我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

施瓦茨-克里斯托费尔映射

指数 施瓦茨-克里斯托费尔映射

在数学的複分析中,施瓦茨—克里斯托费尔(Schwarz-Christoffel)映射是複平面的变换,把上半平面共形地映射到一個多边形。施瓦茨—克里斯托费尔映射可用在位势论和其它应用,包括极小曲面和流体力学中。施—克映射有一个缺陷,它无法较好的处理不规则几何图形和有孔的情况,这个问题已被伦敦皇家学院应用数学教授Darren Crowdy解决。施—克映射的名字取自埃尔温·布鲁诺·克里斯托费尔和赫尔曼·阿曼杜斯·施瓦茨。.

目录

  1. 17 关系: 埃尔温·布鲁诺·克里斯托费尔双射多边形复平面常数三角形位势论共形映射複分析解析函数黎曼映射定理赫尔曼·阿曼杜斯·施瓦茨极小曲面椭圆积分流体力学无穷远点数学

  2. 共形映射

埃尔温·布鲁诺·克里斯托费尔

埃尔温·布鲁诺·克里斯托费尔(Elwin Bruno Christoffel,),19世紀德國數學家。.

查看 施瓦茨-克里斯托费尔映射和埃尔温·布鲁诺·克里斯托费尔

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

查看 施瓦茨-克里斯托费尔映射和双射

多边形

多邊形是平面的封閉图形、由有限線段(大于2)組成,且首尾連接起來劃出的形狀。.

查看 施瓦茨-克里斯托费尔映射和多边形

复平面

数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.

查看 施瓦茨-克里斯托费尔映射和复平面

常数

常数又稱定數,是指一个数值固定不变的常量,例如圆周率\pi\,、自然对数的底e,与之相反的是變數。 在物理學上,很多經測量得出的數值都被稱為常數。例如萬有引力常數和地表重力加速度等。但有研究表明,部分這類常数并不是恒定不变的,因此就被稱作“不定常数”(inconstant constant)和“不恒定的常数”(not-so-constant constant)。.

查看 施瓦茨-克里斯托费尔映射和常数

三角形

三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.

查看 施瓦茨-克里斯托费尔映射和三角形

位势论

位勢論是數學的一支,它可以定義為調和函數的研究。.

查看 施瓦茨-克里斯托费尔映射和位势论

共形映射

数学上,共形变换(Conformal map)或稱保角变换,來自於流体力学和几何学的概念,是一个保持角度不变的映射。 更正式的说,一个映射 称为在 z_0 \, 共形(或者保角),如果它保持穿过 z_0 \, 的曲线间的定向角度,以及它们的取向也就是说方向。共形变换保持了角度以及无穷小物体的形状,但是不一定保持它们的尺寸。 共形的性质可以用坐标变换的导数矩阵雅可比矩阵的术语来表述。如果变换的雅可比矩阵处处都是一个标量乘以一个旋转矩阵,则变换是共形的。.

查看 施瓦茨-克里斯托费尔映射和共形映射

複分析

複變分析是研究複變函數,特別是亞純函數和複變解析函數的數學理論。 研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。複變分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。.

查看 施瓦茨-克里斯托费尔映射和複分析

解析函数

在數學中,解析函数是局部上由收斂冪級數給出的函數。解析函數可分成實解析函數與複解析函數,兩者有類似之處,同時也有重要的差異。每种类型的解析函数都是无穷可导的,但复解析函数表现出一些一般实解析函数不成立的性质。此外在超度量域上也可以定義解析函數,這套想法在當代數論與算術代數幾何中有重要應用。一个函数是解析函数当且仅当这个函数在它定义域内的每个x0的邻域内的泰勒级数都收敛。 解析函數集有時也寫作 C^\omega。.

查看 施瓦茨-克里斯托费尔映射和解析函数

黎曼映射定理

在數學中,黎曼映射定理是複分析最深刻的定理之一,此定理分類了\mathbb的單連通開子集。.

查看 施瓦茨-克里斯托费尔映射和黎曼映射定理

赫尔曼·阿曼杜斯·施瓦茨

赫尔曼·阿曼杜斯·施瓦茨(Hermann Amandus Schwarz,)是德國數學家。 生於普魯士西里西亞黑姆斯多夫,大學初期攻讀化學,在魏爾斯特拉斯等人的建議下改攻讀數學。施瓦茨在哈雷、哥廷根和柏林工作,範圍涉及函數論、微分幾何和變分學。 以他为名的有柯西-施瓦茨不等式、施瓦茨導數、施瓦茨-克里斯托費爾映射、施瓦茨反射原理和施瓦茨引理。 1921年逝世於德國柏林。.

查看 施瓦茨-克里斯托费尔映射和赫尔曼·阿曼杜斯·施瓦茨

极小曲面

在数学中,极小曲面是指平均曲率为零的曲面。举例来说,满足某些约束条件的面积最小的曲面。 物理学中,由最小化面积而得到的极小曲面的实例可以是沾了肥皂液后吹出的肥皂泡。肥皂泡的极薄的表面薄膜称为皂液膜,这是满足周边空气条件和肥皂泡吹制器形状的表面积最小的表面。.

查看 施瓦茨-克里斯托费尔映射和极小曲面

椭圆积分

在积分学中,椭圆积分最初出现于椭圆的弧长有关的问题中。Guilio Fagnano和欧拉是最早的研究者。现代数学将椭圆积分定义为可以表达为如下形式的任何函数 f \,的积分 其中R \,是其两个参数的有理函数,P \,是一个无重根的3 \,或4 \,阶多项式,而c \,是一个常数。 通常,椭圆积分不能用基本函数表达。这个一般规则的例外出现在P \,有重根的时候,或者是R \,,\left(x,y \right) \,没有y \,的奇数幂时。但是,通过适当的简化公式,每个椭圆积分可以变为只涉及有理函数和三个经典形式的积分。(也即,第一,第二,和第三类的椭圆积分)。 除下面给出的形式之外,椭圆积分也可以表达为勒让德形式和Carlson对称形式。通过对施瓦茨-克里斯托费尔映射的研究可以加深对椭圆积分理论的理解。历史上,椭圆函数是作为椭圆积分的逆函数被发现的,特别是这一个:F.

查看 施瓦茨-克里斯托费尔映射和椭圆积分

流体力学

流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.

查看 施瓦茨-克里斯托费尔映射和流体力学

无穷远点

无穷远点,又称为理想点,是一个加在实数轴上后得到实射影直线\mathbbP^1的点。实射影直线与扩展的实数轴不是一样的,扩展的实数轴有两个不同的无穷远点。 无穷远点也可以加在复平面\mathbb^1上,于是把它变成一个闭曲面,称为黎曼球面\mathbbP^1。(把球面穿一个孔,并把所得到的边拉开来,便得到一个平面;相反的过程便把复平面变为\mathbbP^1:在平面外加上一个点,并把平面向这个点包起来,便得到球面。) 这个结构可以推广到任何拓扑空间。所得到的空间称为原空间的单点紧化。因此,圆形是直线的单点紧化,而球面则是平面的单点紧化。 现在考虑实射影平面\mathbbP^2上的一对平行直线。由于这对直线是平行的,因此它们相交于无穷远点,这个点位于\mathbbP^2的无穷远直线上。更进一步,这两条直线都\mathbbP^2上的射影直线:每一条都有自己的无穷远点。当一对射影直线平行时,它们相交于它们公共的无穷远点。.

查看 施瓦茨-克里斯托费尔映射和无穷远点

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 施瓦茨-克里斯托费尔映射和数学

另见

共形映射