徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

太赫輻射

指数 太赫輻射

--,又稱THz波,包含了频率为0.3到3 THz的电磁波。该术语适用于从电磁辐射的毫米波波段的高频边缘(300 GHz)和低频率的远红外光谱带边缘(3000 GHz)之间的频率,对应的波长的辐射在该频带范围从1mm到0.1mm(或100μm),所以也叫作「亞毫米波段」。 目前,国际上对太赫兹辐射已达成如下共识,即太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对于物质结构的探索具有重要意义;其次是因为太赫兹脉冲光源与传统光源相比具有很多独特的性质。.

15 关系: 同步辐射太赫兹无损检测人體掃瞄安檢儀异质结双极性晶体管开尔文 (单位)医学成像电磁辐射电磁波高电子迁移率晶体管迴旋管肖特基二极管量子级联激光器自由电子激光器極高頻概念验证

同步辐射

同步辐射是带电粒子的運動速度接近光速(v≈c)在电磁场中偏转时,沿運動的切線方向发出的一种电磁辐射,最先在电子同步加速器上发现,故得此名,又称同步加速器辐射。它与回旋辐射(由回旋加速器产生的辐射)类似,区别是同步辐射中的电子速度更高,已接近光速,要考虑相对论效应。 由于重子的静止质量比电子大三个數量级以上,即使在TeV级的质子同步加速器中,因同步辐射造成的能量损失依然是不重要的。而对MeV级的电子同步加速器,同步辐射已十分显著。同步辐射使粒子在横向和纵向的振荡阻尼,并与量子起伏达到平衡态。这也是为什么电子同步加速器中束流易于稳定和束流发射度较小且不依赖于入射束性能的原因。 由于同步辐射造成的能量损失是阻碍电子同步加速器能量提高的主要因素。同时又发现它具有宽阔的连续光谱、高度的准直性和偏振性等特点,加上高功率和高亮度,使电子储存环成为一种性能优异的新型强光源而得到广泛应用。同步辐射又是天体物理中的一种重要辐射机制。.

新!!: 太赫輻射和同步辐射 · 查看更多 »

太赫兹无损检测

太赫兹无损检测(Terahertz nondestructive evaluation),是一種應用太赫波域电磁辐射设备進行檢測、分析及评估的技術。这些装置和技术可用來评估材料、元件或系统的性质,而不会對它們造成损伤。 太赫兹成像是一種新兴和受到重視的无损检测技术。在制药、生物医学、安全、材料科學及航空航天等行业裡,用于电介质(不导通,即绝缘体)材料分析和质量控制。它已經被證實可以有效檢查顏料與被覆的分層 、偵測陶磁與複合材料的缺陷 ,以及斷層掃瞄画作與手稿的物理结构。使用THz波於非破坏性评估,可進行多层结构体的检查,并能识别异物、夹杂物、脱粘分层、机械冲击破坏、热损伤异常和水或液压流体的侵入。.

新!!: 太赫輻射和太赫兹无损检测 · 查看更多 »

人體掃瞄安檢儀

#重定向 人體掃描安檢儀.

新!!: 太赫輻射和人體掃瞄安檢儀 · 查看更多 »

异质结双极性晶体管

异质结双极性晶体管(heterojunction bipolar transistor,縮寫:HBT)是双极性晶体管的一种,它的发射区和基区使用了不同的半导体材料,这样,发射结(即发射区和基区之间的PN结)就形成了一个异质结。异质结双极性晶体管比一般的双极性晶体管具有更好的高频信号特性和基区发射效率,可以在高达数百GHz的信号下工作。它在现代的高速电路、射频系统和移动电话中应用广泛。对异质结双极型晶体管的研究始于1951年。.

新!!: 太赫輻射和异质结双极性晶体管 · 查看更多 »

开尔文 (单位)

#重定向 开尔文.

新!!: 太赫輻射和开尔文 (单位) · 查看更多 »

医学成像

#重定向 醫學影像.

新!!: 太赫輻射和医学成像 · 查看更多 »

电磁辐射

電磁辐射,又稱電磁波,是由同相振盪且互相垂直的電場與磁場在空間中以波的形式傳遞能量和動量,其傳播方向垂直於電場與磁場構成的平面。 電磁輻射的載體為光子,不需要依靠介質傳播,在真空中的傳播速度为光速。電磁輻射可按照頻率分類,從低頻率到高頻率,主要包括無線電波、微波、紅外線、可見光、紫外線、X射線和伽馬射線。人眼可接收到的電磁輻射,波長大約在380至780nm之間,稱為可見光。只要是本身溫度大於絕對零度的物體,除了暗物質以外,都可以發射電磁輻射,而世界上並不存在温度等於或低於絕對零度的物體,因此,人們周邊所有的物體時刻都在進行電磁輻射。儘管如此,只有處於可見光频域以内的電磁波,才可以被人們肉眼看到,對於不同的生物,各種電磁波頻段的感知能力也有所不同。.

新!!: 太赫輻射和电磁辐射 · 查看更多 »

电磁波

#重定向 电磁辐射.

新!!: 太赫輻射和电磁波 · 查看更多 »

高电子迁移率晶体管

电子迁移率晶体電晶體(High electron mobility transistor, HEMT),也称调制掺杂场效应管(modulation-doped FET, MODFET)是场效应電晶體的一种,它使用两种具有不同能隙的材料形成异质结,为载流子提供通道,而不像金屬氧化物半導體場效電晶體那样,直接使用掺杂的半导体而不是结来形成导电沟道。砷化镓、砷镓铝三元化合物半导体是构成这种器件的可选材料,当然根据具体的应用场合,可以有其他多种组合。例如,含铟的器件普遍表现出更好的高频性能,而近年来发展的氮化镓高电子迁移率晶体管则凭借其良好的高频特性吸引了大量关注。高电子迁移率晶体管可以在极高频下工作,因此在移动电话、卫星电视和雷达中应用广泛。.

新!!: 太赫輻射和高电子迁移率晶体管 · 查看更多 »

迴旋管

迴旋管是一種能產生高功率微波的真空管,藉由加速電子在強大的磁場中做迴旋運動,同步、群聚進而產生的毫米電磁波。輸出的頻率範圍約20至250 GHz,波長涵蓋的範圍從微波至太赫茲波段的邊緣。典型的迴旋管輸出功率範圍從幾十千瓦至兆瓦都有。迴旋管可被設計成脈衝或是連續操作的功率輸出。.

新!!: 太赫輻射和迴旋管 · 查看更多 »

肖特基二极管

肖特基二極體(又譯--特基二極體)是一種導通電壓降較低、允許高速切換的二極體,是利用-zh-tw:蕭特基能障;zh-cn:肖特基势垒;-特性而產生的電子元件,其名稱是為了紀念德國物理學家華特·蕭特基(Walter H. Schottky)。 肖特基二极體的導通電壓非常低。一般的二極體在電流流過時,會產生約 0.7-1.7 伏特的電壓降,不過肖特基二極體的電壓降只有 0.15-0.45 伏特,因此可以提昇系統的效率。.

新!!: 太赫輻射和肖特基二极管 · 查看更多 »

量子级联激光器

量子级联激光器(Quantum Cascade Laser)是一种能够发射光谱在中红外和远红外频段激光的半导体激光器。它是由贝尔实验室哲罗姆·菲斯特、费德里科·卡帕索等人于1994年率先实现。 通常的半导体激光器是发光的机制是导带和价带中的电子空穴对在复合过程中发出光子,而量子级联激光器的原理则是,在多层半导体形成的周期性量子阱超晶格结构中,利用其子能带之间的电子跃迁发光,这个想法首先由R.F. Kazarinov和R.A. Suris在1971提出,论文题目为《在超晶格结构半导体中实现电磁波放大的可能性》(Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice).

新!!: 太赫輻射和量子级联激光器 · 查看更多 »

自由电子激光器

自由电子激光器(FEL),所产生激光束的光学性质与传统激光器一样,具有高度相干、高能量的特点,其不同点在于其特殊的光源产生机制。传统利用气体、液体或固体(如半导体激光器)作为激光介质的激光器,其激光产生会使原本处于束缚态的原子或分子受到激发;对于FEL,激光产生则依靠将在磁场中运动的相对论电子束的动能转换为光子能量。由于电子束可以在磁场中自由移动,故命名为“自由电子激光器”。激光产生过程中没有传统意义上的介质,不需要实现粒子数反转,因此,这种激光不依赖于受激发射。自由电子激光器的核心是电子源(通常是粒子加速器)与相互作用区(把电子动能转换为光子能量)。 由于自由电子处于连续态,从理论上说其辐射波长不受固定波长限制。自由电子激光器比任何传统激光器都具有更宽的频带,因此调谐范围更宽,当前可涵盖微波,太赫兹,远红外,可见光区,甚紫外直至X射线。 自由电子激光器发明于1976年,发明者为斯坦福大学的約翰·梅迪(John Madey)。其研究核心基于Hans Motz的关于摇摆磁场构型的工作。梅迪利用24MeV的电子束和5米长的摇摆器用于放大信号。不久之后,其他拥有加速器的实验室也加入到这种激光器的开发中来。.

新!!: 太赫輻射和自由电子激光器 · 查看更多 »

極高頻

極高頻(Extremely high frequency)是指波長短于超高频(SHF)的电磁波,波長由1mm到10mm。 毫米波所对应的频率范围是30~300GHz。主要应用于气象雷达、空间通信、射电天文等方面。也可能会被用于第五代移动通信系统(5G)。.

新!!: 太赫輻射和極高頻 · 查看更多 »

概念验证

概念验证(Proof of concept,簡稱POC)是对某些想法的一个较短而不完整的实现,以证明其可行性,示范其原理,其目的是为了验证一些概念或理论。概念验证通常被认为是一个有里程碑意义的實作的原型 。 在计算机安全术语中,概念验证经常被用来作为0day、exploit的别名。(通常指并没有充分利用这个漏洞的exploit).

新!!: 太赫輻射和概念验证 · 查看更多 »

重定向到这里:

亚毫米波太赫兹辐射

传出传入
嘿!我们在Facebook上吧! »