徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

天琴座β型變星

指数 天琴座β型變星

天琴β型變星是一種非常靠近的聯星,因為兩顆星的互繞,其中一顆會經過另一顆的前方,因此它們的總光度會週期性的變化。天琴β型變星的兩顆恆星質量都很大(數倍於太陽的質量),都屬於巨星或次巨星。並且兩顆星是如此的靠近,以至於它們的外觀因為強大的重力作用而產生變型:恆星成為橢圓的球體,並且外圍的質量會從其中的一顆恆星流向另外一顆。.

25 关系: 大熊座W型變星大陵五型變星太陽密接聯星尾宿一巨星弧矢增七光年光變曲線牛顿万有引力定律聯星食 (天文現象)视星等變星變星列表质量超巨星船尾座PU船尾座V次巨星洛希極限渐台二振幅房宿一星风

大熊座W型變星

大熊W型變星是一種食雙星變星,兩顆星非常的靠近,以致兩顆星的表面互相接觸到。因為它們外面數層的氣體是共有的,因此被稱為共包層聯星。經由兩顆星相連之處,雙方的質量和熱可以相互流通,會使兩顆星的溫度一致。.

新!!: 天琴座β型變星和大熊座W型變星 · 查看更多 »

大陵五型變星

大陵五變星或大陵五型雙星是以英仙座β星(中國星名為大陵五)為代表的一種食变星。 當溫度較低的恆星由較熱的恆星前方經過時,會遮蔽後方恆星部份或全部的光,這是這對聯星光度的主極小,所以由地球觀察到的聯星亮度會下降;但稍後,當較熱的恆星經過過較冷恆星前方時,也會造成光度的下降,稱為第二極小或次極小。 由週期,或兩次主極小的時間間隔,是非常規律的,可以測量出聯星的公轉週期,這個時間就是兩顆星在軌道上互相環繞一周的時間。大部分的大陵五型變星是相當接近的雙星,它們的週期都不長,通常都在幾天之內。以知週期最短的是玉夫座VZ (0.145天),最長的則是御夫座ε,長達9892天(27年)。 大陵五型聯星系統的伴星是球形或略微橢球形,與所謂的天琴座β變星和大熊座W變星有所不同,這兩種變星的伴星都更為靠近,以致於引力會影響到恆星的外型。 通常,這類型的光度變化在一個視星等左右,已知變化最大的是天鷹座V342,光度變化達到3.4等。伴星可以是任何一種光譜類型,但較明亮的都屬於B、A、F或G型光譜。 大陵五型變星的原型是在1669年被Geminiano Montanari發現的英仙座β星,造成變光的機制則在1782年才被约翰·古德利克正確的予以闡明。 已知的大陵五型變星有數千顆,在2003年版的變星總目錄(gcvs)中已經列出了3,554顆,佔總數的9%,一些有趣的大陵五型變星可以在著名的變星列表中查到。.

新!!: 天琴座β型變星和大陵五型變星 · 查看更多 »

太陽

#重定向 太阳.

新!!: 天琴座β型變星和太陽 · 查看更多 »

密接聯星

密接聯星是天文學中伴星與主星非常接近,共享一個互相接觸或合併的氣體包層的聯星系統。共享包層的聯星系統也稱為overcontact或共享包層聯星。 幾乎所有已知的密接聯星都是食聯星,這類食密接聯星稱為大熊座W變星,其原型為大熊座W 。 密接聯星經常會與共包層星混淆。然而,前者是在其數百萬至數十億年的一生中,有令人動容的穩定組態的兩顆聯星;後者描述的是聯星發展在恆星動力學不穩定的階段,不是驅散就是共享恆星包層,而在時間尺度上只有幾個月到數年。.

新!!: 天琴座β型變星和密接聯星 · 查看更多 »

尾宿一

尾宿一(天蝎座μ¹,μ¹Sco)是天蝎座的一个恒星系统,距离地球约822光年。 尾宿一是一个天琴座β型食双星系统。两颗成员星都是蓝白B型恒星,其中主星是一颗亚巨星,伴星是一颗矮星。基于对其掩星情况的观测,恒星系统的视星等从+2.80到+3.08之间变化,周期为1.4402天。 Scorpii, Mu¹ Category:天琴β变星 Category:B型亚巨星 Category:B型主序星 Category:天蝎座 Category:有固有名的恆星 Category:尾 (星官).

新!!: 天琴座β型變星和尾宿一 · 查看更多 »

巨星

巨星在本質上是一顆半徑和亮度都比主序星大,但卻有相同的表面溫度的恆星Giant star, entry in Astronomy Encyclopedia, ed.

新!!: 天琴座β型變星和巨星 · 查看更多 »

弧矢增七

弧矢增七,即大犬座29(29 Canis Majoris),或稱為大犬座UW(UW CMa),是一顆位於大犬座的天琴座β型變星,屬於食變星。它的星等變化以4.39日為週期從+4.84到+5.33等。 弧矢增七A是少見的O型藍超巨星,伴星較年輕且光度較低,但也是一个O型超巨星。視差量測顯示該系統距離地球約3000光年,但對於該系統恆星的光度與光譜類型而言是不尋常地近 。近年由依巴谷衛星更精確的視差量測甚至得到距離更近的2000光年結果。而這個系統被認為是疏散星團NGC 2362距離較遠的成員星,因此和地球的距離應是較符合預期光度的5000光年。而這些距離量測的矛盾至今仍是一個研究議題 。如果该系统距离为2000光年,根据光度得出主星的质量将为22个太阳质量,伴星为13个太阳质量,对于O型超巨星来说,这个质量太低,甚至不及同光譜型的主序星。但是如果距离为5400光年,主星的光度将达到太阳的41万倍,伴星也将亮达太阳的17万倍,比较符合O型超巨星的亮度。从光度推算主星的质量为太阳的54倍,伴星则为太阳的20倍。.

新!!: 天琴座β型變星和弧矢增七 · 查看更多 »

光年

光年(light-year)是長度單位之一,指光在真空中一年時間內傳播的距離,大約9.46兆千米(9.46千米或英里。 光年一般用於天文學中,是用來量長度很長的距離,如太陽系跟另一恆星的距離。光年不是時間的單位。 天文學中另三個常用的單位是秒差距、天文單位與光秒,一秒差距等於3.26光年,一天文單位為149,597,870,700公尺,一光秒是光一秒所走的距離為299,792,458公尺。 例如,世界上最快的飛機可以達到每小時1萬1260千米的時速(2004年11月16日,美國航空航天局(NASA)的飛機最高速度紀錄是1萬1260千米/小時),依照這樣的速度,飛越一光年的距離需要用9萬5848年。而常見的客機大約是885千米/小時,這樣飛行1光年則需要122萬0330年。目前人造的最快物體是2016年7月5日抵達木星極軌道的朱諾號(2011年8月5日發射升空),最高速度為73.61千米/秒(即約26萬5000千米/小時),這樣的速度飛越1光年的距離約需要4075年的時間。.

新!!: 天琴座β型變星和光年 · 查看更多 »

光變曲線

光度曲線是天文學上表示天體相對於時間的亮度變化圖形,是時間的函數,通常會顯示出一種特定的頻率間隔或是帶狀。光度曲線會呈現週期性,像是食雙星、造父變星和其他的各種變星,或是非週期性的,像是新星、激變變星、超新星或微透鏡事件,的光度曲線。研究光度曲線,並配合其他的觀測,能獲得重要的訊息,像是導致這種過程的物理機制,或是制約這種行為的物理理論。.

新!!: 天琴座β型變星和光變曲線 · 查看更多 »

牛顿万有引力定律

万有引力定律(Newton's law of universal gravitation)指出,兩個質點彼此之間相互吸引的作用力,是與它們的質量乘積成正比,並與它們之間的距離成平方反比。 万有引力定律是由艾薩克·牛頓(Isaac Newton)稱之為歸納推理的經驗觀察得出的一般物理規律。它是經典力學的一部分,是在1687年于《自然哲学的数学原理》中首次發表的,并於1687年7月5日首次出版。當牛頓的書在1686年被提交給英國皇家學會時,羅伯特·胡克宣稱牛頓從他那裡得到了距離平方反比律。 此定律若按照現代語文,明示了:每一點質量都是通過指向沿著兩點相交線的力量來吸引每一個其它點的質量。力與兩個質量的乘積成正比,與它們之間的距離平方成反比。關於牛頓所明示質量之間萬有引力理論的第一個實驗,是英國科學家亨利·卡文迪什(Henry Cavendish)於1798年進行的卡文迪許實驗。這個實驗發生在牛頓原理出版111年之後,也是在他去世大約71年之後。 牛頓的引力定律類似於庫侖電力定律,用來計算兩個帶電體之間產生的電力的大小。兩者都是逆平方律,其中作用力與物體之間的距離平方成反比。庫侖定律是用兩個電荷來代替質量的乘積,用靜電常數代替引力常數。 牛頓定律的理論基礎,在現代的學術界已經被愛因斯坦的廣義相對論所取代。但它在大多數應用中仍然被用作重力效應的經典近似。只有在需要極端精確的時候,或者在處理非常強大的引力場的時候,比如那些在極其密集的物體上,或者在非常近的距離(比如水星繞太陽的軌道)時,才需要相對論。.

新!!: 天琴座β型變星和牛顿万有引力定律 · 查看更多 »

聯星

聯星是兩顆恆星組成,在各自的軌道上圍繞著它們共同質量中心運轉的恆星系統。有著兩顆或更多恆星的系統稱為多星系統。這種系統,尤其是在距離遙遠時,肉眼看見的經常是單一的點光源,要過其它的觀測方法,才能揭示其本質。過去兩個世紀的研究顯示,一半以上可見的恆星都是多星系統。 雙星(double star)通常被視為聯星的同義詞;然而,雙星應該只是光學雙星。之所以稱為光學雙星,只是因為從地球上觀察它們在天球上的位置,在視線上幾乎是相同的位置。然而,它們的"雙重性"只取決於這光學效應;恆星本身之間的距離是遙遠的,沒有任何共用的物理連結。通過測量視差、自行或徑向速度的差異,可以揭示它們只是光學雙星。 許多著名的光學雙星尚未進行充分與嚴謹的觀測,來確認它們是光學雙星還是有引力束縛在一起的多星系統。 聯星系統在天文物理上非常重要,因為它們的軌道計算允許直接得出系統的質量,而更進一步還能間接估計出半徑和密度。也可以從質光關係(mass-luminosity relationship,MLR)估計出單獨一顆恆星的質量。 有些聯星經常是在以可見光檢測到的,在這種情況下,它們被稱為視覺聯星。許多視覺聯星有長達數百年或數千年的軌道週期,因此還不是很了解它們的軌道。它們也可能通過其他的技術,例如光譜學(聯星光譜)或天體測量學來檢測。如果聯星的軌道平面正巧在我們的視線方向上,它與伴星會發生互相食與凌的現象;這樣的一對聯星會被稱為食聯星,或因為它們是經由光度變化被檢測出來的,而被稱為光度計聯星。 如果聯星系統中的成員非常接近,將會因為引力而相互扭曲它們的大氣層。在這樣的情況下,這些接近的聯星系統可以交換質量,可能會帶來它們在恆星演化時,單獨的恆星不能達到的階段。這些聯星的例子有大陵五、天狼星、天鵝座X-1(這是眾所皆知的黑洞)。也有許多聯星是行星狀星雲的中心恆星,和新星與Ia型超新星的祖恆星。.

新!!: 天琴座β型變星和聯星 · 查看更多 »

食 (天文現象)

食或蝕,是一種天文事件,可以是一個天體進入另一個天體的影子,或是從觀測者和另一個天體之間穿越,而造成暫時的遮蔽現象。食是一種朔望的型態。 “食”這個字最常用在日食-月球的影子掠過地球的表面,或月食-月球進入地球的陰影內。然而,這個字眼也可以用在地月系統之外的事件:例如,某行星進入它的一顆衛星所造成的影子內,或是衛星進入它的母行星的陰影內,或是一顆衛星進入另一顆衛星的影子內。在聯星系統,當它的軌道平面和觀察者橫切時,也可能發生食的現象。.

新!!: 天琴座β型變星和食 (天文現象) · 查看更多 »

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

新!!: 天琴座β型變星和视星等 · 查看更多 »

變星

變星是指亮度與電磁輻射不穩定的,經常變化並且伴隨著其他物理變化的恆星。 多數恆星在亮度上幾乎都是固定的。以我們的太陽來說,太陽亮度在11年的太陽週期中,只有0.1%變化。然而有許多恆星的亮度確有顯著的變化。這就是我們所說的變星。 變星可以大致分成以下兩種形態:.

新!!: 天琴座β型變星和變星 · 查看更多 »

變星列表

被發現的變星已經超過50,000顆,而且還有規律的在增加中,因此在此呈現完整的目錄是不可能的。下面是較著名的178顆變星的名冊,可能是較亮、較特殊或其他令人感興趣的原因而被選入的。.

新!!: 天琴座β型變星和變星列表 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 天琴座β型變星和质量 · 查看更多 »

超巨星

超巨星是質量最大的恆星,在赫羅圖上占據著圖的頂端,在約克光譜分類中屬於Ia(非常亮的超巨星)或Ib(不很亮的超巨星),但最明亮的超巨星有時會被分類為0。 超巨星的質量是太陽的10至70倍,亮度則為太陽光度的30,000至數百萬倍,它們的半徑變化也很大,通常是太陽半徑的30至500倍,甚至超過1000倍太陽半徑。斯特凡-波茲曼定律顯示紅超巨星的表面,單位面積輻射的能量較低,因此相對於藍超巨星的溫度是較冷的,因此有相同亮度的紅超巨星會比藍超巨星更巨大。 因為她們的質量是如此的巨大,因此壽命只有短暫的一千萬至五千萬年,所以只存在於年輕的宇宙結構中,像是疏散星團、螺旋星系的漩渦臂,和不規則星系。她們在螺旋星系的核球中很罕見,也未曾在橢圓星系或球狀星團中被觀測到,因為這些天體都是由老年的恆星組成的。 超巨星的光譜佔據了所有的類型,從藍超巨星早期型的O型光譜,到紅超巨星晚期型的M型都有。參宿七,在獵戶座中最亮的恆星,是顆藍白色的超巨星,參宿四和天蝎座的心宿二則是紅超巨星。 超巨星模型的塑造依然是研究領域中活躍且有困難之處的區塊,例如恆星質量流失的問題就仍待解決。新的趨勢與研究方法則不只是要塑造一顆恆星的模型,而是要塑造整個星團的模型,並且藉以比較超巨星在其中的分布與變化,例如,像在星系麥哲倫雲中的分布狀態。 宇宙中的第一顆恆星,被認為是比存在於現在的宇宙中的恆星都要明亮與巨大的。這些恆星被認為是第三星族,她們的存在是解釋在類星體的觀測中,只有氫和氦這兩種元素的譜線所必須的。 大部分第二型超新星的前身被認為是紅超巨星,然而,超新星1987A的前身卻是藍超巨星。不過,在強大的恆星風將外面數層的氣體殼吹散前他可能是一顆紅超巨星。 目前所知最大的幾顆恆星,依據體積的大小排序如下:盾牌座UY、天鵝座NML、仙王座RW、WOH G64、仙后座PZ、維斯特盧1-26、人馬座VX、大犬座VY(the Garnet Star)。以上排名与亮度和重量无关。.

新!!: 天琴座β型變星和超巨星 · 查看更多 »

船尾座PU

船尾座PU,又名CD-25 4828,HD 61429、SAO 174175、HR 2944,是船尾座的一颗恒星,视星等为4.7,位于銀經240.65,銀緯-1.84,其B1900.0坐标为赤經,赤緯。.

新!!: 天琴座β型變星和船尾座PU · 查看更多 »

船尾座V

船尾座V,又名CD-48 3349,HD 65818、SAO 219226、HR 3129,是船尾座的一颗恒星,视星等为4.41,位于銀經263.48,銀緯-10.28,其B1900.0坐标为赤經,赤緯。.

新!!: 天琴座β型變星和船尾座V · 查看更多 »

次巨星

次巨星 次巨星是有著與正常主序星(矮星)相同的光譜類型,但比較明亮,卻又不如巨星明亮的恆星。次巨星這個名詞適用於恆星演化的一個階段,是一個光譜的特定光度分類。.

新!!: 天琴座β型變星和次巨星 · 查看更多 »

洛希極限

洛希極限(Roche limit)是一個天體自身的重力与第二個天體造成的潮汐力相等时的距離。當两个天體的距離少於洛希極限,天體就會傾向碎散,繼而成為第二個天體的環。它以首位計算這個極限的人愛德華·洛希命名。 洛希極限常用于行星和环绕它的衛星。有些天然和人工的衛星,儘管它們在它們所環繞的星體的洛希極限內,卻不至成碎片,因為它們除了引力外,還受到其他的力。木衛十六和土衛十八是其中的例子,它們和所環繞的星體的距離少於流體洛希極限。它們仍未成為碎片是因為有彈性,加上它們並非完全流體。在這個情況,在衛星表面的物件有可能被潮汐力扯離衛星,要視乎物件在衛星表面哪部分——潮汐力在兩個天體中心之間的直線最強。 一些內部引力較弱的物體,例如彗星,可能在經過洛希極限內時化成碎片。蘇梅克-列維9號彗星就是好例子。它在1992年經過木星時分成碎片,1994年落在木星上。 現時所知的行星環都在洛希極限之內。.

新!!: 天琴座β型變星和洛希極限 · 查看更多 »

渐台二

渐台二(β Lyr / 天琴座β)是在天琴座的一個双星系統,距離地球大約882光年。在阿拉伯的傳統名稱是الشلياق Sheliak,意思是"烏龜"或"豎琴"。 天琴座β中,A、B星是由藍白色(B7II)主星和深埋在气体中的蓝色(B0.5V)伴星組成的一對半分离双星系統。天琴座β是這一類食變星的原型,系統內的成員很接近,因而相互間的萬有引力足以將對方光球層的物质拉出來,因此恆星已經變形成為橢球的形狀,并发生质量转移。A星初始质量很大,因此很快膨胀到了巨星阶段,它的物质源源不断流向B星,使得原本较轻的B星变成双星中较重的一颗,并且减慢了B星的演化,使得B尚在主序星阶段。现今A星已经损失了初始质量的75%以上,目前质量略小于太阳的3倍,B星深埋在A抛出的大量气体尘埃之中,显得非常昏暗。但是B目前的质量已经达到了太阳的13-15倍之大。天琴座β的視星等以12.9075天的週期在+3.4等至+4.6等之間變化,A、B星因為太接近而無法光學望遠鏡解析出來,它们是光譜聯星。 這個系統的视线方向还有好几颗恒星。其中一对光学双星(在同一视线方向,但实际距离很远,没有物理上的关系)距離A/B星系统45.7",光譜為B7V,視星等+7.2,可以輕鬆的用雙筒望遠鏡看見;它们的亮度約為太陽的80倍,也是光譜雙星,週期4.34天。另外还有一顆较远的恆星——天琴座βF,角距離86",視星等+9.9,光度是太陽的7倍。.

新!!: 天琴座β型變星和渐台二 · 查看更多 »

振幅

振幅是在波动或振动中距离平衡位置或静止位置的最大位移。符号A,单位米。振幅屬於標量,振幅永为非負值(≥0)。 在下图中,位移“y”表示波的振幅。 系統振動中最大動態位移,稱為振幅。 概念辨析(振幅≠幅度):.

新!!: 天琴座β型變星和振幅 · 查看更多 »

房宿一

房宿一(π Sco)是黄道南端天蝎座的一顆三合星,位于天蝎座的头部。视星等2.9,能輕易以肉眼觀測。視差測定房宿一與地球距離大約為590光年(180秒差距)。.

新!!: 天琴座β型變星和房宿一 · 查看更多 »

星风

星風(Stellar Wind)是恒星表面发出的物质流,是恒星质量流失的一种途徑。星風在所有恆星中都普遍存在,但速度和强度有很大差别。 太阳发出的星風通常称为太阳风,速度大约为每秒200-300公里。从冕洞吹出的太阳风速度则要快一些,大约每秒700公里。太阳通过星風损失质量的速率约为每年10-14倍太阳质量,在一生中通过星風大约会损失掉0.01%的质量,因此星風对其恆星演化的影响可以忽略不计。红巨星星風的速度较低,大约为每秒20-60公里。但是由于其星風的密度很大,并且红巨星的表面积很大,由于星風造成的质量损失可以达到每年10-8-10-5倍太阳质量。恒星的质量越小,星風损失质量的速率越小,对于太阳这样的中小质量恒星的演化过程来说,星風造成的质量损失可以忽略不计。而对于大质量恒星,如沃尔夫-拉叶星,星風造成的质量损失率很大,在其一生中质量会发生明显的变化,星風对其演化过程具有很重要的影响。 一般认为,在太阳这样的质量较小、温度较低的恒星中,星風是由于温度很高的冕层发生压力扩张造成的。对于质量较大、较“热”的恒星,冕层的温度和恒星表面差不多,这时星風主要是由辐射压驱动的。.

新!!: 天琴座β型變星和星风 · 查看更多 »

重定向到这里:

Beta Lyrae variable天琴β型變星天琴座β型变星天琴座β變星

传出传入
嘿!我们在Facebook上吧! »