徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

半保留复制

指数 半保留复制

半保留複製(Semiconservative replication)是描述DNA的複製方式,目前已知的所有細胞皆以此方式進行複製。是三種主要的複製模型的其中之一,也是唯一確認存在於自然界中的模型。 在此模型中,兩條成雙鏈的DNA螺旋會先分開成為兩條DNA單鏈,這兩條DNA單鏈再各自成為複製模板,新的DNA單鏈合成於其上。因此完成複製之後新的DNA雙股螺旋分子,各自皆包含了一條新的DNA單鏈與一條舊的DNA單鏈。 此概念在證明以前,就已經是個較為合理的解釋,因為半保留能使複製出來的兩條雙螺旋各自保有一個模板。1958年,梅瑟生-史達實驗證明了半保留複製。之後則有利用放射性所作的實際觀測。 除此模型之外,還有兩種未發現過的模型:.

5 关系: 米西尔逊-斯塔尔实验DNA复制脱氧核糖核酸雙股螺旋放射性

米西尔逊-斯塔尔实验

梅瑟生-史達實驗(Meselson-Stahl experiment)是馬修·梅瑟生(Matthew Meselson)與富蘭克林·史達(Franklin Stahl)在1958年所作的實驗,證明了DNA複製的半保留性質。 氮是DNA的重要组成部分,氮14(14N)则是氮中最常见的同位素,而较重的氮15(15N)在自然界也可以独立存在,并不具有放射性,只是相对比重较大。 實驗首先將大腸桿菌培養在含有氮15的培養基之中數個世代,等這些細菌的DNA只含有氮15N之後,再放入含有氮14的培養基中培养,培养1代后,抽取样本提取DNA,再采用氯化铯密度梯度离心法分析。結果發現提取的DNA样本分子密度从0代(重密度)至1代(中等密度)减少,位于氮15和氮14之间,DNA所含氮15及氮14的密度相等。如果複製為全保留,那麼將只有氮15及氮14兩種DNA的存在,因此實驗結果将沃森克里克的半保守复制模型首次获得分子水平的证明。.

新!!: 半保留复制和米西尔逊-斯塔尔实验 · 查看更多 »

DNA复制

DNA复制是指DNA双链在细胞分裂分裂间期进行的以一个亲代DNA分子为模板合成子代DNA链的过程。复制的结果是一条双链变成两条一样的双链(如果复制过程正常的话),每条双链都与原来的双链一样(排除突变等不定因素)。 DNA复制是一种在所有的生物体内都会发生的生物学过程,是生物遗传的基础。对于双链DNA,即绝大部分生物体内的DNA来说,在正常情况下,这个过程开始于一个亲代DNA分子,最后产生出两个相同的子代DNA分子。亲代双链DNA分子的每一条单链都被作为模板,用以合成新的互补单链,这一过程被称为半保留复制。细胞的校正机制确保了DNA复制近乎完美的准确性。 在细胞当中,DNA复制起始于基因组的特殊位点,称为“起始位点”。起始于起始位点的DNA解链和新链的合成会形成复制叉。除了DNA聚合酶外,一些酶通过添加和模板相配的核苷酸来合成新DNA,一些和复制叉连接的其他蛋白对DNA的复制起始和延伸起辅助作用。 DNA复制也可以在体外(即人工地)进行,从细胞中分离的DNA聚合酶和人造的DNA复制引物可以用来启动以已知序列的DNA分子为模板的复制,聚合酶链式反应(PCR)是一种常见的实验室技术,这种采用了循环方式的人工合成,在一个DNA池中扩增出特定的DNA片段。.

新!!: 半保留复制和DNA复制 · 查看更多 »

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

新!!: 半保留复制和脱氧核糖核酸 · 查看更多 »

雙股螺旋

雙股螺旋由两条螺旋曲线相互缠绕而成'。最常见的雙股螺旋是表现生态遗传的DNA。核酸复合物的双螺旋结构出现作为其的结果,并且是在确定其的基本组成部分。該術語隨著1968年的出版物《雙螺旋:發現DNA結構的故事》(The Double Helix: A Personal Account of the Discovery of the Structure of DNA)是美國生物學家詹姆斯·杜威·沃森所寫的一本科學研究自傳,進入流行文化。.

新!!: 半保留复制和雙股螺旋 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

新!!: 半保留复制和放射性 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »