出薛定谔方程之前,可用的理论工具相当粗糙,并有很大猜测性质。现在,基于量子力学的复杂得多的方法已很普遍。.

新!!: 无机化学和理论化学 · 查看更多 »

硝酸铵

硝酸銨是一種化合物,銨陽離子的硝酸鹽(由氨離子和弱酸根組成)。它的化學式是NH4NO3(簡化為N2H4O3),是一種白色結晶固體,在水中溶解度大。它主要用於農業作為高氮肥料。 其他用途是作為採礦、採石和土木建築中使用的爆炸混合物的成分之一。它是肥料炸彈(ANFO)的主要成分,這是一種普遍的工業炸藥,佔北美炸藥的80%; 類似的配方也用於簡易爆炸裝置(IED俗稱土製炸彈)。由於擔心有被誤用的可能性,許多國家正把它從消費性應用中階段性淘汰不使用。 製作方法: 硝酸銨94%, 柴油6% 木粉少許一些金屬鋁粉,優點,低成本,容易使用。.

新!!: 无机化学和硝酸铵 · 查看更多 »

硫光气

#重定向 二氯硫化碳.

新!!: 无机化学和硫光气 · 查看更多 »

硫酸鹽

硫酸盐,由硫酸根离子()与其他金属离子组成的化合物,幾乎都是电解质,且大多数溶于水。.

新!!: 无机化学和硫酸鹽 · 查看更多 »

硫酸钙

硫酸钙,化学式为CaSO4,是一种常见的实验室和工业用化学品。 在实验室中,无水硫酸钙是一种干燥剂,而两水合硫酸钙就是常见的石膏。但含硫酸钙的水就成为了永久硬水。.

新!!: 无机化学和硫酸钙 · 查看更多 »

硫氰酸盐

硫氰酸盐是硫氰酸根离子SCN−所成的盐,常见的包括无色的硫氰酸钾、硫氰酸钠、硫氰酸铵和硫氰酸汞。 硫氰酸酯指含有SCN官能团的有机化合物。 硫氰酸根离子与氰酸根离子−同类,只是氧原子被硫原子替代。−与卤离子相似之处很多,是拟卤离子之一。 硫氰酸盐可由硫或硫代硫酸盐与氰化物反应制备: +S8->8SCN- +S2O3^2- ->SCN- +SO3^2- 磺基转移酶硫氰酸酶可催化第二个反应,可能是体内氰化物解毒的机理。 Riemschneider硫代氨基甲酸酯合成涉及有机硫氰酸酯水解为硫代氨基甲酸酯的反应。.

新!!: 无机化学和硫氰酸盐 · 查看更多 »

硅烷

硅烷是指的是碳烷烃的硅取代类似物。构成硅烷烃的是一条硅原子链接形成的主链和以共价键链接在主链上的氢原子。硅烷烃的化学式通式为:SinH2n+2。.

新!!: 无机化学和硅烷 · 查看更多 »

碳化物

碳化物是碳与电负性比它低的或和它相近元素化合生成的化合物,在工业上有很多用途。碳化物一般按以下标准分类:.

新!!: 无机化学和碳化物 · 查看更多 »

碳纳米管

--(Carbon Nanotube,縮寫CNT)是在1991年1月由日本筑波NEC实验室的物理学家饭岛澄男使用高分辨透射电子显微镜从电弧法生产的碳纤维中发现的。它是一种管状的碳分子,管上每个碳原子采取sp2杂化,相互之间以碳-碳σ键结合起来,形成由六边形组成的蜂窝状结构作为碳纳米管的骨架。每个碳原子上未参与杂化的一对p电子相互之间形成跨越整个碳纳米管的共轭π电子云。按照管子的层数不同,分为单壁碳纳米管和多壁碳纳米管。管子的半径方向非常细,只有纳米尺度,几万根碳纳米管并起来也只有一根头发丝宽,碳纳米管的名称也因此而来。而在轴向则可长达数十到数百微米。 碳纳米管不总是笔直的,局部可能出现凹凸的现象,这是由于在六边形结构中混杂了五边形和七边形。出现五边形的地方,由于张力的关系导致碳纳米管向外凸出。如果五边形恰好出现在碳纳米管的顶端,就形成碳纳米管的封口。出现七边形的地方碳纳米管则向内凹进。.

新!!: 无机化学和碳纳米管 · 查看更多 »

碳酸

碳酸(Carbonic acid),原來也稱揮發酸(Volatile acid)和呼吸酸(Respiratory acid), by Kerry Brandis 化學式O3,是酸的一種。二氧化碳(O2)溶於水後,一部分二氧化碳會與水化合,形成碳酸。該反應是一個可逆反應,方程式如下: 該反應在常溫下的平衡常數是Kh.

新!!: 无机化学和碳酸 · 查看更多 »

碳酸盐

碳酸盐是由碳酸根离子(CO32−)与其他金属离子组成的化合物,都是电解质除了CaCO3。 碳酸盐有正盐和酸式盐之分,通常是指碳酸正盐,正盐如碳酸钠、碳酸钙、碳酸钾等,在自然界分布极广泛,除碱金属碳酸盐及碳酸铵易溶于水外,其他碳酸盐仅微溶于水。 碳酸盐溶液中通入CO2得酸式碳酸盐;甚至微溶的碳酸盐在水中通入CO2,也将转化为可溶性的酸式碳酸盐。例如:碳酸钙在水中通入CO2即转化为酸式碳酸钙而溶解;酸式碳酸盐也叫碳酸氢盐或重碳酸盐;加热即放出CO2而成碳酸正盐,加热到更高温度进一步分解为CO2和金属氧化物。 此外还有碱式碳酸盐,如碱式碳酸铜、碱式碳酸铅等,也可以当作是另一类型的碳酸盐。.

新!!: 无机化学和碳酸盐 · 查看更多 »

磷酸鹽

磷酸鹽(phosphate,符号:),是磷酸的鹽,在無機化學、生物化學及生物地質化學上是很重要的物質。.

新!!: 无机化学和磷酸鹽 · 查看更多 »

礦物

物是是指在地质作用下天然形成的結晶狀纯净物(单质或化合物)。绝对的纯净物是不存在的,所以这里的纯净物是指物质化學成份相对单一的物质。矿物是组成岩石的基础(像石英、长石、方解石都是常见的造岩矿物),但礦物和岩石不同,礦物可以用其化學式表示,而岩石是由許多礦物及非礦物所合成,沒有一定的化學式。 礦物多半是非生物產生的无机化合物,一般为固体,有有序的原子結構,但也有液态的矿物,如汞(水銀)。有關礦物的精確定義尚有爭議,有爭議的是非生物產生,以及有序原子結構這二個條件。像褐鐵礦、黑曜岩等類似礦物,但沒有的物筫,會稱為準礦物。 研究礦物的自然科學稱為礦物學。世界上超過5300種,其中5,070種已由国际矿物学学会(IMA)批准過。地壳中有超過75%由是矽和氧組成,因此許多的矿物是硅酸盐矿物。礦物可以依其物理性質及化學性質區分,可以依其化學成份及晶體結構分為幾類,而在礦物形成時的溫度壓力等因素會影響其中一些性質。岩石所在的溫度、壓力及其主成份的變化,都會影響其中的礦物。也有可能礦物的主成份不變,但其中的礦物因溫度壓力改變而變化。 礦物可以用許多的物理性質來描述,而這些性質也和其化學結構及組成有關。常見的礦物物理性質有晶體結構及晶体惯态、硬度、光澤、透明度、顏色、條痕、韌性、解理、斷口、裂理(parting)及比重。進一步的特性包括對酸的反應、磁性、氣味或味道,以及放射性。 礦物可以依其主要化學成份分類,最主要的兩種分類系統分別是Strunz礦物分類及Dana礦物分類。矽酸鹽可以依其化學結構的同質多晶形性再細分為六小類。所有的矽酸鹽都有4−的矽酸根四面體,是一個矽原子和四個氧原子以四面體的方式鍵結。矽酸鹽又可以分為原矽酸鹽(orthosilicates,矽酸根沒有聚合)、二矽酸鹽(disilicates,二個矽酸根互相聚合)、环状硅酸盐(cyclosilicates,環狀的矽酸根)、链状硅酸盐(inosilicates,鏈狀的矽酸根)、层状硅酸盐(phyllosilicates,層狀的矽酸根)及網矽酸鹽(tectosilicates,三維的矽酸根結構)。其他重要的礦物分類有、、、、碳酸鹽、、。.

新!!: 无机化学和礦物 · 查看更多 »

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

新!!: 无机化学和离子 · 查看更多 »

离子化合物

离子化合物,是由阴离子(Anion,带负电)和阳离子(Cation,带正电)组成,以本质上是库仑力的离子键相结合的化合物。离子化合物通常熔点和沸点较高,熔融时或电离产生其组成离子的水溶液中时能导电。 大部分离子化合物在常温下是固体,但也有一些常温下存在于液态离子化合物,它们通常是一些含有复杂有机组份的盐。注意液态离子化合物和离子化合物溶液的区别,后者中含有一些不具电性的分子。.

新!!: 无机化学和离子化合物 · 查看更多 »

离子键

离子键又被称为盐键,是化学键的一种,通过两个或多个原子或化学基团失去或获得电子而成为离子后形成。带相反电荷的原子或基团之间存在静电吸引力,两个带相反电荷的原子或基团靠近时,周围水分子被释放为自由水中,带负电和带正电的原子或基团之间产生的静电吸引力以形成离子键。 此类化学键往往在金属与非金属间形成。失去电子的往往是金属元素的原子,而获得电子的往往是非金属元素的原子。带有相反电荷的离子因电磁力而相互吸引,从而形成化学键。离子键较氢键强,其强度与共价键接近。 仅当总体的能级下降的时候,反应才会发生(由化学键联接的原子较自由原子有着较低的能级)。下降越多,形成的键越强。 现实中,原子间并不形成“纯”离子键。所有的键都或多或少带有共价键的成分。成键原子之间电平均程度越高,离子键成分越低。.

新!!: 无机化学和离子键 · 查看更多 »

结晶

结晶,是指从饱和溶液中凝結,或從氣體凝華出具有一定的几何形状的固体(晶體)的过程。在自然環境下,氣溫的下降壓力的作用,都會造成結晶。結晶的過程一般可分為兩個階段(包括成核和晶體生長期),时间也有所不同。 結晶亦是一種分離固態和液態物質的技術,其中溶質由溶液中轉移至純淨的晶體裡。不少自然過程都涉及結晶.

新!!: 无机化学和结晶 · 查看更多 »

置换反应

置換反應又稱單置換反應,是指一種元素或化合物的離子根與一種離子化合物發生的反應,狹義氧化還原反應是置換反應的一種,且必為廣義的氧化還原反應。在反應中,關鍵在於還原性或氧化性的強弱,還原性或氧化性強的物質與相對較弱的物質進行置換。置换反应是无机化学反应的基本类型之一,指一种单质和一种化合物生成另一种单质和另一种化合物的反应。 一个简单的置换反应例子 铁 + 硫酸铜 → 铜 + 硫酸亚铁 上面是一个置换反应的例子,反应前后各元素氧化態可能改变。 在置換反應中,只會有正離子或負離子的其中一方進行置換,沒有進行反應的離子為旁觀離子。上面的例子中硫酸根為旁觀離子。.

新!!: 无机化学和置换反应 · 查看更多 »

群论

在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.

新!!: 无机化学和群论 · 查看更多 »

烷烃

(alkane),俗稱石蜡烃(paraffin),是碳氫化合物下的一种饱和烃,其整体构造大多僅由碳、氢、碳-碳单键与碳氢单键所构成http://chem188.cn/Article/ShowArticle.asp?ArticleID.

新!!: 无机化学和烷烃 · 查看更多 »

生物分子

生物分子(Biomolecule)是自然存在于生物体中的分子的总称,包括大分子例如蛋白质,碳水化合物,脂质和核酸,以及小分子例如代謝產物,次级代谢产物和天然产物。这类材料的更通用的名称是生物材料。大多数生物分子都为有机化合物,含有碳和氢,多数含氮、氧、磷和硫,有时也有其他元素出现,但例子不多,参见生物无机化学。.

新!!: 无机化学和生物分子 · 查看更多 »

生物无机化学

生物无机化学是研究金屬在生物體內角色的學科,生物无机化学研究像金属蛋白及金属酶等天然的生物分子,金属与生物分子的相互作用,如金属离子通道,也研究在醫藥(金属药物)及毒物學中,金屬(特別是非膳食礦物質)對生物的影響。生物无机化学也包括金属蛋白的模型研究及仿真 生物无机化学是无机化学与生物化学的交叉学科,像電子轉移蛋白質、受體的鍵結及活化,原子和原子團的轉移,以及生物化学中的金属性质。許多(像呼吸作用)也和許多無機化合物有關。.

新!!: 无机化学和生物无机化学 · 查看更多 »

甲基汞

基汞是化學式为(CH3)Hg+的有机金属阳离子。对环境有生物累积毒害。 無機汞離子在微生物的作用下,會轉化為甲基汞,因此它很容易在河流和湖泊中發現,被湖中的魚蝦吞食後會累積毒素,經過食物鏈轉化後,逐漸累積在人體大腦中。1950年代日本所爆發的水俁病即是甲基汞中毒。.

新!!: 无机化学和甲基汞 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 无机化学和电子 · 查看更多 »

电子亲合能

在一般化學與原子物理學中,电子亲合能(或电子亲和势、电子亲和力,electron affinity,Eea)的定義是,將一個電子加入一個氣態的原子或分子所需耗費,或是釋出的能量。 在固態物理學之中,對於一表面的電子親合能定義不同。.

新!!: 无机化学和电子亲合能 · 查看更多 »

电化学

电化学(electrochemistry)作为化学的分支之一,是研究两类导体(电子导体,如金属或半导体,以及离子导体,如电解质溶液)形成的接界面上所发生的带电及电子转移变化的科学。 传统观念认为电化学主要研究电能和化学能之间的相互转换,如电解和原电池。但电化学并不局限于电能出现的化学反应,也包含其它物理化学过程,如金属的电化学腐蚀,以及电解质溶液中的金属置换反应。.

新!!: 无机化学和电化学 · 查看更多 »

电离能

電離能(Ionization energy),或稱游離能、電離焓,常簡記為EI,指的是將一個電子自一個孤立的原子、離子或分子移至無限遠處所需的能量。更廣義的用法,第一电离能定义为气态原子失去一个电子成为一价气态正离子所需的最低能量,记作I1;气态一价正离子失去一个电子成为气态二价正离子所需的能量称为第二电离能,记作I2。依此类推。 电离能的数值和原子的有效核电荷密切相关,也和原子大小、原子轨道中电子间的推斥作用等因素有关。 电离能是了解原子性质的重要数据。.

新!!: 无机化学和电离能 · 查看更多 »

电解质

电解质()是指在水溶液或熔融状态可以产生自由离子而导电的化合物。通常指在溶液中导电的物质,但熔融态及固态下导电的电解质也存在。这包括大多数可溶性盐、酸和碱。一些气体,例如氯化氢,在高温或低压的条件下也可以作为电解质。电解质通常分为强电解质和弱电解质。.

新!!: 无机化学和电解质 · 查看更多 »

电池

电池,一般狹義上的定義是將本身儲存的化學能轉成電能的裝置,廣義的定義為將預先儲存起的能量轉化為可供外用電能的裝置。因此,像太陽能電池只有轉化而無儲存功能的裝置不算是電池。其他名稱有電瓶、電芯,而中文池及瓶也有儲存作用之意。 英文中,單一個電池結構叫做「Cell」(單電池),內部有多個Cell並連或串連的結構叫做「Battery Cell」(電池組)。市售一般乾電池其實構造上是「Cell」但英文上習慣稱「Battery」,汽車用鉛酸電池與方形9V電池則是真正的「Battery」。.

新!!: 无机化学和电池 · 查看更多 »

熔点

點、液化點(M.P.)是在大氣壓下晶体將其物態由固態轉變為液態的过程中固液共存状态的溫度;各种晶体的熔点不同,对同一种晶体,熔点又与所受压强有关,壓強越大,熔點越高。不過,與沸點不同,熔點受壓强的影響很小,因爲由固態轉變(熔化)為液態的过程中,物質的體積幾乎不變化。 進行相反動作(即由液態轉為固態)的溫度,稱之為凝固点、結晶點(對水而言也称為冰点),在一定大氣壓下,任何晶体的凝固点和熔点相同。習慣上,根據常溫(25℃)時物質的狀態使用凝固点或熔点稱呼這一個溫度:對於常溫下為固態的物質,這個溫度稱爲凝固点;對於常溫下為液態的物質,這個溫度稱爲熔点。 一般的,非晶体并没有固定的熔点和凝固点。.

新!!: 无机化学和熔点 · 查看更多 »

相變

變(Phase Change)是指物質在外部參數(如:溫度、壓力、磁場等等)連續變化之下,從一種相(態)忽然變成另一種相,最常見的是冰變成水和水變成蒸氣。然而,除了物體的三相變化(固態、液態、氣態)自然界還存在許許多多的相變現象,例如日常生活中另一種較常見的相變是加熱一塊磁鐵,磁鐵的鐵磁性忽然消失。其他在物理學中重要相變列舉如下:.

新!!: 无机化学和相變 · 查看更多 »

聯氨

聯氨、聯胺、二氮烷或肼(hydrazine)(分子式:N2H4、H4N2或H2N-NH2),是無色的劇毒化合物。致死量為小鼠口服LD50为59mg/kg,静脉注射LD50为57mg/kg。其一水合物N2H4·H2O称作水合联氨或水合肼。 常態下呈無色油狀液體。氣味類似氨,溶於水、醇、氨等溶劑,常用於人造衛星及火箭的燃料、鍋爐的抗腐蝕劑、炸藥與抗氧化劑等。 联氨有吸湿性,在空气中发烟。燃烧會呈紫色火焰。液体中分子以二聚体存在。有强还原性和腐蚀性,能侵蚀玻璃、橡胶、皮革、软木等。.

新!!: 无机化学和聯氨 · 查看更多 »

药物

药物(drug)广义上指可以对人或其他动物产生已知生物效应的物质 Merriam Webster: Concise Encyclopedia。食物通常不适用于这个定义,尽管它们也可以对生物物种产生生理效应 Dictionary.com Unabridged (v 1.1), Random House, Inc., via dictionary.com.

新!!: 无机化学和药物 · 查看更多 »

順磁性

順磁性(Paramagnetism)指的是一種材料的磁性狀態。有些材料可以受到外部磁场的影响,产生跟外部磁場同樣方向的磁化向量的特性。这样的物质具有正的磁化率。与順磁性相反的现象被称为抗磁性。.

新!!: 无机化学和順磁性 · 查看更多 »

顺铂

顺铂(Cisplatin,CDDP)是一种含铂的抗癌药物,即顺式-二氯二氨合铂(II),棕黄色粉末,属于细胞周期非特异性药物,对肉瘤、恶性上皮肿瘤、淋巴瘤及生殖细胞肿瘤都有治疗功效。它是第一个合成铂类抗癌药物,结构简单,机理明确,并引发了对铂类药物研究的热潮,包括卡铂、奥沙利铂、奈达铂及赛特铂等。.

新!!: 无机化学和顺铂 · 查看更多 »

血紅素

血紅素在不同地區有不同含意,可以指:.

新!!: 无机化学和血紅素 · 查看更多 »

计算化学

计算化学(computational chemistry)是理论化学的一个分支,主要目的是利用有效的数学近似以及电脑程序计算分子的性质,例如总能量、偶极矩、四极矩、振动频率、反应活性等,并用以解释一些具体的化学问题。计算化学这个名词有时也用来表示计算机科学与化学的交叉学科。.

新!!: 无机化学和计算化学 · 查看更多 »

負離子

負離子可能是指:.

新!!: 无机化学和負離子 · 查看更多 »

超導體

超導體(superconductor),指可以在在特定溫度以下,呈現電阻為零的導體。零电阻和完全抗磁性是超导体的两个重要特性。超导体电阻转变为零的温度,称为超导临界温度,据此超导材料可以分为低温超导體和高温超导體。這裡的「高溫」是相对于绝对零度而言的,其實遠低於冰點攝氏0℃。科学家一直在寻求提高超导材料的临界温度,目前高温超导体的最高温度记录是马克普朗克研究所的203K(-70°C)。因为零電阻特性,超導材料在生成强磁场方面有许多應用,如MRI核磁共振成像等。.

新!!: 无机化学和超導體 · 查看更多 »

路易士碱

#重定向 酸碱电子理论.

新!!: 无机化学和路易士碱 · 查看更多 »

黄铁矿

铁矿,主要成分是二硫化亚铁FeS2,是提取硫、制造硫酸的主要矿物原料。其特殊的形态色泽,有观赏价值。一些黄铁矿磨制成宝石也很受欢迎。 黃鐵礦可經由岩漿分結作用、熱水溶液或昇華作用中生成,也可於火成岩、沉積岩中生成。在工業上,黃鐵礦用作硫和二氧化硫生成的原料。.

新!!: 无机化学和黄铁矿 · 查看更多 »

软硬酸碱理论

软硬酸碱理论简称HSAB(Hard-Soft-Acid-Base)理论,是一种尝试解释酸碱反应及其性质的现代理论。20世纪60年代初,拉尔夫·皮尔逊採用HSAB原理,嘗試统一有机和无机化学反应。它目前在化学研究中得到了广泛的应用,其中最重要的莫过于对配合物稳定性的判别和其反应机理的解释。软硬酸碱理论的基础是酸鹼電子論,即以电子对得失作为判定酸、碱的标准(即路易斯酸碱理论)。该理论可用于定性描述,而非定量的描述,这将有助于了解化学性质和反应的主要驱动因素。尤其是在过渡金属化学,化学家们已经完成了无数次实验,以确定配体和过渡金属离子本身的硬和软方面的相对顺序。.

新!!: 无机化学和软硬酸碱理论 · 查看更多 »

还原剂

在化合價有改變的氧化還原反應中,氧化數由低變高(即失去电子)的物質稱作還原劑,可稱抗氧化劑,具有還原性,被氧化,其產物叫氧化產物。 还原剂是相对的概念,因为同一物质可能隨反應物質的不同,呈現还原剂或氧化剂的特性。 如:SO2+2HNO3→H2SO4+2H2O+NO2,中SO2是還原劑。 但在2H2S+SO2→3S+H2O中,SO2却是氧化剂。 化合物中如果有处在中间价态的元素,则它们通常是还原剂,如氯化亚锡、硫酸亚铁、一氧化碳、三氯化钛等。 常见的还原剂有:.

新!!: 无机化学和还原剂 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 无机化学和能量 · 查看更多 »

阿尔弗雷德·维尔纳

阿尔弗雷德·维尔纳(德语:Alfred Werner,),是一位瑞士化学家。曾經是蘇黎世聯邦理工學院的學生,也是蘇黎世大學的教授。1913年,以提出過渡金屬複合物的八面體幾何結構而获得了诺贝尔化学奖。他打下了現代配位化合物的基礎,他同時也是第一個獲得诺贝尔化学奖的無機化學家。.

新!!: 无机化学和阿尔弗雷德·维尔纳 · 查看更多 »

钠(Natrium,化学符号:Na)是一种化学元素,它的原子序数是11,相对原子质量为23。鈉单质不會在地球自然界中存在,因為鈉在空氣中會迅速氧化,並與水產生劇烈反應,所以常見於化合物中,元素狀態的鈉通常以特殊物質(如石蠟、煤油)保存,以防與空氣中的水份或氧氣產生化合物。.

新!!: 无机化学和钠 · 查看更多 »

钪(Scandium),舊譯作鉰、鏮,為一种化学元素,它的化学符号是Sc,它的原子序数是21,是一種柔軟、銀白色的过渡性金属。常跟钆、铒等混合存在,产量很少。主要化合价为氧化态+3价。 1879年拉斯·弗雷德里克·尼尔森和他的团队在斯堪的纳维亚半岛的黑稀金矿(euxenite)和硅铍钇矿(gadolinite)中通过光谱分析发现这个新的元素,其名稱Scandium來自斯堪的纳维亚半岛的拉丁文名稱Scandia。早期,钪和钇和镧一起被列入稀土金属。钪存在于大多数稀土矿,但可以提取的在全世界只有几个钪矿。 由于钪可用性低、制取困难,1937年才首次提取。.

新!!: 无机化学和钪 · 查看更多 »

釔()是化學元素,符號為Y,原子序為39,是銀白色過渡金屬,化學性質與鑭系元素相近,且常歸為稀土金屬。釔在自然中並不單獨出現,而是和鑭系元素結合出現在稀土礦中。89Y是釔的唯一一種穩定同位素和自然同位素。 1787年,在瑞典伊特比附近發現了一種新的礦石,即,並根據發現地村落的名稱將它命名為「Ytterbite」。在1789年於阿列紐斯的礦物樣本中,發現了氧化釔。把這一氧化物命名為「Yttria」。弗里德里希·維勒在1828年首次分離出釔的單質。 釔的最大用途在於磷光體的生產,特別是紅色LED和電視機陰極射線管(CRT)顯示屏的紅色磷光體。釔元素也被用於電極、電解質、電子濾波器、激光器和超導體中,也有多項醫學和材料科學上的應用。釔沒有已知的生物用途,人類接觸釔元素可導致肺病。.

新!!: 无机化学和钇 · 查看更多 »

钇钡铜氧

钇钡铜氧,或称钇钡铜氧化物、YBCO,是化学式为YBa2Cu3O7的化合物。它是著名的高温超导体,属于第二类超导体,并且是第一个制得转变温度在液氮沸点以上的材料。.

新!!: 无机化学和钇钡铜氧 · 查看更多 »

铁硫蛋白

铁硫蛋白(Iron-sulfur protein,或称为铁硫蛋白质)是一类蛋白质,其特征是其中存在着铁-硫簇,铁-硫簇中含有与硫连接着的二、三或四个铁中心,并可处于各种变化的氧化态上。铁-硫簇存在于多种金属蛋白之中,例如铁氧还蛋白、氢化酶、辅酶Q-细胞色素c氧化酶、琥珀酸脱氢酶,和固氮酶等。铁硫蛋白是粒線體中执行氧化磷酸化過程的重要成员,像電子傳遞鏈中的第一蛋白複合體(Complex I)及第二蛋白複合體(Complex II)都含有鐵硫簇。此外,像是順烏頭酸酶和SAM依賴蛋白中也有鐵硫簇,另外硫辛酸及生物素的合成也牽涉到鐵硫簇。可見鐵硫簇的作用範圍包括呼吸作用、光合作用、羟化作用以及细菌的氢和氮的固定。 鐵硫蛋白可用基因表現來調控,且容易被一氧化氮破壞。 由于这些蛋白质在大多数生物体的代谢途径上的普遍性,导致一些科学家理论化铁-硫化合物在铁-硫世界理论中的生命起源的探讨中扮演重要角色。.

新!!: 无机化学和铁硫蛋白 · 查看更多 »

锌(zinc)是一种化学元素,它的化学符号是Zn,它的原子序数是30,相对原子质量是65.39,是一种浅灰色的过渡金属;鋅由於形、色類似鉛,故也稱為亞鉛,古稱倭鉛。 外觀呈現銀白色,主要用途為鍍鋅,在現代工業中對於電池製造上有不可磨滅的地位,最具代表性之用途為「鍍鋅鐵板」,該技術被廣泛用於汽車、電力、電子及建築等各種產業中,於生活中相當重要的金屬。.

新!!: 无机化学和锌 · 查看更多 »

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

新!!: 无机化学和脱氧核糖核酸 · 查看更多 »

醇盐

醇盐或称烷氧基化合物,是醇中的羟基氢被金属取代后形成的一类化合物,形式上含有醇盐(烷氧基)负离子RO–,其中R为有机取代基。醇盐具有很强的碱性,取代基R的体积不大时,还是很好的亲核试剂和配体。一般在质子溶剂(如水)中不稳定,是很多有机反应(如威廉姆逊合成法)的中间体结构,并且过渡金属的醇盐是常用的催化剂。 酚的酸性更强,生成的负离子盐称为酚盐,一般比醇盐要稳定,更易结晶和储存,但不如醇盐的亲核性强。 烯醇盐是由烯醇中的氢被取代而衍生出的一类化合物,一般可由酮或醛脱去α-氢质子得到。烯醇盐为两位反应阴离子,氧端和碳端都有亲核性,不同条件下两种反应产物的比例不同。.

新!!: 无机化学和醇盐 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 无机化学和量子力学 · 查看更多 »

金屬互化物

金屬互化物(intermetallic compound)或金屬間化合物是一個被用來表示一種特殊情況的術語。指的是固體相涉及金屬,以及一種完全不同的配位化學,它被用來解釋由兩種或兩種以上金屬所構成的複合物。 請注意,許多金屬間化合物通常簡稱合金,儘管嚴格來說他們不是。就像複雜金屬合金這種非常大的金屬間化合物。.

新!!: 无机化学和金屬互化物 · 查看更多 »

金屬羰基配合物

金屬羰基配合物是過渡金屬和一氧化碳配基(即羰基,羰的拼音為tāng)形成的配合物。配合物可以是均配物,也就是所有的配基都相同(都是一氧化碳),如四羰基鎳(Ni(CO)4),不過大部份的金屬羰基配合物中,會出現其他的配基,如Re(CO)3(bipy)Cl。在許多有機化合物的合成反應中(如氫甲醯化反應),一氧化碳是重要的原料之一,而金屬羰基配合物常常作為這些反應中的催化劑。 金屬羰基配合物為有毒的化合物,因為這類配合物會和血红蛋白反應形成碳氧血红蛋白,使血红蛋白無法輸送氧氣Elschenbroich, C."Organometallics" (2006) Wiley-VCH: Weinheim.

新!!: 无机化学和金屬羰基配合物 · 查看更多 »

镁(Magnesium)是一种化学元素,它的化学符号是Mg,它的原子序数是12,是一種银白色的碱土金属。鎂是在地球的地殼中第八豐富的元素,約佔2%的質量,亦是宇宙中第九多元素。.

新!!: 无机化学和镁 · 查看更多 »

镧是化学元素,化学符号是La,原子序数是57,属于镧系元素,为稀土金屬中最活泼的金属,在空气中很容易氧化。镧在独居石矿中约占稀土总量的25%。银白色的软金属,有延展性。能与水作用。易溶于稀酸。在空气中易氧化;加热能燃烧,生成氧化物和氮化物。在氢气中加热生成氢化物。它是稀土元素中第二个最丰富的元素,常与其他稀土元素一起存在于独居石中、氟碳锶镧矿中。它是铀、钍或钚裂变的放射性产物之一。它能赋予玻璃特殊的折光性能,使玻璃具有较高的折射率。 镧的制备一般由水合氯化镧经脱水后,用金属钙还原,或由无水氯化镧经熔融后电解而制得。常用来制造昂贵的照相机镜头。138La是放射性的,半衰期为1.1×1011年,曾被试用来治疗癌症。 氧化镧可用于制造玻璃;六硼化镧可用以制造电子管的阴极材料;金属镧用于氧化物金属热还原法制备钐、铕及镱。.

新!!: 无机化学和镧 · 查看更多 »

镧系元素

镧系元素是第57号元素镧到71号元素镥15种元素的统称。镧系元素的外层和次外层的电子构型基本相同,电子逐一填充到4f轨道上。镧系元素也属于过渡元素,只是镧系元素新增加的电子大都填入了从外侧数第三个电子层(即4f电子层)中,所以镧系元素又可以称为4f系。为了区别于元素周期表中的d区过渡元素,故又将镧系元素(及锕系元素)称为内过渡元素。由于镧系元素都是金属,所以又可以和锕系元素统称为f区金属。镧系元素用符号Ln表示。 所有镧系元素既能生成化学性质类似的三价化合物,个别镧系元素也能生成比较稳定或不很稳定的四价或二价化合物,所以15个元素的化学性质并不完全相似,在光学、电磁学等物理性质也有较大的差别。 镧系元素原子基态的电子构型是4f0~145d0~16s2。.

新!!: 无机化学和镧系元素 · 查看更多 »

-- 镉(,),是性质柔软的蓝白色有毒过渡金属,化学符号为Cd,原子序数为是48。镉能在锌矿找到。镉和锌均可用作电池材料。镉可制作鎳鎘電池、用于塑膠製造和金屬電鍍,生产顏料、油漆、染料、印刷油墨等中某些黃色顏料、制作車胎、某些發光電子組件和核子反應爐原件。.

新!!: 无机化学和镉 · 查看更多 »

配位场理论

配位场理论(Ligand field theory,首字母缩略字:LFT)是晶体场理论和分子轨道理论的结合,用以解释配位化合物中的成键情况。 与晶体场理论不同的是,配位场理论考虑配体与中心原子之间一定程度的共价键合,可以解释晶体场理论无法解释的光谱化学序列等现象。一般LFT选取的模型都为八面体构型,即六个配体沿坐标轴正负指向中心原子,以方便理解。.

新!!: 无机化学和配位场理论 · 查看更多 »

配體

配體(ligand,也稱為配基、配位基)是一個化學名詞,表示可和中心原子(金屬或類金屬)產生鍵結的原子、分子和離子。一般而言,配體在參與鍵結時至少會提供一個電子。配體扮演路易士鹼的角色。但在少数情况中配体接受电子,充当路易斯酸。 在有機化學中,配体常用來保護其他的官能团(例如配体BH3可保護PH3)或是穩定一些容易反應的化合物(如四氢呋喃作為BH3的配体)。中心原子和配基組合而成的化合物稱為配合物。 金屬及類金屬只有在高度真空的環境,可以以氣態、不受和其他原子鍵結的條件存在。除此以外,金屬和類金屬都會和其他原子以配位或共價鍵的方式鍵結。络合物中的配體主宰了中心金屬的的活性,其受配體本身被替換的速度、配體的活性等因素影響。在生物無機化學、藥物化學、均相催化及環境化學等領域中,如何選擇配體都是個重要的課題。 一般配体可依其帶電、大小、其原子特性及可提供電子數(如齿合度或哈普托數)加以分類。而配體的大小可以用其圆锥角來表示。 -->.

新!!: 无机化学和配體 · 查看更多 »

酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.

新!!: 无机化学和酶 · 查看更多 »

酸(有时用“HA”表示)的传统定义是当溶解在水中时,溶液中氢离子的浓度大于纯水中氢离子浓度的化合物。换句话说,酸性溶液的pH值小于水的pH值(25℃时为水的pH值是7)。酸一般呈酸味,但是品尝酸(尤其是高浓度的酸)是非常危险的。酸可以和碱发生中和作用,生成水和盐。酸可分为无机酸和有机酸两种。.

新!!: 无机化学和酸 · 查看更多 »

酸碱理论

酸碱理论指阐述酸、碱及酸碱反应本质的各种理论。在历史上曾有多种酸碱理论,其中重要的包括:.

新!!: 无机化学和酸碱理论 · 查看更多 »

酸碱电子理论

酸碱电子理论,也称广义酸碱理论、路易斯酸碱理论,是1923年美国化学家吉尔伯特·路易斯提出的一种酸碱理论。该理论认为:凡是可以接受外来电子对的分子、基团或离子为酸(路易斯酸);凡可以提供电子对的分子、基团或离子为碱(路易斯碱)。因為跳脫了限定氫離子與氫氧根的酸鹼概念,这种理论包含的酸碱范围很广,但是,它对确定酸碱的相对强弱来说,没有统一的标度,对酸碱的反应方向难以判断。后来,提出的软硬酸碱理论弥补了这种理论的缺陷。 常見的路易斯酸有:.

新!!: 无机化学和酸碱电子理论 · 查看更多 »

雷酸盐

雷酸盐,,是包含雷酸根离子的化合物。雷酸根离子(),是一种拟卤离子,具有类似卤素的电荷和性质。由于离子的不稳定性,雷酸盐多是对摩擦敏感的炸药。其中最著名的是雷酸汞,它被广泛用于雷管的起爆药。雷酸盐可以由金属(如银和汞)溶解在硝酸中,并与乙醇反应制得。氮-氧单键很大程度上导致了雷酸盐的不稳定。其中的氮很容易与另一个氮原子形成稳定的三键,成为气态氮。.

新!!: 无机化学和雷酸盐 · 查看更多 »

雄黄

As4S4又称作石黄、黄金石、鸡冠石,是一种含硫和砷的矿石,质软,性脆,通常为粒状,紧密状块,或者粉末,条痕呈浅桔红色。主要成分是四硫化四砷(90%以上)。雄黄主要产于低温热液矿床中,常与雌黄(As2S3)、辉锑矿、辰砂共生;产于温泉沉积物和硫质火山喷气孔内沉积物的雄黄,则常与雌黄共生。不溶于水和盐酸,可溶于硝酸,溶液呈黄色。置于阳光下曝晒,会变为黄色的雌黄和砷华,所以保存应避光以免受风化。雄黄要被煅烧才会被氧化为剧毒成分三氧化二砷,即砒霜。.

新!!: 无机化学和雄黄 · 查看更多 »

逆磁性

#重定向 抗磁性.

新!!: 无机化学和逆磁性 · 查看更多 »

Hexol

Hexol分子式为(SO4)3,是阿尔弗雷德·维尔纳在1914年以硫酸钴(Ⅱ)为起始原料合成的一种无机有旋光异构性的配合物。它从结构上来讲是一个以羟桥相连的四核钴配合物,也是第一个制得的纯粹不含碳的手性分子,摩尔旋光为−47610°,这是一般有光学活性的有机化合物所无法比拟的。 在制得该配合物后,维尔纳又成功地拆分出左旋体和右旋体。该拆分过程中,维尔纳先用hexol的氯化物盐与手性拆分剂D-(+)-溴代樟脑磺酸银盐反应,沉淀出D-hexol与之生成的盐,然后过滤,并对滤渣和滤液分别进行处理,便可得到D-hexol和L-hexol。hexol的制备和拆分的成功有力证明了维尔纳配位理论的真实和正确性,从而奠定了配位化学的基础。 此外,维尔纳从制备Fremy盐的副产物中,又得到了第二种hexol。该hexol分子不含有手性,维尔纳错误地认为它是一个具有直线型的三核钴结构的配合物: 2004年,对上述hexol的重新分析发现它实际上是一个六核的配合物:.

新!!: 无机化学和Hexol · 查看更多 »

材料科学

-- 材料科学,又名為材料工程,涉及物质的性质及其在各个科学和工程學领域的整合应用,是一个研究材料的制备或加工工艺、材料的微观结构与材料宏观性能三者之间的相互关系的跨领域學科。涉及的理论包括固体物理学,材料化学,应用物理和化学,以及化学工程,机械工程,土木工程和电机工程。与电子工程结合,则衍生出电子材料,与机械结合则衍生出结构材料,与生物学结合则衍生出生物材料等等。随着近年来媒体将注意力大量集中在纳米科学上,材料科学在科學與工程學領域越來越廣為人知。它也是鑑識科學和破壞分析中的一个重要组成部分,以後者為例,它是分析各種飛航意外的關鍵。今日許多科技上的問題受限於材料能夠容許的極限,也因此,在此領域的突破在未來科技具有指標性的影響。材料科学有着广泛的应用前景,。.

新!!: 无机化学和材料科学 · 查看更多 »

氢化物

氢化物是一类氢的化合物。严格意义上讲,氢化物只包含氢同金属相互结合的化合物,但由于概念的扩大,有时它也包含水、氨和碳氢化合物等物质。.

新!!: 无机化学和氢化物 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 无机化学和氧 · 查看更多 »

氧化

氧化又被称为氧化作用、氧化反应。是还原剂(被氧化物)与氧化剂(被还原物)之间的氧化数升降。还原剂的氧化数上升(失去电子),氧化剂的氧化数下降(获得电子)。 一般物质与氧气发生氧化时放热,个别可能吸热,如氮气与氧气的反应。电化学中阳极发生氧化,阴极发生还原。.

新!!: 无机化学和氧化 · 查看更多 »

氧化剂

氧化剂是一类具有氧化性的物质。在化合价有改变的氧化还原反应中,由高价变到低价(即搶到电子)的物质作氧化剂,具有氧化性,可以被还原,其产物叫还原产物。 另一方面,氧化剂也是一类危险化学品的总称,它属于中华人民共和国《危险化学品名录》的第5类危险化学品。.

新!!: 无机化学和氧化剂 · 查看更多 »

氧化物

氧化物,是负价氧和另外一个化學元素組成的二元化合物,例如氧化鐵(Fe2O3)或氧化鋁(Al2O3),通常經由氧化反應產生。氧化物在地球的地殻極度普遍,而在宇宙的固體中也是如此。 氧离子(O2−)是氢氧根(OH−)离子的共轭碱,存在某些氧化物离子晶体中。自由的氧离子具强碱性(pKb ~ -22),在水溶液中是不稳定的。 氧化物中的氧元素应该呈负氧化态。如果含氧二元化合物中的氧为正氧化态,例如二氟化二氧(O2F2)和二氟化氧(OF2),则它们一般称为氟化物,而非氧化物。.

新!!: 无机化学和氧化物 · 查看更多 »

氧化铁

氧化铁,或称三氧化二铁,化学式Fe2O3,是铁锈和赤铁矿的主要成分。铁锈的主要成因是鐵金屬在杂质碳的存在下,與環境中的水份和氧氣反应,鐵金屬便會生鏽。.

新!!: 无机化学和氧化铁 · 查看更多 »

氧化数

氧化数(英文:Oxidation number)用来表示配位化合物中,所有配体及成配位键的电子对都被去掉后,中心原子所带的电荷数。氧化数这个概念被用于无机化学命名法中。标明氧化数使用罗马数字,并且省略正氧化数的正号。书写时既可以将氧化数写成上标标在元素符号后面,如 FeIII,也可将氧化数写在括号内标在元素名称后面,如铁(III),元素名称与括号之间不留空格。 氧化数通常在数值上等于氧化态。但在有些情况下,配体不如中心原子电负性强(如铱膦配合物),因此氧化数与氧化态不相等。.

新!!: 无机化学和氧化数 · 查看更多 »

氯是一种卤族化学元素,化学符号為Cl,原子序数為17。.

新!!: 无机化学和氯 · 查看更多 »

氯化物

氯化物在无机化学领域里是指带负电的氯离子和其它元素带正电的阳离子结合而形成的盐类化合物。最常见的氯化物比如氯化钠(俗称食盐)。常见的氯化物列在右表。但有時金屬(如金)溶解在王水時會產生一種叫氯某酸(如氯金酸),一氧化氮和水。.

新!!: 无机化学和氯化物 · 查看更多 »

氯化錫

氯化錫,化學式SnCl,為無色發煙性液體。.

新!!: 无机化学和氯化錫 · 查看更多 »

氯化钠

氯化钠(化学式:NaCl),是一种离子化合物。钠离子和氯离子的原子质量分别为22.99和35.45g/mol。也就是说100g的氯化钠中含有39.34 g的钠和 60.66 g的氯。氯化钠是海水中盐分的主要组成部分,它的存在也使得海水有其特有的咸味苦味。氯化钠也是细胞外液的主要盐类,0.9%的氯化鈉水溶液俗称为生理盐水。其可食用的形态是食盐的主要成分,多用于食物的调味和保存。 在工業中,主要用于制造氢氧化钠和氯以及应用于聚氯乙烯、塑料、木浆(紙漿)等許多其他產品的生产过程。由于它可以降低水的冰点,偶尔也用于解冻冰冻的路面。.

新!!: 无机化学和氯化钠 · 查看更多 »

氯化镁

氯化镁是一种氯化物,化学式MgCl2。无色而易潮解晶体。這些鹽是典型的離子鹵化物,高度易溶於水。水合氯化鎂可以從鹽水或海水中提取。通常带有6分子的结晶水。但加热至95℃时失去结晶水。135℃以上时开始分解,并释放出氯化氢(HCl)气体。工业上生产镁的原料。在海水和盐卤中找到。水合氯化鎂是處方口服鎂補充劑通常使用的物質。.

新!!: 无机化学和氯化镁 · 查看更多 »

氰化物

--是特指带有氰离子(CN−)或氰基(-CN)的化合物,其中的碳原子和氮原子通过參键相连接。这一參键给予氰基以相当高的稳定性,使之在通常的化学反应中都以一个整体存在。因该基团具有和卤素类似的化学性质,常被称为拟卤素。通常为人所了解的氰化物都是无机氰化物,俗稱山奈或山埃(來自英語音譯“Cyanide”),是指包含有氰根离子(CN−)的无机盐,可认为是氢氰酸(HCN)的盐,常见的有氰化钾和氰化钠。它们多有剧毒,故而为世人熟知。另有有机氰化物,是由氰基通过单键与另外的碳原子结合而成。视结合方式的不同,有机氰化物可分类为腈(-CN)和异腈(-NC),相应的,氰基可被称为腈基(-CN)或异腈基(-NC)。.

新!!: 无机化学和氰化物 · 查看更多 »

氰酸盐

氰酸盐是氰酸根离子OCN−的盐,负电荷主要在氮原子上。例如氰酸钾KOCN。 氰酸酯是含有OCN官能团的有机化合物。 氰酸根离子具有以下两个共振式: 因此共振杂化体可以下式表示: 氰酸根离子与二氧化碳是等电子体,也为直线型结构。与氰离子相比,氰酸根离子毒性非常低,很多情况下都是将剧毒的氰化物氧化成微毒的氰酸盐处理掉,常使用高锰酸盐作为氧化剂。 亲核取代反应中,氰酸根离子是两位亲核试剂,既可在氧端进攻生成氰酸酯R-OCN(少),也可于氮端进攻生成异氰酸酯R-NCO(主要)。芳基氰酸酯(C6H5OCN)可用酚与氯化氰在碱存在下反应制备。 雷酸根离子−是氰酸根离子的結構異構體。.

新!!: 无机化学和氰酸盐 · 查看更多 »

氰酸铵

氰酸铵是一种无机化合物,化学式为NH4OCN。它是无色固体。.

新!!: 无机化学和氰酸铵 · 查看更多 »

水解

水解是一种化工单元过程,是物質與水反應,利用水形成新的物质的过程。通常是指鹽類的水解平衡。.

新!!: 无机化学和水解 · 查看更多 »

汞是化学元素,俗稱水銀,臺灣亦可寫作銾,化学符号Hg,原子序数80,是種密度大、銀白色、室温下為液態的過渡金属,為d区元素。常用來製作溫度計。在相同條件下,除了汞之外是液體的元素只有溴。銫、鎵和銣會在比室溫稍高的溫度下熔化。汞的凝固點是,沸點是,汞是所有金屬元素中液態溫度範圍最小的。 汞在全世界的矿产中都有产出,主要来自朱砂(硫化汞)。摄入或吸入的朱砂粉尘都是剧毒的。汞中毒还能由接触可溶解于水的汞(例如氯化汞和甲基汞)引起,或是,吸入汞蒸气或者食用被汞污染的海产品或吸食入汞化合物引起中毒。 汞可用于溫度計、氣壓計、壓力計、血壓計、浮閥、水銀開關和其他裝置,但是汞的毒性導致汞溫度計和血壓計在醫療上正被逐步淘汰,取而代之的是酒精填充,鎵、銦、錫的填充,-zh-cn:数码;zh-tw:數位;zh-hk:數碼;-的或者基於電熱調節器的溫度計和血壓計。汞仍被用于科學研究和補牙的汞合金材料。汞也被用于發光。荧光燈中的電流通过汞蒸氣產生波長很短的紫外線,紫外線使荧光體发出荧光,從而產生可見光。.

新!!: 无机化学和汞 · 查看更多 »

沸石

沸石是一种含有水架状结构的铝硅酸盐矿物,最早发现于1756年。瑞典的矿物学家克朗斯提(Cronstedt)发现有一类天然铝硅酸盐矿石在灼烧时会产生沸腾现象,因此命名为沸石(瑞典文:zeolit)。在希腊文中意为“沸腾的石头”。此后人们对沸石的研究不断深入。 沸石因成分不同分为方沸石(Na·H2O)和钙沸石(Ca·3H2O)。其含水量与外界温度及水蒸气的压力有关,加热时水分可慢慢逸出,但并不破坏其结晶构造。 晶体结构中有许多空腔(笼)和连接空腔的通道,水分子位于其中,可由通道运输。晶体和集合体形态及解理随着晶体结构的不同而异,一般呈浅色,玻璃光泽,硬度3-3.5,比重2.0-2.4。 沸石族矿物由低温热液作用形成,见于喷出岩,特别是玄武岩的孔隙中,也见于沉积岩、变质岩及热液矿床和某些近代温泉沉积中。 1932年,McBain提出了“分子筛”(Molecular sieve)的概念。表示可以在分子水平上筛分物质的多孔材料。沸石用作分子筛,可以吸取或过滤其他物质的分子。虽然沸石只是分子筛的一种,但是沸石在其中最具代表性,因此“沸石”和“分子筛”这两个词经常被混用。 除了天然产品外,也可由人工合成,人造沸石是:磺酸化聚苯乙烯,天然沸石:铝硅酸钠。.

新!!: 无机化学和沸石 · 查看更多 »

溶解性

溶解性或溶解度()是指定溫、定壓時,每單位飽和溶液中所含溶質的量;也就是一种物质能够被溶解的最大程度或飽和溶液的濃度。通常用體積莫耳濃度、質量百分濃度或「每100公克溶劑能溶解的溶質重」表示之。溶解度主要取决于溶质在溶劑中的溶解平衡常数(溶度積)、溫度、極性、和-zh-hans:压强; zh-hk:壓強; zh-tw:壓力-。相同溶質在不同溶劑下的溶解度不盡相同;相同溶劑在不同溶質下的溶解度不盡相同;即便是相同的溶質和溶液,在不同的環境因素下溶解度也不盡相同。 當溶質分子進入溶液時,因為分子可以自由移動,有些分子會碰撞到未溶解的晶體表面,並被吸引回到晶體表面析出,此即為結晶或沉澱。在分子不斷溶解和結晶的過程中,當溶解速率和結晶速率相等時,稱為溶解平衡。達到溶解平衡的溶液稱為飽和溶液,此時溶質的濃度定義為溶解度。濃度低於溶解度的溶液稱為未飽和溶液;在某些特殊環境下,會產生濃度大於溶解度的溶液,稱為'''過飽和溶液'''。 如果一种溶质對溶液的溶解度很高,我们就说这种物质是可溶的;如果溶解度不高,称这种物质是微溶的;如果溶解度極低,则称这种物质是不溶或难溶的。在台灣,可溶、微溶、難溶這三種狀態分別以體積莫耳濃度10^M和10^M做為分野。在中國大陸,將每100mL溶剂中溶质的溶解度小于0.01g的物质称为难溶物质,在0.01~1克之间的为微溶,1~10克为可溶,10克以上为易溶。.

新!!: 无机化学和溶解性 · 查看更多 »

溶解性表

下面的溶解性表显示了各种常見物质在1个标准大气压和293.15K时在水中的溶解性,較完整的版本參見溶解性全表。如果需要溶解度的具体数值,请参见溶解度表。 注释: |- |style.

新!!: 无机化学和溶解性表 · 查看更多 »

有机化合物

有机化合物(Organische Verbindung;英語:organic compound、organic chemical),简称有机物,是含碳化合物,但是碳氧化物(如一氧化碳、二氧化碳)、碳酸、碳酸鹽、 碳酸氢盐、氰化物、硫氰化物、氰酸鹽、金屬碳化物(如電石)等除外。有机化合物有时也可被定义为碳氫化合物及其衍生物的總稱。有机物是生命產生的物質基礎,例如生命的起源——胺基酸即為一有機化合物。.

新!!: 无机化学和有机化合物 · 查看更多 »

有机化学

有机化学是研究有机化合物及有機物質的结构、性质、反應的学科,是化学中极重要的一个分支。有机化学研究的對象是以不同形式包含碳原子的物質 ,又称为碳化合物的化学。 有關有机化合物或有機物質結構的研究包括用光譜、核磁共振、红外光谱、紫外光谱、质谱或其他物理或化學方式來確認其組成的元素、組成方式、實驗式及化學式。有關性質的研究包括其物理性質及化學性質,也需評估其,目的是要了解有機物質在其純物質形式(若是可能的話),以及在溶液中或是混合物中的性質。有機反應的研究包括有機物質的製備(可能是有機合成或是其他方式),以及其化學反應,可能是在實驗室中的,或是In silico(經由電腦模擬的)。 有机化学研究的範圍包括碳氫化合物,也就是只由碳和氫組成的化合物,化合物中也有可能还会参与其他的元素,包括氢、 氮、氧和卤素,还有诸如磷、硅、硫等元素。 。有机化学和許多相關領域有重疊,包括药物化学、生物化学、有机金属化学、高分子化学以及材料科学等。 有机化合物之所以引起研究者浓厚的兴趣,是因为碳原子可以形成稳定的长碳链或碳环以及许许多多种的官能基,这种性质造就有机化合物的多样性。有機化合物是所有碳基生物的基礎。有機化合物的應用範圍很廣,包括醫學、塑膠、藥物、、食物、化妆品、护理用品、炸藥及塗料等。.

新!!: 无机化学和有机化学 · 查看更多 »

有机金属化学

有机金属化学是有机化学和無機化學交疊的一門分支課程,研究含有金屬(包括類金屬)和碳原子鍵結的有机金属化合物,其化學反應、合成等各種問題。 其中的化學反應,包含了許多催化性質的反應以及跟金屬配位有關的化學反應,甚至有些是運用在於醫藥上,如用于治疗糖尿病的含釩的配合物。.

新!!: 无机化学和有机金属化学 · 查看更多 »

方铅矿

方鉛礦(,又稱立方硫化铅)是一种铅與硫的化合物,其英文名稱源自於拉丁文,為鉛之意。化学式为PbS(理论组成:鉛:86.60%,硫:13.40%),混入物以銀为最常见,其次为銅與鋅,有时含有鐵、砷、銻、鉍、鎘、鉈、銦與硒等,另外硒可代替硫,形成PbS的鏡像化合物。颜色铅灰色,硬度2.5~3,比重7.4~7.6 。開闢北宜高速公路時,於宜蘭頭城發現之鉛鋅銅礦脈,所採礦樣經化驗結果含鉛:1.81%,鋅:2.88% ,銅:0.012%。方铅矿中87%的重量是铅,因此是重要的铅矿石,由于其中也包含至1%的银,因此过去是银的重要来源之一。晶形常為六面體及八面體,晶系為等軸晶系,具有三組發達的解理,故其晶體常呈現為立方體(稱為氯化鈉型晶體結構),有时也呈平顶金字塔状或骨头状,由很多立方體晶體聚集形成粒状或塊狀。具貝殼狀斷口,金屬光澤,顏色及條痕為鉛灰色,由於熔點低(370℃)容易鑄成各種有價值之合金及製品。方鉛礦屬低溫環境產物,在變質岩與火山硫化物矿床中形成,呈脈狀或塊狀存在於石灰岩的洞穴和角礫帶裏,經常与铜矿混生,風化后就則成為白鉛礦和鉛礬。方鉛礦世界最大產地是美國密蘇里州(State of Missouri),僅鉛的儲量就達3000萬噸。在台灣產於新北市金瓜石、坪林與台東縣樟原,在金瓜石之方鉛礦通常以小結晶與閃鋅礦、黃鐵礦、黃銅礦、石英等礦物共生。中國出產於雲南金頂、廣東凡口與青海錫鐵山等地,常與閃鋅礦共生,也偶爾於煤礦中發現。此外英國康瓦爾(Cornwall)﹑德國弗萊貝格(Freiberg)與澳大利亞布羅肯希爾(Broken Hill)也是著名的產地。 方鉛礦是人类最早開採的礦石之一,古埃及古王國时期開始,人们使用方铅礦作为化妆品,巴比倫人與古羅馬人也從中冶煉銀。中國早在商代前就從方铅礦中提煉鉛,另由於方鉛礦中多含有銀,古代為冶煉銀大量開採。中國古代煉鉛的原料有兩類,一類是氧化鉛(以白鉛礦為主),另一類是硫化鉛(以方鉛礦為主)。明朝陸容在《菽園雜記》中有敘述硫化鉛礦的冶煉方法。宋應星在《天工開物》中提到當時所開採的三種練鉛礦物,一種是「銀礦鉛」,指與銀礦共生的方鉛礦;另一種是「銅山鉛」,指包括方鉛礦、閃鋅礦與黃銅礦等的多金屬礦;在另一種是「草節鉛」,可能是指傑晶粗大的方鉛礦。方鉛礦有多種用途,早期无线电使用方铅矿作为整流器,製作解调器和矿石收音机也會使用方铅矿。從中提煉金屬鉛,用於蓄電池、鉛管、鉛板、顏料、塗料、鉛玻璃、鉛合金、鉛字、陶瓷釉藥、鑄品、彈頭、化學藥品。鉛具有很好的耐腐蝕性,古希臘船員用含鉛的棲清除附生在船底的藤壶,除了排除生物的蠶食外,也降低船底在海中運行的阻力。中藥中的藥用鉛稱為黑錫或黑鉛,即由方鉛礦提煉,具有鎮逆、墜痰、殺蟲、解毒等功效。汽油中亦添加鉛之有機化合物作為抗震劑、抗爆劑以提高辛烷值。.

新!!: 无机化学和方铅矿 · 查看更多 »

无机合成化学

#重定向 无机化学#合成方法.

新!!: 无机化学和无机合成化学 · 查看更多 »

无机化合物

无机化合物即无机物,一般指不含碳元素的化合物,如水、食鹽、硫酸等。但一些簡單的含有碳元素化合物如一氧化碳、二氧化碳、碳酸、碳酸鹽、氰化物和碳化物等,由於它們的組成和性質與其他无机化合物相似,因此也作為无机化合物來研究。絕大多數的无机化合物可以歸入氧化物、酸、鹼、鹽四大類。.

新!!: 无机化学和无机化合物 · 查看更多 »

手性拆分

手性拆分(Chiral resolution),亦稱光學拆分(Optical resolution),或外消旋体拆分。在立體化學中,用以分離外消旋化合物成為兩個不同的鏡像異構物的方法,為生產具有光學活性藥物的重要工具。 與不對稱合成法比較,手性拆分的缺點為僅有50%的產率。有时在拆分的同时将不需要的对映异构体外消旋化,使其不断转化为需要的一个对映体,将拆分和外消旋化同时进行,从而使拆分的产率超过50%。这种方法称为动态动力学拆分。酮的烯醇化是常用的外消旋化反应。.

新!!: 无机化学和手性拆分 · 查看更多 »

晶体学

晶体学,又称结晶学,是一门以确定固体中原子(或离子)排列方式为目的的实验科学。“晶体学”(crystallography)一词原先仅指对各种晶体性质的研究,但随着人们对物质在微观尺度上认识的加深,其词义已大大扩充。 在X射线衍射晶体学提出之前(介绍见下文),人们对晶体的研究主要集中于晶体的点阵几何上,包括测量各晶面相对于理论参考坐标系(晶体坐标轴)的夹角,以及建立晶体点阵的对称关系等等。夹角的测量用测角仪完成。每个晶面在三维空间中的位置用它们在一个立体球面坐标“网”上的投影点(一般称为投影“极”)表示。坐标网的又根据不同取法分为Wolff网和Lambert网。将一个晶体的各个晶面对应的极点在坐标网上画出,并标出晶面相应的密勒指数,最终便可确定晶体的对称性关系。 现代晶体学研究主要通过分析晶体对各种电磁波束或粒子束的衍射图像来进行。辐射源除了最常用的X射线外,还包括电子束和中子束(根据德布罗意理论,这些基本粒子都具有波动性,参见条目波粒二象性),可以表现出和光波类似的性质)。晶体学家直接用辐射源的名字命名各种标定方法,如X射线衍射(常用英文缩写XRD),中子衍射和电子衍射。 以上三种辐射源与晶体学试样的作用方式有很大区别:X射线主要被原子(或离子)的最外层价电子所散射;电子由于带负电,会与包括原子核和核外电子在内的整个空间电荷分布场发生相互作用;中子不带电且质量较大,主要在与原子核发生碰撞时(碰撞的概率非常低)受到来自原子核的作用力;与此同时,由于中子自身的自旋磁矩不为零,它还会与原子(或离子)磁场相互作用。这三种不同的作用方式适应晶体学中不同方面的研究。.

新!!: 无机化学和晶体学 · 查看更多 »

晶体场理论

晶体场理论(Crystal field theory,首字母縮略字:CFT)是配位化学理论的一种,1929-1935年由汉斯·贝特和約翰·凡扶累克提出。它以过渡金属配合物的电子层结构为出发点,可以很好地解释配合物的磁性、颜色、立体构型、热力学性质和配合物畸变等主要问题,但不能合理解释配体的光谱化学序列和一些金属有机配合物的形成。 晶体场理论将配位键看成纯离子键,着眼于中心原子的d轨道在各种对称性配位体静电场中的变化,简明直观,结合实验数据容易进行定量或半定量的计算。但在实际配合物中,纯离子键或纯共价键都很罕见,目前配合物的结构理论兼有晶体场理论和分子轨道理论的精髓,称之为配位场理论。.

新!!: 无机化学和晶体场理论 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »