徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

拉普拉斯变换

指数 拉普拉斯变换

拉普拉斯变换(Laplace transform)是应用数学中常用的一种积分变换,又名拉氏轉換,其符號為 \displaystyle\mathcal \left\。拉氏變換是一個線性變換,可將一個有引數實數 t(t \ge 0) 的函數轉換為一個引數為複數 s 的函數: 拉氏變換在大部份的應用中都是對射的,最常見的 f(t) 和 F(s) 組合常印製成表,方便查閱。拉普拉斯变换得名自法國天文學家暨數學家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在機率論的研究中首先引入了拉氏變換。 拉氏變換和傅里叶变换有關,不過傅里叶变换將一個函數或是信號表示為許多弦波的疊加,而拉氏變換則是將一個函數表示為許多矩的疊加。拉氏變換常用來求解微分方程及積分方程。在物理及工程上常用來分析線性非時變系統,可用來分析電子電路、諧振子、光学仪器及機械設備。在這些分析中,拉氏變換可以作時域和頻域之間的轉換,在時域中輸入和輸出都是時間的函數,在頻域中輸入和輸出則是複變角頻率的函數,單位是弧度每秒。 對於一個簡單的系統,拉氏變換提供另一種系統的描述方程,可以簡化分析系統行為的時間。像時域下的線性非時變系統,在頻域下會轉換為代數方程,在時域下的捲積會變成頻域下的乘法。.

74 关系: 博雷尔测度卷积单射单位阶跃函数反常積分可微函数双射双边拉普拉斯变换双曲函数多项式长除法复平面复数复数 (数学)奧利弗·黑維塞实数导数局部可积函数三角恒等式乘法互相关应用数学代数方程弧度微分微分几何中的拉普拉斯算子微分方程信号处理初值定理分布 (数学分析)分部積分法周期函数傅里叶变换冲激响应共轭复数光学仪器勒貝格積分因果系统皮埃尔-西蒙·拉普拉斯矩 (數學)积分积分变换积分符号内取微分線性系統线性时不变系统理论终值定理狄拉克δ函数運算符號頻域複數角频率...諧振子误差函数贝塞尔函数连续函数部分分式分解阶跃函数自动化技术自然對數電子電路Γ函数Lp空间Mellin 变换Z轉換控制控制理论条件收敛概率空間概率论欧拉-马歇罗尼常数指数衰减斜坡函数数学归纳法整数時域 扩展索引 (24 更多) »

博雷尔测度

博雷爾代數是實數上包含所有區間的最小σ代數,其中的元素稱作博雷爾集;博雷爾測度(Borel measure)是σ代數上對區間給出值b-a的測度。 博雷爾測度並不完備,因此習慣使用勒貝格測度:每個博雷爾可測集都是勒貝格可測的,並且它們的測度值吻合。 在抽象測度理論中,設E為局部緊豪斯多夫空间。E上的一個博雷爾測度是 E的博雷爾代數\mathfrak(X) 上的任何一個測度μ。.

新!!: 拉普拉斯变换和博雷尔测度 · 查看更多 »

卷积

在泛函分析中,捲積、疊積、--積或旋積,是通过两个函数f和g生成第三个函数的一种数学算子,表徵函数f与经过翻转和平移的g的乘積函數所圍成的曲邊梯形的面積。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑動平均”的推广。.

新!!: 拉普拉斯变换和卷积 · 查看更多 »

单射

在數學裡,單射函數(或稱嵌射函數,國家教育研究院雙語詞彙、學術名詞暨辭書資訊網、一對一函數,英文稱 injection、injective function或 one-to-one function)為一函數,其將不同的輸入值對應到不同的函數值上。更精確地說,函數f被稱為是單射的,當對每一陪域內的y,存在至多一個定義域內的x使得f(x).

新!!: 拉普拉斯变换和单射 · 查看更多 »

单位阶跃函数

單位階躍函數,又称赫维赛德阶跃函数,定義如下: 另一种定义为: 或 它是個不連續函數,其「微分」是狄拉克δ函數。它是一個幾乎必然是零的隨機變數的累積分布函數。 事實上,x.

新!!: 拉普拉斯变换和单位阶跃函数 · 查看更多 »

反常積分

反常积分又叫广义积分(“广义积分”为较早教科书的称呼,现在中国大陆已弃用),是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又叫无界函数的反常积分)。.

新!!: 拉普拉斯变换和反常積分 · 查看更多 »

可微函数

在微积分学中,可微函数是指那些在定义域中所有点都存在导数的函数。可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。 一般来说,若X0是函数f定义域上的一点,且f′(X0)有定义,则称f在X0点可微。这就是说f的图像在(X0, f(X0))点有非垂直切线,且该点不是间断点、尖点。.

新!!: 拉普拉斯变换和可微函数 · 查看更多 »

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

新!!: 拉普拉斯变换和双射 · 查看更多 »

双边拉普拉斯变换

双边拉普拉斯变换是一種积分变换,其形式類似機率中的動差生成函數,双边拉普拉斯变换和傅立葉變換、Mellin 變換及單邊的拉普拉斯变换有緊密的關係。若ƒ(t)為實數t的實數函數或是複變函數,t可以為任意實數,則双边拉普拉斯变换可以用以下的積分表示: \int_^\infty e^ f(t) \,dt.

新!!: 拉普拉斯变换和双边拉普拉斯变换 · 查看更多 »

双曲函数

在数学中,双曲函数是一类与常见的三角函数(也叫圆函数)类似的函数。最基本的双曲函数是双曲正弦函数 \sinh和双曲余弦函数 \cosh,从它们可以导出双曲正切函数 \tanh等,其推导也类似于三角函数的推导。双曲函数的反函数称为反双曲函数。 双曲函数的定义域是实数,其自变量的值叫做双曲角。双曲函数出现于某些重要的线性微分方程的解中,譬如說定义悬链线和拉普拉斯方程。.

新!!: 拉普拉斯变换和双曲函数 · 查看更多 »

多项式长除法

多项式长除法 是代数中的一种算法,用一个同次或低次的多项式去除另一个多项式。是常见算数技巧长除法的一个推广版本。它可以很容易地手算,因为它将一个相对复杂的除法问题分解成更小的一些问题。.

新!!: 拉普拉斯变换和多项式长除法 · 查看更多 »

复平面

数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.

新!!: 拉普拉斯变换和复平面 · 查看更多 »

复数

#重定向 复数 (数学).

新!!: 拉普拉斯变换和复数 · 查看更多 »

复数 (数学)

複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.

新!!: 拉普拉斯变换和复数 (数学) · 查看更多 »

奧利弗·黑維塞

奧利弗·黑維塞(Oliver Heaviside,),英國自學成才的物理學家和电子工程师。他没有接受过正规的高等教育,作风古怪,不太重视严格的数学论证,善以直觉进行论述和演算,在数学和工程上做出了众多原创性成就。他通过数年时间自学微积分和麦克斯韦的《》,创立向量分析学,并将电磁学中最著名的麦克斯韦方程组改写为今天人们所熟知的形式。.

新!!: 拉普拉斯变换和奧利弗·黑維塞 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 拉普拉斯变换和实数 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

新!!: 拉普拉斯变换和导数 · 查看更多 »

局部可积函数

在数学中,局部可积函数是指在定义域内的所有紧集上都可积的函数。.

新!!: 拉普拉斯变换和局部可积函数 · 查看更多 »

三角恒等式

在数学中,三角恒等式是对出现的变量的所有值都为實的涉及到三角函数的等式。这些恒等式在表达式中有些三角函数需要简化的时候是很有用的。一个重要应用是非三角函数的积分:一个常用技巧是首先使用使用三角函数的代换规则,则通过三角恒等式可简化结果的积分。.

新!!: 拉普拉斯变换和三角恒等式 · 查看更多 »

乘法

乘法(Multiplication),加法的連續運算,同一数的若干次连加,其運算結果稱為積(Product)。 因為華人地區有將四則運算的被運算數和運算數統一位置,所以前者是被乘數後者是乘數,使用中文敘述為n個a。.

新!!: 拉普拉斯变换和乘法 · 查看更多 »

互相关

在统计学中,互相关有时用来表示两个随机矢量 X 和 Y 之间的协方差cov(X, Y),以与矢量 X 的“协方差”概念相区分,矢量 X 的“协方差”是 X 的各标量成分之间的协方差矩阵。 在信号处理领域中,互相关(有时也称为“互协方差”)是用来表示两个信号之间相似性的一个度量,通常通过与已知信号比较用于寻找未知信号中的特性。它是两个信号之间相对于时间的一个函数,有时也称为“滑动点积”,在模式识别以及密码分析学领域都有应用。 对于离散函数 fi 和 gi 来说,互相关定义为 其中和在整个可能的整数 j 区域取和,星号表示复共轭。对于连续信号 f(x) 和 g(x) 来说,互相关定义为 其中积分是在整个可能的 t 区域积分。 互相关实质上类似于两个函数的卷积。.

新!!: 拉普拉斯变换和互相关 · 查看更多 »

应用数学

應用數學(Applied Mathematics)是以應用為目的的明確的數學理論和方法的總稱,研究如何應用數學知識到其他範疇(尤其是科學)的數學分支,可以說是純數學的相反,應用純數學中的結論擴展到物理學等其他科學中,應用數學的發展是以科學為依據,作為科學研究的後盾。包括線性代數、矩陣理論、向量分析、複變分析、微分方程、拉普拉斯變換、傅里葉分析、數值分析、概率论、數理統計、運籌學、博弈論、控制理論、組合數學、資訊理論等許多數學分支,也包括從各種應用領域中提出的數學問題的研究。而大部分應用數學是以作為物理分析的工具。計算數學有時也可視為應用數學的一部分。應用數學大部分的教學範疇都是以物理的模型為基礎進行分析,當中或許搭配了各種數學工具,就為了更貼近物理的系統。 圖論應用在網絡分析,拓撲學在電路分析上的應用,群論在結晶學上的應用,微分幾何在規範場上的應用,自動控制理論在計算上的應用,黎曼幾何應用於相對論,數理邏輯應用於計算機,最小二乘法應用於飛機起降時自動控制,利用數字合成計算機輔助的X射線斷層成像技術(1979年數學家獲得諾貝爾醫學獎)數論應用在密碼學,博弈論、概率論、統計學應用在經濟學,線性規劃用於生產安排調度,都可見數學在不同範疇的應用。.

新!!: 拉普拉斯变换和应用数学 · 查看更多 »

代数方程

代数方程是未知数和常数进行有限次代数运算所组成的方程。代数方程包括有理方程和无理方程。有理方程又包括整式方程与分式方程。整式方程,就是所谓的“多项式方程”。.

新!!: 拉普拉斯变换和代数方程 · 查看更多 »

弧度

弧度又稱弳度,是平面角的單位,也是國際單位制導出單位。單位弧度定義為圓弧長度等於半徑時的圓心角。角度以弧度給出時,通常不寫弧度單位,或有時記為rad(㎭)。平面角和立體角皆無因次。 一個完整的圓的弧度是2π,所以2π rad.

新!!: 拉普拉斯变换和弧度 · 查看更多 »

微分

在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数\textstyle f的自变量\textstyle x有一个微小的改变\textstyle h时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量\textstyle h,可以表示成\textstyle h和一个与\textstyle h无关,只与函数\textstyle f及\textstyle x有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在\textstyle h上的值。另一部分是比\textstyle h更高阶的无穷小,也就是说除以\textstyle h后仍然会趋于零。当改变量\textstyle h很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在\textstyle x处的微分,记作\displaystyle f'(x)h或\displaystyle \textrmf_x(h)。如果一个函数在某处具有以上的性质,就称此函数在该点可微。 不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。 在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量\textstyle h映射到变化量的线性部分的线性映射\displaystyle \textrmf_x。这个映射也被称为切映射。.

新!!: 拉普拉斯变换和微分 · 查看更多 »

微分几何中的拉普拉斯算子

微分几何中,有多个二阶线性椭圆型微分算子称为拉普拉斯算子(Laplace operator 或 Laplacian)。本文给出它们的一个概览。.

新!!: 拉普拉斯变换和微分几何中的拉普拉斯算子 · 查看更多 »

微分方程

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

新!!: 拉普拉斯变换和微分方程 · 查看更多 »

信号处理

在计算机科学、药物分析、电子学等学科中,信号处理(signal processing)是指对信号表示、变换、运算等进行处理的过程。 信号处理可以用于沟通人类之间,或人与机器之间的联系;用以探测我们周围的环境,并揭示出那些不易观察到的状态和构造细节,以及用来控制和利用能源与信息.例如,我们可能希望分开两个或多个多少有些混在一起的信号,或者想增强信号模型中的某些成分或参数。 几十年来,信号处理在诸如语音与資料通訊、生物医学工程、声学、声呐、雷达、地震、石油勘探、仪器仪表、机器人、日用电子产品以及其它很多的这样一些广泛的领域内起着关键的作用。.

新!!: 拉普拉斯变换和信号处理 · 查看更多 »

初值定理

在数学分析中,初值定理是将时间趋于零时的頻域表达式与時域行为建立联系的定理。 它简称为IVT。 令 为 ƒ(t) 的(单边)拉普拉斯变换。初值定理表明.

新!!: 拉普拉斯变换和初值定理 · 查看更多 »

分布 (数学分析)

数学分析中的分布是广义函数的一种,由法国数学家洛朗·施瓦茨首先于二十世纪五十年代引入。分布推广了普通意义上的函数概念。对于普通意义上不可导甚至不连续的函数,可以具备分布意义上的导数。事实上,任意局部可积的函数都有分布意义上的弱导数。在偏微分方程的研究中,常常使用分布来表示方程的广义解函数,因为很多时候传统意义上的解函数不存在或难以求出。分布理论在物理学和工程学中都十分有用,因为在应用中常会出现解或初始条件是分布的微分方程,例如初始条件可能是一个狄拉克δ分布。 广义函数的概念最早由谢尔盖·索伯列夫在1935年提出。1940年代末,施瓦茨等人开始建立分布理论,首次提出了一个系统清晰的广义函数理论。.

新!!: 拉普拉斯变换和分布 (数学分析) · 查看更多 »

分部積分法

分部積分法是種積分的技巧。它是由微分的乘法定則和微積分基本定理推導而來的。其基本思路是将不易求得结果的积分形式,转化为等价的但易于求出结果的积分形式。.

新!!: 拉普拉斯变换和分部積分法 · 查看更多 »

周期函数

在数学中,周期函数是無論任何独立变量上經過一个确定的周期之后数值皆能重复的函数。我们日常所见的钟表指针以及月亮的月相都呈现出周期性的特点。周期性运动是系统的运动位置呈现周期性的运动。 对于实数或者整数函数来说,周期性意味着按照一定的间隔重复一个特定部分就可以绘制出完整的函数图。如果在函数f中所有的位置x都满足 那么,f就是周期为T的周期函数。非周期函数就是没有类似周期T的函数。 如果周期函数f的周期为T,那么对于f中的任意x以及任意整数n,有 若T.

新!!: 拉普拉斯变换和周期函数 · 查看更多 »

傅里叶变换

傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.

新!!: 拉普拉斯变换和傅里叶变换 · 查看更多 »

冲激响应

在信号处理中,脈衝響應(Impulse response)一般是指系统在输入为单位冲激函数时的输出(响应)。对于连续时间系统来说,冲激响应一般用函数h(t;\tau)来表示,相对应的输入信号,也就是单位冲激函数满足狄拉克δ函数的形式,其函数定义如下: 并且,在从负无穷到正无穷区间内积分为1: 在输入为狄拉克δ函数时,系统的冲激响应h(t)包含了系统的所有信息。所以对于任意输入信号x(t),可以用连续域卷积的方法得出所对应的输出y(t)。也就是: 对于离散时间系统来说,冲激响应一般用序列h来表示,相对应的离散输入信号,也就是单位脉冲函数满足克罗内克δ的形式,在信号与系统科学中可以定义函数如下: 同样道理,在输入为\delta时,离散系统的冲激响应h包含了系统的所有信息。所以对于任意输入信号x,可以用离散域卷积(求和)的方法得出所对应的输出信号y。也就是:.

新!!: 拉普拉斯变换和冲激响应 · 查看更多 »

共轭复数

在數學中,複數的複共軛(常簡稱共軛)是對虛部變號的運算,因此一個複數 的複共軛是 舉例明之: 在複數的極坐標表法下,複共軛寫成 這點可以透過歐拉公式驗證 將複數理解為複平面,則複共軛無非是對實軸的反射。複數z的複共軛有時也表為z^*。.

新!!: 拉普拉斯变换和共轭复数 · 查看更多 »

光学仪器

光學儀器可以是處理光波以增強圖像的觀賞;或是分析光波(或光子),已確定若干或某一種特徵與屬性。.

新!!: 拉普拉斯变换和光学仪器 · 查看更多 »

勒貝格積分

勒貝格積分(Lebesgue integral)是现代数学中的一个积分概念,它将积分运算扩展到任何测度空间中。在最简单的情况下,对一个非负值的函数的积分可以看作是函数图像与x轴之间的面积。勒贝格积分则将积分运算扩展到更廣的函数(可測函數),并且也扩展了可以进行积分运算的集合(可測空間)。最早的积分运算对于非负值的函数来说,其积分相当于使用求极限的手段来计算一个多边形的面积(也就是黎曼積分),但這過程需要函數足够規則。但是随着对更加不规则的函数的积分运算的需要不断产生(比如为了讨论数学分析的极限过程中導致的函數,或者出于概率论的需求),很快就产生了对更加广义的求极限手段的要求来定义相应的积分运算。 在实分析和在其它许多数学领域中勒貝格積分拥有一席重要的地位。 勒貝格積分是以昂利·勒貝格命名的,他于1904年引入了这个积分定义。 今天勒贝格积分有狭义和广义两种意义。广义地说是对于一个在一般測度空間(的子集合)上的函数积分,在這情況下其測度不必然是勒貝格測度。狭义则是指对于勒贝格测度在實數線或者更高维数的歐幾里得空間的一个子集合上函数的积分。.

新!!: 拉普拉斯变换和勒貝格積分 · 查看更多 »

因果系统

因果系统,称一个系统是“因果”的,是指此系统满足因果性。即对輸入的响应不可能在此輸入到达的时刻之前出现;也就是说系统的输出仅与当前与过去的输入有关,而与将来的输入无关。因此,因果系统是“物理可实现的”。.

新!!: 拉普拉斯变换和因果系统 · 查看更多 »

皮埃尔-西蒙·拉普拉斯

埃尔-西蒙·拉普拉斯侯爵(Pierre-Simon marquis de Laplace,),法国著名的天文学家和数学家,他的工作对天体力学和统计学有举足轻重的发展。.

新!!: 拉普拉斯变换和皮埃尔-西蒙·拉普拉斯 · 查看更多 »

矩 (數學)

矩,又稱動差,英文為moment。 数学中矩的概念来自于物理学。在物理学中,矩是用来表示物体形状的物理量。矩是用于物体形状识别的重要参数指标。定义在实数域上的实函数相对于值c的n阶矩为: 總的來說,在數學中,矩的概念是用來度量一組具有一定形態特點的點陣。舉個常用的例子,一個“二階矩”,我們在一維上可以測量它的“寬度”;而在更高階的維度上,由於其適用於橢球的空間分佈,我們還可以對點的云結構進行測量和描述。其他的矩用來描述諸如與均值的歪斜分佈情況(偏態),或峰值的分佈情況(峰態)等其他方面的分佈特點。.

新!!: 拉普拉斯变换和矩 (數學) · 查看更多 »

积分

积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.

新!!: 拉普拉斯变换和积分 · 查看更多 »

积分变换

積分變換(integral transform)是數學中作用于函数的算子,用以處理微分方程等問題。常見的有傅里葉變換﹑拉普拉斯變換等。.

新!!: 拉普拉斯变换和积分变换 · 查看更多 »

积分符号内取微分

积分符号内取微分是一个在数学的微积分领域中很有用的运算。它是说,假定 f(x,t)\, 与 \frac\,f(x,t)\, 对t\, 和 x\, 在(t,x)\, 平面连续, a(x)\leq t\leq b(x)\,, x_0\leq x\leq x_1\,, 且若对于x_0\leq x\leq x_1\,, a(x)\, 与 b(x)\, 及其导数连续,那么 \begin \frac\,F(x) &.

新!!: 拉普拉斯变换和积分符号内取微分 · 查看更多 »

線性系統

線性系統是一數學模型,是指用線性運算子組成的系統。相較於非線性系統,線性系統的特性比較簡單。例如以下的系統即為一線性系統: 由於線性系統較容易處理,許多時候會將系統理想化或簡化為線性系統。線性系統常應用在自動控制理論、信號處理及電信上。像無線通訊訊號在介質中的傳播就可以用線性系統來模擬。 線性系統需滿足線性的特性,若線性系統還滿足非時變性(即系統的輸入信號若延遲τ秒,那麼得到的輸出除了這τ秒延時以外是完全相同的),則稱為線性時不變系統。.

新!!: 拉普拉斯变换和線性系統 · 查看更多 »

线性时不变系统理论

线性非时变系统理论俗称LTI系统理论,源自应用数学,直接在核磁共振頻譜學、地震学、电路、信号处理和控制理论等技术领域运用。它研究的是线性、非时变系统对任意输入信号的响应。虽然这些系统的轨迹通常会随时间变化(例如声学波形)来测量和跟踪,但是应用到图像处理和场论时,LTI系统在空间维度上也有轨迹。因此,这些系统也被称为线性非時變平移,在最一般的范围理论给出此理论。在离散(即采样)系统中对应的术语是线性非時變平移系统。由电阻、电容、电感组成的电路是LTI系统的一个很好的例子。.

新!!: 拉普拉斯变换和线性时不变系统理论 · 查看更多 »

终值定理

在数学分析中,终值定理(FVT)是将时间趋于无穷时的頻域表达式与時域行为建立联系的许多定理之一。终值定理允许直接对频域表达式取极限来计算时域行为,无需先转换到时域表达式再取极限。 在数学上,如果 有一个有限极限,那么 其中 F(s) 为 f(t) 的(单边)拉普拉斯变换。 同样,在离散时间中 其中 F(z) 为 f 的Z轉換。.

新!!: 拉普拉斯变换和终值定理 · 查看更多 »

狄拉克δ函数

在科學和數學中,狄拉克函數或簡稱函數(譯名德爾塔函數、得耳他函數)是在實數線上定義的一個廣義函數或分佈。它在除零以外的點上都等於零,且其在整個定義域上的積分等於1。函數有時可看作是在原點處无限高、无限细,但是总面积为1的一個尖峰,在物理上代表了理想化的質點或点电荷的密度。 從純數學的觀點來看,狄拉克函數並非嚴格意義上的函數,因為任何在擴展實數線上定義的函數,如果在一個點以外的地方都等於零,其總積分必須為零。函數只有在出現在積分以內的時候才有實質的意義。根據這一點,函數一般可以當做普通函數一樣使用。它形式上所遵守的規則屬於的一部分,是物理學和工程學的標準工具。包括函數在內的運算微積分方法,在20世紀初受到數學家的質疑,直到1950年代洛朗·施瓦茨才發展出一套令人滿意的嚴謹理論。嚴謹地來說,函數必須定義為一個分佈,對應於支撐集為原點的概率測度。在許多應用中,均將視為由在原點處有尖峰的函數所組成的序列的極限(),而序列中的函數則可作為對函數的近似。 在訊號處理上,函數常稱為單位脈衝符號或單位脈衝函數。δ函數是對應於狄拉克函數的離散函數,其定義域為離散集,值域可以是0或者1。.

新!!: 拉普拉斯变换和狄拉克δ函数 · 查看更多 »

運算符號

運算符號是表示兩數的「加」(和)、「減」(差)。 也就是說:運算符號的「+」表示「加」;「-」表示「減」。.

新!!: 拉普拉斯变换和運算符號 · 查看更多 »

頻域

在電子學、控制系統及統計學中,頻域(frequency domain)是指在對函數或信號進行分析時,分析其和頻率有關部份,而不是和時間有關的部份,和時域一詞相對。 函數或信號可以透過一對數學的運算子在時域及頻域之間轉換。例如傅里葉變換可以將一個時域信號轉換成在不同頻率下對應的振幅及相位,其頻譜就是時域信號在頻域下的表現,而反傅里葉變換可以將頻譜再轉換回時域的信號。.

新!!: 拉普拉斯变换和頻域 · 查看更多 »

複數

#重定向 复数 (数学).

新!!: 拉普拉斯变换和複數 · 查看更多 »

角频率

在物理学(特别是力学和电子工程)中,角频率ω有时也叫做角速率、角速度标量,是对旋转快慢的度量,它是角速度向量\vec的模。角频率的国际单位是弧度每秒。由于弧度是无量纲的,所以角频率的量纲为T −1。 因为旋转一周的弧度是2π,所以.

新!!: 拉普拉斯变换和角频率 · 查看更多 »

諧振子

古典力學中,一個諧振子(harmonic oscillator)乃一個系統,當其從平衡位置位移,會感受到一個恢復力F正比於位移x,並遵守虎克定律: 其中k是一個正值常數。 如果F是系統僅受的力,則系統稱作簡諧振子(簡單和諧振子)。而其進行簡諧運動——正中央為平衡點的正弦或餘弦的振動,且振幅與頻率都是常數(頻率跟振幅無關)。 若同時存在一摩擦力正比於速度,則會存在阻尼現象,稱這諧振子為阻尼振子。在這樣的情形,振動頻率小於無阻尼情形,且振幅隨著時間減小。 若同時存在跟時間相關的外力,諧振子則稱作是受驅振子。 力學上的例子包括了單擺(限於小角度位移之近似)、連接到彈簧的質量體,以及聲學系統。其他的相類系統包括了電學諧振子(electrical harmonic oscillator,參見RLC電路)。.

新!!: 拉普拉斯变换和諧振子 · 查看更多 »

误差函数

在数学中,误差函数(也称之为高斯误差函数)是一个特殊函数(即不是初等函数),其在概率论,统计学以及偏微分方程中都有广泛的应用。它的定义如下:Greene, William H.; Econometric Analysis (fifth edition), Prentice-Hall, 1993, p. 926, fn.

新!!: 拉普拉斯变换和误差函数 · 查看更多 »

贝塞尔函数

貝索函数(Bessel functions),是数学上的一类特殊函数的总称。通常单说的貝索函数指第一类貝索函数(Bessel function of the first kind)。一般貝索函数是下列常微分方程(一般称为貝索方程)的标准解函数y(x): 这类方程的解是无法用初等函数系统地表示。 由於貝索微分方程是二階常微分方程,需要由兩個獨立的函數來表示其标准解函数。典型的是使用第一类貝索函数和第二类貝索函数來表示标准解函数: 注意,由於 Y_\alpha(x) 在 x.

新!!: 拉普拉斯变换和贝塞尔函数 · 查看更多 »

连续函数

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.

新!!: 拉普拉斯变换和连续函数 · 查看更多 »

部分分式分解

部分分式分解或部分分式展開,是將有理函數分解成許多次數較低有理函數和的形式,來降低分子或分母多項式的次數。分解後的分式需滿足以下條件:.

新!!: 拉普拉斯变换和部分分式分解 · 查看更多 »

阶跃函数

在数学中,如果实数域上的某个函数可以用半开区间上的指示函数的有限次线性组合来表示,那么这个函数就是阶跃函数,或者叫赫维赛德函数。换一种不太正式的说法就是,阶跃函数是有限段分段常数函数的组合。 假设已知:.

新!!: 拉普拉斯变换和阶跃函数 · 查看更多 »

自动化技术

自动化技术是一门综合性技术,它和控制论、信息论、系统工程、计算机技术、电子学、液压气压技术、自動控制等都有着十分密切的关系,而其中又以“控制理论”和“计算机技术”对自动化技术的影响最大。一些过程已经被完全自动化。 自动化的最大好处是可以节省劳动力,但是,它也可用于节约能源和材料,并改善质量,准确度和精度。 自动化技术已被通过各种方式通常在组合来实现的,包括机械,液压,气动,电气,电子和计算机。复杂系统,例如现代化工厂,飞机和船只,通常使用所有这些组合的技术。.

新!!: 拉普拉斯变换和自动化技术 · 查看更多 »

自然對數

自然对数(Natural logarithm)是以e為底數的对数函数,標記作ln(x)或loge(x),其反函数是指數函數ex。.

新!!: 拉普拉斯变换和自然對數 · 查看更多 »

電子電路

電子電路(Electronic circuit):將各式各樣的電子元件,形成一迴路電路,進行電信號的運算,電子元件形成電路為電子電路。.

新!!: 拉普拉斯变换和電子電路 · 查看更多 »

Γ函数

\Gamma \,函数,也叫做伽瑪函數(Gamma函数),是階乘函數在實數與複數上的擴展。對於實數部份為正的複數z,伽瑪函數定義為: 此定義可以用解析開拓原理拓展到整個複數域上,非正整數外。 如果z為正整數,則伽瑪函數定義為: 這顯示了它與階乘函數的聯繫。可見,伽瑪函數將n!拓展到了實數與複數域上。 在概率論中常見此函數,在組合數學中也常見。.

新!!: 拉普拉斯变换和Γ函数 · 查看更多 »

Lp空间

在数学中,Lp空间是由p次可积函数组成的空间;对应的ℓp空间是由p次可和序列组成的空间。它們有時叫做勒貝格空間,以昂利·勒貝格命名,儘管依據它們是首先介入。在泛函分析和拓扑向量空间中,他们构成了巴拿赫空间一类重要的例子。 Lp空间在工程学领域的有限元分析中有应用。.

新!!: 拉普拉斯变换和Lp空间 · 查看更多 »

Mellin 变换

#重定向 梅林变换.

新!!: 拉普拉斯变换和Mellin 变换 · 查看更多 »

Z轉換

在數學和信号处理中,Z轉換(Z-transform)把一連串離散的實數或複數訊號,從時域轉為复頻域表示。 可以把它认为是拉普拉斯变换的离散时间等价。在时标微积分中会探索它们的相似性.

新!!: 拉普拉斯变换和Z轉換 · 查看更多 »

控制

控制(control)可以指:.

新!!: 拉普拉斯变换和控制 · 查看更多 »

控制理论

控制理論是工程學與數學的跨領域分支,主要處理在有輸入信號的動力系統的行為。系統的外部輸入稱為「參考值」,系統中的一個或多個變數需隨著參考值變化,控制器處理系統的輸入,使系統輸出得到預期的效果。 控制理論一般的目的是藉由控制器的動作讓系統穩定,也就是系統維持在設定值,而且不會在設定值附近晃動。 連續系統一般會用微分方程來表示。若微分方程是線性常係數,可以將微分方程取拉普拉斯轉換,將其輸入和輸出之間的關係用傳遞函數表示。若微分方程為非線性,已找到其解,可以將非線性方程在此解附近進行線性化。若所得的線性化微分方程是常係數的,也可以用拉普拉斯轉換得到傳遞函數。 傳遞函數也稱為系統函數或網路函數,是一個數學表示法,用時間或是空間的頻率來表示一個線性常係數系統中,輸入和輸出之間的關係。 控制理论中常用方塊圖來說明控制理论的內容。.

新!!: 拉普拉斯变换和控制理论 · 查看更多 »

条件收敛

条件收敛是数学中无穷级数和广义积分的一种性质。收敛但不绝对收敛的无穷级数或广义积分称为条件收敛的。一个积分条件收敛的函数也称为条件可积函数。.

新!!: 拉普拉斯变换和条件收敛 · 查看更多 »

概率空間

概率空間是概率論的基礎。概率的嚴格定義基于這個概念。.

新!!: 拉普拉斯变换和概率空間 · 查看更多 »

概率论

概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).

新!!: 拉普拉斯变换和概率论 · 查看更多 »

欧拉-马歇罗尼常数

#重定向 歐拉-馬斯刻若尼常數.

新!!: 拉普拉斯变换和欧拉-马歇罗尼常数 · 查看更多 »

指数衰减

某个量的下降速度和它的值成比例,称之为服从指数衰减。用符号可以表达为以下微分方程,其中N是指量,λ指衰减常数(或称衰变常数)。 方程的一个解为: 这里N(t)是与时间t有关的量,N0.

新!!: 拉普拉斯变换和指数衰减 · 查看更多 »

斜坡函数

斜坡函数是一個實函數,因此其圖形類似斜坡,故得其名,此函數常用在工程中(例如數位訊號處理)。.

新!!: 拉普拉斯变换和斜坡函数 · 查看更多 »

数学归纳法

数学归纳法(Mathematical Induction、MI、ID)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构,例如:集合论中的树。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。 虽然数学归纳法名字中有“归纳”,但是数学归纳法并非不严谨的归纳推理法,它属于完全严谨的演绎推理法。事實上,所有數學證明都是演繹法。.

新!!: 拉普拉斯变换和数学归纳法 · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

新!!: 拉普拉斯变换和整数 · 查看更多 »

時域

時域(time domain)是描述數學函數或物理信號對時間的關係。例如一個信號的時域波形可以表達信號隨著時間的變化。 若考慮離散時間,時域中的函數或信號,在各個離散時間點的數值均為已知。若考慮連續時間,則函數或信號在任意時間的數值均為已知。 在研究時域的信號時,常會用示波器將信號轉換為其時域的波形。.

新!!: 拉普拉斯变换和時域 · 查看更多 »

重定向到这里:

Laplace变换拉式轉換拉氏变换法拉氏轉換拉普拉斯变换法拉普拉斯轉換

传出传入
嘿!我们在Facebook上吧! »