徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

宇宙化學

指数 宇宙化學

宇宙化學(Cosmochemistry)是研究宇宙中物體的化學組成和形成這些組成的過程。這主要是通過研究隕石的化學成分和其它實物的樣本。由於隕石母體的小行星有些是太陽系形成初期凝固的第一批固體,宇宙化學通常,但不完全是研究與太陽系有關的物體。.

31 关系: 原行星盤原恆星多環芳香烴天体化学太阳系太陽前顆粒外层空间宇宙宇宙塵乙醇地球哥本哈根大学哈羅德·尤里碳質球粒隕石美国国家科学院院刊美国国家航空航天局芳香性隕石鳥嘌呤脱氧核糖核酸脂肪族化合物自然 (期刊)腺嘌呤蛋白质恒星核宇宙編年學核糖核酸核苷酸氧化氨基酸有机化合物

原行星盤

原行星盤(Proplyd or Protoplanetary Disc)是在新形成的年輕恆星(如金牛T星)外圍繞的濃密氣體,因為氣體會從盤的內側落入恆星的表面,所以可以視為是一個吸積盤。但是,不能將這個過程與恆星形成時的吸積混淆在一起。 環繞金牛座T的原行星盤,溫度與大小都與雙星周圍的盤不同。原行星盤的半徑可以達到1,000天文單位,但是溫度並不高,在它們最內側的溫度也不過1,000K,並且經常有噴流伴隨著。 典型的原行星盤來自主要是氫分子的分子雲。當分子雲分得的大小達臨界質量或是密度,將會因自身重力而塌縮。而當雲氣開始塌縮,這時可稱為太陽星雲,密度將變得更高,原本在雲氣中隨機運動的分子,也因而呈現出星雲平均的淨角動量運動方向,角動量守恆導致星雲縮小的同時,自轉速度亦增加。這種自轉也導致星雲逐漸扁平,就像製作意大利薄餅一樣,形成盤狀。從崩塌起約十萬年後,恆星表面的溫度與主序帶上相同質量的恆星相同時,恆星將變得可以被看見,就像金牛座T的情況。吸積盤中的氣體在未來的一千萬年中,盤面消失前,仍會繼續落入恆星。盤面可能是被年輕恆星的恆星風吹散,或僅僅是因為吸積之後,單純的停止輻射而結束。發現的最老的原行星盤已經存在了二千五百萬年之久。 太陽系形成的星雲假說描述原行星盤如何發展成行星系統。靜電和引力互相作用在盤面上的塵埃粒子和顆粒,使它們生常成為星子。這個過程與會將氣體吹散的恆星風競爭,將氣體累積並將物質拉入金牛座T的中心。 在我們的銀河系內,已經觀測到一些年輕恆星周圍的原行星盤。第一個是在1984年發現的繪架座β,最近的則是哈伯太空望遠鏡發現在獵戶座大星雲內正在形成的原恆星盤。 天文學家已經在距離太陽不遠的恆星,天琴座織女星、北冕座貫索四、和南魚座北落師門,發現大量的原行星盤材料,或許本身就已經是原行星盤。 包含織女和北落師門的北河二共同運動星團被分辨出來。利用希巴古衛星資料,估計北河二星團年齡約二億年(誤差約一億年),這顯示以紅外線觀察到的織女和北落師門周圍的殘餘物質可能已成星子,而不僅僅是原行星盤了。哈伯太空望遠鏡已經成功的觀測北落師門的原行星盤,並證實猜測。.

新!!: 宇宙化學和原行星盤 · 查看更多 »

原恆星

原恆星是在星際介質中的巨分子雲收縮下出現的天體,是恆星形成過程中的早期階段。對一個太陽質量的恆星而言,這個階段至少持續大約100,000年。它開始於分子雲核心的密度增加,結束於金牛T星的形成,然後就發展進入主序帶。這個階段由金牛T風-一種恆星風的開始宣告結束,標誌著恆星從質量的吸積進入能量的輻射。 觀測顯示巨型分子雲總體上近似在維里平衡的狀態,星雲中的重力束縛能被星雲中構成分子的動能平衡。任何對雲氣的干擾都可能擾亂它的平衡狀態,干擾的例子可以是來自超新星的震波;星系內旋臂的密度波,或是與其他雲氣的接近或碰撞。無論擾動的來源是何種,只要夠大就可能在雲氣內特定的地區造成重力大於熱動能的重力變化。 英國的物理學家詹姆士·金斯曾詳細的討論過上述的现象。他能顯示,在適當的情況下,一團雲氣或其中的一部分,將開始如上所述的收縮。他導出了一條公式可以計算雲氣所需要的大小和質量,以及在重力收縮開始前的溫度和密度。這個臨界質量就是所知的金斯質量,可以由下式得到: 此處 n是特定區域的密度,m是在雲氣內氣體平均的質量,而T是氣體的溫度。.

新!!: 宇宙化學和原恆星 · 查看更多 »

多環芳香烴

多環芳香烴(Polycyclic Aromatic Hydrocarbons,簡稱PAH或PAHs)又稱多環性芳香化合物或多環芳香族碳氫化合物,其化學結構式超過100多種。是芳香族碳氫化合物的一種特例。由不包含雜環或取代基的芳香環所組成。其中有很多是已知或潛在的致癌物質。最简单的这种化学品是萘,具有两个芳环,以及三环化合物蒽和菲。 多環芳香烴是中性的,在煤和焦油沉积物中发现的非极性分子。它们也通过有机物质的不完全燃烧产生(例如在发动机和焚化炉中,当森林火灾中的生物质燃烧时等)。例如,由含碳燃料例如木柴、木碳、油脂和煙草的不完全燃燒所產生。也存在於烤焦的肉類中。 三環以上的多環性芳香化合物在水中具有低溶解度和低蒸汽壓,當分子量上升,溶解度和蒸汽壓皆下降。而二環的多環性芳香化合物則具有較低的溶解度和蒸汽壓。因此多環性芳香化合物在環境中較常發現於土壤與沉澱物中而非水及空氣中。然而,多環性芳香化合物常在空氣中的懸浮微粒上發現。 不少多環性芳香化合物已被界定為致癌物。臨床實驗報告指出:若長期接觸高濃度多環性芳香化合物的混合物,會引起皮膚癌、肺癌、胃癌及肝癌等疾病。多環性芳香化合物可破壞體內的遺傳物質,引發癌細胞增長,增加癌症的發病率。 當分子量增加,多環性芳香化合物的致癌性也增加,而其急毒性則下降。一種多環性芳香化合物,苯并''a''芘(Benzopyrene)是第一個被發現的化學致癌物質。 木馏油(creosote,又名雜酚油)裡面含有這項物質。含有木馏油的著名藥品正露丸在1999年起被日本的一些醫師質疑其致癌性,主張應廢除該項藥劑。 Image:Anthracene.svg | 蒽 Image:Phenanthrene.svg | 菲 Image:Naftacene.svg | 并四苯 Image:Chrysene.svg | 䓛 Image:Triphenylene.svg | 三亚苯 Image:Pyrene.svg | 芘 Image:Pentacene.svg | 并五苯 Image:Benzo-a-pyrene.svg | 苯並[a]芘 Image:Corannulene.svg | 碗烯 Image:Benzo(ghi)perilene.png | 苯並(GHI)苝 Image:Coronene.svg | 暈苯 Image:Ovalene.svg | 卵苯.

新!!: 宇宙化學和多環芳香烴 · 查看更多 »

天体化学

天体化学(Astrochemistry);天体化学研究宇宙中元素和分子的豐度,以及它们和辐射的交互作用;还研究星际间气体和尘埃间的相互作用,特别是分子气体云的形成、相互作用和毁灭。天体化学和天文学以及化学有相互交叉之处。天体化学的研究範圍包含了太陽系行星際物質和星際物質。而研究隕石等太陽系物質元素豐度和同位素比例的學科又被稱為「宇宙化學」;研究星系物質中原子和分子以及前述物質和輻射交互作用的學科有時候稱為「」。天文化學最主要研究星際分子雲的形成、組成成分、演化和最終結局,因為這些相關知識與太陽系如何形成有關聯。 许多年来,天文学家缺少星际间的化学知识,认为星际间只是黑暗,无物。1950至60年代出现射电天文学,开始有令人兴奋的发现;观察氢分子的21公分線显示星际间有丰富的氢、氦、碳、氮等的各种化合物。从空间的微波谱发现,有180种类型的碳,氮等分子的拼料。这些分子绕化学键转动时就产生能量。研究这些新发现的化合物可以为我们提供很有价值的科学信息:.

新!!: 宇宙化學和天体化学 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

新!!: 宇宙化學和太阳系 · 查看更多 »

太陽前顆粒

太陽前顆粒是在主要流星體內細小顆粒的填充物的群集,像是球粒隕石,中發現的獨特同位素物質,它們不同於周圍的流星體,被認為比太陽系更古老。在這些群集中的結晶體從微米大小的碳化矽晶體,到少於100顆原子的鑽石和擰散的石墨晶體。這些顆粒可能形成於超新星或恆星將物質外流的紅巨星階段,並將其納入將從其中分割出太陽星雲的分子雲。到目前為止發現的太陽前顆粒包括難冶煉的礦物,這些在太陽星雲的塌縮之後還存活著,並且在後來形成微星。 在1960年代,氖和氙具有非比尋常的同位素比在原始的隕石中被發現。一種可能的解釋是:在這些隕石中未受損的太陽前顆粒包含這些異常的惰性氣體。 在1987年,鑽石和碳化矽顆粒被發現也載有這些惰性氣體。反過來在這些顆粒中找到主要的異常同位素。 由於被確認的太陽前星塵顆粒來源是在附近特殊的恆星核合成形成的,這些元素的同位素成分通常不同於太陽系物質元素的同位素成分,而較類似星系的平均成分。這些同位素訊號像指紋一樣,通常是非常具體的天文物理核過程,因此它們超越恆星原產地,在恆星的工作方法上提供了獨立的觀點。.

新!!: 宇宙化學和太陽前顆粒 · 查看更多 »

外层空间

-- --(outer space),於中國大陸稱外層空間,指的是地球大氣層及其他天體之外的虛空區域。 與真空有所不同的是,外太空含有密度很低的物質,以等離子態的氫為主。其中還有電磁輻射、磁場等。理論上,外層空間可能還包含暗物質和暗能量。 外太空與地球大气层並沒有明確的界線,因為大氣隨著海拔增加而逐漸變薄。假設大氣層温度固定,大氣壓會由海平面的大約1013毫巴,隨著高度增加而呈指數化減少至零為止。 国际航空联合会定義在100公里的高度為卡門線,為現行大氣層和太空的界線定義。美國認定到達海拔80公里的人為太空人,在太空船重返地球的過程中,120公里是空氣阻力開始發生作用的界線。.

新!!: 宇宙化學和外层空间 · 查看更多 »

宇宙

宇宙(Universe)是所有時間、空間與其包含的內容物所構成的統一體;它包含了行星、恆星、星系、星系際空間、次原子粒子以及所有的物質與能量,宇指空間,宙指時間。目前人類可觀測到的宇宙,其距離大約為;而整個宇宙的大小可能為無限大,但未有定論。物理理論的發展與對宇宙的觀察,引領著人類進行宇宙構成與演化的推論。 根據歷史記載,人類曾經提出宇宙學、天體演化學與,解釋人們對於宇宙的觀察。最早的理論為地心說,由古希臘哲學家與印度哲學家所提出。數世紀以來,逐漸精確的天文觀察,引領尼古拉斯·哥白尼提出以太陽系為主的日心說,以及經約翰內斯·克卜勒改良的橢圓軌道模型;最終艾薩克·牛頓的重力定律解釋了前述的理論。後來觀察方法逐漸改良,引領人類意識到太陽系位於數十億恆星所形成的星系,稱為銀河系;隨後更發現,銀河系只是眾多星系之一。在最大尺度範圍上,人們假定星系的分布,且各星系在各個方向之間的距離皆相同,這代表著宇宙既沒有邊緣,也沒有所謂的中心。透過星系分布與譜線的觀察,產生了許多現代物理宇宙學的理論。20世紀前期,人們發現到星系具有系統性的紅移現象,表明宇宙正在;藉由宇宙微波背景輻射的觀察,表明宇宙具有起源。最後,1990年代後期的觀察,發現宇宙的膨脹速率正在加快,顯示有可能存在一股未知的巨大能量促使宇宙加速膨脹,稱做暗能量。而宇宙的大多數質量則以一種未知的形式存在著,稱做暗物質。 大爆炸理論是當前描述宇宙發展的宇宙學模型。目前主流模型,推測宇宙年齡為。大爆炸產生了空間與時間,充滿了定量的物質與能量;當宇宙開始膨脹時,物質與能量的密度也開始降低。在初期膨脹過後,宇宙開始大幅冷卻,引發第一波次原子粒子的組成,稍後則合成為簡單的原子。這些原始元素所組成的巨大星雲,藉由重力結合起來形成恆星。 目前有各種假說正競相描述著宇宙的終極命運。物理學家與哲學家仍不確定在大爆炸前是否存在任何事物;許多人拒絕推測與懷疑大爆炸之前的狀態是否可偵測。目前也存在各種多重宇宙的說法,其中部分科學家認為可能存在著與現今宇宙相似的眾多宇宙,而現今的宇宙只是其中之一。.

新!!: 宇宙化學和宇宙 · 查看更多 »

宇宙塵

宇宙塵(Cosmic Dust)是由眾多細小粒子組成的一種固態塵埃,自宇宙大爆炸起,便四散在浩瀚宇宙之中。宇宙塵的組成包含矽酸鹽、碳等元素以及水分,部分來自彗星、小行星等星體的崩解而產生。 宇宙塵對一個天體的誕生亦有影響,例如一個星體崩壞後所產生的宇宙塵,在經過漫長的宇宙旅程後,可能與一個正在形成的星體撞上,於是又循環成為了一個新的星體。在太陽系中,木星、土星、天王星、海王星等行星的光環,即是由於在行星初形成時,碎裂的宇宙塵未能融為星球的主體,但卻又無法擺脫行星萬有引力的牽制而產生圍繞著星球的破碎物質。.

新!!: 宇宙化學和宇宙塵 · 查看更多 »

乙醇

乙醇(Ethanol,結構简式:CH3CH2OH)是醇类的一种,是酒的主要成份,所以也俗稱酒精,有些地方俗稱火酒。化學結構通常縮寫為, 或 EtOH,Et代表乙基。乙醇易燃,是常用的燃料、溶剂和消毒剂,也用于有机合成。工業酒精含有少量有毒性的甲醇。医用酒精主要指体积浓度为75%左右(或质量浓度为70%)的乙醇,也包括医学上使用广泛的其他浓度酒精。 乙醇与甲醚是同分异构体。.

新!!: 宇宙化學和乙醇 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: 宇宙化學和地球 · 查看更多 »

哥本哈根大学

哥本哈根大学(丹麦语:Københavns Universitet),位于丹麦王国的首都哥本哈根,是丹麦历史最悠久的大学,也是规模第二大的大学之一。在读学生总数约4万人,超过半数为女性。此外,还有逾一万教职员工。哥本哈根大学的校园散落在市区里和城市周边,最古老的部分则位于哥本哈根古城区。哥本哈根大学是斯堪的纳维亚地区第二古老的大学,它和位于日德兰半岛的奥胡斯大学同为丹麦享有国际声誉的教育与科研机构。哥本哈根大学孕育了世界著名童话大师安徒生,存在主义哲学先驱克尔凯郭尔;她培养了第一个发现超新星的人和第一个测定光速的天文学家;这里有电磁理论的先驱,也有量子理论的创始人;她科学地阐述了人脑的结构和肌肉的肌理,寻找到了地球和生命最久远的证据。.

新!!: 宇宙化學和哥本哈根大学 · 查看更多 »

哈羅德·尤里

哈羅德·尤里(Harold Urey,),美國科學家,因發現氫的同位素氘獲得1934年諾貝爾化學獎。 此外,尤里和史丹利·米勒於1953年完成了生命起源的經典實驗米勒-尤里實驗。.

新!!: 宇宙化學和哈羅德·尤里 · 查看更多 »

碳質球粒隕石

碳質球粒隕石或C球粒隕石是球粒隕石,至少有8種已知的群組和許多尚未分類的隕石屬於這一類型,它們包括許多種已知的原始隕石。C球粒隕石只佔墜落隕石總數的一小部分(4.6%)。 一些著名的碳質球粒隕石是:、默奇森隕石、奧蓋爾隕石、、、塔吉什湖隕石、和薩特磨坊隕石。.

新!!: 宇宙化學和碳質球粒隕石 · 查看更多 »

美国国家科学院院刊

《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America,通常简称为PNAS)是美国国家科学院的官方学术周刊。创刊于1915年。院刊出版前沿研究报告、述评、综述、前瞻、学术讨论会论文等。该刊覆盖生物学、化學、物理学、数学和社会科学。.

新!!: 宇宙化學和美国国家科学院院刊 · 查看更多 »

美国国家航空航天局

美國國家航空暨太空總署(National Aeronautics and Space Administration,縮寫为NASA)是美国联邦政府的一个独立机构,负责制定、实施美国的民用太空计划、與开展航空科學暨太空科學的研究。1958年7月29日,美国总统艾森豪威尔签署了《美国公共法案85-568》,创立了國家NASA航空和太空管理局,取代了其前身美國國家航空諮詢委員會(NACA)。於1958年10月開始運作。自此,美國國家航空暨太空總署負責了美國的太空探索,例如登月的阿波羅計劃,太空實驗室,以及隨後的航天飞机。自2006年2月,美国国家航空航天局的愿景是“開拓未來的太空探索,科學發現及航空研究”。美国国家航空航天局的使命是“理解并保护我们依賴生存的行星;探索宇宙,找到地球外的生命;启示我们的下一代去探索宇宙”。在太空计划之外,美国国家航空航天局还进行长期的民用以及军用航空航天研究。美国国家航空航天局被广泛认为是世界范围内太空机构中執牛耳者。美國國家航空暨太空總署透過地球觀測系統提升對地球的了解,透過太陽科學研究計劃精進太陽科學。美國國家航空暨太空總署注重於利用先進的機械任務探索太陽系中的的所有天體並利用天文觀測台及相關計劃研究天體物理學中的主題,例如大爆炸理論。美國國家航空暨太空總署與許多美國國內及國際的組織分享其研究數據。.

新!!: 宇宙化學和美国国家航空航天局 · 查看更多 »

芳香性

芳香性是一種化學性質,有芳香性的分子中,由不饱和键、孤对电子和空轨道组成的共軛系統具有特別的、仅考虑共轭时无法解释的稳定作用。可以将芳香性看作是环状离域和环共振的体现。一般认为在这些体系中的电子,可以自由在由原子组成的环形结构上运动(离域),这些环形结构含有单键和双键相间,离域的结果是环键的键级趋于均化,给予体系稳定作用。 芳香性的理論最初由凱庫勒發展出來,是以六元的苯分子为原型建立起来。理論中的苯有兩個共振形態,並有單键和双键相间,但理论上的两种苯(环己三烯)衍生物的这类异构体在实际上无法检测或分离出来,苯事实上是这两个异构体的“杂化体”,并且具有不考虑电子离域时无法解释的稳定性。.

新!!: 宇宙化學和芳香性 · 查看更多 »

隕石

隕石是小塊的固體碎片,它的來源是小行星或彗星,起源於外太空,對地球的表面及生物都有影響。在它撞擊到地表之前稱為流星。隕石的大小範圍從小型到極大不等。當流星體進入地球大氣層,由于摩擦、壓力以及大氣中氣體的化學作用,導致其温度升高并发光,因此形成了流星,包括火球,也稱為射星或墬星。火流星既是與地球碰撞的外星天體,也是異常明亮的流星,而像火球這樣的流星無論如何最終都會影響地球的表面。 更通俗的說法,在地球表面的任何一顆隕石都是來自外太空的一個天然物體。月球和火星上也有發現隕石。 被觀察到穿越大氣層或撞擊地球隕石稱為墬落隕石,其它的隕石都稱為發現隕石。截至2010年2月,只有大約1,086顆的墬落隕石的標本被收藏 ,但卻有38,660顆被確認的發現隕石.

新!!: 宇宙化學和隕石 · 查看更多 »

鳥嘌呤

鳥嘌呤(Guanine,又稱鳥糞嘌呤)是五種不同碱基中的其中之一,並同時存在於脱氧核醣核酸(DNA)及核醣核酸(RNA)中。鳥嘌呤是嘌呤的一種,並與胞嘧啶(cytosine)以三個氫鍵相連。.

新!!: 宇宙化學和鳥嘌呤 · 查看更多 »

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

新!!: 宇宙化學和脱氧核糖核酸 · 查看更多 »

脂肪族化合物

有机化学中,碳氢化合物被划分为两类:脂肪族化合物和芳香族化合物。芳香族化合物指含有苯环或其它芳香环的化合物,而脂肪族化合物则与其相对。脂肪族化合物中,碳原子以直链、支链或环状排列,分别称为直链脂肪烃、支链脂肪烃及脂环烃。脂肪族化合物可以是烷烃、烯烃或炔烃。除氢之外,其它的原子也可存在,比如氧、氮、硫和氯。 最简单的脂肪族化合物是甲烷(CH4)。 大多数脂肪族化合物都可燃,有些可作为燃料,比如本生灯中的甲烷和电焊气中的乙炔。.

新!!: 宇宙化學和脂肪族化合物 · 查看更多 »

自然 (期刊)

《自然》(Nature)是世界上最早的科学期刊之一,也是全世界最权威及最有名望的学术期刊之一,首版於1869年11月4日。虽然今天大多数科学期刊都专一於一个特殊的领域,《自然》是少数(其它类似期刊有《科学》和《美国国家科学院院刊》等)依然发表来自很多科学领域的一手研究论文的期刊。在许多科学研究领域中,每年最重要、最前沿的研究结果是在《自然》中以短文章的形式发表的。 《自然》的主要读者是从事研究工作的科学家,但期刊前部的文章概括使得一般公众也能理解期刊内最重要的文章。期刊开始部分的社论、新闻及专题文章报道科学家一般关心的事物,包括最新消息、研究资助、商业情况、科学道德和研究突破等。期刊也介绍与科学研究有关的书籍和艺术。期刊的其余部分主要是研究论文,这些论文往往非常紧密,非常具有技术性。 在《自然》上发表文章是非常光荣的,《自然》上的文章经常被引用,这有助于晋升、获得资助和获得主流媒体的关注。因此科学家之间在《自然》或《科学》上发表文章上的竞争非常强。但是与其它专业的科学杂志一样,在《自然》上发表的文章需要经过严格的同行评审。在发表前编辑选择其他在同一领域有威望的、但与作者无关的科学家来检查和评判文章的内容。作者要对评审做出的批评给予反应,比如更改文章内容,提供更多的试验结果,否则的话编辑可能拒绝该文章。.

新!!: 宇宙化學和自然 (期刊) · 查看更多 »

腺嘌呤

腺嘌呤(Adenine,簡稱A,旧称维生素B4)是一種嘌呤,在生物化學上具有許多不同的功用。於細胞呼吸中,是以富有能量的腺苷三磷酸(ATP),以及輔因子煙醯胺腺嘌呤二核苷酸(NAD)、黃素腺嘌呤二核苷酸(FAD)等形式發生作用。並且在蛋白質生物合成過程裡作為DNA與RNA的組成物。.

新!!: 宇宙化學和腺嘌呤 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

新!!: 宇宙化學和蛋白质 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

新!!: 宇宙化學和恒星 · 查看更多 »

核宇宙編年學

核宇宙編年學,也稱為宇宙編年學,是相對來說使用較新的技術用來確定天文物理物件和事件的時間尺度。這種技術使用重放射性核種的豐度計算天文物件形成的年齡,類似於地質年代學領域內時髦的岩石定年。 核宇宙編年學已經成功的使用計算出太陽的年齡(億年)和銀河薄盤面的年齡(),以及其它的。它也曾用來估計銀河系本身的年齡,例如最近對銀冕中Cayrel的星所做的研究。精確度的限制因素來自被觀測天體的暗弱程度,更重要的或許是,參予r-過程元素的原始豐度不確定性。.

新!!: 宇宙化學和核宇宙編年學 · 查看更多 »

核糖核酸

核糖核酸(Ribonucleic acid),簡稱RNA,是一類由核糖核苷酸通過3',5'-磷酸二酯鍵聚合而成的線性大分子。自然界中的RNA通常是單鏈的,且RNA中最基本的四種鹼基爲A(腺嘌呤)、U(尿嘧啶)、G(鳥嘌呤)、C(胞嘧啶)通過轉錄後修飾,RNA可能會帶上(Ψ)這樣的稀有鹼基,相對的,與RNA同爲核酸的DNA通常是雙鏈分子,且含有的含氮鹼基爲A(腺嘌呤)、T(胸腺嘧啶)、G(鳥嘌呤)、C(胞嘧啶)四種。 RNA有着多種多樣的功能,可在遺傳編碼、翻譯、調控、基因表達等過程中發揮作用。按RNA的功能,可將RNA分爲多種類型。比如,在細胞生物中,mRNA(信使RNA)爲遺傳信息的傳遞者,它能夠指導蛋白質的合成。因爲mRNA有編碼蛋白質的能力,它又被稱爲編碼RNA。而其他沒有編碼蛋白質能力的RNA則被稱爲非編碼RNA(ncRNA)。它們或通過催化生化反應,或通過調控或參與基因表達過程發揮相應的生物學功能。比如,tRNA(轉運RNA)在翻譯過程中起轉運RNA的作用,rRNA(核糖體RNA)於翻譯過程中起催化肽鏈形成的作用,(小RNA)起到調控基因表達的作用。此外,RNA病毒甚至以RNA作爲它們的遺傳物質。 RNA通常由DNA通過轉錄生成。RNA在細胞中廣泛分佈,真核生物的細胞核、細胞質、粒線體中都有RNA。.

新!!: 宇宙化學和核糖核酸 · 查看更多 »

核苷酸

核苷酸(Nucleotide)为核酸的基本组成单位。核苷酸由一個含氮鹼基作為核心,加上一個五碳糖和一個或者多个磷酸基團組成。含氮碱基有五种可能,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶。五碳糖为脱氧核糖者称为脱氧核糖核苷酸(DNA的單體),五碳糖为核糖者称为核糖核苷酸(RNA的單體)。 根据构成核酸的核苷酸数量分为寡核苷酸(少于或等于15个核苷酸)和多核苷酸(15个核苷酸以上)。.

新!!: 宇宙化學和核苷酸 · 查看更多 »

氧化

氧化又被称为氧化作用、氧化反应。是还原剂(被氧化物)与氧化剂(被还原物)之间的氧化数升降。还原剂的氧化数上升(失去电子),氧化剂的氧化数下降(获得电子)。 一般物质与氧气发生氧化时放热,个别可能吸热,如氮气与氧气的反应。电化学中阳极发生氧化,阴极发生还原。.

新!!: 宇宙化學和氧化 · 查看更多 »

氨基酸

胺基酸是生物學上重要的有機化合物,它是由胺基(-NH2)和羧基(-COOH)的官能團組成的,以及一個側鏈连到每一個胺基酸。胺基酸是構成蛋白質的基本單位。賦予蛋白質特定的分子結構形態,使他的分子具有生化活性。蛋白質是生物体內重要的活性分子,包括催化新陳代謝的酶(又称“酵素”)。 不同的胺基酸脱水缩合形成肽(蛋白質的原始片段),是蛋白質生成的前.

新!!: 宇宙化學和氨基酸 · 查看更多 »

有机化合物

有机化合物(Organische Verbindung;英語:organic compound、organic chemical),简称有机物,是含碳化合物,但是碳氧化物(如一氧化碳、二氧化碳)、碳酸、碳酸鹽、 碳酸氢盐、氰化物、硫氰化物、氰酸鹽、金屬碳化物(如電石)等除外。有机化合物有时也可被定义为碳氫化合物及其衍生物的總稱。有机物是生命產生的物質基礎,例如生命的起源——胺基酸即為一有機化合物。.

新!!: 宇宙化學和有机化合物 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »