徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

室女A星系

指数 室女A星系

室女A星系(也稱為梅西爾87、M87或NGC 4486)最常見的是其英文縮寫M87,常稱之為「M87星系」。M87位在室女座,是巨大的橢圓星系,也是銀河系附近幾個質量最大星系其中之一,擁有幾項受矚目的特性,第一,其球狀星團數量特別多──M87星系裡共含12,000個球狀星團,參考之下,環繞銀河系的球狀星團數量為150-200個。其二,該星系由核心發出一道向外延伸約1,500秒差距(4900光年)的高能電漿噴流,運動速度達相對論速度,與光速已相當接近。M87是天空中最明亮的電波源之一,也是備受業餘天文學家和專業天文學者熱衷觀測和研究的目標。 法國天文學家查爾斯·梅西爾於1781年發現M87。熱愛彗星觀測的梅西爾當時是為了協助同好避免在觀測時常誤將彗星與其他天體混淆,所以編製一份星雲列表,M87名列表上編號第87個。M87是室女星系團北方次明亮的星系,距離地球1,640萬秒差距(5,350萬光年)。和盤狀的螺旋星系不同的是,M87並沒有明顯塵埃帶 ,外觀呈橢圓形,幾乎沒有任何特殊形狀,亮度分布和典型的橢圓星系一樣,由星系中心向外遞減,越外亮度越暗。M87的恆星佔其質量大約六分之一,呈球狀對稱分佈,恆星分布密度,由星系核心向外呈遞減,越靠外圍的恆星密度越低。位在星系中心是其超大質量黑洞,也是活躍星系核的主成分,該天體在各波段都發出強烈輻射,尤其電波波段。M87的星系外殼(galactic envelope)延展寬達150kpc(49萬光年)遠,然後中斷,中斷原因可能是和另一星系發生碰撞。恆星之間有瀰散星際介質氣體,豐富的化學元素是由演化後期恆星(evolved star)貢獻。 1997年在德國泰根塞曾以「電波星系M87」為主題舉辦過一次學術專門討論會,20年後,為慶祝「宇宙噴流發現百週年」,天文學家於的2016年再度會集於臺灣臺北,擴大討論黑洞、噴流、宇宙學相關領域最新研究進展。.

103 关系: 偏振后发座同步辐射天文学家太阳质量奥托·斯特鲁维威廉摩根室女座室女座超星系团室女座星系團中央C中央研究院天文及天文物理研究所主序星希伯·柯蒂斯乌普萨拉总目录五帝座一事件視界弥漫星云利克天文台哈伯序列哈勃空间望远镜公里光年CD型星系皇家天文學會月報矮星系球狀星團磁場秒差距类星体約翰·路易·埃米爾·德雷耳約翰·赫歇爾紅巨星分支技術红外线美國海軍研究實驗室爾格甚大望远镜焦耳熱輻射熱拉爾·佛科留斯異世奇人特殊星系圖集相对论速度相对论性喷流相空間盖革计数器白沙导弹靶场螺旋星系蝎虎座BL型天体順行和逆行...行星状星云角分角秒角距離高能立體視野望遠鏡超大質量黑洞超大质量黑洞超光速運動超新星黑洞赤纬钱德拉X射线天文台银河系臺北市立天文科學教育館金屬量電子伏特電波星系雙子星天文台造父变星進動虎克式望遠鏡Ia超新星J2000.0M49M84M86NGC 1316NGC天體表暗物质查尔斯·梅西耶東次將格陵蘭望遠鏡梅西耶天体列表梅西耶天體椭圆星系標準燭光比例沃尔特·巴德泰根塞活动星系核漸近巨星分支本星系群有效半徑成像星系分類星際大戰星雲和星團總表星际物质星族新地球方位角攝影星等愛德文·哈勃 扩展索引 (53 更多) »

偏振

偏振(polarization)指的是横波能夠朝著不同方向振盪的性質。例如電磁波、引力波都會展示出偏振現象。纵波则不會展示出偏振現象,例如傳播於氣體或液體的聲波,其只會朝著傳播方向振盪。如右圖所示,緊拉的細線可以展示出線偏振現象與圓偏振現象。 電磁波的電場與磁場彼此相互垂直。按照常規,電磁波的偏振方向指的是電場的偏振方向。在自由空間裏,電磁波是以橫波方式傳播,即電場與磁場又都垂直於電磁波的傳播方向。理論而言,只要垂直於傳播方向的方向,振盪的電場可以呈任意方向。假若電場的振盪只朝著單獨一個方向,則稱此為「線偏振」或「平面偏振」;假若電場的振盪方向是以電磁波的波頻率進行旋轉動作,並且電場向量的矢端隨著時間流意勾繪出圓型,則稱此為「圓偏振」;假若勾繪出橢圓型,則稱此為「橢圓偏振」;對於這兩個案例,又可按照在任意位置朝著源頭望去,電場隨時間流易而旋轉的順時針方向、逆時針方向,將圓偏振細分為「右旋圓偏振」、「左旋圓偏振」,將橢圓偏振細分為「右旋橢圓偏振」、「左旋橢圓偏振」;這性質稱為手徵性。 光波是一種電磁波。很多常見的光學物質都具有各向同性,例如玻璃。這些物質會維持波的偏振態不變,不會因偏振態的不同而展現出不同的物理行為。可是,有些重要的雙折射物質或光學活性物質具有各向異性。因此,偏振方向的不同,波的傳播狀況也不同,或者,波的偏振方向會被改變。起偏器是一種光學濾波器,只能讓朝著某特定方向偏振的光波通過,因此,可以將非偏振光變為偏振光。 在涉及到橫波傳播的科學領域,例如光學、地震學、無線電學、微波學等等,偏振是很重要的參數。激光、光纖通信、無線通信、雷達等等應用科技,都需要完善處理偏振問題。 極化的英文原文也是「polarization」,在英文文獻裏,偏振與極化兩個術語通用,都是使用同一個詞彙來表達,只有在中文文獻裏,才有不同的用法。一般來說,偏振指的是任何波動朝著某特定方向振盪的性質,而極化指的是各個帶電粒子因正負電荷在空間裡分離而產生的現象。.

新!!: 室女A星系和偏振 · 查看更多 »

后发座

后发座(拉丁语名称Coma Berenices),北天星座,面积386.47平方度,占全天面积的0.937%,在全天88个星座中,面积排行第四十二位。后发座中亮于5.5等的恒星有23颗,最亮星为周鼎一(后发座β),视星等为4.26。每年4月2日子夜后发座中心经过上中天。银河坐标的北极位于后发座赤经 12h 51.42m 赤纬27° 07.8′的地方。.

新!!: 室女A星系和后发座 · 查看更多 »

同步辐射

同步辐射是带电粒子的運動速度接近光速(v≈c)在电磁场中偏转时,沿運動的切線方向发出的一种电磁辐射,最先在电子同步加速器上发现,故得此名,又称同步加速器辐射。它与回旋辐射(由回旋加速器产生的辐射)类似,区别是同步辐射中的电子速度更高,已接近光速,要考虑相对论效应。 由于重子的静止质量比电子大三个數量级以上,即使在TeV级的质子同步加速器中,因同步辐射造成的能量损失依然是不重要的。而对MeV级的电子同步加速器,同步辐射已十分显著。同步辐射使粒子在横向和纵向的振荡阻尼,并与量子起伏达到平衡态。这也是为什么电子同步加速器中束流易于稳定和束流发射度较小且不依赖于入射束性能的原因。 由于同步辐射造成的能量损失是阻碍电子同步加速器能量提高的主要因素。同时又发现它具有宽阔的连续光谱、高度的准直性和偏振性等特点,加上高功率和高亮度,使电子储存环成为一种性能优异的新型强光源而得到广泛应用。同步辐射又是天体物理中的一种重要辐射机制。.

新!!: 室女A星系和同步辐射 · 查看更多 »

天文学家

天文学家是研究天文学、宇宙学、天体物理学等相关学科的科学家。因为有些哲学家、物理学家、数学家对天文理论有着不可忽视的影响,所以下面的列表中也包括这些人。.

新!!: 室女A星系和天文学家 · 查看更多 »

太阳质量

太阳质量(符號為)是天文学上用于测量恒星、星团或星系等大型天体的质量单位,定义为太阳的质量,约为2×1030千克,表示为: 1个太阳质量是地球质量的333000倍。 太陽質量也可以用年的長度、地球和太陽的距離天文單位和萬有引力常數(G)的形式呈現: 現在,天文單位和萬有引力常數的數值都已經被精確的測量,然而,還是不太常用太陽質量來表示太陽系的其他行星或聯星的質量;只在大質量天體的測量上使用。現今,使用行星際雷達已經測出很準確的天文單位和" G ",但是太陽質量在習俗中仍然繼續被當成天文學歷史上未解的謎題來探究。.

新!!: 室女A星系和太阳质量 · 查看更多 »

奥托·斯特鲁维

奥托·路德維戈維奇·斯特鲁维(Otto Lyudvigovich Struve,),俄裔美国天文学家,波羅的海德國人、俄国天文学家路德維希·斯特鲁维之子。.

新!!: 室女A星系和奥托·斯特鲁维 · 查看更多 »

威廉摩根

#重定向 威廉·威爾遜·摩根.

新!!: 室女A星系和威廉摩根 · 查看更多 »

室女座

室女座(Virgo,天文符号:♍),是最大的黄道帶星座,面积1294.43平方度,占全天面积的3.318%,在全天88个星座中,面积排行第二位,仅次于長蛇座。室女座中亮于5.5等的恒星有58颗,最亮星为角宿一(室女座α),视星等为0.98。每年4月11日子夜室女座中心经过上中天。现在的秋分点位于右执法(室女座β)附近。 在翻譯的外國文献中,最早出現「室女座」名稱的是清朝光緒二十三年(1896年)的《天文揭要》。.

新!!: 室女A星系和室女座 · 查看更多 »

室女座超星系团

#重定向 室女超星系团.

新!!: 室女A星系和室女座超星系团 · 查看更多 »

室女座星系團

室女座星系團(Virgo Cluster)是一個距離在53.8±0.3百萬光年(16.5±0.1百萬秒差距),位置在室女座方向上的星系團。它擁有約1,300(也可能高達2,000)個星系,并組成更巨大的室女座超星系團的中心部份,而我們銀河系所在的本星系群只是這個集團的外圍成員。估計這個集團的中心8度半徑(約220萬秒差距)範圍內的質量大約是1.2M☉。 這個集團中較明亮的一些星系,包括巨大橢圓星系M87,都在1770年代末至1780年代初被梅西爾收錄在他的類似彗星天體的目錄中。它們最初被形容為「不含恆星的星雲」(nebulae without stars),直到1920年代人們才認清它們的真正本質。 這個星系集團的中心部分在室女座中延伸的弧度長達8度,其中有許多星系都能用小望遠鏡看見。.

新!!: 室女A星系和室女座星系團 · 查看更多 »

中央C

#重定向 C (音名).

新!!: 室女A星系和中央C · 查看更多 »

中央研究院天文及天文物理研究所

中華民國中央研究院天文及天文物理研究所(Institute of Astronomy and Astrophysics, Academia Sinica,縮寫為 ASIAA)是中央研究院的其中一個研究單位,前身是中央研究院在南京時期的天文研究所。該研究所現位於國立臺灣大學總校區內的天文數學館。.

新!!: 室女A星系和中央研究院天文及天文物理研究所 · 查看更多 »

主序星

主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。.

新!!: 室女A星系和主序星 · 查看更多 »

希伯·柯蒂斯

希伯·道斯特·柯蒂斯(Heber Doust Curtis,),美国天文学家。 柯蒂斯1872年出生于美国密执安州的马斯基根,1893年在密执安大学获得硕士学位,后在加利福尼亚州教授拉丁语和希腊语。1896年他成为天文学教授,于1898年进入利克天文台工作,1902年获得弗吉尼亚大学天文学的博士学位。 根据范·马南(Adriaan van Maanen,1884—1946)的观测结果,柯蒂斯认为观测到的旋涡星云是远在银河系以外,与银河系相似的恒星系统,这一点与美国天文学家哈罗·沙普利坚持的银河系是宇宙中的主要天体的观点不同。1920年4月26日,美国国家科学院在华盛顿举办了一场著名的辩论,史称“沙普利-柯蒂斯之争”。双方分别就各自的观点进行了时间为半个小时的报告。由于柯蒂斯具有良好的口才,多数人认为他在这场争论中略微占了上风。后来的观测表明柯蒂斯的观点是基本正确的。 柯蒂斯发现,在M31的附近观测到大量的新星,显示它们与M31有物理上的联系,并且这些新星的亮度比其他新星暗很多。柯蒂斯由此计算出M31的距离约为100k秒差距,并从角大小估算出M31的尺度约为3k秒差距,与当时认为银河系的大小相近。后来的研究表明,柯蒂斯错误地将新星与M31中的超新星相混淆,使得M31的距离被低估了5倍。.

新!!: 室女A星系和希伯·柯蒂斯 · 查看更多 »

乌普萨拉总目录

乌普萨拉总目录(Uppsala General Catalogue)是一个包括了12921个在北半球可见的星系目录。于1973年首次发表。 这些天体被称为UGC天体。.

新!!: 室女A星系和乌普萨拉总目录 · 查看更多 »

五帝座一

五帝座一(β Leo / 獅子座β)是獅子座內的第二亮星,是一顆A型恆星,與地球的距離大約是36光年(11秒差距),視星等+2.14,但發光能力是太陽的12倍。五帝座一是一顆變星,在分類上屬於盾牌δ型變星,意味著變光幅度不大,週期也只有幾個小時。.

新!!: 室女A星系和五帝座一 · 查看更多 »

事件視界

事件視界(event horizon),是一種時空的曲隔界線。視界中任何的事件皆無法對視界外的觀察者產生影響。在黑洞周圍的便是事件視界。在非常巨大的重力影響下,黑洞附近的逃逸速度大於光速,使得任何光線皆不可能從事件視界內部逃脫。根據廣義相對論,在遠離視界的外部觀察者眼中,任何從視界外部接近視界的物件,將須要用無限長的時間到達視界面,其影像會經歷無止境逐漸增強的紅移;但該物件本身卻不會感到任何異常,並會在有限時間之內穿過視界。 Ahmed Almheiri, Donald Marolf, Joseph Polchinski, James Sully近年的研究認為事件視界會造成黑洞火牆,而火牆的存在跟黑洞本身相矛盾。 其他相關但不同的視界包括同樣可以在黑洞旁找到的絕對視界線與。另有一些相關的名詞包括柯西與、 克爾度規中的動圈、宇宙學中的宇宙學視界等。.

新!!: 室女A星系和事件視界 · 查看更多 »

弥漫星云

弥漫星云,意思是朦胧,云雾。弥漫星云没有规则的形状,也没有明显的边界。实际上,除环状对称的行星状星云外,所有的星云都可以称作形状不规则的弥漫星云。 弥漫星云平均直径大约几十光年,平均密度10-100原子/cm3。大多数弥漫星云的质量在10个太阳质量左右 弥漫星云多种多样大致可分为:.

新!!: 室女A星系和弥漫星云 · 查看更多 »

利克天文台

利克天文台(Lick Observatory)位于美国加利福尼亚州圣荷西市的东部,汉密尔顿山的山顶上,海拔4209英呎,由聖塔克魯茲加利福尼亞大學管理。 利克天文台是世界上首个建于山顶的永久性台址,使用美国富豪詹姆斯·利克的遗产,建造于1876年至1887年间。1887年,利克的遗体安葬在口径36英寸(91厘米)的折射望远镜的基座下面,这台望远镜被命名为詹姆斯·利克望远镜。1888年1月3日,利克望远镜开光,是当时世界上最大的折射望远镜。直到1897年这一纪录才被叶凯士天文台打破。1888年4月,利克天文台移交给加利福尼亚大学董事会管辖,成为世界上首个建于山顶的永久天文台。首任台长是爱德华·霍顿。1898年,詹姆斯·基勒担任天文台的第二任台长。 随着圣荷西的日益繁华,光污染逐渐开始对天文台的观测工作造成影响。1980年代,圣荷西的路灯全部改用低压钠灯,这种灯的灯光容易用望远镜上的滤光片去除。为了感谢圣荷西在降低光害方面所做的努力,利克天文台发现的第6216号小行星命名为“圣荷西”。 利克天文台的主要观测设备有:.

新!!: 室女A星系和利克天文台 · 查看更多 »

哈伯序列

哈伯序列是哈伯在1926年提出的星系型態分類法,由於它的圖形表示法很像音叉的形狀,所以也稱為哈伯音叉圖。 哈伯的系統建立在目視觀測(原始的攝影乾片)的基礎上,將大部分的星系分為三類- 橢圓星系、透鏡星系和螺旋星系,第四類則是看起來形狀不規則的不規則星系。直至今日,無論是專業的天文研究還是業餘天文學的觀測,哈伯序列仍是最常用的星系分類法。.

新!!: 室女A星系和哈伯序列 · 查看更多 »

哈勃空间望远镜

哈勃太空望遠鏡(Hubble Space Telescope,HST),是以天文學家愛德溫·哈伯為名,在地球軌道的望遠鏡。哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。由于它位于地球大氣層之上,因此獲得了地基望遠鏡所沒有的好處:影像不受大氣湍流的擾動、視相度絕佳,且无大氣散射造成的背景光,還能觀測會被臭氧層吸收的紫外線。於1990年發射之後,已經成為天文史上最重要的儀器。它成功弥补了地面觀測的不足,幫助天文學家解決了許多天文学上的基本問題,使得人类对天文物理有更多的認識。此外,哈勃的超深空視場则是天文學家目前能獲得的最深入、也是最敏銳的太空光學影像。 哈勃太空望遠鏡和康普頓γ射線天文台、錢德拉X光天文台、史匹哲太空望遠鏡都是美國太空總署大型轨道天文台计划的一部分。哈勃空间望远镜由NASA和ESA合作共同管理。.

新!!: 室女A星系和哈勃空间望远镜 · 查看更多 »

公里

--亦稱--( → kilometre、),是一种長度計量單位,等於一千米,是國際單位制之一,符號为km。.

新!!: 室女A星系和公里 · 查看更多 »

光年

光年(light-year)是長度單位之一,指光在真空中一年時間內傳播的距離,大約9.46兆千米(9.46千米或英里。 光年一般用於天文學中,是用來量長度很長的距離,如太陽系跟另一恆星的距離。光年不是時間的單位。 天文學中另三個常用的單位是秒差距、天文單位與光秒,一秒差距等於3.26光年,一天文單位為149,597,870,700公尺,一光秒是光一秒所走的距離為299,792,458公尺。 例如,世界上最快的飛機可以達到每小時1萬1260千米的時速(2004年11月16日,美國航空航天局(NASA)的飛機最高速度紀錄是1萬1260千米/小時),依照這樣的速度,飛越一光年的距離需要用9萬5848年。而常見的客機大約是885千米/小時,這樣飛行1光年則需要122萬0330年。目前人造的最快物體是2016年7月5日抵達木星極軌道的朱諾號(2011年8月5日發射升空),最高速度為73.61千米/秒(即約26萬5000千米/小時),這樣的速度飛越1光年的距離約需要4075年的時間。.

新!!: 室女A星系和光年 · 查看更多 »

CD型星系

cD型星系或cD星系,是星系型態分類中的一種類型,是巨大的橢圓星系,D型的子類型,有著恆星的巨大星系暈。它們可以在一些富星系團接近中心的地區被發現,它們也被稱為超巨橢圓星系或中心主導星系。.

新!!: 室女A星系和CD型星系 · 查看更多 »

皇家天文學會月報

皇家天文學會月報(Monthly Notices of the Royal Astronomical Society,MNRAS)是世界上最主要的天文學和天文物理學領域同行評審的學術期刊之一。出刊於1827年,發表作為天文等相關領域原創研究的論文或事件通報。另外,該期刊實際上並非每月出刊,所發表的文章也不僅限於英國皇家天文學會的訊息 。.

新!!: 室女A星系和皇家天文學會月報 · 查看更多 »

矮星系

星系是由數十億顆恆星組成,一種比較小的星系,比我們銀河系有二千至四千億顆恆星少了許多。大麥哲倫星系,大約有300億顆恆星,當在討論在銀河系周圍的星系時,有時也會被歸類為矮星系。 在本星系群有許多的矮星系:這些小星系多數都以軌道環繞著大星系,像是銀河系、仙女座星系、和三角座星系。 銀河系有14個已知的矮星系環繞著,參考銀河系有更多的資料。 矮星系有許多不同的分類法:.

新!!: 室女A星系和矮星系 · 查看更多 »

球狀星團

球狀星團是外觀呈球形,在軌道上繞著星系核心運行,很像衛星的恆星集團。球狀星團因為被重力緊緊束縛,使得恆星高度的向中心集中,因此外觀呈球形。 球狀星團被發現多在星系的暈之中,遠比在星系盤中被發現的疏散星團擁有更多的恆星,但球狀星團的數量相較疏散星團相對的稀少,在銀河系內迄今只發現大約150個至158個。在銀河系內也許還有10- 20個或更多個尚未被發現。這些球狀星團環繞星系公轉的半徑可以達到40,000秒差距(大約130,000光年)或更遠的距離。越大的星系擁有越多:以仙女座星系為例,可能有500個球狀星團。有些巨大的橢圓星系,特別是位於星系團中心的,像是M87,有多達13,000個球狀星團。 在本星系群擁有足夠質量的星系,都有關聯性的球狀星團,並且幾乎每個曾經探測過的大質量星系都被發現擁有球狀星團的系統。人馬座矮橢球星系和有 爭議的大犬座矮星系似乎正在將它們的球狀星團(像是帕羅馬12)捐贈給銀河系。這表明這個星系的許多球狀星團在之前是如何取得的。 雖然這些球狀團看起來包含一些最初在銀河系產生的恆星,但它們的起源和在銀河系演化中扮演的角色仍不清楚。球狀星團看起來和矮橢圓星系有著顯著的不同,它是母星系形成恆星時的一部分,而不是一個獨立的星系。然而,由天文學家最近的推測顯示,球狀星團和矮橢球可能不能很明確的區分為兩種不同類型的天體。.

新!!: 室女A星系和球狀星團 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 室女A星系和磁場 · 查看更多 »

秒差距

差距(parsec,符號為pc)是一個宇宙距離尺度,用以測量太陽系以外天體的長度單位。1秒差距定義為某一天體與1天文單位的為1時的距離,但於2015年時被重新定義為一個精確值,為天文單位。1秒差距的距離等同於3.26光年(31兆公里或19兆英里)。離太陽最近的恆星比鄰星,距離大約為。絕大多數位於距太陽500秒差距內的恆星,可以在夜空中以肉眼看見。 秒差距最早於1913年,由英國天文學家提出。其英語名稱為一個混成詞,由「1角秒(arcsecond)的視差(parallax)」組合而來,使天文學家可以只從原始觀測數據,就能夠進行天文距離的快速計算。由於上述部分原因,即使光年在科普文字與日常上維持優勢地位,秒差距仍受到天文學與天體物理學的喜愛。秒差距適用於銀河系內的短距離表述,但在描述宇宙大尺度的用途上,會將其加上詞頭來應用,如千秒差距(kpc)表示銀河系內與周圍物體的距離,百萬秒差距(Mpc)描述銀河系附近所有星系的距離,吉秒差距(Gpc)則是描述極為遙遠的星系與眾多類星體。 2015年8月,國際天文學聯合會通過B2決議文,將絕對星等與進行標準定義,也包含將秒差距定義為一個精確值,即天文單位,或大約公尺(基於2012年國際天文學聯合會對於天文單位的精確國際單位制定義)。此定義對應於眾多當代天文學文獻中對於秒差距的小角度定義。.

新!!: 室女A星系和秒差距 · 查看更多 »

类星体

類星體 (quasar,,也以QSO或quasi-stellar object為人所知)是極度明亮的活躍星系核(AGN,active galactic nucleus)。大多數星系的核心都有一個超大質量黑洞,它的質量從百萬至數十億太陽質量不等。在類星體和其它形式的活躍星系核,黑洞被氣態的吸積盤環繞著。當吸積盤中的氣體朝向黑洞墬落,能量就會以電磁輻射的形式釋放出來。這些輻射被觀測到可以跨越電波、紅外線、可見光、紫外線、X射線、和γ射線等電磁頻譜的波長。類星體輻射的功率非常巨大:最強大的類星體的光度超過1041 瓦特,是普通星系,例如銀河系,的數千倍。 "類星體"這個名詞源自於準恆星狀電波源(quasi-stellar radio source)的縮寫,因為在20世紀50年代發現這種天體時,被認定為未知物理源的電波發射源。當在可見光的照相圖中篩檢出來時,它們類似可見光的星狀微弱光點。 類星體的高解析影像,特別是哈伯太空望遠鏡,已經證明類星體是發生在星系的中心,一些類星體的宿主星系是強烈的交互作用星系或.

新!!: 室女A星系和类星体 · 查看更多 »

約翰·路易·埃米爾·德雷耳

約翰·路易·埃米爾·德雷耳(John Louis Emil Dreyer,Johan Ludvig Emil Dreyer,),生於丹麥,已故愛爾蘭天文學家。.

新!!: 室女A星系和約翰·路易·埃米爾·德雷耳 · 查看更多 »

約翰·赫歇爾

約翰·弗雷德里克·威廉·赫歇爾爵士,第一代從男爵,FRS,KH(Sir John Frederick William Herschel, 1st Baronet,)出生於英國白金漢郡的斯勞,英国天文學家、數學家、化學家及攝影師,天文學家威廉·赫歇爾的兒子。 約翰·赫歇爾首創以儒略紀日法來紀錄天象日期,他亦在攝影的發展方面作出過重大貢獻。他發現硫代硫酸鈉能作為溴化銀的定影劑。又創造了"photography"(攝影)、"negative"(負片)及"positive"(正片)等名詞。古典攝影工藝是另一項重要發明。.

新!!: 室女A星系和約翰·赫歇爾 · 查看更多 »

紅巨星分支技術

紅巨星分支技術(Tip of the red giant branch,TRGB)是用於天文學上量測距離的主要方法之一。他利用星系中光度最明亮的紅巨星分支上的恆星來量測到那個星系的距離。它曾與哈伯太空望遠鏡配合,一起用於測量在室女座超星系團的本星系團相對運動。 赫羅圖(HR圖)是恆星光度相對於表面溫度的群體圖。像太陽的恆星是在生命中的核心氫燃燒階段,他將出現在赫羅圖對角線上,稱為主序帶的位置。一旦核心的氫耗盡,能量將在環繞著核心進行核融合的殼層中生成。恆星的中心將繼續累積由這種融合產生的氦灰燼,最後恆星將在赫羅圖上遷移至右上角的位置。也就是說,表面的溫度將降低,但恆星整體的亮度會增加。 在某一個點上,核心的氦將到達可以開始進行3氦過程核融合的溫度和壓力。對一顆質量少於1.8倍太陽質量的恆星,這將發生稱為氦閃的一種過程。當它的溫度升高時,依據新的平衡,恆星演化的軌跡會攜帶它向赫羅圖的左邊移動。結果是在赫羅圖上的恆星演化軌跡發生急遽的不連續性。這不連續稱為紅巨星分支翻轉。 當在I波段觀測到遠處在TRGB階段的恆星時,它們的光度因為組成元素中的氦元素相較於它們的質量比較高(金屬量),因此光度是穩定的(感覺遲鈍)。這使得這種技術作為距離指標尤其有用。TRGB適用於老年的恆星(第二星族)。.

新!!: 室女A星系和紅巨星分支技術 · 查看更多 »

红外线

红外线(Infrared,简称IR)是波长介乎微波与可见光之间的电磁波,其波長在760奈米(nm)至1毫米(mm)之間,是波長比紅光長的非可見光,對應頻率約是在430 THz到300 GHz的範圍內。室溫下物體所發出的熱輻射多都在此波段。 红外线是在1800年由天文學家威廉·赫歇爾發現,他發現有一種頻率低于紅色光的輻射,雖然用肉眼看不見,但仍能使被照射物體表面的溫度上昇。太陽的能量中約有超過一半的能量是以红外线的方式進入地球,地球吸收及發射紅外線輻射的平衡對其氣候有關鍵性的影響。 當分子改變其旋轉或振動的運動方式時,就會吸收或發射紅外線。由紅外線的能量可以找出分子的振動模態及其偶極矩的變化,因此在研究分子對稱性及其能態時,紅外線是理想的頻率範圍。紅外線光譜學研究在紅外線範圍內的光子吸收及發射。 红外线可用在軍事、工業、科學及醫學的應用中。紅外線夜視裝置利用即時的近紅外線影像,可以在不被查覺的情形下在夜間觀察人或是動物。紅外線天文學利用有感測器的望遠鏡穿透太空的星塵(例如分子雲),檢測像是行星等星體,以及檢測早期宇宙留下的紅移星體。紅外線熱顯像相機可以檢測隔絕系統的熱損失,觀查皮膚中血液流動的變化,以及電子設備的過熱。红外线穿透云雾的能力比可见光强,像紅外線導引常用在飛彈的導航、熱成像儀及夜視鏡可以用在不同的應用上、红外天文学及遠紅外線天文學可在天文學中應用红外线的技術。.

新!!: 室女A星系和红外线 · 查看更多 »

美國海軍研究實驗室

美國海軍研究實驗室(United States Naval Research Laboratory,縮寫:NRL)是美國海軍和美國海軍陸戰隊的財團法人研究實驗室,進行範圍廣泛的科學研究和先進技術發展。美國海軍研究實驗室是因為愛迪生的鼓励而在1923年成立,在1915年5月的《》社論,愛迪生寫道:“政府應維持一間巨大的研究實驗室……可在無需龐大開支下發展所有軍事和海軍技術。”1946年美國設立後,美國海軍研究實驗室被置於其院長指揮下,如今則直屬。.

新!!: 室女A星系和美國海軍研究實驗室 · 查看更多 »

爾格

格(英文:Erg)是熱量和做功的單位。定义为1达因的力使物体在力的方向上移动一厘米所作的功。 1尔格.

新!!: 室女A星系和爾格 · 查看更多 »

甚大望远镜

大望远镜(Very Large Telescope,缩写为VLT,或譯超大型望遠鏡、特大望遠鏡)為欧洲南方天文台在智利建造的大型光学望远镜,由4台相同的8.2米口径望远镜组成,组合的等效口径可达16米。4台望远镜既可以单独使用,也可以组成光学干涉仪进行高分辨率观测。甚大望远镜位于智利安托法加斯塔以南130公里的帕瑞纳天文台,海拔高度为2,632米,这里气候干燥,一年当中晴夜数量多于340个。 每个甚大望远镜的主镜口径均为8.2米,焦比为F2,重量为22吨,厚18厘米,采用R-C式光學系統,下方安装了有150个促动器的主动光学系统。望远镜支架采用經緯儀装置,镜筒重量为100吨,470吨重的机架漂浮在0.05毫米厚的油膜上,可以灵活地转动。四架望远镜被用当地的马普切语分别命名为Antu、Kueyen、Melipal和Yepun,含义为太阳、月亮、南十字和金星,这些命名是一个智利女学生在欧洲南方天文台发起的命名竞赛中提出的。 甚大望远镜的研制工作始于1986年,耗资超过5亿美元。第一架望远镜太陽(Antu)在1998年建成,1999年4月正式使用,主要仪器是红外和光学波段照相机和摄谱仪。第二架望远镜月亮(Kueyen)于1999年3月建成,2000年4月正式使用,主要仪器是两架大型摄谱仪。第三架望远镜南十字(Melipal)在2000年1月建成,第四架望远镜金星(Yepun)于2000年7月建成,主镜表面研磨精度达到了8.5奈米。2005年和2006年,欧洲南方天文台在甚大望远镜近旁相继建造了4台口径1.8米的辅助望远镜,它们与4台8.2米望远镜共同组成甚大望远镜干涉仪(VLTI)。这些辅助望远镜不会显著增加干涉仪的聚光面积,但是可以增加基线数目,改善成像品质。 甚大望远镜的建设工作已于2012年2月全面完成。 甚大望远镜(VLT)是最富有生产力的陆基天文学设施,在可见光波长运行的设施之间比较,只有哈勃太空望远镜才能产生更多科学论文。其中使用甚大望远镜观察到一个太阳系外行星的第一个直接图像,追踪到在银河系中心超大质量黑洞周围的移动的单个恒星,和观测已知的最遥远的伽玛射线暴余辉。.

新!!: 室女A星系和甚大望远镜 · 查看更多 »

焦耳

耳(簡稱焦)是國際單位制中能量、功或热量的導出單位,符号為J。在古典力學裏,1焦耳等於施加1牛頓作用力經過1公尺距離所需的能量(或做的機械功)。在電磁學裏,1焦耳等於將1安培電流通過1歐姆電阻1秒時間所需的能量。焦耳是因紀念物理學家詹姆斯·焦耳而命名。 以其它單位表示, 1焦耳也可以定義.

新!!: 室女A星系和焦耳 · 查看更多 »

熱輻射

热辐射 (heat radiation)是物体用电磁辐射把热能向外散发的热传方式,是热的三种主要传递方式之一,以熱輻射傳遞熱時不需要介質。任何物體溫度只要高於0K就會釋放熱輻射。.

新!!: 室女A星系和熱輻射 · 查看更多 »

熱拉爾·佛科留斯

熱拉爾·亨利·德·佛科留斯(或翻譯為伏古拉爾,法語:Gérard Henri de Vaucouleurs,)是一位法國天文學家。.

新!!: 室女A星系和熱拉爾·佛科留斯 · 查看更多 »

異世奇人

《異世奇人》(Doctor Who)是英國廣播公司(BBC)制作的一部科幻电视剧,讲述博士(The Doctor)的時間領主(一种能时间旅行的类人外星生物)的冒险经历。他乘坐他的TARDIS(一种有感知能力的时间旅行宇宙飞船)探索宇宙,这艘飞船的外观如同在该剧首播的1963年时在英国随处可见的蓝色警亭。博士同一连串的一道,在面对各种的同时,拯救文明、帮助普通人、纠正错误。 這部被健力士世界紀錄大全列為世界上最長的科幻電視影集,從其整體播出收視率、DVD和書籍出售、iTunes下載量、“非法下載”來看,也被列入有史以來“最成功”的科幻電視影集。此片開播之初,其充滿想像力的劇情、低成本卻有創意的特效及前衛的電音配樂(原創)等原因都讓它備受各界肯定。這個節目在大不列顛被認為是英國流行文化中佔有相當重要的地位的一部分,在別的地方也成為了一個邪典電視喜好。這個節目影響了好幾代英國電視界專業人士,他們中很多人從小便看它長大。許多影評人和普羅大眾贊同這是英國電視史上最好的電視節目之一,曾贏得包括英國學術電視獎最佳電視劇獎、從2005年到2010年的5次英國戲劇類國家電視獎。 博士由多位演員分別擔綱演出,當由一位演員換成另一位演員時,這個改變稱為重生,而博士的身體、相貌會改變,某種程度上,性格也會隨之改變。儘管每個演員詮釋的方式都不同,甚至有時不同的化身會相遇,但他們都定義成同一個角色。博士目前由朱迪·惠特克扮演,她在彼得·卡帕尔蒂之後接演這個角色,同时也是神秘博士正传的第一位女博士。 《異世奇人》也擁有多種的衍生劇(外傳),包括兒童電視節目《珍姐科幻大冒險》、電視劇《-zh-cn:火炬木小组;zh-hk:超疑特工;zh-tw:火炬木;-》、電視劇《》、電視劇《》和1981年單元劇《》(K-9 and Company)試播一集。.

新!!: 室女A星系和異世奇人 · 查看更多 »

特殊星系圖集

特殊星系圖集(Atlas of Peculiar Galaxies)是赫頓·阿普編輯的星系圖集,第一版在1966年由加州理工學院出版,目前總共收錄了338個星系。 編輯的主要目的是將在鄰近區域內發現的各種奇形怪狀與結構的星系照片作為分類上的範例。阿普意識到目前還沒有很好的理由來解釋星系為何會形成螺旋星系或橢圓星系,他領悟到以這些特殊的星系作為實驗的對象,或許能夠了解橢圓星系或螺旋星系被扭曲與變形的物理機制與過程。有了這本圖集,天文學家可能就有了特殊星系的樣品可以做更詳盡的研究。這本圖集雖然不能完整的提供附近天空中每一個特殊星系的圖像,但至少提供了一部份可供觀察的現象和例子。 由於在出版之際,對不同形狀星系形成的物理過程所知有限,星系的排列是依照它們的外觀。第1到101個天體明顯的是外型奇特或是有著小伴侶的單一螺旋星系,第102到145個天體是橢圓或類似橢圓的星系。第146到268是有著螺旋星系或橢圓星系的獨立星系或星系集團,第269到327是雙星系。最後,不能明確歸類於上述任何一種類型的列在332到338號。圖集中大多數的天體早就已經有了其他著名的名稱或標示,但仍有少數是以阿普的編號著名的(像是阿普220)。 現在,對導致特殊星系形成的物理過程已經比當年阿普編輯圖集時有了更多的了解,許多這樣的星系,包括M51 (阿普 85)、阿普220和觸鬚星系(NGC 4038/NGC 4039,或阿普244),都是交互作用星系。少數則單純的只是沒有足夠質量的矮星系,沒有足夠的引力場來形成任何一種可以用語言描述的結構,NGC 1569 (阿普 210)就是圖集中矮星系的例子之一。也有少數是電波星系,這些星系有著活躍星系核,會產生強而有力被稱為無線電噴流的拋射物,圖集中收錄的有鄰近電波星系有M87 (阿普152)和半人馬座 A (阿普153)。.

新!!: 室女A星系和特殊星系圖集 · 查看更多 »

相对论速度

对论速度是显著接近光速的速度,这时计算物体在时空中的运动必须考虑到狭义相对论效应,而不能使用低速下近似的牛顿力学.

新!!: 室女A星系和相对论速度 · 查看更多 »

相对论性喷流

对论性喷流:活动星系核周围的相对论性等离子体束与中心的超大质量黑洞自转轴方向一致,从而沿喷流方向射出 相对论性喷流(英文:Relativistic jet)是来自某些活动星系、射电星系或类星体中心的强度非常高的等离子体喷流。这种喷流的长度可达几千甚至数十万光年。现在一般认为相对论性喷流的直接成因是中心星体吸积盘表面的磁场沿着星体自转轴的方向扭曲并向外发射,因而当条件允许时在吸积盘的两个表面都会形成向外发射的喷流。如果喷流的方向恰巧和星体与地球的连线一致,由于是相对论性粒子束,喷流的亮度会因而发生改变。目前在科学界相对论性喷流的形成机制和物理成分仍然是个有争议的话题,不过一般认为喷流是电中性的,其由电子、正电子和质子按一定比例组成。一般还认为相对论性喷流的形成是解释伽玛射线暴成因的关键。这些喷流具有的洛伦兹因子可达大约100,是已知的速度最快的天体之一。 类似的较小尺寸的相对论性喷流可由中子星或恒星质量黑洞的吸积盘而产生,这类系统经常被称作微类星体。一个著名的例子是SS433,其经过周密观测得到的相对论性喷流速度达到了光速的0.23倍,而大多数微类星体可能具有比这高得多的喷流速度(这一点还没有被更多的周密观测所证实)。其他更小尺寸以及速度更低的喷流可以在很多双星系统中通过加速机制形成,这种加速机制可能和已观测到的地球磁圈与太阳风之间的磁重连接过程相类似。.

新!!: 室女A星系和相对论性喷流 · 查看更多 »

相空間

在數學與物理學中,相空間是一個用以表示出一系統所有可能狀態的空間;系統每個可能的狀態都有一相對應的相空間的點。.

新!!: 室女A星系和相空間 · 查看更多 »

盖革计数器

革计数器(Geiger counter)又叫盖革-米勒计数器(Geiger-Müller counter),是一种用于探测电离辐射的粒子探测器,通常用于探测α粒子和β粒子,也有些型号盖革计数器可以探测γ射线及X射线。.

新!!: 室女A星系和盖革计数器 · 查看更多 »

白沙导弹靶场

白沙导弹靶场(White Sands Missile Range)位于美國新墨西哥州,该导弹靶场由美国海军所管理,面积大约8287平方公里,为美国最大军事设施。它被称作美国陆军导弹的摇篮。.

新!!: 室女A星系和白沙导弹靶场 · 查看更多 »

螺旋星系

螺旋星系是星系的類型之一,但哈伯在1936年最初的描述是星雲的領域(pp. 124–151),並且列在哈伯序列,成為其中的一部分。多數的螺旋星系包含恆星的平坦、旋轉盤面,氣體和塵埃,和中央聚集高濃度恆星,稱為核球的核心。這些通常被許多恆星構成的黯淡暈包圍著,其中許多恆星聚集在球狀星團內。 螺旋星系是以它們從核心延伸到星盤的螺旋結構命名。螺旋臂是恆星正在形成的區域,並且因為是年輕、炙熱的OB星居住的區域,所以比周圍明亮。 大約三分之二的螺旋星系都有附加的,形狀像是棒子的結構,從中心的核球突出,並且螺旋臂從棒的末端開始延伸。棒旋星系相較於無棒的表兄弟的比率可能在宇宙的歷史中改變,80億年前大約只有10%有棒狀構造,25億年前大約是四分之一,直到目前在可觀測宇宙(哈伯體積)已經超過三分之二有棒狀構造。 在1970年代,雖然很難從地球在銀河系中的位置很難觀察到棒狀結構,但我們的銀河系已經被證實為棒旋星系 。在銀河中心的恆星形成棒狀結構,最令人信服的證據來自最近的幾個調查,包括史匹哲太空望遠鏡。 包含不規則星系在內,現今宇宙中的星系有大約60%是螺旋星系。 它們大多是在低密度區域被發現,在星系團的中心則很罕見。.

新!!: 室女A星系和螺旋星系 · 查看更多 »

蝎虎座BL型天体

蝎虎座BL型天体,(英文简称BL Lac object或BL Lac),是一类位于活动星系核心部位的天体,其名字来自其原型蝎虎座的天体BL。特征如下:.

新!!: 室女A星系和蝎虎座BL型天体 · 查看更多 »

順行和逆行

順行是行星這種天體與系統內其他相似的天體共同一致運動的方向;逆行是在相反方向上的運行。在天體的狀況下,這些運動都是真實的,由固有的自轉或軌道來定義;或是視覺上的,好比從地球上來觀看天空。 在英文中「direct」和「prograde」是同義詞,前者是在天文學上傳統的名詞,後者在1963年才在一篇與天文相關的專業文章(J.

新!!: 室女A星系和順行和逆行 · 查看更多 »

行星状星云

行星狀星雲是恆星演化至老年的紅巨星末期,氣體殼層向外膨脹並被電離,形成擴大中的發射星雲,經常以英文的縮寫"PN"或複數的"PNe"來表示。"行星狀星雲"這個名稱源自1780年代的天文學家威廉·赫歇爾,但並不是個適當的名字,只因為當他通過望遠鏡觀察時,這些天體呈現類似於行星的圓盤狀,但又是霧濛濛的雲氣。因此,他結合"行星"與"星雲",創造了這個新名詞。赫歇爾的命名雖然不適當,但仍被普遍的採用,並未被替換。相較於恆星長達數十億年歲月的一生,行星狀星雲只能存在數萬年,只是很短暫的現象。 大多數行星狀星雲形成的機制被認為是這樣:在恆星結束生命的末期,也就是紅巨星的階段,恆星外層的氣體殼被強勁的恆星風吹送進太空。紅巨星在大部分的氣體被驅散後,來自高溫的行星狀星雲核心(PNN,planetary nebula nucleus)輻射的紫外線會將被驅散的恆星外層氣體電離。吸收紫外線的高能氣體殼層圍繞著中央的恆星發出朦朧的螢光,使其成為一個色彩鮮豔的行星狀星雲。 行星狀星雲在銀河系演化的化學上扮演關鍵性的角色,將恆星創造的元素擴散成為銀河系星際物質中的元素。在遙遠的星系內也觀察到行星狀星雲,收集它們的資訊有助於了解化學元素的豐度。 近年來,哈伯太空望遠鏡的影像顯示許多行星狀星雲有著極其複雜和各種各樣的形狀。大約只有五分之一呈現球形,而且其中大多數都不是球對稱。產生各種各樣形狀的功能和機制仍都不十分清楚,但是中央的聯星、恆星風和磁場都可能發揮作用。.

新!!: 室女A星系和行星状星云 · 查看更多 »

角分

角分(minute of angle,简称MOA),又稱弧分(minute of arc、arc minute或minute arc),是量度平面角的單位,符號為′,在不會引起混淆時,可簡稱作分。「角分」二字只限用於描述角度,不能於其他以「分」作單位的情況使用(如時間的分,或者考試分數)。 完整的周角为360度,1度等於60分,1分等於60 秒。以數學等式來表示即:.

新!!: 室女A星系和角分 · 查看更多 »

角秒

角秒,又稱弧秒,是量度平面角的單位,即角分的六十分之一,符號為″。在不會引起混淆時,可簡稱作秒。「角秒」二字只限用於描述角度,不能於其他以「秒」作單位的情況使用(如時間)。.

新!!: 室女A星系和角秒 · 查看更多 »

角距離

角距離,也稱為角分離、視距離、或視分離,在數學(特別是幾何學和三角學)和自然科學(包括天文學、地質學等等),從不同於兩個點物體的位置(即第三點)觀察這兩個物體,由觀測者指向這兩個物體的直線之間所夾角度的大小。角距離(或分離)與角度本身是同義的,但意義卻是對兩個天體(對恆星,是當從地球觀測)之間線距離的建議(通常是很大或未知的)。.

新!!: 室女A星系和角距離 · 查看更多 »

高能立體視野望遠鏡

能立體視野望遠鏡(High Energy Stereoscopic System 或 H.E.S.S.)是新世代的大氣契倫可夫影像望遠鏡(IACT)系統,用來研究能量從100G至1TeV,來自宇宙的γ射線。縮寫被選擇用來紀念開啟宇宙線觀測的維克托·赫斯。 這個名稱也強調望遠鏡的兩個主要特點,一是用幾架望遠鏡在不同的視角下同時觀測大氣簇射,二是望遠鏡的組合可以成為一個大的系統,可以有效的增加觀測γ射線的面積。H.E.S.S.允許在探索蟹狀星雲的γ射線時,可以分辨出數千個不同流量的強度。 H.E.S.S.座落在西南菲納米比亞,靠近Gamsberg的Cranz家族農場,是一個光學品質絕佳的場所。H.E.S.S.計畫第一階段有4架望遠鏡,在2002年開始運作,在2003年12月4架望遠鏡都開始運作。 在2004年,H.E.S.S.是首先嘗試IACT解析出空間中來自宇宙的γ射線來源。 在2005年,H.E.S.S.宣布找到了8個新的高能γ射線源,使已知的來源數量加倍。有兩個這樣的來源不能與已知的超新星殘骸或波霎對應,增加了新物理和存在一些"暗天體"的可能性。.

新!!: 室女A星系和高能立體視野望遠鏡 · 查看更多 »

超大質量黑洞

超大質量黑洞是黑洞的一種,其質量是10^5至10^9倍的太陽質量。現時一般相信,在所有的星系的中心,包括銀河系在內,都會有超大質量黑洞。.

新!!: 室女A星系和超大質量黑洞 · 查看更多 »

超大质量黑洞

#重定向 超大質量黑洞.

新!!: 室女A星系和超大质量黑洞 · 查看更多 »

超光速運動

天文學中,超光速運動是一種外顯的超過光速的運動,出現在一些電波星系、類星體中,最近也發現出現在一些稱作微類星體的星系類輻射源。這些來源被認為中心含有黑洞,因此造成了質量體以高速射出。 超光速運動首次發現於1970年代早期,一開始被視為不利於「類星體具有宇宙論尺度距離」說法的一項證據。雖然一些天文物理學家仍為這論點辯解,多數人相信這個大於光速的外顯速度是一種光學錯覺,並不包含任何與狹義相對論相違背的物理學。.

新!!: 室女A星系和超光速運動 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

新!!: 室女A星系和超新星 · 查看更多 »

黑洞

黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

新!!: 室女A星系和黑洞 · 查看更多 »

赤纬

赤纬(英文Declination;縮寫為Dec;符號為δ)是天文学中赤道座標系統中的两个坐标数据之一,另一个坐标数据是赤经。赤纬与地球上的纬度相似,是纬度在天球上的投影。赤纬的单位是度,更小的单位是“角分”和“角秒”,天赤道为0度,天北半球的赤纬度数为正数,天南半球的赤纬的度数为负数。天北极为+90°,天南极为-90°。值得注意的是正号也必须标明。 例如,织女星的确切赤纬(曆元2000.0)为+38°47'01"。 在观测者天顶的赤纬与該觀測地的纬度相同。.

新!!: 室女A星系和赤纬 · 查看更多 »

钱德拉X射线天文台

钱德拉X射线天文台(Chandra X-ray Observatory,缩写为CXO),是美国宇航局(NASA)于1999年发射的一颗X射线天文卫星,以美国籍印度物理学家苏布拉马尼扬·钱德拉塞卡命名,為大型轨道天文台计划的第三颗卫星,目的是观测天体的X射线辐射。其特点是兼具极高的空间分辨率和谱分辨率,被认为是X射线天文学上具有里程碑意义的空间望远镜,标志着X射线天文学从测光时代进入了光谱时代。.

新!!: 室女A星系和钱德拉X射线天文台 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

新!!: 室女A星系和银河系 · 查看更多 »

臺北市立天文科學教育館

臺北市立天文科學教育館位於臺灣臺北市士林區,為臺北市政府教育局所屬之社會教育機構,成立於1996年11月7日,1997年7月20日正式全面開放。其前身為臺灣第一個天文教育機構「臺北市立天文台」。目前館內設施包括展示場、宇宙探險區、宇宙劇場、立體劇場、天文教室、圖書館、圓頂天文觀測室等。.

新!!: 室女A星系和臺北市立天文科學教育館 · 查看更多 »

金屬量

金屬量是天文學和物理宇宙學中的一個術語,它是指恒星之內除了氫和氦元素之外,其他的化學元素所占的比例(這個術語不同於一般所認知的“金屬”,因為在宇宙中氫和氦的組成量占了壓倒性的大數量,天文學家將所有更重的元素都視為金屬。) 。例如,碳化合物含量較多的星雲被稱為“富金屬”,但在其他的場合都不會將碳當成金屬。 一個天體的金屬量也許可以提供年齡的訊息。當宇宙剛形成時,依據大霹靂的理論,它幾乎完全都是氫原子,經由太初核合成,創造出相當大比例的氦和微量跡證的鋰。最初的恒星,被認為是第三星族星,完全不含任何金屬。這些恒星的質量是難以置信的巨大,因此在短促的恒星演化中經由核融合創造出週期表內比鐵輕的元素,然後經由壯觀的超新星將元素散佈在宇宙中。雖然,它們存在於主流的宇宙起源模型,但直至2007年,仍未發現第三星族星。下一代的恒星於第一代恒星死亡釋出的物質中创造出来,被觀測到最老的恒星,被認為是第二星族星,有非常少量的金屬;後續世代出生的恒星,因由先前世代的富含金屬的塵埃中创生出来,金屬含量越來越豐富。而當這些恒星死亡時,它們會將更豐富的金屬,經由行星狀星雲或超新星散佈到外面的雲氣中,讓新誕生的恒星有更豐富的金屬。最年輕的恒星,包括我們的太陽,含有的金屬最豐富的恒星,被認為是第一星族星。 橫跨銀河系,金屬量在銀心是最高的,並向外逐漸遞減。在群星之間的金屬量梯度隨恒星的密度變化:在星系的中心有最多的恒星,隨著時間的過去,有越來越多的金屬回到星際物質內,並且成為新恒星的原料。由相似的機制,較大的星系相較於較小的星系,也會有較高的金屬量。在兩個環繞著銀河系的小不規則星系,麥哲倫雲的例子中,大麥哲倫星系的金屬量是銀河系的40%,小麥哲倫星系的金屬量是銀河系的10%。.

新!!: 室女A星系和金屬量 · 查看更多 »

電子伏特

電子伏特(electron Volt),簡稱電子伏,符号为eV,是能量的單位。代表一個電子(所帶電量為1.6×10-19庫侖)经过1伏特的電位差加速后所獲得的动能。電子伏与SI制的能量单位焦耳(J)的换算关系是.

新!!: 室女A星系和電子伏特 · 查看更多 »

電波星系

電波星系和相關的電波喧噪類星體和耀变体,都是在無線電波長(頻率在10 MHz到100 GHz,功率高達1038 W)上非常明亮的活躍星系。電波的輻射來自於同步加速過程,被觀測到的電波是來自於一對氣體噴流的結構和外在的媒介,經由相對論性發光修正的作用後所發射的。電波喧噪的活躍星系令人感興趣的不僅是星系本身,還因為它們可以在遙遠的距離外被觀測到,可以做為觀測宇宙論上可貴的工具。最近,有很多工作有效的從這些星系際介質,特別是星系團,得到了很好的結果。.

新!!: 室女A星系和電波星系 · 查看更多 »

雙子星天文台

雙子星天文台(有譯雙子座望遠鏡)是由美國、英國、加拿大、智利、巴西、阿根廷和澳大利亚等国共同建造的两台位于不同地点、完全相同的望远镜,口径为8.1米。其中一台位于北半球的夏威夷,称为北双子望远镜,另一台位于智利海拔2950米的帕穹山,称为南双子望远镜。 北双子望远镜也称为Frederick C. Gillett望远镜,位于美国夏威夷的毛納基山山顶,海拔4200米,于1999年6月建造完成,2000年投入使用,控制中心位于夏威夷大学在希罗(Hilo)的校园内。 南双子望远镜位于智利的帕穹山,海拔2950米,于2000年开始使用,控制中心位于智利拉希雷納(La Serena)的托洛洛山美洲际天文台内。 兩架望遠鏡分别位于南北两个半球,可以完全覆盖整个天區。双子望远镜主镜的厚度为20厘米,表面镀了在红外波段具有良好反射能力的银,观测室的内表面涂了铝反射层,目的是获得稳定的热环境。望远镜还安装了主动光学、自适应光学、激光导星系统,整个计划耗资为1.84亿美元,其中美国投资50%,英国25%,加拿大15%,智利5%,阿根廷和巴西各占2.5%,并根据所占份额向各国分配望远镜的观测时间。具体管理工作由大学天文研究协会(AURA)负责实施。.

新!!: 室女A星系和雙子星天文台 · 查看更多 »

造父变星

造父變星(Cepheid,或)的成員是一種非常明亮的變星,其變光的光度和脈動週期有著非常強的直接關聯性。造父變星是建立銀河和河外星系距離標尺的可靠且重要的標準燭光。 造父變星分成幾個子類,表現出截然不同的質量、年齡、和演化歷史:經典造父變星、第二型造父變星、異常造父變星、和矮造父變星。 造父變星的名稱源自在仙王座的仙王座δ星,在1784年被约翰·古德利克發現是一顆變星。由於是這種類型變星中被確認的第一顆,而它的中文名稱是造父一,因此得名。造父一也是驗證周光關係時特別重要的一顆造父變星,因為他的距離是造父變星中最精確的,這要歸功於它的成員都在星團之中de Zeeuw, P. T.; Hoogerwerf, R.; de Bruijne, J. H. J.; Brown, A. G. A.; Blaauw, A.(1999).

新!!: 室女A星系和造父变星 · 查看更多 »

進動

進動(precession)是自轉物體之自轉軸又繞著另一軸旋轉的現象,又可稱作旋進。在天文學上,又稱為「歲差現象」。 常見的例子為陀螺。當其自轉軸的軸線不再呈鉛直時,即自转轴与对称轴不重合不平行时,會發現自轉軸會沿著鉛直線作旋轉,此即「旋進」現象。另外的例子是地球的自轉。 對於量子物體如粒子,其帶有自旋特徵,常將之類比於陀螺自轉的例子。然而實際上自旋是一個內稟性質,並不是真正的自轉。粒子在標準的量子力學處理上是視為點粒子,無法說出一個點是怎樣自轉。若要將粒子視為帶質量球狀物體來計算,以電子來說,會發現球表面轉速超過光速,違反狹義相對論的說法。 自旋的進動現象主要出現在核磁共振與磁振造影上。其中的例子包括了穩定態自由旋進(進動)造影。 進動是轉動中的物體自轉軸的指向變化。在物理學中,有兩種類型的進動,自由力矩和誘導力矩,此處對後者的討論會比較詳細。在某些文章中,"進動"可能會提到地球經驗的歲差,這是進動在天文觀測上造成的效應,或是物體在軌道上的進動。.

新!!: 室女A星系和進動 · 查看更多 »

虎克式望遠鏡

#重定向 威尔逊山天文台.

新!!: 室女A星系和虎克式望遠鏡 · 查看更多 »

Ia超新星

超新星(Type Ia supernova)出現在其中的一顆是白矮星,而另一顆可以是巨星或低質量恆星的聯星系統(兩顆軌道互繞的恆星)。白矮星是已完成其正常命週期核融合反應的恆星殘骸。但是,一般最常見的碳-氧白矮星,如果他們的溫度上升得足夠高,仍有進行核融合反應,進一步釋放大量能量的能力。物理上,低自轉速率的碳-氧白矮星會低於1.44太陽質量()有點令人費解的是,儘管與電子簡併壓力無法阻擋災難性坍縮的錢德拉塞卡質量(Chandrasekhar mass)有所不同,這個限制通常被稱為錢德拉塞卡極限。如果一顆白矮星可以從其聯星系統的伴星逐漸吸積質量,一般假設當其接近此一質量極限時,核心將達到碳融合的點火溫度。如果白矮星與另一顆恆星合併(極為罕見的事件),它將在瞬間就超越了質量限制並開始坍縮,也會再次提升溫度超越核融合的燃點。在啟動核融合之後幾秒鐘,白矮星絕大部分的質量會經歷熱失控反應,釋放出極為巨大的能量(1–),在超新星爆炸中解除恆星的束縛。 這種類型的超新星由於爆炸的白矮星通過吸積的機制使質量幾乎一致,因此產生一致的峰值光度。因為超新星的視星等隨著距離而改變,這種穩定的最大光度使它們的爆發可以做為標準燭光,用來測量宿主星系的距離。 在2015年5月,NASA報告克卜勒太空望遠鏡觀測新發現一顆Ia超新星,KSN 2011b,爆炸的完整過程:爆炸前、爆炸中和爆炸後。前超新星時段的詳細資訊可能可以讓科學家對暗能量有更好的瞭解。.

新!!: 室女A星系和Ia超新星 · 查看更多 »

J2000.0

J2000.0是在天文学上使用的曆元,前缀「J」代表这是一个儒略纪元法,而不是一个贝塞耳纪元。 它指的是儒略日期TT时2451545.0,或是TT时2000年1月1日12時,即相对于TAI的2000年1月1日,11:59:27.816或UTC时间2000年1月1日11:58:55.816。 因恒星赤经和赤纬会因岁差(與恒星的自行)改变,所以天文学家们经常指定某一特定的纪元作参考点。早期採用的纪元标准是B1950.0纪元。 在J2000时刻的天赤道與二分点用来定义天球参考坐标系,该参考坐标系也可写作J2000坐标或简单记为J2000,但更合适的,应该如下使用国际天球参考系統(ICRS)。.

新!!: 室女A星系和J2000.0 · 查看更多 »

M49

M49(也稱為NGC 4472)是一個位於室女座的橢圓星系/透鏡狀星系,距離地球大約有5300萬光年遠,是由查爾斯·梅西耶於1771年所發現。M49是室女座星系團中最明亮的星系之一,目前在M49內只有發現一顆超新星(SN 1969Q)。.

新!!: 室女A星系和M49 · 查看更多 »

M84

M84(也稱為NGC 4374)是一個位於室女座的透鏡狀星系,深入於室女座星系團的核心內部,距離地球大約有5300萬光年遠 ,是室女座星系團中最明亮的星系之一。 無線電觀測和哈伯太空望遠鏡的影像顯示M84有兩道物質的噴流從星系的核心向外發射,加上接近核心的星盤有高速旋轉的氣體和恆星,顯示有著質量高達18 M☉的超巨質量黑洞存在於星系的核心。.

新!!: 室女A星系和M84 · 查看更多 »

M86

M86(NGC 4406)是室女座的一个透鏡狀星系,于1781年被梅西耶发现。距離地球6千万光年,视星等為8.9,是梅西耶天體中蓝位移最大的一个,目前正在以每秒419公里的速度向银河系接近。.

新!!: 室女A星系和M86 · 查看更多 »

NGC 1316

NGC 1316 是天炉座的一個透鏡星系。大約在1億年前,開始吞食一個鄰近較小的螺旋星系NGC 1317。.

新!!: 室女A星系和NGC 1316 · 查看更多 »

NGC天體表

星雲和星團新總表(New General Catalogue of Nebulae and Clusters of Stars,縮寫:NGC) 是在天文學上非常著名的深空天體目錄,它收錄了7,840個天體。它由約翰·德雷耳编纂,它是作为威廉·赫歇爾星雲和星團總表的新版本。星雲和星團新總表是最大的一個綜合目錄,它包含所有類型的深空天體,並無被侷限在某一類,例如星系。德雷耳後來在1895年和1908年擴編了兩份NGC索引星表,增加了描述5,386個天體。 目錄中對南半球天空中的天體並沒有完整的調查,多數都只是約翰·赫歇耳或詹姆士·丹露帕的觀測。NGC有許多的錯誤,但是比較嚴重和明顯的錯誤在後續的NGC/IC計划中已經消除。後續未完成的修訂新總表(RNGC) 有1973年Sulentic和Tifft的版本,還有Sinnott在1988年的NGC2000.0。修訂的新總表和索引目錄由Wolfgang Steinicke編譯於2009年。.

新!!: 室女A星系和NGC天體表 · 查看更多 »

暗物质

在宇宙学中,暗物质(Dark matter),是指無法通過电磁波的觀測進行研究,也就是不與电磁力產生作用的物质。人们目前只能透过重力产生的效应得知,而且已經發现宇宙中有大量暗物质的存在。 现代天文学經由引力透镜、宇宙中大尺度结构的形成、微波背景辐射等方法和理论来探测暗物质。而根据ΛCDM模型,由普朗克卫星探测的数据得到:整个宇宙的构成中,常規物質(即重子物質)占4.9%,而暗物质則占26.8%,还有68.3%是暗能量(质能等价)。暗物质的存在可以解决大爆炸理论中的不自洽性(inconsistency),对结构形成也非常关键。暗物质很有可能是一种(或几种)粒子物理标准模型以外的新粒子所構成。对暗物质(和暗能量)的研究是现代宇宙学和粒子物理的重要课题。 2015年11月,NASA噴射推進實驗室的科學家蓋瑞‧普里茲奧(Gary Prézeau)以ΛCDM模型模擬銀河系內暗物質流過地球與木星等行星的情形,發現這會使該暗物質流的密度明顯上升(地球:10^7倍、木星:10^8倍),並呈現毛髮狀的向外輻射分佈結構。.

新!!: 室女A星系和暗物质 · 查看更多 »

查尔斯·梅西耶

#重定向 夏尔·梅西耶.

新!!: 室女A星系和查尔斯·梅西耶 · 查看更多 »

東次將

東次將(ε Vir / 室女座ε)中文名又作“太微左垣四”,是在室女座的一顆恆星。视星等2.83,是室女座的第三亮星。基于依巴谷卫星的视差测量,东次将距离太阳大约110光年,误差0.5光年。.

新!!: 室女A星系和東次將 · 查看更多 »

格陵蘭望遠鏡

格陵蘭望遠鏡(Greenland Telescope)是一座電波天文望遠鏡,也是臺灣中央研究院天文及天文物理研究所主導的一項國際合作計畫之簡稱,2011年該所及其合作成員機構史密松天文物理台、美國國家電波天文臺、海斯塔克天文臺共同向美國國家科學基金會提出申請而取得該電波天文望遠鏡的使用權,最初計畫即預定將之部署於格陵蘭島上,興建過程中許多精密儀器設備是由國家中山科學研究院製作,於2018年完成,成為全球第一座位於北極圈內的重要天文觀測站。發起該計畫的中研院院士賀曾樸表示,在本項計畫中,臺灣除了樹立在北極圈設立第一個次毫米波天文觀測站的里程碑以外,且ALMA原型望遠鏡經過改裝後,解析力成為原型機的一千倍,足以證明「台灣可以跟國際競爭,做到世界級水準」。 最初,中研院天文所將該計畫命名為特長基線干涉儀計畫(英文名:VLBI),2012年更名為格陵蘭望遠鏡*與次毫米波特長基線干涉儀計畫。目前名為「格陵蘭望遠鏡」的該碟型望遠鏡原為ALMA原型天線之一(屬「北美機型」,由ALMA北美團隊設計製造),口徑為12米,2012至2015年間改裝為適合極地氣候使用後,2016至2017年間獲拆解、船運送抵格陵蘭,於2017年7月,在格陵蘭島上圖勒港口附近再度組裝完成,同年12月開始一系列在圖勒附近的平地觀測:12月25日在86GHz頻段試觀測成功,2018年1月在230GHz頻段對獵戶座KL星觀測,取得CO譜線,最終目標是在海拔高度3200公尺的「峰頂基地」(為美國國家科學基金會所有)運作,該處位於整個格陵蘭冰層之最高點,是大氣條件極適合次毫米波觀測的地點。為了適應零下71度的低溫,望遠鏡必須透過調整結構和材質等方式改裝,這部分升級望遠鏡天線的技術皆由國家中山科學研究院提供。 格陵蘭望遠鏡重要觀測目標之一為M87星系的超大質量黑洞,近期已成功加入事件視界望遠鏡及其他全球特長基線干涉陣列,共同觀測了黑洞,同時在該觀測計畫期間也已確定位於北極的格陵蘭望遠鏡與位於南美洲智利的ALMA望遠鏡連線成功,形成了地球上南北向最長的基線,將近10,000公里之長,這麼長的基線對提高次毫米波段解析力極有貢獻,且獲益最大者是ALMA望遠鏡(由於南北向之故)。除了「觀測M87星系中心黑洞陰影」以外,格陵蘭望遠鏡的科學目標還包括「觀測緊鄰於超大質量黑洞之噴流、吸積盤最內側區域」、以探討相對論性噴流、精確地取得黑洞自旋、黑洞質量等,在天文物理上,這些是黑洞相關研究很重要之參數。 根據事件視界望遠鏡網站敘述,以普通刮鬍刀刃面厚度(約400奈米)為例,若欲將刀片厚度換算為天文長度單位「角分」,手持一刀片,於約一手臂長度往天空方向目視此刀片,則此厚度在天空中約等於0.5角分,而事件視界望遠鏡的角解析力能觀測到較此刀片厚度細線更細百萬倍的物體。藉由南北向更長基線的取得,格陵蘭望遠鏡也使事件視界望遠鏡解析力更加提升,讓這個洲際連線的干涉陣列延展到北極圈,成為探索宇宙更強大的工具。 除了加入干涉陣列以外,也能以單碟模式從事高頻次毫米波觀測研究,跨入新興的"THz波段"領域。THz波在天文學上,過去,因測量工具技術限制,未能得充分探討,現今則新材料及技術瓶頸已突破,按學界預期,未來數十年內針對此議題將產出豐富探討,因此,作為「第一代地面型THz波望遠鏡」的格陵蘭望遠鏡,對THz波段後續的研究方向,將提出重要參考。.

新!!: 室女A星系和格陵蘭望遠鏡 · 查看更多 »

梅西耶天体列表

梅西耶天體(),指由法國天文學家查爾斯·梅西耶所編的《星雲星團表》(Catalogue des Nébuleuses et des Amas d'Étoiles)中列出的一組天體。該作最先出版於1771年,然後分別於1781年和1784年發佈第2卷和第3卷,而最後一次加入新天體(基於梅西耶的觀察)則為1966年。 梅西耶本人只對尋找彗星感興趣,他一直找到一些容易誤認成彗星的固定天體,但卻找不到一顆真正的彗星。梅西耶對此感到很沮喪,於是他與自己的助手皮埃爾·梅尚一起創建了一個非彗星天體的列表以分辨容易與彗星混淆的固定天體,是為梅西耶目錄 。梅西耶天體列表是天文學中較為常用與重要的天體列表之一,也是第一份較為詳盡而正確的星體目錄,同時亦促使星雲和星團總表與NGC星表等其他星表的誕生。許多梅西耶天體的編碼仍然在今日天文學界廣泛使用,作為天體的代號。 初版發行時,該作列出了45個天體,到了最終版本時,列出的天體增加至103個。但M102的記錄有誤,並沒有正確地對應某個天體,因此當時的梅西耶目錄只有102個。之後其他天文學家根據梅西耶的文本旁注加上一些由梅西耶或梅尚發現但沒有加上去的天體。1921年,卡米伊·弗拉馬利翁加入M104,使目錄列出的天體數增加至104個,26年後(1947年),加入M105至M107,M108至M109於1960年被加入。最後的M110則是於1967年加入,加入者為肯尼斯·格林·瓊斯(Kenneth Glyn Jones)。此後再沒有其他天體被列入,令梅西耶天體總數定格於110個。.

新!!: 室女A星系和梅西耶天体列表 · 查看更多 »

梅西耶天體

梅西爾天體 是一套110個深空天體表,其中的103個是法國天文學家夏爾·梅西耶在1771年和1781年發表的名單。梅西爾是一位彗星獵人,常被那些類似但不是彗星的天體所困惑,所以他編輯了梅西爾天體表,其中也羅列了其競爭者皮埃爾·梅尚發現的,以避免在這些天體上浪費時間。除了梅西爾發表的這103個之外,還有7個也被認為是梅西爾發現與觀測過的,也已經被後來的天文學家加入這份表單中。 最近才注意到在1654年發表了一份較簡短的,但梅西爾可能不知道。.

新!!: 室女A星系和梅西耶天體 · 查看更多 »

椭圆星系

橢圓星系(Elliptical galaxy)是哈伯星系分類中的一種類型,具有下列的物理特徵:.

新!!: 室女A星系和椭圆星系 · 查看更多 »

標準燭光

標準燭光是天文學中已經知道光度的天體,而在宇宙學和星系天文學中獲得距離的幾種重要方法都是以標準燭光做基礎的。比較已知的光度(或是它的對應函數的數值,絕對星等)和他的觀測亮度(視星等),距離可以經由下面的公式計算而得: 此處的D是距離,kpc是千秒差距(103 秒差距), m是視星等,M是絕對星等(兩者均處於靜止的狀態下)。 (這與天體的距離模數是緊密相關的。) 標準燭光有下列這些類型:.

新!!: 室女A星系和標準燭光 · 查看更多 »

比例

在数学中,比例是兩個非零數量y與x之間的比較關係,記為y:x \; (x, y \in \mathbb),在計算時則更常寫為\frac或y/x。若两个變量的关系符合其中一个量是另一个量乘以一个常数(y.

新!!: 室女A星系和比例 · 查看更多 »

沃尔特·巴德

威廉·海因里希·沃尔特·巴德(Wilhelm Heinrich Walter Baade,),德国天文学家,在美国度过了大部分科研生涯。巴德提出了两类星族的概念,正确区分了两类造父变星,并对宇宙距离的尺度做出了重要的修正。.

新!!: 室女A星系和沃尔特·巴德 · 查看更多 »

泰根塞

#重定向 泰根湖市.

新!!: 室女A星系和泰根塞 · 查看更多 »

活动星系核

活动星系核(Active Galactic Nucleus,縮寫為AGN)是一个星系中央區有比普通的星系的强烈很多的光度,至少部分波段或甚至可能全部波段裡都發出很强的電磁波譜。被观察到的发射覆盖從無線電波,微波,红外线,可见光,紫外线,X射线,到伽瑪射線。光度大约在1036-1041J/s之間。容纳活动星系核的宿主星系為活躍星系。活躍星系核是這些星系明亮的核心部分,尺度通常在1光年上下,只占整個活躍星系的很小一部分。活动星系核(AGN)是在宇宙中的电磁辐射的最明亮的持久性的来源,并且因此可以被用作发现远方天体的方法;其演化的宇宙时间函数也设置了宇宙模型的制约条件。 另外,亦有研究顯示活躍星系核的能量可能源自星系碰撞。 1960年代類星體發現以來,又相繼發現了許多具有類似特徵的天體,都是系外星系,統稱為活躍星系核。 共同观测特征主要有:.

新!!: 室女A星系和活动星系核 · 查看更多 »

漸近巨星分支

AGB恆星在天文物理上是非常重要的,因為它們能產生大量的塵粒,並且也是成為行星狀星雲的前兆。 漸近巨星分支是赫羅圖上低質量至中質量恆星在演化時聚集的區域。在恆星演化周期中,這是所有中低質量恆星(0.6-10太陽質量)末期階段的生活。 在觀測上,一顆漸近巨星分支(AGB)恆星看起來像是一顆紅巨星。它的內部構造特點是在中央有一個不活躍的碳和氧核心,外面是正在將氦融合成碳(氦燃燒)的氦層,再外面則是將氫融合成氦(氫燃燒)的殼層,還有大量與一般正常恆星類似的物質組成的外殼。.

新!!: 室女A星系和漸近巨星分支 · 查看更多 »

本星系群

本星系群(英文:Local Group;又常被誤稱為本星系團(Local Cluster):因該區域為星系群,並不是星系團,且不合語源,故屬積非成是的名詞),是包括地球所处之银河系在内的一群星系。这组星系群包含大约超过50个星系,其质心位于银河系和仙女座星系之間的某处。本星系群中的全部星系覆盖一块直径大约1000万光年的区域,本星系群的為61±8 km/s.

新!!: 室女A星系和本星系群 · 查看更多 »

有效半徑

有效半徑(R_e)是一個星系輻射出系統總光度一半的半徑。假設一個星系,有內在的球隊稱或者至少在天球平面上看見的圓對稱。另外,半光度的輪廓或等光強線可以適用在球或圓不對稱的天體。 R_e是非常重要的尺度,在佛科留斯\sqrt R ,它描述物體表面具體光度下降與半徑的函數: I(R).

新!!: 室女A星系和有效半徑 · 查看更多 »

成像

一般情况下,在物理学中的成像是指光线经过折射、衍射或由小孔直线传播而在光屏投下的实像。正常情况下,菲涅耳透镜(螺纹透镜)、凸透镜、小孔能成实像。而凹透镜成虚像,不能被光屏接收。 Category:物理学 Category:光學.

新!!: 室女A星系和成像 · 查看更多 »

星系分類

在天文學中,星系的分類主要是根據星系的外觀在整體上呈現出的型態,分為橢圓星系、螺旋星系、或棒旋星系(閂狀星系),而且可以更進一步的的標示出各類星系的特性。例如,橢圓星系的外觀扁平度,旋渦星系的旋渦數目或棒閂的特性。這種星系分類稱為哈伯音叉圖或哈伯序列。.

新!!: 室女A星系和星系分類 · 查看更多 »

星際大戰

《--》(Star Wars),中文可簡稱「星戰」,是美國導演兼編劇乔治·卢卡斯所構思拍攝的一系列科幻電影。同时“星球大戰”也是该系列電影最早拍摄上映的第四章故事的原始片名。 从1970年代末到1980年代,盧卡斯出品了《星際大戰》三部曲。他曾説明第一部星戰(第四部曲)的人物及故事是參照日本導演黑澤明的《戰國英豪》(隠し砦の三悪人)所創作而成;原三部曲以二戰英德大戰為架構並溶入美國西部片及日本武士刀劇的節奏;藴涵了太空冒險、希臘神話的大視野制作。影片中所使用的特效技術重新定義並改變了往後太空科幻片的未來發展。 1990年代末,基於各界要求又拍摄了原三部曲之前的故事,又稱“星战前传”。同时他把最初的三部曲改为六部系列的第四、五、六集,并将最早的第四集改名为「-zh-hans:新希望;zh-hk:新希望;zh-tw:曙光乍現;-」(A New Hope)。2012年10月,華特迪士尼公司以40.5億美元收購盧卡斯影業,迪士尼公司亦宣布製作星戰新作三部曲,第七部電影《STAR WARS:原力覺醒》在英國拍摄,已於2015年12月上映。 该片描写,在很久以前,一个遥远的銀河系,肩负正义使命的绝地武士与帝國邪恶黑暗势力作戰的故事。绝地武士是一群有着非凡天赋的人,經由各种筛选,他们在幼年即开始接受嚴格特殊训练,其宗旨是认识和使用“原力”(Force)。训练有素的绝地武士有極強的意志力可以使用无所不在的“原力”來維護銀河系的和平。例如,影響意志較弱的人的思想,甚至預感将要发生的事情。绝地武士也有着非凡的戰鬥能力。 故事以三條主線貫穿:銀河共和國被政治陰謀篡權為銀河帝國引發眾人不滿而引起了內戰,不滿的共和國擁護者揭竿而起,建立反抗軍與帝國軍互相對抗、絕地武士組織的興衰起落、以及天行者家族在大環境下面臨的種種挑戰。本片開啟好萊塢電影商品授權的龐大事業,旗下分別有小說、漫畫、玩具與電玩遊戲等相關周邊產業,系列中每部電影,小說與電玩遊戲,皆以“很久以前,在一個遙遠的銀河系……”(A long time ago in a galaxy far, far away...)開頭。.

新!!: 室女A星系和星際大戰 · 查看更多 »

星雲和星團總表

星雲和星團總表(CN,Catalogue of Nebulae and Clusters of Stars)是威廉·赫歇爾和他的助手卡羅琳·赫歇爾編輯的天體目錄,初版在1786年發行。之後,他的兒子約翰·赫歇爾擴充另編一本星雲和星團總表(GC,General Catalogue of Nebulae and Clusters of Stars),並在1864年出版。CN和GC是目前所使用,由約翰·路易·埃米爾·德雷耳編輯的星雲和星團新總表(NGC,New General Catalogue)的前身。.

新!!: 室女A星系和星雲和星團總表 · 查看更多 »

星际物质

星際物質(缩写为ISM)是存在於星系和恆星之間的物質和輻射場(ISRF)的总称。星際物質在天文物理的準確性中扮演著關鍵性的角色,因為它是介於星系和恆星之間的中間角色。恆星在星際物質密度較高的分子雲中形成,並且經由行星狀星雲、恆星風、和超新星獲得能量和物質的重新補充。換個角度看,恆星和星際物質的相互影響,可以協助測量星系中氣體物質的消耗率,也就是恆星形成的活耀期的時間。 以地球的標準,星際物質是極度稀薄的電漿、氣體、和塵埃,是離子、原子、分子、塵埃、電磁輻射、宇宙射線、和磁場的混合體。物質的成分是99%的氣體和1%的塵埃,充滿在星際間的空間。這種極端稀薄的混合物,典型的密度從每立方公尺只有數百到數億個質點,以太初核合成的結果來看氣體的成分,在數量上應該是90%氫和10%的氦,和其他微跡的「金屬」(以天文學說法,除氢和氦以外的元素都是金屬)。 2013年9月12日,美国航空航天局正式宣布,旅行者1号在2012年8月25日已经达到了星际物质(ISM),使其成为第一个这样做的人造物体。星际等离子体和灰尘会被研究直到任务结束的2025年。.

新!!: 室女A星系和星际物质 · 查看更多 »

星族

星族是銀河系中年齡、化學物質組成、空間分布與運動特性較接近的恆星集合,於1927年由布魯根克特(P.

新!!: 室女A星系和星族 · 查看更多 »

新地球

《新地球》(英語:Genesis)是新加坡歌手林俊傑的第十一張錄音室專輯,由就是俊傑音樂製作,並由華納音樂於2014年12月27日發行。.

新!!: 室女A星系和新地球 · 查看更多 »

方位角

方位角又稱地平經度(Azimuth,縮寫Az),是在平面上量度物體之間的角度差的方法之一。.

新!!: 室女A星系和方位角 · 查看更多 »

攝影星等

攝影星等是以傳統的乾版或底片拍攝得到的星等。 在光度計出現之前,要精確的測量天體的亮度,是用照相機來制定它的視星等。這些影像,使用正色的攝影膠片或乾版,在藍色端的視頻譜比人眼或現代的光度計敏銳。結果是,藍色星的攝影星等會有比現在視星等低的星等(也就是較亮),因為它們在相片上的亮度比現代的光度計明亮。相反的,紅色的星有著比視星等較高的攝影星等(也就是較暗淡),因為它們顯得比較暗淡。例如,紅色的超新星人馬座KW的攝影星等介於11.0〜13.2,但是視星等在8.5〜11.0。也常見在星圖上列出藍色星等(B),像是劍魚座S和天箭座WZ。 視攝影星等的符號是mpg,絕對攝影星等的符號是Mpg。 攝影星等現在被認為是過時的。.

新!!: 室女A星系和攝影星等 · 查看更多 »

愛德文·哈勃

愛德溫·鮑威爾·哈勃(Edwin Powell Hubble,),美國著名的天文學家。 哈勃證實了銀河系外其他星系的存在,並发现了大多数星系都存在紅移的現象,建立了哈勃定律,是宇宙膨脹的有力证据(参见大爆炸理论)。哈勃是公認的星系天文学创始人和观测宇宙学的开拓者。並被天文學界尊稱為星系天文學之父。 為紀念哈勃的貢獻,小行星2069、月球上的哈勃環形山以及哈勃太空望遠鏡均以他的名字來命名。.

新!!: 室女A星系和愛德文·哈勃 · 查看更多 »

重定向到这里:

M87室女座A星系

传出传入
嘿!我们在Facebook上吧! »