徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

探索者计划

指数 探索者计划

探索者计划是美国首个将人造卫星送入太空的成功计划,起源是美国军方提议在国际地球物理年之际将一颗人造卫星送入轨道。该计划因美国海军已有了前锋计划而遭到否决。而1957年10月4日,苏联成功发射了第一颗人造卫星史普尼克1号。美国为了追赶苏联而将军方的计划当做应急方案。1958年1月31日,探索者1号发射升空,成为美国第一颗人造卫星,并发现了范艾伦辐射带。.

20 关系: 威尔金森微波各向异性探测器宇宙線乌呼鲁卫星亚毫米波天文卫星人造衛星廣域紅外線巡天探測衛星先进成分探测器国际地球物理年磁場美國海軍美国美国国家航空航天局范艾伦辐射带苏联雨燕卫星IBEX探险者1号極紫外探測器星系演化探测器拉马第高能太阳光谱成像探测器

威尔金森微波各向异性探测器

威爾金森微波各向異性探測器(Wilkinson Microwave Anisotropy Probe,簡稱WMAP)是美國國家航空暨太空總署的人造衛星,目的是探測宇宙中大爆炸後殘留的輻射熱,2001年6月30日,WMAP搭载德尔塔II型火箭在佛羅里達州卡纳维拉尔角的肯尼迪航天中心發射升空。 由於宇宙間殘存著大霹靂的熱輻射(即為宇宙微波背景輻射),而WMAP的目的就是測量這些熱輻射的極小差異。這計畫由查爾斯·本內特教授及約翰·霍普金斯大學所領導,與美國太空總署戈達德太空飛行中心及普林斯頓大學合作。WMAP太空船在2001六月30日七點46分46秒於佛羅里達升空,是COBE太空任務的繼承者之一,也是中級探索者系列衛星的一員。2003年,為了紀念曾為研究計畫一員的宇宙學家大衛·威爾金森,MAP更名為WMAP。WMAP在圍繞日-地系統的L2點運行,離地球1.5×106公里。2012年十二月20日,研究團隊發佈了WMAP九年數據及相關影像。 WMAP的測量在建立最近的宇宙標準模型(宇宙常數-冷暗物質模型,或稱ΛCDM模型)中扮演了關鍵的角色。宇宙常數-冷暗物質模型是是一種以宇宙常數型態表示的暗能量為主導的宇宙模型,這模型與WMAP數據及其他宇宙學數據吻合,並且緊密的相互趨近。在宇宙常數-冷暗物質模型中,宇宙年齡為137.72 ± 0.059億年。由金氏世界記錄鑑定,WMAP的任務使宇宙的年齡精確度優於1%。現在的宇宙膨脹速率(見哈伯常數)為69.32 ± 0.80 (公里/秒)/百萬秒差距。宇宙的組成中有 4.628 ± 0.093%的一般重子物質,有24.02+0.88−0.87%既不吸收也不放射光的的冷暗物質(CDM),有71.35+0.95−0.96% 使宇宙加速膨脹的的暗能量。而微中子在宇宙含量中佔不到1%,但WMAP的測量發現其存在。該團隊於2008年首次發現,證實了宇宙微中子背景輻射的存在,微中子的有效種類為3.26 ± 0.35。尤拉平面幾何的曲率(Ωk)為-0.0027+0.0039−0.0038。WMAP的測量在很多方面也支持宇宙是平坦的,包括平坦測量。 根據「科學」雜誌,WMAP在2003年有重大突破。這任務的成果論文榮登2003年後超熱門科學文章排行榜的第一及第二名。在 INSPIRE-HEP數據庫中,物理與天文學引用最多次的論文只有三篇是在2000年以後發表的,而這三篇皆由WMAP發佈。在2010年三月27日,貝內特、來曼、大衛榮獲2010年的邵逸夫獎,以褒揚他們WMAP對天文界的貢獻。 2010年十月,WMAP太空船經過九年的運作,終於功成身退,安息在日心軌道上。天文學及物理高級審查小組在2010年九月於美國太空總署核准了總共九年的WMAP作業,所有WMAP的數據都會仔細檢查並公諸於世。 有些宇宙標準模型的數據型態不同於一般的統計。例如極大角度的測量中,四極矩的數據可能小於模型所預測的,但此不一致性並不顯著。比較小的角度,如大的冷班點及其他數據特徵等,在統計數據上反而較為明顯,而研究將會繼續往這些方面進行。.

新!!: 探索者计划和威尔金森微波各向异性探测器 · 查看更多 »

宇宙線

宇宙線亦稱為宇宙射线,是來自外太空的帶電高能次原子粒子。它們可能會產生二次粒子穿透地球的大氣層和表面。射線這個名詞源自於曾被認為是電磁輻射的歷史。主要的初級宇宙射線(來自深太空與大氣層撞擊的粒子)成分在地球上一般都是穩定的粒子,像是質子、原子核、或電子。但是,有非常少的比例是穩定的反物質粒子,像是正電子或反質子,這剩餘的小部分是研究的活躍領域。 大約89%的宇宙線是單純的質子,10%是氦原子核(即α粒子),還有1%是重元素。這些原子核構成宇宙線的99%。孤獨的電子(像是β粒子,雖然來源仍不清楚),構成其餘1%的絕大部分;γ射線和超高能微中子只佔極小的一部分。 粒子能量的多樣化顯示宇宙線有著廣泛的來源。這些粒子的來源可能是太陽(或其它恆星)或來自遙遠的可見宇宙,由一些還未知的物理機制產生的。宇宙線的能量可以超過1020 eV,遠超過地球上的粒子加速器可以達到的1012至1013 eV,使許多人對有更大能量的宇宙線感興趣而投入研究。 經由宇宙線核合成的過程,宇宙線對宇宙中鋰、鈹、和硼的產生,扮演著主要的角色。它們也在地球上產生了一些放射性同位素,像是碳-14。在粒子物理的歷史上,從宇宙线中發現了正電子、緲子和π介子。宇宙線也造成地球上很大部份的背景輻射,由於在地球大氣層外和磁場中的宇宙線是非常強的,因此對維護航行在行星際空間的太空船上太空人的安全,在設計有重大的影響。.

新!!: 探索者计划和宇宙線 · 查看更多 »

乌呼鲁卫星

乌呼鲁卫星(Uhuru),原名“X射线探测卫星”、“探险者42号”或“小型天文卫星1号”(SAS-1),是人类历史上第一颗X射线天文卫星,由美国于1970年12月12日在肯尼亚发射升空。发射当天正值肯尼亚独立7周年纪念日,因此得名Uhuru(兹瓦西里语意为“自由”)。乌呼鲁卫星的运行轨道近地点为520公里,远地点560公里,轨道倾角3度,周期96分钟。卫星上安装了两个相互反向的X射线正比计数器,能段范围为2-20keV,每个探测器接收面积为840平方厘米,用机械准直的方法分别构成0.5°×0.5°、5°×5°的视场,利用卫星周期为10分钟的自转对天空进行了扫描,确定了339个X射线源,包括X射线双星、超新星遗迹、星系团、塞弗特星系等等,还有第一个黑洞候选天体——天鹅座X-1。它还发现了星系团的弥散X射线辐射源。乌呼鲁卫星于1973年3月停止工作。这颗卫星取得了极大的成功,被认为是X射线天文学发展史上的一座里程碑。.

新!!: 探索者计划和乌呼鲁卫星 · 查看更多 »

亚毫米波天文卫星

亚毫米波天文卫星(Submillimeter Wave Astronomy Satellite,缩写为SWAS)是1998年12月5日发射的一颗天文卫星,是美国国家航空航天局的的一部分。史密松天体物理台和高达太空飞行中心的研究人员分别设计了其望远镜和探测器。 该卫星检测太空中水分子、氧气分子、碳原子发出的波长为487–556 GHz的亞毫米波段輻射。 亚毫米波天文卫星设计观测到2004年7月21日。2005年6月,为了观测深度撞击号探测器撞击坦普尔1号彗星的效应,在经过一年的待机之后,卫星被重新激活3个月。.

新!!: 探索者计划和亚毫米波天文卫星 · 查看更多 »

人造衛星

美國DSP紅外線间谍卫星 ESTCube-1 人造衛星,在不產生歧义的情況下亦稱衛星,是由人類建造的航天器的一种,是数量最多的一种。人造衛星以太空飛行載具如运载火箭、太空梭等發射到太空中,像天然衛星一樣環繞地球或其它行星运行。通訊衛星就是在地球軌道上,放置衛星,以作為地面微波與廣播站間的通信媒介。雖然通訊衛星的造價很高,但是由於能傳輸大量的資訊,而且免除架設的費用,因此對於長距離的傳輸仍是最普遍與最經濟的方法,因為一個通訊衛星所傳播的地域相當的大;只要三個通訊衛星就能涵蓋地球上大部分的地域。.

新!!: 探索者计划和人造衛星 · 查看更多 »

廣域紅外線巡天探測衛星

廣域紅外線巡天探測衛星(Wide-field Infrared Survey Explorer, WISE)是NASA的紅外線空間望遠鏡,於2009年12月14日發射。WISE搭載口徑40公分的紅外線望遠鏡,以3至25微米的波長,六個月的時間進行巡天。WISE的紅外線偵測器比之前的紅外線巡天太空望遠鏡,如IRAS、AKARI、COBE靈敏一千倍以上。一般預期WISE一天可以發現數十顆小行星。 WISE預定將拍攝全天99%的影像,且同一區域影像至少將拍攝八幅以增加精確度。WISE將位於526公里高的太陽同步軌道並至少運行10個月。預估WISE將拍攝約150萬幅影像,平均每11秒拍攝1幅。每幅影像的視野是47角分。每個區域將被觀測過至少10次。WISE的影像將拍攝太陽系、銀河系以及宇宙深處的影像。在這些影像中將可增進我們對小行星、棕矮星和主要輻射紅外線的星系的認識。 WISE同時也是用來取代1999年3月發射失敗的廣角紅外線探測器。 2010年10月WISE的制冷劑用完,NASA Planetary division 出資進行不使用制冷劑的搜尋近地天體延伸任務,NEOWISE(Near-Earth Object WISE)。.

新!!: 探索者计划和廣域紅外線巡天探測衛星 · 查看更多 »

先进成分探测器

先进成分探测器(,ACE)是NASA研究太阳风中高能粒子、行星际物质和其他源的成分的探测计划以及太阳和空间探索任务。从ACE获得的实时数据被空间天气预测中心用于提高太阳风暴预测和预警能力 ACE发射于1997年8月25号,现在运行于接近拉格朗日点L1的利萨如轨道(位于日地之间距离地球150万公里)。观测器仍然良好运行中,拥有足够的燃料来保持轨道运行到2024年。NASA戈达德太空飞行中心管理ACE的开发和集成。.

新!!: 探索者计划和先进成分探测器 · 查看更多 »

国际地球物理年

国际地球物理年(Année géophysique internationale,International Geophysical Year,简称IGY)是1957年7月1日至1958年12月31日期间的一项跨国科学计划。它结束了东方、西方科学交流活动严重受阻的漫长冷战期。约瑟夫·斯大林于1953年去世后,这种新的协作方式也逐渐兴隆起来。该科学计划一共有67个成员国参与(当时正处于互相斗争期间的中华人民共和国与中华民国没有参与),比利时的当选为该协作组织的秘书长。.

新!!: 探索者计划和国际地球物理年 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 探索者计划和磁場 · 查看更多 »

美國海軍

美國海軍(United States Navy,縮寫:USN或U.S. Navy),是美利坚合众国軍隊的一个軍種,負責管理所有与海軍有关的事务。其职责为:“配备、训练和武装一支有能力赢得战争、阻止入侵和保证海域自由的海军战斗部队。”美国海军除了目前有近500,000现役和预备役海軍军人、278艘现役大小军舰之外,海軍旗下甚至還有美國空軍以外的另一支空中部隊,多數為舰載飞机,數量達逾4,000架.

新!!: 探索者计划和美國海軍 · 查看更多 »

美国

美利堅合眾國(United States of America,簡稱为 United States、America、The States,縮寫为 U.S.A.、U.S.),通稱美國,是由其下轄50个州、華盛頓哥倫比亞特區、五个自治领土及外岛共同組成的聯邦共和国。美國本土48州和联邦特区位於北美洲中部,東臨大西洋,西臨太平洋,北面是加拿大,南部和墨西哥及墨西哥灣接壤,本土位於溫帶、副熱帶地區。阿拉斯加州位於北美大陸西北方,東部為加拿大,西隔白令海峽和俄羅斯相望;夏威夷州則是太平洋中部的群島。美國在加勒比海和太平洋還擁有多處境外領土和島嶼地區。此外,美國还在全球140多個國家和地區擁有着374個海外軍事基地。 美国拥有982萬平方公里国土面积,位居世界第三(依陆地面積定義为第四大国);同时拥有接近超过3.3億人口,為世界第三人口大国。因为有着來自世界各地的大量移民,它是世界上民族和文化最多元的國家之一Adams, J.Q.; Strother-Adams, Pearlie (2001).

新!!: 探索者计划和美国 · 查看更多 »

美国国家航空航天局

美國國家航空暨太空總署(National Aeronautics and Space Administration,縮寫为NASA)是美国联邦政府的一个独立机构,负责制定、实施美国的民用太空计划、與开展航空科學暨太空科學的研究。1958年7月29日,美国总统艾森豪威尔签署了《美国公共法案85-568》,创立了國家NASA航空和太空管理局,取代了其前身美國國家航空諮詢委員會(NACA)。於1958年10月開始運作。自此,美國國家航空暨太空總署負責了美國的太空探索,例如登月的阿波羅計劃,太空實驗室,以及隨後的航天飞机。自2006年2月,美国国家航空航天局的愿景是“開拓未來的太空探索,科學發現及航空研究”。美国国家航空航天局的使命是“理解并保护我们依賴生存的行星;探索宇宙,找到地球外的生命;启示我们的下一代去探索宇宙”。在太空计划之外,美国国家航空航天局还进行长期的民用以及军用航空航天研究。美国国家航空航天局被广泛认为是世界范围内太空机构中執牛耳者。美國國家航空暨太空總署透過地球觀測系統提升對地球的了解,透過太陽科學研究計劃精進太陽科學。美國國家航空暨太空總署注重於利用先進的機械任務探索太陽系中的的所有天體並利用天文觀測台及相關計劃研究天體物理學中的主題,例如大爆炸理論。美國國家航空暨太空總署與許多美國國內及國際的組織分享其研究數據。.

新!!: 探索者计划和美国国家航空航天局 · 查看更多 »

范艾伦辐射带

范艾伦辐射带是在地球附近的近层宇宙空间中包围着地球的大量帶電粒子聚集而成的輪胎狀辐射层,由美国物理学家詹姆斯·范·艾伦发现并以他的名字命名。范艾倫帶粒子的主要來源是被地球磁場俘獲的太陽風粒子,這些帶電粒子在范艾倫帶兩轉折點間來回運動。當太陽發生磁暴時,地球磁層受擾動變形,而侷限在范艾倫帶的高能帶電粒子大量洩出,並隨磁力線於地球的極區進入大氣層,激發空氣分子產生美麗的極光。范艾伦辐射带一般情况下分为内外兩層,海拔高度处在约500至58000公里之间,内外层之间存在范艾伦带缝,缝中辐射很少,偶尔会因为太阳风暴等突发情况临时被破坏分离导致多层产生。.

新!!: 探索者计划和范艾伦辐射带 · 查看更多 »

苏联

苏维埃社会主义共和国联盟( ),简称苏联(),是一個存在於1922年至1991年的聯邦制社會主義國家,也是當時世界上土地面積最大的國家,佔有東歐的大部分,以及幾乎整個中亞和北亞;陸地與挪威、芬蘭、波蘭、捷克斯洛伐克、匈牙利、羅馬尼亞、土耳其、伊朗、阿富汗、中国、蒙古及朝鮮接壤;而與瑞典、日本、美國及加拿大隔海相望。 蘇聯起源自1917年的俄國革命,俄羅斯帝國的沙皇政府被推翻後,臨時政府成立,但僅執政了不到8個月,布爾什維克便很快從臨時政府手中奪取政權並於選舉後武力解散俄國立憲會議,史稱十月革命及一月劇變;之後俄國發生內戰,布尔什维克党領導的紅軍擊敗了白軍以及協約國的武裝干涉。1922年12月,俄羅斯、白俄羅斯、烏克蘭和外高加索等蘇維埃社會主義共和國合併,成立首個以社會主義為理念的國家——蘇聯。 第一任蘇聯領導人弗拉基米尔·列宁於1924年去世後,约瑟夫·斯大林從一連串的權力鬥爭中勝出,取得了領導權。斯大林以計劃經濟作保障,在歐美經濟危機期間推行驚人的大規模重工業化,但也進行多次大清洗,導致逾百萬人在政治鬥爭中被整肅或被殺。第二次世界大戰中,蘇聯先是与纳粹德国结盟,於1939年和德國共同瓜分了波蘭、将波罗的海国家纳入版图、割占罗马尼亚领土,将流亡苏联的德国政治难民交还纳粹判決。不過很快兩者關係破裂,1941年6月22日,苏联遭到德國等軸心國入侵,歷經了4年激烈的戰事後取得了勝利,與美國一同成為當時世界上最強大的兩個國家,被稱為超級大國,同時因出兵击退入侵德军,并得以控制了東歐大部分國家。 蘇聯而後與衛星國組成的華沙条約組織(華約),與以美國為首的北大西洋公約組織(北約)對峙,這兩大軍事集團在冷戰時期於全世界展開意識形態的對立和政治鬥爭,但在1980年代初期,石油以及初級資源價格回落,此時的蘇聯大力施行福利國家政策,致经济增长速度变慢,加上政治欠乏改革,基本的人民自由也陷入壓抑,苏联的国力已经落后于美国。 在1980年代末,蘇聯領導人米哈伊爾·戈爾巴喬夫試圖進行改革政策,將國家自由化和民主化,放寬對東歐等其他衛星國的控制,却导致蘇聯在1991年解體,在政治斗争中获胜的葉爾欽所領導的俄羅斯聯邦繼承了蘇聯主要的軍事、經濟和國際地位,但人口損失近半的情況下,蘇聯建立的紅色秩序已經不復存在。 儘管苏联宪法規範苏联是一個联邦制国家,由15个平等权利的苏维埃社会主义共和国(加盟共和国)按照自愿联合的原则组成,但其联邦特性不高,因為中央政府權力高度集中,並奉行世界上第一個完全的社會主義制度及計劃經濟政策,由蘇聯共產黨一黨執政。在1945年苏联16个加盟共和国中应有2个(乌克兰、白俄罗斯)应作为联合国创始会员国,因为苏联是联邦制国家,所以苏联在联合国历史上是唯一一个“一国三票”的主权国家。.

新!!: 探索者计划和苏联 · 查看更多 »

雨燕卫星

燕卫星(Swift Gamma-Ray Burst Mission),全称为伽玛暴快速反应探测器,是美国宇航局2004年发射的一颗专门用于观测伽玛射线暴的天文卫星,工作在伽玛射线、X射线、紫外线以及可见光多个波段。 雨燕卫星由美国、英国、意大利共同研制,于2004年11月20日在美国佛罗里达州的卡纳维拉尔角搭载德尔塔Ⅱ型火箭发射升空,运行在高度约600公里的近圆形轨道上,周期为90分钟。雨燕卫星重1500千克,主要仪器有:.

新!!: 探索者计划和雨燕卫星 · 查看更多 »

IBEX

#重定向 星际边界探测器.

新!!: 探索者计划和IBEX · 查看更多 »

探险者1号

探险者一号(Explorer 1)是美国于1958年1月31日在佛罗里达州卡拉维纳尔角发射的第一颗地球人造卫星,晚于前苏联于1957年10月4日发射的世界第一颗地球人造卫星史普尼克1号和同年11月3日发射的携带小狗莱卡的第二颗卫星。 探险者一号卫星总重13.97千克,其中仪器重8.3千克,它的轨道近地点为360千米,远地点2520千米,114.9分钟绕地球一圈,每分钟围绕长轴自转50周。 卫星携带的仪器包括体格宇宙射线探测仪,三个外部温度探头,一个前部温度探头,一套微波背景探测器。探测结果数据通过一个60毫瓦的发射器以108.03兆赫频率和另一个10毫瓦的发射器以108.00兆赫的频率发射到地面接收站。 探险者一号最主要的发现是确定了地球外的磁辐射带,以分析探险者一号发回数据的衣阿华小组负责人詹姆斯·范·艾伦命名为范艾伦辐射带。探险者一号留在軌道上直到1970年,在它后来有一直跟著的探索者计划系列有90多個科研航天器。.

新!!: 探索者计划和探险者1号 · 查看更多 »

極紫外探測器

極紫外探測器 (EUVE) 是於1992年6月7日發射,使用於紫外線天文學的太空望遠鏡。EUVE是第一架有能力偵測波長範圍在7至76奈米短波紫外線輻射的儀器。這顆衛星在2001年1月31日 停止觀測之前,對全天空所做的巡天觀測總共編錄了801個天體。它於2002年1月30日重返大氣層。.

新!!: 探索者计划和極紫外探測器 · 查看更多 »

星系演化探测器

星系演化探测器(Galaxy Evolution Explorer,缩写为GALEX)是美国宇航局2003年发射的一颗紫外天文卫星,主要目的是观测星系,特别是那些包含大量年轻恒星、辐射出强烈紫外线的星系,研究它们的形成和演化机制。这颗卫星是在2003年4月28日用飞马座火箭发射的,运行在高度697公里、倾角29度的近圆形轨道上,直径0.5米、焦距3米、重280公斤(620磅)、探测波长135-280nm(远紫外线)。 星系演化探测器耗资1.03亿美元,计划寿命为28个月,后延长至29个月。它观测从今回溯至大爆炸后80%时间(即最近100亿年)内的紫外线数据,确定星系和地球的距离,及各星系内恒星形成的规模。 除美国宇航局喷气推进实验室外,加州理工学院、加州大学伯克利分校、约翰霍普金斯大学、韩国的延世大学、法国马赛天体物理实验室等大学和机构也参与了这颗卫星的研制。.

新!!: 探索者计划和星系演化探测器 · 查看更多 »

拉马第高能太阳光谱成像探测器

拉马第高能太阳光谱成像探测器(缩写为RHESSI)是美国宇航局于2002年2月5日发射的一颗太阳探测卫星,主要目的是研究太阳耀斑中的粒子加速和能量释放过程。这颗卫星原名为高能太阳光谱成像探测器(HESSI),为纪念太阳高能物理领域的先驱人物魯文·拉馬第(Reuven Ramaty)而更名为RHESSI。其观测范围覆盖了从3 keV的软X射线波段到20 MeV的伽玛射线波段,并具有极高的谱分辨本领。美国宇航局戈达德空间飞行中心、美国伯克利加州大学、瑞士苏黎世联邦理工学院等机构参与了卫星的设计和建造。.

新!!: 探索者计划和拉马第高能太阳光谱成像探测器 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »