徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

反应机理

指数 反应机理

-- 化学中,反应--用来描述某一化学变化所经由的全部基元反应。虽然整个化学变化所发生的物质转变可能很明显,但为了探明这一过程的反应机理,常常需要实验来验证。 机理详细描述了每一步转化的过程,包括过渡态的形成,键的断裂和生成,以及各步的相对速率大小,等等。完整的反应机理需要考虑到反应物、催化剂、反应的立体化学、产物以及各物质的用量。 反应机理中各步的顺序也是很重要的。有些化学反应看上去是一步反应,但实际上却经由了多步,例如如下反应: 该反应中,实验测得的速率方程为:\ R.

14 关系: 基元反应反应物实验安息香缩合产物 (化学)亲核酰基取代反应催化剂立体化学芬克尔斯坦反应过渡态邻基参与效应速率控制步驟速率方程有机反应

基元反应

基元反应,顾名思义,即最简单的化学反应步骤,是一个或多个化学物种直接作用,一步(单一过渡态)转化为反应产物的过程。微观上看所有化学反应过程都是经过一个或多个简单的反应步骤(即基元反应)才转化为产物分子的。基元反应为组成化学反应的基本单元。通常反应机理便是研究反应是由哪些基元反应组成的。与基元反应相对的概念为非基元反应。對於基元反應,反應的反應級數就等於該反應的反應分子數。 化学反应方程式除非特别注明,一般都表示反应物与产物间的计量关系,而不代表基元反应。一个著名的例子是氢和碘在气相化合生成碘化氢的反应,以前曾认为这是这两种分子直接发生碰撞的结果(即自身为基元反应),但后来的研究否定了这种看法。.

新!!: 反应机理和基元反应 · 查看更多 »

反应物

反应物(在生物中称作--)指的是化学反应中消耗的物质。虽然化学反应中一般也涉及溶剂和催化剂,然而它们通常不被算作反应物。 试剂更强调该种化学物质的某种特定用途。.

新!!: 反应机理和反应物 · 查看更多 »

实验

实验(德语、英语、瑞典语、荷兰语: Experiment),区别于试验,实验是在科学研究中,在設定的條件下,用来检验某种假设,或者驗證或質疑某种已经存在的理论而进行的操作。科學實驗是可以重複的,不同的實驗者在前提一致,操作步驟一致的情況下,能夠得到相同的結果。通常实验最终以实验报告的形式发表。(而试验指的是在已知某种事物的时候,为了了解它的性能或者结果而进行的试用操作。) 「实验」一词,在教育学/教学法文献中有着各种各样的定义。因此在这里对实验的定义进行解释和讨论。.

新!!: 反应机理和实验 · 查看更多 »

安息香缩合

#重定向 安息香缩合反应.

新!!: 反应机理和安息香缩合 · 查看更多 »

产物 (化学)

产物是化学反应的生成物。 根据反应速率的不同,产物生成的速度的可以从纳秒到世纪不等。.

新!!: 反应机理和产物 (化学) · 查看更多 »

亲核酰基取代反应

亲核酰基取代反应(Nucleophilic acyl substitution),即发生在羧酸衍生物酰基碳上的亲核取代反应。反应的表达式如下:.

新!!: 反应机理和亲核酰基取代反应 · 查看更多 »

催化剂

催化劑又稱觸媒,是能透過提供另一活化能較低的反應途徑而加快化學反應速率,而本身的質量、組成和化學性質在參加化學反應前後保持不變的物質。例如二氧化錳可以作為過氧化氫(雙氧水)分解的催化劑。與催化劑相反,能減慢反應速率的物質稱為抑制劑。過去曾用的「負催化劑」一詞已不被國際純粹與應用化學聯合會所接受,而必須改用抑制劑一詞,催化劑一詞僅指能加快反應速率的物質。.

新!!: 反应机理和催化剂 · 查看更多 »

立体化学

立体化学(stereochemistry),有机化学的主要内容。研究有机物在三维空间内的结构与变化的化学分支。由于碳以及所有其他元素的化学键往往不是在二维平面上伸展的,于是就产生了相应的异构现象,由此产生了立体化学这门学科。 十九世纪中叶前,人们对有机化合物的认识一直停留在二维空间。随着有机技术和分析技术的发展,大量同分异构体被合成和发现,人们对有机化合物的认识才逐渐深入。当时人们认为二取代甲烷(CH2R2)有两种同分异构体,但是人们始终只能合成得到一种二取代甲烷。直到1874年,年仅22岁的荷兰科学家凡特霍夫提出碳原子成键的新解释。.

新!!: 反应机理和立体化学 · 查看更多 »

芬克尔斯坦反应

芬克尔斯坦反应,以德国化学家漢斯·芬克爾斯坦(Hans Finkelstein) 的名字命名。它是一种通过SN2机理进行的卤素交换反应。此反应是平衡反应,但可以使用远远过量的卤化物,或利用卤化物在溶剂中溶解度的不同,而使反应向一方进行。.

新!!: 反应机理和芬克尔斯坦反应 · 查看更多 »

过渡态

-- --是基元反应反应坐标中能量最高的一点所对应的分子构型。处于过渡态的分子也称为活化络合物。理论上,活化络合物是极不稳定的,它向反应物和生成物转化的概率相等;绝对的不可逆反应中,在过渡态这一时刻,所有的碰撞分子都会转化为产物。根据量子力学理论,活化络合物布居为零,过渡态是能量最高的一点,任何扰动都会导致它的改变,故无法分离出来,也是无法观测到的。 过渡态这一概念,对于理解有机反应机理具有很重要的作用。过渡态理论认为,化学反应不是通过反应物分子的简单碰撞就可以完成的,而是在反应物到生成物的过程中,经过了一个高能量的过渡态。这与爬山类似,山的最高点便是过渡态。过渡态是一种不稳定的反应物原子组合体,不可逆反应中,它可以很快地分解为产物。通常反应中间体的能量与过渡态相差不大,两者很难区分。借助于飞秒红外光谱,目前已经可以观测到接近过渡态时的分子构型结构。 Hammond假设认为,反应过渡态的结构与反应的吸放热性质有关,吸热反应中过渡态结构与产物更相似,放热反应则相反。过渡态与中间体能量相差不大时,两者的构型差别很小。 以下是氢氧根离子与溴乙烷发生双分子亲核取代反应中的过渡态示意图。.

新!!: 反应机理和过渡态 · 查看更多 »

邻基参与效应

邻基参与效应,有机化学概念之一,指的是相邻基团含有的σ键、π键电子或孤对电子与反应中心发生作用,使反应的某些性质发生改变的现象。邻基参与效应的典型现象为:反应速率加快(邻助效应),产物具有异常的立体化学特征(如亲核取代反应中的构型保持),反应涉及环状过渡态或中间体,反应中发生重排,等等。 一般指邻基参与效应,指的是杂原子孤对电子对SN2反应的协助及桥环化合物和π体系对碳正离子的稳定作用。其实这个效应的范围很广,比如狄尔斯-阿尔德反应中连有不饱和基团的亲双烯体与双烯体之间的次级轨道作用,使得内型加成物成为动力学控制产物的现象,就是邻基参与效应的一个例子。邻基参与反应的历程主要有三类,即n—参与历程、π—参与历程和σ—参与历程;分为二步:(1)反应物的邻基从反面进攻α—碳原子,形成中间体,构型转化一次,为分子内的SN2反应;(2)外部的亲核试剂Nu—从邻基的反面进攻中间体,构型又转化一次,再发生一次分子内SN2反应,其结果是:该类反应总的来说属于SN1反应历程,产物的构型保持不变。.

新!!: 反应机理和邻基参与效应 · 查看更多 »

速率控制步驟

速率控制步驟,又稱為速率限制步驟(限速步驟)或速率決定步驟(rate-determining step (RDS)),是一個化學詞彙,用以表達在化學反應中,反應速率最慢的一個步驟。認識一個化學反應當中最慢的一個步驟的重要性在於能夠有效率地改善整個化學反應的速度,從而達致更高的产率等。一個常用的比喻就是一條狹窄的水管——無論水流有多快,也無法改變水的流量。速率控制步驟就是影響整個化學反應速率的那條水管。.

新!!: 反应机理和速率控制步驟 · 查看更多 »

速率方程

化学反应速率方程是利用反应物浓度或分压计算化学反应的反应速率的方程。对于一个化学反应 mA + nB \rightarrow C\,,化学反应速率方程(与复杂反应速率方程相比较)的一般形式写作: 在这个方程中,\, 表示一种给定的反应物 X\, 的活度,单位通常为摩尔每升(mol/L\,),但在实际计算中有时也用浓度代替(若该反应物为气体,表示分压,单位为帕斯卡 (Pa\))。k\, 表示这一反应的速率常数,与温度、离子活度、光照、固体反应物的接触面积、反应活化能等因素有关,通常可通过阿累尼乌斯方程计算出来,也可通过实验测定。 指数x\,、y\,为反应级数,取决于反应历程。在基元反应中,反应级数等于化学计量数。但在非基元反应中,反应级数与化学计量数不一定相等。 复杂反应速率方程可能以更复杂的形式出现,包括含多项式的分母。 上述速率方程的一般形式是速率方程的微分形式,它可以从反应机理导出,而且能明显表示出浓度对反应速率的影响,便于进行理论分析。将它积分便得到速率方程的积分形式,即反应物/产物浓度 \, 与时间 t\, 的函数关系式。.

新!!: 反应机理和速率方程 · 查看更多 »

有机反应

有机反应即涉及有机化合物的化学反应,是有机合成的基础。几种基本反应类型为:加成反应、消除反应、取代反应、周环反应、重排反应和氧化还原反应。在有机合成当中,有机反应被广泛的应用于各种人造分子的合成。比如药物,塑料,食品添加剂和合成纤维等等。 早期的有机反应,包括有机燃料的燃烧反应,以及制造肥皂所用的皂化反应。当今有机反应已愈发复杂,其中几个获得诺贝尔化学奖的反应为:1912年的格氏反应、1950年的狄尔斯-阿尔德反应、1979年的维蒂希反应、2005年的烯烃复分解反应和2010年的赫克反应。.

新!!: 反应机理和有机反应 · 查看更多 »

重定向到这里:

反应机制反應機構机理有机反应机理

传出传入
嘿!我们在Facebook上吧! »