徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

卡魯扎-克萊因理論

指数 卡魯扎-克萊因理論

物理學中,卡魯扎-克萊因理論(Kaluza–Klein theory,有時簡稱為KK theory) 是一個試圖統一重力與電磁兩大基本力的理論模型。此理論最初由數學家西奧多·卡魯扎於1921年所發表。他將廣義相對論推廣到五維的時空。 所得方程式可以分成好幾組方程式,其中一個與等價於愛因斯坦場方程式,另外一組方程式則等價於描述電磁場的馬克士威方程組。 此外,還多出一個純量場——五維度規張量之分量 g_,其對應粒子稱之為「輻子(暫譯)」(radion)。.

33 关系: 基本粒子半径卡拉比-丘流形奧斯卡·克萊因孤波度量张量廣義相對論引力彎曲時空圓群空間紧化 (物理学)羅伯遜-沃爾克度規爱因斯坦场方程电磁学电磁场物理学物质西奧多·卡魯扎馬克士威方程組规范场论贡纳尔·诺斯特朗姆超对称超重力黎曼流形自由度里奇曲率張量李群楊-米爾斯理論时空时间應力-能量張量

基本粒子

在粒子物理学中,基本粒子是组成物质最基本的单位。其内部结构未知,所以也无法确认是否由其它更基本的粒子所组成 。随著物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也有所变化。目前在标準模型理论的架构下,已知的基本粒子可以分为费米子(包含夸克和轻子)以及玻色子(包含规范玻色子和希格斯粒子)。由两个或更多基本粒子所组成的则称作复合粒子。 我们日常生活中的物质由原子所组成。过去原子被认為是基本粒子,原子(atom)这个词来自希腊语中「不可切分的」。直到约1910年以前,原子的存在与否仍存在争议,一些物理学家认為物质是由能量所组成,而分子不过是数学上的一种猜想。之后,原子核被发现是由质子和中子所构成。20世纪前、中期的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。随著实验和量子场论的进展,发现质子、中子、介子发现是由更基本的夸克和胶子所组成。同时人类也陆续发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。.

新!!: 卡魯扎-克萊因理論和基本粒子 · 查看更多 »

半径

在一个圆中,从圆心到圆周上任何一点所连成的线段称为这个圆的半径,同时,这个线段的长度(也就是圆心到圆上任意一个点的距离)也被称为半径;在数学裡常以r来表示作为长度的半径。.

新!!: 卡魯扎-克萊因理論和半径 · 查看更多 »

卡拉比-丘流形

卡拉比–丘流形(Calabi–Yau manifold)在数学上是一个的第一陈类为0的紧致n维凯勒流形(Kähler manifolds),也叫做卡拉比–丘 n-流形。数学家卡拉比(Eugenio Calabi)在1957年猜想所有这种流形(对于每个凯勒类)有一个里奇平坦的度量,该猜想于1977年被丘成桐证明,成为丘定理(Yau's theorem)。因此,卡拉比–丘流形也可定义为「紧里奇平坦卡拉比流形」(compact Ricci-flat Kähler manifold)。 也可以定义卡拉比–丘n流形为有一个SU(n)和樂(holonomy)的流形。再一个等价的定义是流形有一个全局非0的全纯(n,0)-形式。.

新!!: 卡魯扎-克萊因理論和卡拉比-丘流形 · 查看更多 »

奧斯卡·克萊因

奧斯卡·班傑明·克萊因(Oskar Benjamin Klein,),瑞典物理學家。.

新!!: 卡魯扎-克萊因理論和奧斯卡·克萊因 · 查看更多 »

孤波

孤波(Soliton wave,又称孤子波、孤立子、孤立波)是非线性科学三大分支之一,应用于物理、数学等诸多领域。 孤子波是一类由于非线性作用引起的横波,它在运动过程中形状保持不变。其初等函数的解析表示最早于1895年获得,并随着量子力学、电子计算机等科学技术的发展逐步受到重视。.

新!!: 卡魯扎-克萊因理論和孤波 · 查看更多 »

度量张量

在黎曼幾何裡面,度量張量(英語:Metric tensor)又叫黎曼度量,物理学译为度規張量,是指一用來衡量度量空间中距離,面積及角度的二階張量。 當选定一個局部坐標系統x^i,度量張量為二階張量一般表示為 \textstyle ds^2.

新!!: 卡魯扎-克萊因理論和度量张量 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

新!!: 卡魯扎-克萊因理論和廣義相對論 · 查看更多 »

引力

重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.

新!!: 卡魯扎-克萊因理論和引力 · 查看更多 »

彎曲時空

#重定向 廣義相對論.

新!!: 卡魯扎-克萊因理論和彎曲時空 · 查看更多 »

圓群

在數學裡,圓群標記為T,為所有模為1之複數所組成的乘法群,即在複數平面上的單位圓。 圓群為所有非零複數所組成之乘法群C×的子群。由于C×可交換,T也是可交換的。 圓群的符號T源自於Tn(n個T的直積)幾何上是個n-環面的此一事實。而圓群即正是一個1-環面。.

新!!: 卡魯扎-克萊因理論和圓群 · 查看更多 »

圆 (Circle),根據歐幾里得的《几何原本》定義,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:「平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。.

新!!: 卡魯扎-克萊因理論和圆 · 查看更多 »

空間

間(Raum,space,espace,espacio,spazio),,抽象化之後形成的概念。與時間二者,構成物質存在的基本範疇,是人類思考的基本概念框架之一。人類可以用直覺了解空間,但難以概念化,因此自古希臘時代開始,就成為哲學與物理學上重要的討論課題。空間存在,是運動構成的基本條件。在物理學中,以三個維度來描述空間的存在。相對論中,將時間及空間二者,合併成單一的時空概念。伽利略、莱布尼兹、艾萨克·牛顿、伊曼努尔·康德、卡爾·弗里德里希·高斯、爱因斯坦、庞加莱都研究空间的本质。.

新!!: 卡魯扎-克萊因理論和空間 · 查看更多 »

紧化 (物理学)

在物理学中,紧致化(或紧化)指改变时空中某些维度的拓扑结构,使其从展开的无限大尺度,变成有限大的周期性结构。.

新!!: 卡魯扎-克萊因理論和紧化 (物理学) · 查看更多 »

羅伯遜-沃爾克度規

#重定向 弗里德曼-勒梅特-罗伯逊-沃尔克度规.

新!!: 卡魯扎-克萊因理論和羅伯遜-沃爾克度規 · 查看更多 »

爱因斯坦场方程

愛因斯坦重力場方程是一組含有十個方程式的方程組,由愛因斯坦於1915年在廣義相對論中提出。此方程組描述了重力是由物質與能量所產生的時空彎曲所造成。也就是說,如同牛頓的萬有引力理論中質量作為重力的來源,亦即有質量就可以產生重力,愛氏的相對論理論更進一步的指出,動量與能量皆可做為重力的來源,並且將「重力場」詮釋成「時空彎曲」。所以當我們知道物質與能量在時空中是如何分布的,就可以計算出時空的曲率,而時空彎曲的結果即是重力。 愛因斯坦重力場方程是用來計算動量與能量所造成的時空曲率,再搭配測地線方程,就可以求出物體在重力場中的運動軌跡。這個想法與電磁學的想法是類似的:當我們知道了空間中的電荷與電流(電磁場的來源)是如何分布的,藉由馬克士威方程組,我們可以計算出電場與磁場,再藉由勞倫茲力方程,即可求出帶電粒子在電磁場中的軌跡。 僅在一些簡化的假設下,例如:假設時空是球對稱,此方程組才具有精確解。這些精確解常常被用來模擬許多宇宙中的重力現象,像是黑洞、膨脹宇宙、重力波。.

新!!: 卡魯扎-克萊因理論和爱因斯坦场方程 · 查看更多 »

电磁学

电磁学(英語:electromagnetism)是研究电磁力(電荷粒子之间的一种物理性相互作用) 的物理学的一个分支。电磁力通常表现为电磁场,如電場、磁場和光。电磁力是自然界中四种基本相互作用之一。其它三种基本相互作用是强相互作用、弱相互作用、引力。 電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關係的一門學科。 英文单词electromagnetism是两个希腊语词汇ἢλεκτρον(ēlektron,“琥珀”)和μαγνήτης(magnetic源自"magnítis líthos"(μαγνήτης λίθος),意思是“镁石”,一种铁矿)的合成词。研究电磁现象的科学是用电磁力定义的,有时称作洛伦兹力,是既含有電也含有磁的现象。 电磁力在决定日常生活中大多数物体的内部性质中发挥着主要作用。常见物体的电磁力表现在物体中单个分子之间的分子间作用力的结果中。电子被电磁波力学束缚在原子核周围形成原子,而原子是分子的构成单位。相邻原子的电子之间的相互作用产生化學过程,是由电子间的电磁力与动量之间的相互作用决定的。 电磁场有很多种数学描述。在经典电磁学中,电场用欧姆定律中的電勢与电流描述,磁場与电磁感应和磁化强度相关,而馬克士威方程組描述了由电场和磁场自身以及电荷和电流引起的电场和磁场的产生和交替。 电磁学理论意义,特别是基于“媒介”中的传播的性质(磁导率和电容率)确立的光速,推动了1905年阿尔伯特·爱因斯坦的狭义相对论的发展。 虽然电磁力被认为是四大基本作用力之一,在高能量中弱力和电磁力是统一的。在宇宙的历史中的夸克時期,电弱力分割成电磁力和弱力。.

新!!: 卡魯扎-克萊因理論和电磁学 · 查看更多 »

电磁场

電磁場(electromagnetic field)是由帶電粒子的運動而產生的一種物理場。處於電磁場的帶電粒子會受到電磁場的作用力。電磁場與帶電粒子(電荷或電流)之間的交互作用可以用馬克士威方程組和勞侖茲力定律來描述。 電磁場可以被視為電場和磁場的連結。追根究底,電場是由電荷產生的,磁場是由移動的電荷(電流)產生的。對於耦合的電場和磁場,根據法拉第電磁感應定律,電場會隨著含時磁場而改變;又根據馬克士威-安培方程式,磁場會隨著含時電場而改變。這樣,形成了傳播於空間的電磁波,又稱光波。無線電波或紅外線是較低頻率的電磁波;紫外光或X-射線是較高頻率的電磁波。 電磁場涉及的基本交互作用是電磁交互作用。這是大自然的四個基本作用之一。其它三個是重力相互作用,弱交互作用和強交互作用。電磁場倚靠電磁波傳播於空間。 從經典角度,電磁場可以被視為一種連續平滑的場,以類波動的方式傳播。從量子力學角度,電磁場是量子化的,是由許多個單獨粒子構成的。.

新!!: 卡魯扎-克萊因理論和电磁场 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 卡魯扎-克萊因理論和物理学 · 查看更多 »

物质

物质是一個科學上沒有明確定義的詞,一般是指靜止質量不為零的東西。物质也常用來泛稱所有組成可觀測物體的成份 。 所有可以用肉眼看到的物體都是由原子組成,而原子是由互相作用的次原子粒子所組成,其中包括由質子和中子組成的原子核,以及許多電子組成的電子雲 。 一般而言科學上會將上述的複合粒子視為物質,因為他們具有靜止質量及體積。相對的,像光子等无质量粒子一般不視為物質。不過不是所有具有靜止質量的粒子都有古典定義下的體積,像夸克及輕子等粒子一般會視為質點,不具有大小及體積。而夸克和輕子之間的交互作用才使得質子和中子有所謂的體積,也使得一般物體有體積。 物質常見的物質狀態有四種:固體、液體、氣體及等离子体。不過實驗技術的進步產生了許多新的物質狀態,像是玻色–爱因斯坦凝聚及费米子凝聚态。對於基本粒子的研究也產生了新的物質狀態,像是夸克-膠子漿 。在自然科學的歷史中,許多人都在研究物質的確切性質,物質是由許多離散組件組合而成的概念,即所謂的「物質粒子論」,最早是由古希臘哲學家留基伯及德谟克利特提出。 愛因斯坦證明所有物體都可以轉換為能量(即質能等價),之間的關係式即為著名的E.

新!!: 卡魯扎-克萊因理論和物质 · 查看更多 »

西奧多·卡魯扎

西奧多·卡魯扎(Theodor Franz Eduard Kaluza,)出生於德國西里西亞奧波萊。是德國數學家及物理學家,因為他的卡魯扎-克萊因理論使領域方程式捲入5維的空間而聞名。 Category:20世紀數學家 Category:德國數學家 Category:哥廷根大學教師 Category:基爾大學教師 Category:柯尼斯堡大學校友 Category:西里西亞人.

新!!: 卡魯扎-克萊因理論和西奧多·卡魯扎 · 查看更多 »

馬克士威方程組

克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.

新!!: 卡魯扎-克萊因理論和馬克士威方程組 · 查看更多 »

规范场论

规范场论(Gauge Theory)是基于对称变换可以局部也可以全局地施行这一思想的一类物理理论。非交换对称群(又称非阿贝尔群)的规范场论最常見的例子为杨-米尔斯理论。物理系統往往用在某种变换下不变的拉格朗日量表述,当变换在每一时空点同时施行,它们有全局对称性。规范场论推广了这一思想,它要求拉格朗日量必须也有局部对称性—应该可以在时空的特定区域施行这些对称变换而不影响到另外一个区域。这个要求是广义相对论的等效原理的一个推广。 规范“对称性”反映了系统表述的一个冗余性。 规范场论在物理学上的重要性,在于其成功為量子电動力学、弱相互作用和强相互作用提供了一个统一的数学形式化架构——标准模型。這套理論精确地表述了自然界的三種基本力的实验预测,它是一个规范群为SU(3) × SU(2) × U(1)的规范场论。像弦论这样的现代理论,以及广义相对论的一些表述,都是某种意义上的规范场论。 有时,规范对称性一词被用于更广泛的含义,包括任何局部对称性,例如微分同胚。该术语的这个含义不在本条目使用。.

新!!: 卡魯扎-克萊因理論和规范场论 · 查看更多 »

贡纳尔·诺斯特朗姆

贡纳尔·努德斯特伦(Gunnar Nordström,)是芬兰物理学家。以其提出的重力理论而著称,这种理论是广义相对论诞生之前的一种替代理论。诺斯特朗姆在国外得到很多关注,但在芬兰国内却不为众知。 努德斯特伦曾在亚历山大大学(现为赫尔辛基大学)担任理论物理学讲师,及赫尔辛基理工大学物理和力学教授。他总共发表了34篇研究文章。除重力理论外,他还研究了大统一理论的可能性。在芬兰他影响了物理学地位的发展,并以教师的身份激发了很多新一代的数学家和物理学家。.

新!!: 卡魯扎-克萊因理論和贡纳尔·诺斯特朗姆 · 查看更多 »

超对称

超对称是费米子和玻色子之间的一种對稱性,该对称性至今在自然界中尚未被观测到。物理学家认为这种对称性是自发破缺的。大型強子對撞機將會驗證粒子是否有相對應的超對稱粒子這個疑問。 超對稱模型能解決三個難題:.

新!!: 卡魯扎-克萊因理論和超对称 · 查看更多 »

超重力

#重定向 超引力.

新!!: 卡魯扎-克萊因理論和超重力 · 查看更多 »

黎曼流形

黎曼流形(Riemannian manifold)是一個微分流形,其中每點p的切空間都定義了點積,而且其數值隨p平滑地改變。它容許我們定義弧線長度、角度、面積、體積、曲率、函數梯度及向量域的散度。 每個Rn的平滑子流形可以导出黎曼度量:把Rn的點積都限制於切空間內。實際上,根据纳什嵌入定理,所有黎曼流形都可以這樣产生。 我們可以定義黎曼流形為和Rn的平滑子流形是等距同构的度量空間,等距是指其内蕴度量(intrinsic metric)和上述从Rn导出的度量是相同的。这對建立黎曼幾何是很有用的。 黎曼流形可以定义为平滑流形,其中给出了一个切丛的正定二次形的光滑截面。它可產生度量空間: 如果γ: → M是黎曼流形M中一段連續可微分的弧線,我們可以定義它的長度L(γ)為 (注意:γ'(t)是切空間M在γ(t)點的元素;||·||是切空間的內積所得出的範數。) 使用这个长度的定义,每个连通的黎曼流形M很自然的成为一个度量空間(甚至是長度度量空間):在x與y兩點之間的距離d(x, y)定義為: 虽然黎曼流形通常是弯曲的,“直線”的概念依然存在:那就是測地線。 在黎曼流形中,測地線完备的概念,和拓撲完备及度量完备是等价的:每个完备性都可以推出其他的完备性,这就是Hopf-Rinow定理的内容。.

新!!: 卡魯扎-克萊因理論和黎曼流形 · 查看更多 »

自由度

自由度可以指:.

新!!: 卡魯扎-克萊因理論和自由度 · 查看更多 »

里奇曲率張量

在微分幾何中,類似度量張量,里奇張量也是一個在黎曼流形每點的切空間上的對稱雙線性形式。以格雷戈里奥·里奇-库尔巴斯托罗(Gregorio Ricci-Curbastro)為名的里奇張量或里奇曲率張量(Ricci curvature tensor)。提供了一個數據去描述給定的黎曼度規(Riemannian metric)所決定的體積究竟偏離尋常歐幾里得 n- 空間多少的程度。粗略地講,里奇張量是用來描述「體積扭曲」的一個值;也就是說,它指出了n-維流形中給定區域之n-維體積,其和歐幾里得n-空間中與其相當之區域的體積差異程度。更精確的描述請見下文「直接的幾何意義」段落。.

新!!: 卡魯扎-克萊因理論和里奇曲率張量 · 查看更多 »

李群

數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.

新!!: 卡魯扎-克萊因理論和李群 · 查看更多 »

楊-米爾斯理論

楊-米爾斯理論是一種基於SU(N)群的規範理論。在1953年,沃爾夫岡·泡利最初寫下了這類的規範理論,概括了五維的卡魯扎-克萊因理論。 但他發現到無法讓當中的規範玻色子帶有質量,所以選擇不發表他的成果。 雖然這項成果沒有正式寫成論文發表,但他在之後的演講中談論過這個理論。 1954年,楊振寧與羅伯特·米爾斯寫下了現今使用的楊-米爾斯理論,將原本可交換群的規範理論(應用的量子電動力學)拓展到不可交換群,以解釋強交互作用,因此又稱作非阿貝爾規範場論。 最初這個構想並不成功。其原因在於楊-米爾斯理論的量子必須質量為零以維持規範不變性。如果其作用粒子質量為零,則其作用是長程作用力。然而實驗上沒有觀察到長程力的的作用。因此,這個理論在當時並未受到重視。一直到1960年代南部陽一郎、傑弗里·戈德斯通、等人開始運用對稱性破缺的機制,從零質量粒子的理論中去得到帶質量的粒子,楊-米爾斯理論的重要性才顯現出來。.

新!!: 卡魯扎-克萊因理論和楊-米爾斯理論 · 查看更多 »

时空

时空(时间-空间,时间和空间)是一种基本概念,分别属于物理学、天文学、空间物理学和哲学。并且也是这几个学科最重要的最基本的概念之一。 空间在力学和物理学上,是描述物体以及其运动的位置、形状和方向等抽象概念;而时间则是描述运动之持续性,事件发生之顺序等。时空的特性,主要就是通过物体,其运动以及与其他物体的相互作用之间的各种关系之汇总。空间和时.

新!!: 卡魯扎-克萊因理論和时空 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 卡魯扎-克萊因理論和时间 · 查看更多 »

應力-能量張量

應力-能量張量,也稱應力-能量-動量張量、能量-應力張量、能量-動量張量、簡稱能動張量,在物理學中是一個張量,描述能量與動量在時空中的密度與通量(flux),其為牛頓物理中應力張量的推廣。在廣義相對論中,應力-能量張量為重力場的源,一如牛頓重力理論中質量是重力場源一般。應力-能量張量具有重要的應用,尤其是在愛因斯坦場方程式。.

新!!: 卡魯扎-克萊因理論和應力-能量張量 · 查看更多 »

重定向到这里:

卡卢察-克莱因理论額外維度

传出传入
嘿!我们在Facebook上吧! »