徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

压缩性

指数 压缩性

在热力学和流体力学范畴中,压缩性(Compressibility)或压缩率是一个对压强改变造成的相对体积改变的度量。 以上V代表体积而P代表压强。.

10 关系: 压强体积剪切强度理想氣體热力学马赫泊松比温度流体力学摩尔体积

压强

生在兩個物體接觸表面、垂直於該表面的作用力,亦可稱為壓力。通常來說,在液壓、氣動或大氣層等領域中提到的「壓力」指的實際上是壓强,即在数值上等於接觸表面上每單位面積所受壓力。 壓強是分布在特定作用面上之力與該面積的比值。換句話說,是作用在與物體表面垂直方向上的每單位面積的力的大小。計式壓強是相較於該地之大氣壓的壓強。雖然壓強可用任意之力單位與面積單位進行測量,但是壓強的國際標準單位(每單位平方公尺的牛頓)也被稱作帕斯卡。 一般以英文字母「p」表示。压力與力和--積的關係如下: 其中.

新!!: 压缩性和压强 · 查看更多 »

体积

積(Volume)是物件佔有多少空間的量。體積的國際單位制是立方米。一件固體物件的體積是一個數值用以形容該物件在空間所佔有的空間。一維空間物件(如線)及二維空間物件(如正方形)在三維空間中均是零體積的。體積是物件佔空間的大小。.

新!!: 压缩性和体积 · 查看更多 »

剪切强度

剪切强度(Shear strength)是工程学名詞,是一个描述物质对抗剪切力强度的专有名词,也就是物质在承受剪切力時會出現降伏或是時的剪切力强度。剪切力是二個彼此平行,方向相反的力,當用剪刀剪紙張時,紙張就是因為剪切力而剪開。 在結構工程及機械工程中,設計許多零件或是結構的尺寸時,需要考慮材料的剪切强度,例如梁、及螺絲都是要考慮剪切强度的零件。若是钢筋混凝土梁,會用肋筋(Stirrups)來增強梁的剪切强度。 剪應力\tau的計算方式如下 其中 一般而言,:延性材料(例如鋁)會因為剪切力而失效,而脆性材料(例如鑄鐵)會因為伸張力而失效,細節可參考極限抗拉強度。 若要計算剪切强度,假設失效的力是F,已知抵抗施力的面積(例如承受剪力的螺栓截面),極限剪切强度(\tau)為:.

新!!: 压缩性和剪切强度 · 查看更多 »

理想氣體

想氣體為假想的气体。其假設為:.

新!!: 压缩性和理想氣體 · 查看更多 »

热力学

热力学,全稱熱動力學(thermodynamique,Thermodynamik,thermodynamics,源於古希腊语θερμός及δύναμις)是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与準平衡态的物理、化学过程。热力学定義許多巨觀的物理量(像溫度、內能、熵、壓強等),描述各物理量之間的關係。热力学描述數量非常多的微觀粒子的平均行為,其定律可以用統計力學推導而得。 熱力學可以總結為四條定律。 熱力學第零定律定義了温度這一物理量,指出了相互接觸的两个系統,熱流的方向。 熱力學第一定律指出内能這一物理量的存在,並且與系統整體運動的動能和系統与與環境相互作用的位能是不同的,區分出熱與功的轉換。 熱力學第二定律涉及的物理量是温度和熵。熵是研究不可逆过程引入的物理量,表征系統通過熱力學過程向外界最多可以做多少熱力學功。 熱力學第三定律認為,不可能透過有限過程使系統冷却到絕對零度。 熱力學可以應用在許多科學及工程的領域中,例如:引擎、相變化、化學反應、輸運現象甚至是黑洞。熱力學計算的結果不但對物理的其他領域很重要,對航空工程、航海工程、車輛工程、機械工程、細胞生物學、生物醫學工程、化學、化學工程及材料科學等科學技術領域也很重要,甚至也可以應用在經濟學中。 热力学是从18世纪末期发展起来的理论,主要是研究功與热量之間的能量轉換;在此功定義為力與位移的內積;而熱則定義為在熱力系統邊界中,由溫度之差所造成的能量傳遞。兩者都不是存在於熱力系統內的性質,而是在熱力過程中所產生的。 熱力學的研究一開始是為了提昇蒸汽引擎的效率,早期尼古拉·卡諾有許多的貢獻,他認為若引擎效率提昇,法國有可能贏得拿破崙戰爭。出生於愛爾蘭的英國科學家開爾文在1854年首次提出了熱力學明確的定義: 一開始熱力學研究關注在熱機中工質(如蒸氣)的熱力學性質,後來延伸到化学过程中的能量轉移,例如在1840年科學家杰迈因·亨利·盖斯提出,有關化學反應的能量轉移的研究。化學熱力學中研究熵對化學反應的影響Gibbs, Willard, J. (1876).

新!!: 压缩性和热力学 · 查看更多 »

马赫

赫(Mach number)是表示速度的量词,又叫馬赫數。一马赫即一倍音速:馬赫數小於1者為次音速,馬赫數大於5左右為超高音速;馬赫數是飛行的速度和當時飛行的音速之比值,大於1表示比音速快,同理,小於1是比音速慢。 其中U為流速,C為音速。音速為壓力波(聲波)在流體中傳遞的速度。馬赫數的命名是為了紀念奧地利學者恩斯特·马赫(Ernst Mach, 1838-1916)。 马赫一般用于飞机、火箭等航空航天飞行器。由于声音在空气中的传播速度随着不同的条件而不同,因此马赫也只是一个相对的单位,每“一马赫”的具体速度并不固定。在低温下声音的传播速度低些,一马赫对应的具体速度也就低一些。因此相对来说,在高空比在低空更容易达到较高的马赫数。 1947年10月14日,耶格尔驾驶X-1试验飞机在加州南部上空脱离B-29母机,上升到一万二千公尺高空,并在此高度上达到每小时1078公里的速度,首次突破音障,超过了一马赫。 當馬赫數Ma1.0,稱為超音速流(Supersonic flow),此類流況在航空動力學中才會遇到。 任何超過音速移動的物體會從頭部向後產生錐狀的能量震波(速度越高錐角越小),其力量可能會破壞接觸物體,而且會摩擦製造高溫,因此其體型設計必須盡量限制在錐狀震波的範圍內,同時要採用高抗熱性的材料。 在地表的速度換算相當於一馬赫≈1225km/h,767mph,1125ft/s。飛行物在相同的速度下,其馬赫會因所在高度空氣的音速不同而有差異;高度越高,音速越低,而使得馬赫越高,因此高空飛行的速度會降低以免產生衝擊。.

新!!: 压缩性和马赫 · 查看更多 »

泊松比

蒲松式比(英语:Poisson's ratio),又译蒲松比,是材料力學和弹性力学中的名詞,定義為材料受拉伸或壓縮力時,材料會發生變形,而其橫向變形量與縱向變形量的比值,是一无量纲(無因次)的物理量。 当材料在一个方向被压缩,它会在与该方向垂直的另外两个方向伸长,这就是泊松现象,泊松比是用来反映柏松现象的无量纲的物理量。 在均匀各向同性材料中,剪切模量G、杨氏模量E 和泊松比\nu三个量中只有两个是独立的,它们之间存在以下关系: G.

新!!: 压缩性和泊松比 · 查看更多 »

温度

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.

新!!: 压缩性和温度 · 查看更多 »

流体力学

流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.

新!!: 压缩性和流体力学 · 查看更多 »

摩尔体积

摩尔体积是指单位物质的量的某种物质于标准状态(0℃、100kPa)的体积,也就是一摩尔物质在标准情况下的体积。 V_.

新!!: 压缩性和摩尔体积 · 查看更多 »

重定向到这里:

不可壓縮壓縮性压缩率

传出传入
嘿!我们在Facebook上吧! »