徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

弦理論

指数 弦理論

弦理論,又稱弦論,是发展中理論物理學的一支,结合量子力学和广义相对论为万有理论。弦理論用一段段“能量弦線”作最基本單位以说明宇宙里所有微观粒子如電子、夸克、微中子都由這一維的“能量線”所組成;換而言之,弦論主張「弦」以不同的振動模式對應到自然界的各種基本粒子。 較早時期所建立的粒子學說則是認為所有物質是由零維的點粒子所組成,也是目前廣為接受的物理模型,也很成功的解釋和預測相當多的物理現象和問題,但是此理論所根據的粒子模型卻遇到一些無法解釋的問題。比較起來,弦理論的基礎是波動模型,因此能夠避開前一種理論所遇到的問題。更深的弦理論學說不只是描述弦狀物體,還包含了點狀、薄膜狀物體,更高維度的空間,甚至平行宇宙。弦理論目前尚未能做出可以實驗驗證的準確預測。.

74 关系: 加布里埃莱·韦内齐亚诺加利福尼亚大学圣塔芭芭拉分校基本粒子基本相互作用原子核卡尔·波普尔南部阳一郎反粒子可证伪性夸克奇点对称性 (物理学)對偶性 (弦論)中微子万有理论平行宇宙亚历山大·泊里雅科夫廣義相對論弦 (物理學)强子强相互作用引力引力子作用量快子光子四维时空玻色弦理論理論理论物理学科学科学理论粒子加速器紧化 (物理学)維度约瑟夫·波尔钦斯基纽约时报真空爱德华·威滕电子电磁学物理学狄利克雷边界条件D-膜萊昂哈德·歐拉西奧多·卡魯扎规范玻色子费米子费曼图超對稱粒子...超對稱性超弦理論背景獨立阿贝尔群膠子重整化量子力学量子引力量子场论量子漲落Β函数Γ函数M理论P膜Sheldon Glashow李奧納特·蘇士侃标准模型标量标量玻色子歐洲核子研究組織正電子日食时空手徵性 扩展索引 (24 更多) »

加布里埃莱·韦内齐亚诺

加布里埃莱·韦内齐亚诺(Gabriele Veneziano,,,),意大利理论物理学家,弦理论的的先驱之一。他的大部分科学活动在瑞士日内瓦欧洲核子研究中心进行。2004年至2013年,他担任巴黎法兰西公学院基本粒子、引力和宇宙学主席。.

新!!: 弦理論和加布里埃莱·韦内齐亚诺 · 查看更多 »

加利福尼亚大学圣塔芭芭拉分校

#重定向 加利福尼亞大學聖塔芭芭拉分校.

新!!: 弦理論和加利福尼亚大学圣塔芭芭拉分校 · 查看更多 »

基本粒子

在粒子物理学中,基本粒子是组成物质最基本的单位。其内部结构未知,所以也无法确认是否由其它更基本的粒子所组成 。随著物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也有所变化。目前在标準模型理论的架构下,已知的基本粒子可以分为费米子(包含夸克和轻子)以及玻色子(包含规范玻色子和希格斯粒子)。由两个或更多基本粒子所组成的则称作复合粒子。 我们日常生活中的物质由原子所组成。过去原子被认為是基本粒子,原子(atom)这个词来自希腊语中「不可切分的」。直到约1910年以前,原子的存在与否仍存在争议,一些物理学家认為物质是由能量所组成,而分子不过是数学上的一种猜想。之后,原子核被发现是由质子和中子所构成。20世纪前、中期的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。随著实验和量子场论的进展,发现质子、中子、介子发现是由更基本的夸克和胶子所组成。同时人类也陆续发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。.

新!!: 弦理論和基本粒子 · 查看更多 »

基本相互作用

基本相互作用(fundamental interaction),為物质间最基本的相互作用,常稱為自然界四力或宇宙基本力。迄今为止观察到的所有关于物质的物理现象,在物理學中都可借助这四种基本相互作用的机--得到描述和解释。 大统一理论認為:強相互作用、弱相互作用和电磁相互作用可以統一成一種相互作用,目前统一弱相互作用和電磁相互作用的电弱统一理论已經獲得實驗證實。.

新!!: 弦理論和基本相互作用 · 查看更多 »

原子核

原子核(德语:Atomkern,英语:Atomic nucleus)是原子的组成部分,位于原子的中央,占有原子的大部分质量。組成原子核的有中子和質子。当周围有和其中质子等量的电子围绕时,构成的是原子。原子核極其渺小,如果将原子比作一座大廈,那麼原子核只有大廈裡的一張桌子那麼大。.

新!!: 弦理論和原子核 · 查看更多 »

卡尔·波普尔

卡尔·雷蒙德·波普尔爵士,CH,FRS,FBA(Sir Karl Raimund Popper,),出生于奥地利,犹太人,獲譽為20世纪最偉大的哲学家之一。美国哲学家巴特利称其哲學为「哲学史上第一个非证成批判主义哲学」(the first non justificational philosophy of criticism in the history of philosophy,其中justificational按台湾译法),在社会学亦有建树。 波普尔最著名的理论,在于对经典的观测-归纳法的批判,提出「从实验中证伪的」的评判标准:区别“科学的”与“非科学的”。在政治上,他拥护民主和自由主义,并提出一系列社会批判法则,为“开放社会”奠定理论根基。.

新!!: 弦理論和卡尔·波普尔 · 查看更多 »

南部阳一郎

南部阳一郎(,),生於日本東京的日裔美國公民,世界知名粒子物理学家,去世前为芝加哥大学物理系及费米研究所名誉退休教授、大阪大學特別榮譽教授、大阪市立大學名譽教授、立命館亞洲太平洋大學學術顧問。 南部教授是20世紀最偉大的物理學家之一,也是弦理论的創始人之一,普世譽為「物理學的預言家」。他從1960年代起就在粒子物理领域开展了许多超前時代的先驱研究,包括发现亚原子物理学中的自发对称性破缺机制,提出等。此外,他還提出量子色动力学的色荷規範,亦曾為彼得·希格斯發現希格斯機制提供重要建議。 在超過半世紀的時間裡,南部獲得幾乎所有的物理學界最高榮譽,其中包括2008年诺贝尔物理学奖。.

新!!: 弦理論和南部阳一郎 · 查看更多 »

反粒子

反粒子是相对于正常粒子而言的,它们的质量、寿命、自旋都与正常粒子相同,但是所有的内部相加性量子数(比如电荷、重子数、奇异数等)都与正常粒子大小相同、符号相反。有一些粒子的所有内部相加性量子数都为0,这样的粒子叫做纯中性粒子,反粒子就是它本身,比如光子、π0介子等。并不是粒子物理学中的每种粒子都有这种意义上的反粒子,中微子就没有反粒子,反微中子的定义与此不同。 反粒子的概念首先是1928年由英国物理学家狄拉克在他的空穴理论中提出的。1932年在宇宙射线中发现了正电子,证实了狄拉克的预言。1956年美国物理学家歐文·張伯倫(Owen Chamberlain)在劳伦斯-伯克利国家实验室发现了反质子。进一步的研究发现,狄拉克的空穴理论对玻色子不适用,因而不能解释所有的粒子和反粒子。根据量子场论,粒子被看作是场的激发态,而反粒子就是这种激发态对应的复共轭激发态。 如果反粒子按照通常粒子那样结合起来就形成了反原子。由反原子构成的物质就是反物质。.

新!!: 弦理論和反粒子 · 查看更多 »

可证伪性

可证伪性(),又稱可反證性、可--性,在科学和科学哲学中用来表示由经验得来的表述所具有的一种属性,即「这些结论必须容许邏輯上的反例的存在」。作为对比的则包括形式上的或数学的表述,如重言式(由于定义的原因它们总是真的),数学公理和定理——这些表述不容许逻辑上反例的存在。一些哲学家和科学家(如卡尔·波普尔)宣称:一切从经验得来的假说、命题和理论必須邏輯上容许反例的存在,才是科学的。一个主张“可證偽”并不意味着这个主张是“假”的。宗教和偽科學是不可證偽的。.

新!!: 弦理論和可证伪性 · 查看更多 »

夸克

夸克(quark,又譯“层子”或「虧子」)是一種基本粒子,也是構成物質的基本單元。夸克互相結合,形成一種複合粒子,叫強子,強子中最穩定的是質子和中子,它們是構成原子核的單元。由於一種叫“夸克禁閉”的現象,夸克不能夠直接被觀測到,或是被分離出來;只能夠在強子裏面找到夸克 。因為這個原因,人類對夸克的所知大都是來自對強子的觀測。 夸克有六種“味”,分別是上、下、-zh-tw:魅;zh-cn:粲-、奇、底及頂 。上及下夸克的質量是所有夸克中最低的。較重的夸克會通過一個叫粒子衰變的過程,來迅速地變成上或下夸克。粒子衰變是一個從高質量態變成低質量態的過程。就是因為這個原因,上及下夸克一般來說很穩定,所以它們在宇宙中很常見,而奇、--、頂及底則只能經由高能粒子的碰撞產生(例如宇宙射線及粒子加速器)。 夸克有着多種不同的內在特性,包括電荷、色荷、自旋及質量等。在標準模型中,夸克是唯一一種能經受全部四種基本相互作用的基本粒子,基本相互作用有時會被稱為“基本力”(電磁相互作用力、萬有引力、強相互作用力及弱相互作用力)。夸克同時是現時已知唯一一種基本電荷非整數的粒子。夸克每一種味都有一種對應的反粒子,叫反夸克,它跟夸克的不同之處,只在於它的一些特性跟夸克大小一樣但正負不同。 夸克模型分別由默里·蓋爾曼與喬治·茨威格於1964年獨立地提出 。引入夸克這一概念,是為了能更好地整理各種強子,而當時並沒有甚麼能證實夸克存在的物理證據,直到1968年SLAC開發出實驗為止 。夸克的六種味已經全部被加速器實驗所觀測到;而於1995年在費米實驗室被觀測到的頂夸克,是最後發現的一種。.

新!!: 弦理論和夸克 · 查看更多 »

奇点

奇異點.

新!!: 弦理論和奇点 · 查看更多 »

对称性 (物理学)

对称性(symmetry)是现代物理学中的一个核心概念,系统从一个状态到另一个状态,如果这两个状态等价,则说系统对这一变换是对称的。或者说给系统一个“操作”,如果系统从一个状态变到另一个等价的状态,则说系统对这一操作是对称的。它泛指「规范对称性」(gauge symmetry),或「局域对称性」(local symmetry)和「整体对称性」(global symmetry)。它是指一个理论的拉格朗日量或运动方程在某些变量的变化下的不变性。如果这些变量随时空变化,这个不变性被称为规范对称性,反之则被称为整体对称性。物理学中最简单的对称性例子是牛顿运动方程的伽利略变换不变性和麦克斯韦方程的洛伦兹变换不变性和相位不变性。 数学上,这些对称性由群论来表述。上述例子中的群分别对应着伽利略群,洛伦兹群和U(1)群。对称群为连续群和分立群的情形分别被称为「连续对称性」(continuous symmetry)和「離散對稱性」(discrete symmetry)。德国数学家外尔(Hermann Weyl)是把这套数学方法运用于物理学中并意识到规范对称重要性的第一人。1950年代杨振宁和米尔斯意识到规范对称性可以完全决定一个理论的拉格朗日量的形式,并构造了核作用的SU(2)规范理论。从此,规范对称性被大量应用于量子场论和粒子物理模型中。在粒子物理的标准模型中,强相互作用,弱相互作用和电磁相互作用的规范群分别为SU(3),SU(2)和U(1)。除此之外,其他群也被理论物理学家广泛地应用,如大统一模型中的SU(5),SO(10)和E_6群,超弦理论中的SO(32)和E_8\times E_8群。 整体对称性在粒子物理和量子场论的发展中也起着非常重要的角色,如强相互作用的手征对称性。规范和整体对称性破缺是粒子物理學和凝聚体物理学的重要概念。.

新!!: 弦理論和对称性 (物理学) · 查看更多 »

對偶性 (弦論)

弦論中的對偶性(duality),是指弦論中的是兩個看似不相同的理論,實際上是等價的。所謂等價,意思是即使兩個理論對實驗本身的物理描述可能完全不同,兩個理論對所有可以測量的值都有相等的預測。.

新!!: 弦理論和對偶性 (弦論) · 查看更多 »

中微子

中微子(Neutrino,其字面上的意義為「微小的電中性粒子」,又譯作--)是一种电中性的基本粒子,自旋量子數為½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。 中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子()、μ中微子()以及τ中微子()。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。 由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。 中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。 人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。.

新!!: 弦理論和中微子 · 查看更多 »

万有理论

萬有理論(Theory of Everything或ToE)指的是假定存在的一種具有總括性、一致性的物理理論框架,能夠解釋宇宙的所有物理奧秘。經過幾個世紀奮勉不懈的努力,發展出兩種理論框架:廣義相對論與量子場論。它們的總合,可以說是最接近想像中的萬有理論。廣義相對論專注於研究引力來明白宇宙的大尺度與高質量現象,例如恆星、星系、星系團等等。量子場論專注於研究非引力來明白宇宙的小尺度與低質量現象,例如,亞原子粒子、原子、分子等等。量子場論成功地給出標準模型,並且能夠按照大統一理論將弱力、強力與電磁力這三種非引力統合在一起。 經過多年的研究,這兩種理論分別在適用範圍內做出的預測幾乎都已被實驗肯定。根据物理学家的研究结果,廣義相對論與量子場論互不相容,即對於某些狀況,两者不可能同时是正確的。由於這兩種理論的適用範圍不同,對於大多數狀況,只需用到其中一種理論。這兩種理論的不相容之處在非常小尺度與高質量範圍才成为显著的问题,例如,在黑洞內部、在宇宙大爆炸之后的极短时间。為了解釋這衝突,透露更深層實在、將引力與其它三種作用力統合在一起的理論框架必需被找出,和諧地将廣義相對論與量子場論整合在一起,原則而言,成為能夠描述所有物理現象的單一理論。近期,在追逐這艱難目標的過程中,量子引力已成為積極研究領域。 万有理论用来指那些试图统合自然界四种基本相互作用:引力相互作用、强相互作用、弱相互作用和电磁相互作用成為一体的理论,是在电磁作用和弱相互作用連成一体的电弱作用理论之後,再加入強相互作用連成一体的大統一理論基础之後,又加上引力作用連成一体的理論。目前被认为最有可能成功的萬有理论是弦理论和圈量子引力論。.

新!!: 弦理論和万有理论 · 查看更多 »

平行宇宙

平行宇宙(Parallel universe)可以指:.

新!!: 弦理論和平行宇宙 · 查看更多 »

亚历山大·泊里雅科夫

亚历山大·泊里雅科夫(Александр Поляков,),苏联犹太裔理论物理学家,曾长期任职于莫斯科的郎道理论物理研究所。他对物理问题具有无以伦比的洞察力,在非阿贝耳规范场论中的经典解(磁单极解和瞬子解),,弦理论(泊里雅科夫作用量),AdS/CFT对偶等方面都做出了开创性的工作。他是1986年狄拉克奖章的获得者。现在任教于普林斯顿大学物理系。 2012年,因「對於場理論與弦理論給出眾多發現」,泊里雅科夫榮獲2013年基礎物理學突破獎。.

新!!: 弦理論和亚历山大·泊里雅科夫 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

新!!: 弦理論和廣義相對論 · 查看更多 »

弦 (物理學)

物理學中,弦是弦論與相關理論中的物理實體。不同於零維或點狀的基本粒子,弦是一維的實體。以弦為基礎實體的理論會自動產生許多基礎理論中成立的特性。更特別的是:依照量子力學規則演化與交互作用的弦自動包括了量子重力的描述。 弦論中,弦可以是開弦(形成有兩端點的線段)或閉弦(形成一個環),並可擁有其他特性。在1995年之前,共有五種能含有超對稱概念的弦理論,彼此間的差異在於弦的類別以及其他面向考量。而今這些弦理論被視為一個單一理論的極限情形,此單一理論稱作M理論。 在以弦論為基礎的粒子物理中,理論的特徵長度為普朗克長度;在這尺度下,據信量子重力效應會變得顯著。在比較大的尺度比如實驗室尺度,弦與點粒子就無法明顯區分,而弦的振動狀態則變成粒子的類別。弦有時也出現在核物理領域,被用來建構流量管的模型。 當弦在時空中穿越時,弦行經而掃出的二維表面稱為-世界-面,類比於點粒子所掃出的世界線。弦物理可由與世界面相關的二維共形場論來描述;在弦理論以外,二維共形場論也應用在凝態物理、純數學部份領域。 Category:弦理論.

新!!: 弦理論和弦 (物理學) · 查看更多 »

强子

在粒子物理學裏,强子(hadron)是一种由夸克或反夸克通過強作用力綑綁在一起的複合粒子。强子主要分为以下兩大類:.

新!!: 弦理論和强子 · 查看更多 »

强相互作用

强相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离第二短的(大约在 10-15 m 范围内,比弱交互作用的範圍大)。另外三种相互作用分别是引力、电磁力及弱相互作用。核子间的核力就是强相互作用。它抵抗了质子之间的强大的电磁力,维持了原子核的稳定。强相互作用也將夸克基本粒子結合成為質子及中子等強子,這也是組成大部份物質的粒子。而且一般質子或中子裡,大部份的質能是以强相互作用場能量的形式存在,夸克只提供了1%的質能。 强相互作用可以在二個地方看到:較大的尺度(約1至3飛米)下,强相互作用將質子及中子結合成為原子的原子核,較小的尺度(約0.8飛米,約為核子的尺寸)下,强相互作用將夸克結合,成為質子、中子或其他強子。强相互作用的作用力非常強,大到束縛一個夸克的能量可以轉換為新的夸克對的質量,强相互作用的這個性質稱為夸克禁閉。 强相互作用是唯一強度不會隨距離減小的作用力,但因為夸克禁閉,夸克會限制和其他夸克在一起,形成的強子之間會有殘留的强相互作用,也稱為核力,核力會隨距離而迅速減少。撞擊原子核釋放的部份束縛能和產生的核力有關,而核力也用在核能及核融合式的核武器中。 强相互作用一般認為是由膠子傳遞的,膠子會在夸克、反夸克及其他膠子之間交換。膠子會帶有色荷,色荷和人眼可見的顏色完全沒有關係,色荷類似電荷,但色荷有六種(紅、綠、藍、反紅、反綠、反藍),因此會形成不同的力,有不同的規則,在量子色動力學(QCD)中有描述,這也是夸克-膠子交互作用的基礎。吳秀蘭等科學家對膠子發現有很大貢獻的科學家,在1995年因此获得了欧洲物理学会髙能和粒子物理奖。 在大爆炸後,電弱時期時,電弱交互作用和强相互作用分離,統一弱交互作用和電磁交互作用的電弱統一理論已經獲得實驗證實。科學家進一步預期有一個大統一理論可以統一電弱交互作用及强相互作用,現今有許多是大統一理論的理論,第一個是哈沃德·乔吉和谢尔登·格拉肖于1974年提出了最早的SU(5)大统一理论,但和實驗不合,其他的理論有SO(10)模型、,但還沒有一個是廣為科學家接受,且有實驗證實的理論,而且許多大統一理論都預言質子衰變,但目前也還沒有實驗支持,大統一理論也還是未解決的物理學問題之一。.

新!!: 弦理論和强相互作用 · 查看更多 »

引力

重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.

新!!: 弦理論和引力 · 查看更多 »

引力子

引力子(graviton),又稱--,一種量子物理學中,基於量子場論的架構,提出的假設基本粒子,這種量子的交換,可產生引力。但目前仍未知是否真正存在。引力子被设想为一個自旋为2、質量為零、不带電荷的玻色子。為了傳遞引力,引力子必須永遠相吸、作用範圍無限遠及以無限多的型態出現。.

新!!: 弦理論和引力子 · 查看更多 »

作用量

在物理學裏,作用量(英语:action)是一個很特別、很抽象的物理量。它表示著一個動力物理系統內在的演化趨向。雖然與微分方程式方法大不相同,作用量也可以被用來分析物理系統的運動,所得到的答案是相同的。只需要設定系統在兩個點的狀態,初始狀態與最終狀態,然後,經過求解作用量的平穩值,就可以得到系統在兩個點之間每個點的狀態。.

新!!: 弦理論和作用量 · 查看更多 »

快子

--(tachyon)也称为--、速子,是一种理论上预测的超光速次原子粒子。这种由相对论衍生出的假想粒子,总是以超过光速的速度在运动。快子与一般物质(相应称为慢子(tardyon))的相互作用可能不明显,所以即使其存在也不一定能侦测得到。在狭义相对论中,快子具有类空的四维动量和虚的原时,并被限定在能量-动量图中的类空区间部分。因此,它无法降低速度至亚光速状态。.

新!!: 弦理論和快子 · 查看更多 »

光子

| mean_lifetime.

新!!: 弦理論和光子 · 查看更多 »

四维时空

#重定向 閔考斯基時空.

新!!: 弦理論和四维时空 · 查看更多 »

玻色弦理論

玻色弦理論(Bosonic string theory)是最早的弦論版本,約在1960年代晚期發展。其名稱由來是因為粒子譜中僅含有玻色子。 1980年代,在弦論的範疇下發現了超對稱;一個稱作超弦理論(超對稱弦理論)的新版本弦論成為了研究主題。儘管如此,玻色弦理論仍然是了解微擾弦理論的有用工具,並且超弦理論中的一些理論困難之處在玻色弦理論中已然現身。.

新!!: 弦理論和玻色弦理論 · 查看更多 »

理論

論(Theory),又稱學說或學說理論,指人類對自然、社會現象,按照已有的實證知識、經驗、事實、法則、認知以及經過驗證的假說,經由一般化與演繹推理等等的方法,進行合乎邏輯的推論性總結。 接近科学的学说是科学的,反之则是违背科学的或者说伪科学;任何自然科学的产生,源自对自然现象观察。 人類藉由觀察實際存在的現象或邏輯推論,而得到某種學說。任何學說在未經社會實踐或科學試驗證明以前,只能屬於假說。如果假說能藉由大量可重現的觀察與實驗而驗證,並為眾多科學家認定,這項假說就可被稱為科学理論。.

新!!: 弦理論和理論 · 查看更多 »

理论物理学

论物理学(Theoretical physics)通过为现实世界建立数学模型来试图理解所有物理现象的运行机制。通过“物理理论”来条理化、解释、预言物理现象。 豐富的想像力、精湛的數學造詣、嚴謹的治學態度,這些都是成為理論物理學家需要培養的優良素質。例如,在十九世紀中期,物理大師詹姆斯·麥克斯韋覺得電磁學的理論雜亂無章、急需整合。尤其是其中許多理論都涉及超距作用(action at a distance)的概念。麥克斯韋對於這概念極為反對,他主張用場論來解釋。例如,磁鐵會在四周產生磁場,而磁場會施加磁場力於鐵粉,使得這些鐵粉依著磁場力的方向排列,形成一條條的磁場線;磁鐵並不是直接施加力量於鐵粉,而是經過磁場施加力量於鐵粉;麥克斯韋嘗試朝著這方向開闢一條思路。他想出的「分子渦流模型」,借用流體力學的一些數學框架,能夠解釋所有那時已知的電磁現象。更進一步,這模型還展示出一個嶄新的概念——電位移。由於這概念,他推理電磁場能夠以波動形式傳播於空間,他又計算出其波速恰巧等於光速。麥克斯韋斷定光波就是一種電磁波。從此,電學、磁學、光學被整合為一統的電磁學。.

新!!: 弦理論和理论物理学 · 查看更多 »

科学

科學(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.

新!!: 弦理論和科学 · 查看更多 »

科学理论

科学理论是一种解释,它按照科学方法来阐述自然界中某方面事物的原因,即可以,并需使用一个预定义的观察和实验。已建立的科学理论是经得起严格检验的,也是科学知识的广泛形式。 特别需要注意的是,中使用的“科学理论”(下简称“理论”)定义明显不同于通常语言中使用的“理论”一词。按照美国国家科学院2008年的说法:正式的科学中对理论的定义完全不同于该词汇在日常的含义。在日常的(非科学的)讲话中,“理论”可能意味着某事是未经证实的、思考出来的猜测、猜想、想法,或者假设;这种使用方式与科学中的“理论”恰恰相反。这些用法的不同可以比较出来,而且往往是相对的。“预测”这个词在科学中的用法也与日常对话中不同,表示只不过有希望。 科学理论的强大体现在它能解释的现象的多样性。当收集到更多的时,一个科学理论如果不能解释新发现的实际情况,它可能会被否定或修正;在这种情况下,就需要一个更准确的理论。在某些情况下,不精确的、未经修正的科学理论仍然可以被视为一个理论,如果它在特定条件下作为一个近似是有用的(由于其纯粹的简单性,例如,牛顿运动定律作为狭义相对论在速度远小于光速时的一个近似)。 科学理论具有可测试性,且能做可证伪性预测。他们描述因果关系的原理,负责解释特定的自然现象,同时用来解释和预测物理宇宙或调查的特定领域(例如,电学、化学、天文学)的方方面面。科学家将理论作为基础,以获得进一步的科学知识,或者实现目标,比如发明技术或治疗疾病。 与其它形式的科学知识一样,科学理论本质上既是演绎推理,又是归纳推理,其目标在于和。 古生物学家、演化生物学家和科学史学家史蒂芬·古尔德说:“……事实和理论是不同的东西,而非一个增长的层级关系中的不阶层级。事实是世界的数据。而理论是解释事实的概念体系。”.

新!!: 弦理論和科学理论 · 查看更多 »

粒子加速器

粒子加速器(particle accelerator)是利用電場來推動帶電粒子使之獲得高能量。日常生活中常見的粒子加速器有用於電視的陰極射線管及X光管等設施。只有当被加速的粒子置於抽真空的管中时,才不會被空氣中的分子所撞擊而潰散。在高能加速器裡的粒子由四極磁鐵(quadrupole magnet)聚焦成束,使粒子不會因為彼此間產生的排斥力而散開。 粒子加速器有兩種基本型式,環形加速器和直線加速器。.

新!!: 弦理論和粒子加速器 · 查看更多 »

紧化 (物理学)

在物理学中,紧致化(或紧化)指改变时空中某些维度的拓扑结构,使其从展开的无限大尺度,变成有限大的周期性结构。.

新!!: 弦理論和紧化 (物理学) · 查看更多 »

維度

维度,又稱维数,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。 0维是一點,沒有長度。1维是線,只有長度。2维是一個平面,是由長度和寬度(或曲線)形成面積。3维是2维加上高度形成「體積面」。雖然在一般人中習慣了整數维,但在碎形中維度不一定是整數,可能会是一个非整的有理数或者无理数。 我们周围的空间有3个维(上下、前后、左右)。我們可以往上下、東南西北移動,其他方向的移動只需用3個三维空間軸來表示。向下移就等於負方向地向上移,向西北移就只是向西和向北移的混合。 在物理學上時間是第四维,與三個空間维不同的是,它只有一個,且只能往一方向前進。 我们所居於的时空有四个维(3个空间轴和1个时间轴),根據愛因斯坦的概念稱為四维时空,我們的宇宙是由時间和空间構成,而這條時間軸是一條虛數值的軸。 弦理論認為我們所居於的宇宙實際上有更多的維度(通常10、11或24個)。但是這些附加的维度所量度的是次原子大小的宇宙。 维度是理论模型,在非古典物理学中这点更为明显。所以不用计较宇宙的维数是多少,只要方便描述就行了。 在物理學中,質的量纲通常以質的基本單位表示:例如,速率的量纲就是長度除以時間。.

新!!: 弦理論和維度 · 查看更多 »

约瑟夫·波尔钦斯基

小约瑟夫·杰拉德·波尔钦斯基(Joseph Gerard Polchinski Jr.,),美国理论物理学家和弦论学家。.

新!!: 弦理論和约瑟夫·波尔钦斯基 · 查看更多 »

纽约时报

纽约时报(The New York Times,缩写作 NYT)是一家美國日報,由紐約時報公司於1851年9月18日在美國紐約創辦和持續出版。和《华尔街日报》的保守派旗舰报纸地位相对应,《纽约时报》是美国親自由派的第一大报。 它最初被称作《纽约每日时报》(The New-York Daily Times),创始人为亨利·J·雷蒙德和。.

新!!: 弦理論和纽约时报 · 查看更多 »

真空

真空是一種不存在任何物質的空間狀態,是一種物理現象。在真空中,聲波因為沒有介質而無法傳遞,但電磁波的傳遞不受真空的影響。粗略地說,真空是指在一區域之內的氣壓遠遠小於大氣壓力。真空常用帕斯卡(Pascal)或托爾(Torr)做為壓力的單位。目前在自然環境裡,只有外太空堪稱最接近真空的空間。 真空下的氣壓為零,有些情形下,氣壓小於大氣壓力,但不為零,此時稱為局部真空,有些也簡稱為真空。 在局部真空的情形下,若其他條件不變,氣壓越低,表示越接近真空。例如一般的吸塵器的吸力可以使氣壓降低20%。也可以以產生更接近真空的條件,像化學、物理及工程常見的腔體,其氣壓可以到大氣壓力的10−12,粒子密度為100粒子/cm3,對應約100粒子/cm3。外太空更接近真空,相當於平均一立方公尺只有幾個氫原子,估計本星系群的密度為 for the Local Group,原子質量單位為,大約一立方公尺有40個原子。根據現代物理學的了解,即使空間中的所有物質都移除了,因為量子涨落、暗能量、經過的γ-射线和宇宙射线、微中子等現象,空間仍然不會是完全的真空。在近代的粒子物理中,將視為是物質的基態。 自古希臘起,真空就是常帶來爭議的哲學議題,但到了十七世紀西方才開始實驗上的研究。埃萬傑利斯塔·托里切利在1643年進行了第一個真空的實驗,而隨著他大氣壓力理論的出現,也開始產生其他的實驗技術。托里切利真空是將一端封閉的長玻璃容器(超過76公分)中裝滿水銀,倒置在裝滿水銀的容器中,長玻璃容器上方的真空即為托里切利真空。 20世紀在電燈泡及真空管問世後,真空變成一個有價值的工業工具,也出現了許多產生真空的技術。载人航天的進展也讓真空對人類及其他生物的影響開始感興趣。.

新!!: 弦理論和真空 · 查看更多 »

爱德华·威滕

爱德华·威滕(Edward Witten,姓氏亦譯為--、維敦或惠滕,),美国犹太裔数学物理学家、菲尔兹奖得主,也是普林斯顿高等研究院教授。他是弦理论和量子场论的顶尖专家,创立了M理论。爱德華·威滕被視為當代最偉大的物理學家之一,他的一些同行甚至認為他是愛因斯坦的後繼者之一。國際數學聯盟於1990年授予他菲爾茲獎,是數學界的最高榮譽,相當於數學界的諾貝爾獎。爱德華·威滕也是唯一獲得這項榮譽的物理學家。.

新!!: 弦理論和爱德华·威滕 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 弦理論和电子 · 查看更多 »

电磁学

电磁学(英語:electromagnetism)是研究电磁力(電荷粒子之间的一种物理性相互作用) 的物理学的一个分支。电磁力通常表现为电磁场,如電場、磁場和光。电磁力是自然界中四种基本相互作用之一。其它三种基本相互作用是强相互作用、弱相互作用、引力。 電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關係的一門學科。 英文单词electromagnetism是两个希腊语词汇ἢλεκτρον(ēlektron,“琥珀”)和μαγνήτης(magnetic源自"magnítis líthos"(μαγνήτης λίθος),意思是“镁石”,一种铁矿)的合成词。研究电磁现象的科学是用电磁力定义的,有时称作洛伦兹力,是既含有電也含有磁的现象。 电磁力在决定日常生活中大多数物体的内部性质中发挥着主要作用。常见物体的电磁力表现在物体中单个分子之间的分子间作用力的结果中。电子被电磁波力学束缚在原子核周围形成原子,而原子是分子的构成单位。相邻原子的电子之间的相互作用产生化學过程,是由电子间的电磁力与动量之间的相互作用决定的。 电磁场有很多种数学描述。在经典电磁学中,电场用欧姆定律中的電勢与电流描述,磁場与电磁感应和磁化强度相关,而馬克士威方程組描述了由电场和磁场自身以及电荷和电流引起的电场和磁场的产生和交替。 电磁学理论意义,特别是基于“媒介”中的传播的性质(磁导率和电容率)确立的光速,推动了1905年阿尔伯特·爱因斯坦的狭义相对论的发展。 虽然电磁力被认为是四大基本作用力之一,在高能量中弱力和电磁力是统一的。在宇宙的历史中的夸克時期,电弱力分割成电磁力和弱力。.

新!!: 弦理論和电磁学 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 弦理論和物理学 · 查看更多 »

狄利克雷边界条件

在数学中,狄利克雷边界条件(Dirichlet boundary condition)也被称为常微分方程或偏微分方程的“第一类边界条件”,指定微分方程的解在边界处的值。求出这样的方程的解的问题被称为狄利克雷问题。.

新!!: 弦理論和狄利克雷边界条件 · 查看更多 »

D-膜

#重定向 D膜.

新!!: 弦理論和D-膜 · 查看更多 »

萊昂哈德·歐拉

莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.

新!!: 弦理論和萊昂哈德·歐拉 · 查看更多 »

西奧多·卡魯扎

西奧多·卡魯扎(Theodor Franz Eduard Kaluza,)出生於德國西里西亞奧波萊。是德國數學家及物理學家,因為他的卡魯扎-克萊因理論使領域方程式捲入5維的空間而聞名。 Category:20世紀數學家 Category:德國數學家 Category:哥廷根大學教師 Category:基爾大學教師 Category:柯尼斯堡大學校友 Category:西里西亞人.

新!!: 弦理論和西奧多·卡魯扎 · 查看更多 »

规范玻色子

规范玻色子是传递基本相互作用的媒介粒子,它们的自旋都为整数,属于玻色子,它们在粒子物理学的标准模型内都是基本粒子。 规范玻色子包括:.

新!!: 弦理論和规范玻色子 · 查看更多 »

费米子

在粒子物理學裏,费米子(fermion)是遵守费米-狄拉克统计的粒子。費米子包括所有夸克與輕子,任何由奇數個夸克或輕子組成的複合粒子,所有重子與很多種原子與原子核都是費米子。術語費米子是由保羅·狄拉克給出,紀念恩里科·費米在這領域所作的傑出貢獻。 費米子可以是基本粒子,例如電子,或者是複合粒子,例如質子、中子。根據相對論性量子場論的自旋統計定理,自旋為整數的粒子是玻色子,自旋為半整數的粒子是費米子。除了這自旋性質以外,費米子的重子數與輕子數守恆。因此,時常被引述的「自旋統計關係」實際是一種「自旋統計量子數關係」。 根據費米-狄拉克統計,對於N個全同費米子,假設將其中任意兩個費米子交換,則由於描述這量子系統的波函數具有反對稱性,波函數的正負號會改變。由於這特性,費米子遵守包利不相容原理:兩個全同費米子不能占有同樣的量子態。因此,物質具有有限體積與硬度。費米子被稱為物質的組成成分。質子、中子、電子是製成日常物質的關鍵元素。.

新!!: 弦理論和费米子 · 查看更多 »

费曼图

费恩曼图(Feynman diagram)是美国物理学家理查德·费曼(即费恩曼)在处理量子场论时提出的一种形象化的方法,描述粒子之间的相互作用、直观地表示粒子散射、反应和转化等过程。使用费恩曼图可以方便地计算出一个反应过程的跃迁概率。 在费恩曼图中,粒子用線表示,费米子一般用实线,光子用波浪线,玻色子用虚线,胶子用圈线。一線與另一線的連接點稱為頂點。费恩曼图的橫軸一般为时间轴,向右为正,向左代表初态,向右代表末态。与时间轴方向相同的箭头代表正费米子,与时间轴方向相反的箭头表示反费米子。.

新!!: 弦理論和费曼图 · 查看更多 »

超對稱粒子

在粒子物理學裏,超對稱粒子或超伴子是一種以超對稱聯係到另一種較常見粒子的粒子。在這物理理論中,每種費米子都應有一種玻色子“拍檔”(費米子的超對稱粒子),反之亦然。沒有“破缺”的超對稱預測:一顆粒子和其超對稱粒子都應有完全相同的質量。至今仍然沒有標準模型粒子的超對稱粒子被發現。這可能表示超對稱理論是錯誤的,或超對稱並不是一種“不破”的對稱性。如果超對稱粒子被發現,其質量會決定超對稱破裂時的尺度 就實純量的粒子(如軸子)而言,它們有一個費米子超對稱粒子,也有一個實純量場。 在延伸的超對稱裏,一種特定粒子可能會有多于一個超對稱粒子。舉例,在四維空間裏,一個光子會有兩個費米超對稱粒子和一個純量超對稱粒子。 在零維的情況下(常被稱作矩陣力學),有可能存在超對稱,但沒有超對稱粒子。然而,這只有在當超對稱性不包含超對稱粒子的情況下才成立。.

新!!: 弦理論和超對稱粒子 · 查看更多 »

超對稱性

#重定向 超对称.

新!!: 弦理論和超對稱性 · 查看更多 »

超弦理論

超弦理论(Superstring Theory),属于弦理论的一种,有五個不同的超弦理論,也指狭义的弦理论。是一種引進了超對稱的弦論,其中指物質的基石為十維時空中的弦。.

新!!: 弦理論和超弦理論 · 查看更多 »

背景獨立

在理論物理,背景獨立(英文:background independence)是指一個理論中的定義方程獨立於時空的實際形狀以及不同時空內場的值。如此的理論應不需有特定的座標系。而且,對於不同的時空構成或背景,那些方程應具不同解。.

新!!: 弦理論和背景獨立 · 查看更多 »

阿贝尔群

阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.

新!!: 弦理論和阿贝尔群 · 查看更多 »

膠子

没有描述。

新!!: 弦理論和膠子 · 查看更多 »

重整化

重整化(Renormalization)是量子场论、场的统计力学和自相似几何结构中解决计算过程中出现无穷大的一系列方法。 在量子场论发展的早期,人们发现许多圈图(即微扰展开的高阶项)的计算结果含有发散(即无穷大)项。重整化是解决这个困难的一个方案。一个理论如果只有有限种发散项,则可以在拉氏量中引进有限数目的项来抵消这些无穷大项,这种情形被称为可重整。反之,如果理论中有无限种发散项,则称为不可重整。 可重整化曾被认为一个场论所必需满足的自洽性要求。它在量子电动力学和量子规范场论的发展过程中起过重要的作用。粒子物理的标准模型也是可重整的。 现代场论的观点认为所有理论都只是有效理论,它们都有它们的适用范围。除了所谓的终极理论,所有理论在原则上都是不可重整的。在这种观点下,重整化只是联系不同能标下理论的一种方法。 例如: I.

新!!: 弦理論和重整化 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 弦理論和量子力学 · 查看更多 »

量子引力

量子引力,是對引力場進行量子化描述的理論,屬於萬有理論之一。研究方向主要嘗試結合廣義相對論與量子力學,是當前物理學尚未解决的問題。當前主流嘗試理論有:超弦理論、迴圈量子重力理論。引力波的发现,为量子引力理论提供了新的佐证。.

新!!: 弦理論和量子引力 · 查看更多 »

量子场论

在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.

新!!: 弦理論和量子场论 · 查看更多 »

量子漲落

#重定向 量子涨落.

新!!: 弦理論和量子漲落 · 查看更多 »

Β函数

Β函数,又称为贝塔函数或第一类欧拉积分,是一个特殊函数,由下式定义: \! 其中\textrm(x), \textrm(y) > 0\,。.

新!!: 弦理論和Β函数 · 查看更多 »

Γ函数

\Gamma \,函数,也叫做伽瑪函數(Gamma函数),是階乘函數在實數與複數上的擴展。對於實數部份為正的複數z,伽瑪函數定義為: 此定義可以用解析開拓原理拓展到整個複數域上,非正整數外。 如果z為正整數,則伽瑪函數定義為: 這顯示了它與階乘函數的聯繫。可見,伽瑪函數將n!拓展到了實數與複數域上。 在概率論中常見此函數,在組合數學中也常見。.

新!!: 弦理論和Γ函数 · 查看更多 »

M理论

M理論(M-theory)是物理學中將各種相容形式的超弦理論統一起來的理論。此理論最早由愛德華·威滕於1995年春季在南加州大學舉行的一次弦理論会议中提出。威滕的報告啟動了一股研究弦理論的熱潮,被稱為。 弦理論學者在威滕的報告之前已經識別出五種不同的超弦理論。儘管這些理論看上去似乎非常不一樣,但多位物理學家的研究指出這些理論有着微妙且有意義的關係。特別而言,物理學家們發現這些看起來相異的理論其實可以透過兩種分別稱為S對偶和T對偶的數學變換所統合。威滕的猜想有一部份是基於這些對偶的存在,另有一部份則是基於弦理論與11維超重力場論的關係。 儘管尚未發現M理論的完整表述,這種理論應該能夠描述叫膜的二維及五維物體,而且也應該能描述低能量下的11維超引力。現今表述M理論的嘗試一般都是基於矩陣理論或AdS/CFT對偶。威滕表示根據個人喜好M應該代表Magic(魔術理論)、Mystery(神秘理論)或Membrane(膜理論),但應該要等到理論更基礎的表述出現後才能決定這個命名的真正意義。 有關M理論數學架構的研究已經在物理和數學領域產生了多個重要的理論成果。弦理論學界推測,M理論有可能為研發統合所有自然基本力的統一理論提供理論框架。當嘗試把M理論與實驗聯繫起來時,弦理論學者一般會專注於使用額外維度緊緻化來建構人們所處的四維世界候選模型,但是到目前為止,物理學界還未能證實這些模型是否能產生出人們所能觀測到(例如在大型強子對撞機中)的物理現象。.

新!!: 弦理論和M理论 · 查看更多 »

P膜

#重定向 膜 (物理學).

新!!: 弦理論和P膜 · 查看更多 »

Sheldon Glashow

#重定向 谢尔登·格拉肖.

新!!: 弦理論和Sheldon Glashow · 查看更多 »

李奧納特·蘇士侃

李奧納特·蘇士侃(Leonard Susskind,),美国理论物理学家,美国斯坦福大学教授,美國國家科學院院士,美國藝術與科學院院士。.

新!!: 弦理論和李奧納特·蘇士侃 · 查看更多 »

标准模型

在粒子物理學裏,標準模型(Standard Model,SM)是描述強力、弱力及電磁力這三種基本力及組成所有物質基本粒子的理論,屬於量子場論的範疇,並與量子力學及狭义相對論相容。到目前為止,幾乎所有對以上三種力的實驗的結果都合乎這套理論的預測。但是標準模型還不是萬有理論,主要是因為還沒有描述引力。.

新!!: 弦理論和标准模型 · 查看更多 »

标量

--(Scalar),又称--,是只有大小,没有方向,可用實數表示的一個量,實際上純量就是實數,純量這個稱法只是為了區別與向量的差別。标量可以是負數,例如溫度低於冰點。与之相对,向量(又称--)既有大小,又有方向。 在物理学中,标量是在坐标变换下保持不变的物理量。例如,欧几里得空间中两点间的距离在坐标变换下保持不变,相对论四维时空中在坐标变换下保持不变。与此相对的矢量,其分量在不同的坐标系中有不同的值,例如速度。标量可被用作定义向量空间。.

新!!: 弦理論和标量 · 查看更多 »

标量玻色子

标量玻色子(Scalar boson)是指自旋为0的玻色子。标量玻色子的名称起源于量子场论,指的是洛伦兹变换下特定的变换性质。.

新!!: 弦理論和标量玻色子 · 查看更多 »

歐洲核子研究組織

歐洲核子研究組織(法语:Organisation Européenne pour la Recherche Nucléaire;英文:European Organization for Nuclear Research,通常被簡稱為CERN ),是世界上最大的粒子物理學實驗室,也是全球資訊網的發祥地。它成立於1954年9月29日,總部位於瑞士日內瓦西北部郊區的法瑞邊境上,享有治外法權。CERN目前有21個成員國。以色列是第一個也是目前唯一一個非歐洲成員國。 CERN也被用來稱呼它的實驗室,其主要功能是為高能物理學研究的需要,提供粒子加速器和其它基礎設施,以進行許多國際合作的實驗。同時也設立了資料處理能力很強的大型電腦中心,協助實驗數據的分析,供其他地方的研究員使用,形成了一個龐大的網絡中樞。 歐洲核子研究組織現在已經聘用大約三千名的全職員工。並有來自80個國籍的大約6500位科學家和工程師,代表500餘所大學機構,在CERN進行試驗。這大約佔了世界上的粒子物理學圈子的一半。 粒子物理學博物館歡迎一般公眾在辦公時間參觀。除此之外,事前預約的話每天上下午共有兩個時段可以參觀實際的實驗工作,並備有導覽說明。導覽員來自各國的實驗合作者,可以提供多種語言的嚮導。.

新!!: 弦理論和歐洲核子研究組織 · 查看更多 »

正電子

正电子(又称陽電子、反電子、正子,Positron),是電子的反粒子,即電子的對應反物質。它带有+1单位电荷,+1.6×10-19C,自旋为1/2,质量与电子相同,皆为9.10×10-31kg。 正电子与电子碰撞时会产生湮灭现象,这一过程遵守电荷守恒、能量守恒、动量守恒和角动量守恒。在高能情况下,湮灭会生成其他基本粒子。在低能情况下,正负电子湮灭主要生成两个或三个光子(有时也会生成更多光子)。另外,电子和正电子在湮灭之前有时会形成亚稳定的束缚态,即电子偶素。根据电子和正电子的不同自旋状态,电子偶素分为单态(1S0,总自旋为0)和三重态(3S1,总自旋为1)。在真空中,单态电子偶素的半衰期为125ps。三重态电子偶素的半衰期为142ns。 当能量超过1.02兆电子伏特的光子经过原子核附近时(成對產生),或者在放射性元素的正β衰变中(通過弱相互作用),都有可能产生正电子。 1930年英国物理学家保罗·狄拉克从理论上预言了正电子的存在,1932年美国物理学家卡尔·戴维·安德森在宇宙射线中发现了正电子。.

新!!: 弦理論和正電子 · 查看更多 »

日食

--,是一种天文現象,只在月球運行至太陽與地球之間時發生。這時,對地球上的部分地區來說,月球位于太阳前方,因此来自太阳的部分或全部光线被挡住,看起来好像是太阳的一部分或全部消失了。日食只在朔,即月球與太陽呈現合的狀態時發生。 日食分為三種,包括日全食、日環食、日偏食,其中較罕見的是全環食,只發生在地球表面與月球本影尖端非常接近的情形下,這時不同地區會出現日偏食、日全食和日環食三種不同的日食。日全食經常吸引許多遊客和天文愛好者特地到海外去觀賞日全食。例如,在1999年8月11日日食發生在歐洲的日全食,吸引了非常多觀光客特地前去觀賞,也有旅行社推出專門為這些遊客設計的行程。.

新!!: 弦理論和日食 · 查看更多 »

时空

时空(时间-空间,时间和空间)是一种基本概念,分别属于物理学、天文学、空间物理学和哲学。并且也是这几个学科最重要的最基本的概念之一。 空间在力学和物理学上,是描述物体以及其运动的位置、形状和方向等抽象概念;而时间则是描述运动之持续性,事件发生之顺序等。时空的特性,主要就是通过物体,其运动以及与其他物体的相互作用之间的各种关系之汇总。空间和时.

新!!: 弦理論和时空 · 查看更多 »

手徵性

手徵性(chirality)也称手性,是物理学中的一个概念。以螺旋为例,定义其手性时,可使右手大拇指指向螺旋的轴向,其余四指握拳并据此比较螺旋的旋转的前进方向。如果螺旋是顺着四指(由指根向指尖)趋向大拇指指尖的方向,则该螺旋称为右手性的;反之,则称为左手性的。 该方法可以更明白地表达成:顺螺旋的轴向观察,如果看到的螺旋是逆时针接近观察位置的,则为右手性的;反之为左手性的。 这个方法操作起来和电磁学中有关电流方向和感生磁场方向的安培定理(Ampére rule)的方式差不多,该定理的两种典型情况分别是:.

新!!: 弦理論和手徵性 · 查看更多 »

重定向到这里:

弦学弦理论弦线学弦线理论弦論弦论

传出传入
嘿!我们在Facebook上吧! »