徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

化學元素豐度

指数 化學元素豐度

化學元素豐度(Abundance of the chemical elements)是在測量上與所有元素相比較所得到含量多寡的比值。豐度可以是質量的比值或是莫耳數(氣體的原子數量比值或是分子數量比值),或是容積上的比值。在混合的氣體中測量氣體容積上的比值是最常用於表示豐度的方法,對混合的理想氣體(相對於是低密度和低壓的氣體)這與莫耳數是相當一致的。 例如,氧在水中的質量比是89%,因為這是水的質量和氧的質量的比值,但是氧在水中的莫耳比值只有33%,因為在水的莫耳數中只有三分之一是氧原子。在整個宇宙中,和在如同木星這樣的巨大的氣體行星中,氫和氦在質量上的豐度比值分別相對是74%和23-25%,但是摩爾(原子)比值卻高達92%和8%。但是,因為氫是雙原子分子,而氦在木星外層的大氣環境下只是單原子分子,以分子的摩爾數來比較,在木星大氣層中氫的豐度是86%,而氦的豐度是13%。 在本文中所提到的豐度,多數都是質量百分比的豐度。.

85 关系: 原子核同位素大爆炸天文學太初核合成容積宇宙微波背景輻射中子中子星中微子地球光子碳-12碳-13碳氮氧循環稀土金属稀有气体生物白矮星行星貴金屬質子質子-質子鏈反應黑洞银河系...重子金屬量鉑系元素ΛCDM模型暗物质暗能量恒星核聚变核裂变氦-3氦-4氮-14星系海水 扩展索引 (35 更多) »

原子核

原子核(德语:Atomkern,英语:Atomic nucleus)是原子的组成部分,位于原子的中央,占有原子的大部分质量。組成原子核的有中子和質子。当周围有和其中质子等量的电子围绕时,构成的是原子。原子核極其渺小,如果将原子比作一座大廈,那麼原子核只有大廈裡的一張桌子那麼大。.

新!!: 化學元素豐度和原子核 · 查看更多 »

同位素

同位素(Isotope)是某種特定化學元素之下的不同種類,同一種元素下的所有同位素都具有相同原子序數,質子數目相同,但中子數目卻不同。這些同位素在化學元素週期表中佔有同一個位置,因此得名。 例如氫元素中氘和氚,它們原子核中都有1個質子,但是它們的原子核中分別有0個中子、1個中子及2個中子,所以它們互為同位素。.

新!!: 化學元素豐度和同位素 · 查看更多 »

大爆炸

--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.

新!!: 化學元素豐度和大爆炸 · 查看更多 »

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

新!!: 化學元素豐度和天文學 · 查看更多 »

太初核合成

太初核合成(BBN)是物理宇宙學的一個概念,指宇宙在早期階段產生H-1(最常見,也是最輕的氫同位素,只有單獨的一個質子)之外原子核的過程。太初核合成在大霹靂之後只經歷了幾分鐘,相信與一些較重的同位素的形成,如氘(H-2或D)、氦的同位素(He-3和He-4)、鋰的同位素(Li-6和Li-7)的形成有密切的關係。除了這些穩定的原子核之外,還有一些不穩定的放射性同位素在太初核合成之際也形成了:氚(H-3)、鈹(Be-7和Be-8)。這些不穩定的同位素不是蛻變就是融合成前述其它的穩定同位素。(所有這些原子核通常表示為NX,此處X.

新!!: 化學元素豐度和太初核合成 · 查看更多 »

容積

容積或容量(capacity)是物件能容納多少空間的量。容積常使用非國際標準制的單位(如公升)。二維空間物件(如曲面)在三維空間中可能具有容積。 容積是體積的一個特殊類別。在實際應用中,主要是指各種容器(量杯、量筒、儲藏罐等)的容納量,尤其是對於液體。歐美雖然也有對應詞彙(capacity),但對於量筒量杯等物體,往往一概以“體積”(volume)稱呼之。.

新!!: 化學元素豐度和容積 · 查看更多 »

宇宙微波背景輻射

#重定向 宇宙微波背景.

新!!: 化學元素豐度和宇宙微波背景輻射 · 查看更多 »

中子

| magnetic_moment.

新!!: 化學元素豐度和中子 · 查看更多 »

中子星

中子星(neutron star),是恒星演化到末期,經由引力坍縮發生超新星爆炸之後,可能成為的少數終點之一。恆星在核心的氫、氦、碳等元素於核聚变反應中耗盡,当它们最终轉變成鐵元素時便無法从核聚变中获得能量。失去熱輻射壓力支撐的外圍物質受重力牽引會急速向核心墜落,有可能导致外壳的動能轉化為熱能向外爆發產生超新星爆炸,或者根据恒星质量的不同,恒星的内部区域被压缩成白矮星、中子星或黑洞。白矮星被压缩成中子星的過程中恒星遭受劇烈的壓縮使其組成物質中的電子併入質子轉化成中子,直徑大約只有十餘公里,但上面一立方厘米的物質便可重達十億噸,且旋轉速度極快。由於其磁軸和自轉軸並不重合,磁場旋轉時所產生的無線電波等各种辐射可能會以一明一滅的方式傳到地球,有如人眨眼,此時稱作脈衝星。 一顆典型的中子星質量介於太陽質量的1.35到2.1倍,半徑則在10至20公里之間(質量越大半徑收縮得越小),也就是太陽半徑的30,000至70,000分之一。因此,中子星的密度在每立方公分8×1013克至2×1015克間,此密度大約是原子核的密度。 緻密恆星的質量低於1.44倍太陽質量,則可能是白矮星,但质量大於奧本海默-沃爾可夫極限(3.2倍太陽質量)的恆星会继续發生引力坍縮,則無可避免的將產生黑洞。 由於中子星保留母恆星大部分的角動量,但半徑只是母恆星極微小的量,轉動慣量的減少導致轉速迅速的增加,產生非常高的自轉速率,周期從毫秒脈衝星的700分之一秒到30秒都有。中子星的高密度也使它有強大的表面重力,強度是地球的2×1011到3×1012倍。逃逸速度是將物體由重力場移動至無窮遠的距離所需要的速度,是測量重力的一項指標。一顆中子星的逃逸速度大約在10,000至150,000公里/秒之間,也就是可以達到光速的一半。換言之,物體落至中子星表面的速度也將達到150,000公里/秒。更具體的說明,如果一個普通體重(70公斤)的人遇到中子星,他撞擊到中子星表面的能量將相當於二億噸TNT當量的威力(四倍於全球最巨大的核彈大沙皇的威力)。.

新!!: 化學元素豐度和中子星 · 查看更多 »

中微子

中微子(Neutrino,其字面上的意義為「微小的電中性粒子」,又譯作--)是一种电中性的基本粒子,自旋量子數為½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。 中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子()、μ中微子()以及τ中微子()。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。 由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。 中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。 人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。.

新!!: 化學元素豐度和中微子 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: 化學元素豐度和地球 · 查看更多 »

光子

| mean_lifetime.

新!!: 化學元素豐度和光子 · 查看更多 »

砹(Astatine,--,舊訛作「鈪」、「銰」)是一種放射性化學元素,符號為At,原子序為85。地球上所有的砹都是更重的元素衰變過程中產生的。其同位素壽命都很短,其中最穩定的是砹-210,半衰期為8.5小時。科學家對這一元素所知甚少。砹在元素週期表中位於碘之下,其許多性質可以從碘推算出來,推算值與砹的已知性質相符。 人們尚未觀測過砹元素的單質,因為所有肉眼能觀察到量都會產生大量的放射性熱量,使它瞬間氣化。它的熔點很可能比碘高很多,與鉍和釙相近。砹的化學屬性與其他鹵素相似:它會與包括其他鹵素在內的非金屬形成共價化合物,估計能夠與鹼金屬和鹼土金屬形成砹化物。不過,砹正離子的化學屬性則有別於較輕的鹵素。壽命第二長的砹-211同位素是唯一一種具有商業應用的砹同位素,目前在醫學中用作α粒子射源,以診斷及治療某些疾病。由於放射性極強,所以砹的使用量非常低。 伯克利加州大學的戴爾·科爾森(Dale R. Corson)、肯尼斯·羅斯·麥肯西(Kenneth Ross MacKenzie)和埃米利奧·塞格雷在1940年發現了砹元素。由於產物極不穩定,所以他們根據希臘文「αστατος」(astatos,意為「不穩定」)將其命名為「astatine」。三年後,該元素被發現存在於大自然中,是在地殼中豐度最低的非超鈾元素,任一時刻的總量不到1克。自然界中的重元素經各種衰變途徑一共產生6種砹的同位素,原子量介乎214和219,但最穩定的兩種同位素砹-210和砹-211都不存在於自然中。.

新!!: 化學元素豐度和砹 · 查看更多 »

硫是一种化学元素,在元素周期表中它的化学符号是S,原子序数是16。硫是一种非常常见的无味无臭的非金属,纯的硫是黄色的晶体,又稱做硫黄、硫磺。硫有许多不同的化合价,常見的有-2, 0, +4, +6等。在自然界中常以硫化物或硫酸盐的形式出现,尤其在火山地区纯的硫也在自然界出现。硫单质难溶于水,微溶于乙醇,易溶于二硫化碳。对所有的生物来说,硫都是一种重要的必不可少的元素,它是多种氨基酸的组成部分,尤其是大多数蛋白质的组成部分。它主要被用在肥料中,也廣泛地被用在火药、潤滑劑、殺蟲劑和抗真菌剂中。.

新!!: 化學元素豐度和硫 · 查看更多 »

是化学元素,化学符号是Se,原子序数是34,是非金属。 硒對生物來說是必需,但同時也有毒性。硒的性质与硫及碲相似;在有光时,导电性能较黑暗时好,故可用来做光电池。.

新!!: 化學元素豐度和硒 · 查看更多 »

硅(Silicon,台湾、香港及澳門称為--,舊訛稱為釸,中國大陸稱為--)是一种类金属元素,化学符号為Si,原子序數為14,属于元素周期表上的IVA族。 硅原子有4个外圍电子,与同族的碳相比,硅的化学性质相對稳定,活性較低。硅是极为常见的一种元素,然而它极少以單質的形式存在於自然界,而是以复杂的硅酸盐或二氧化硅等化合物形式广泛存在于岩石、砂砾、尘土之中。在宇宙储量排名中,矽位於第八名。在地壳中,它是第二丰富的元素,佔地壳总质量25.7%,仅次于第一位的氧(49.4%)。.

新!!: 化學元素豐度和硅 · 查看更多 »

(),是化学元素,化学符号是Te,原子序数是52,是银白色的类金属。 碲的化学性质与硒及硫类似。主要用作合金及半导体。碲化铋用作热电装置中。 碲-128及碲-130是最常见的碲同位素,但它们都有微弱的放射性。 碲是制造碲化镉太阳能薄膜电池的主要原料。 碲矿资源分布稀散,多伴生在其它矿物中或以杂质形式存在于其它矿中。中国四川石棉县大水沟碲矿是至今发现的唯一碲独立矿床。.

新!!: 化學元素豐度和碲 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

新!!: 化學元素豐度和碳 · 查看更多 »

碳-12

12C是质量数为12的碳原子,其质子数和中子數都为6,它是碳元素的一種同位素,在世界现存碳元素中占比98.89%,是最常见的碳同位素。 碳-12原子被用来作为阿伏伽德罗常数(亞佛加厥常數)的标准:12克碳-12中所含原子的个数被定义为阿伏伽德罗常数6.022。.

新!!: 化學元素豐度和碳-12 · 查看更多 »

碳-13

碳13是碳的穩定同位素之一,在地球自然界的碳中佔約1.109%。.

新!!: 化學元素豐度和碳-13 · 查看更多 »

碳氮氧循環

碳氮氧循環(CNO cycle),有時也稱為貝斯-魏茨澤克-循環(Bethe-Weizsäcker-cycle),是恆星將氫轉換成氦的兩種過程之一,另一種過程是質子-質子鏈反應。 在質量像太陽或更小些的恆星中,質子-質子鏈反應是產生能量的主要過程,太陽只有1.7%的4氦核是經由碳氮氧循環的過程產生的,但是理論上的模型顯示更重的恆星是以碳氮氧循環為產生能量的主要來源。碳氮氧循環的過程是由卡尔·冯·魏茨泽克和漢斯·貝特 在1938年和1939年各別獨立提出的。 碳氮氧循環的主要反應如下"Introductory Nuclear Physics", Kenneth S. Krane, John Wiley & Sons, New York, 1988, p.537: 這個循環的淨效應是4個質子成為一個α粒子、2個正電子(和電子湮滅,以γ射線的形式釋放出能量)和2個攜帶著部分能量逃逸出恆星的微中子。碳、氮、和氧核在循環中擔任催化劑並且再生。 有一個較小分支的反應,在太陽核心中發生的只佔了0.04%的量,最後的產物不是12碳和4氦,而是16氧和一個光子,取代進行的過程如下: 同樣的,碳、氮、和氧在主要的分支,而在較小分支上的氟也僅僅是穩定狀態的催化劑,不會在恆星內累積。 碳氮氧循環的主要分支稱為碳氮氧-I,小的分支稱為碳氮氧-II,在更重的恆星內還有碳氮氧-III和碳氮氧-IV兩個次要的主分支,它們開始於碳氮氧-II反應的最後階段,結果是以18氧和γ射線取代原本的14氮和氦核: 和 氧氟循環: 此處,所有參與反應的"催化劑"(碳、氮、氧的核)數量都是守恆的,而在恆星演化中核的相對比例是會改變的。無論最初的結構是如何,當這個循環在平衡狀態下,12碳/13碳核的比例是3.5,而14氮成為數量最多的核。在恆星的演化中,對流會將碳氮氧循環的產物從恆星的內部帶到表面並混合,改變觀測到的恆星成分。在紅巨星,相較於主序星,能觀測到較低比例的12碳/13碳和12碳/14氮,這些都可以證明核融合在恆星內部進行能量的世代交替。.

新!!: 化學元素豐度和碳氮氧循環 · 查看更多 »

是卤族化学元素,化学符号是I,原子序数是53。.

新!!: 化學元素豐度和碘 · 查看更多 »

磷(Phosphorum,化学符号:P)是一种化学元素,它的原子序数是15。.

新!!: 化學元素豐度和磷 · 查看更多 »

稀土金属

土金属,或称稀土元素,是元素週期表第Ⅲ族副族元素钪、钇和镧系元素共17种化学元素的合称。钪和钇因为经常与镧系元素在矿床中共生,且具有相似的化学性质,故被认为是稀土元素。 与其名称暗示的不同,稀土元素(钷除外)在地壳中的豐度相当高,其中铈在地壳元素豐度排名第25,占0.0068%(与铜接近)。稀土元素並不稀有,但其傾向於兩兩一起生成合金,且難以將稀土元素單獨分離。另外,稀土元素在地殼中的分佈相當分散,很少有稀土元素集中到容許商業开采的礦床。人类第一种发现的稀土矿物是从瑞典伊特比村的矿山中提取出的,许多稀土元素的名称正源自于此地。.

新!!: 化學元素豐度和稀土金属 · 查看更多 »

稀有气体

--、鈍氣、高貴氣體,是指元素周期表上的18族元素(IUPAC新规定,即原来的0族)。它们性质相似,在常温常压下都是无色无味的单原子气体,很难进行化学反应。天然存在的稀有气体有六种,即氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)和具放射性的氡(Rn)。而人工合成的Og原子核非常不稳定,半衰期很短。根据元素周期律,估计Og比氡更活泼。不過,理论计算显示,它可能会非常活泼,并不一定能称为稀有气体;根據預測,同為第七週期的碳族元素鈇反而能表現出稀有氣體的性質。 稀有气体的特性可以用现代的原子结构理论来解释:它们的最外电子层的电子已「满」(即已达成八隅体状态),所以它们非常稳定,极少进行化学反应,至今只成功制备出几百种稀有气体化合物。每种稀有气体的熔点和沸点十分接近,温度差距小于10 °C(18 °F),因此它们仅在很小的温度范围内以液态存在。 经气体液化和分馏方法可从空气中获得氖、氩、氪和氙,而氦气通常提取自天然气,氡气则通常由镭化合物经放射性衰变后分离出来。稀有气体在工业方面主要应用在照明设备、焊接和太空探测。氦也会应用在深海潜水。如潜水深度大于55米,潜水员所用的压缩空气瓶内的氮要被氦代替,以避免氧中毒及氮麻醉的徵状。另一方面,由于氢气非常不稳定,容易燃烧和爆炸,现今的飞艇及气球都采用氦气替代氢气。.

新!!: 化學元素豐度和稀有气体 · 查看更多 »

生物

生物(拉丁语,德语: Organismus, ,又称有機體)是指稱類生命的个体。在生物学和生态学中, 地球上约有870萬種物種(±130萬),其中650萬種物種在陆地上,220万种生活在水中。 生物最重要和基本的特徵在生物會進行新陳代謝及遺傳兩點,前者說明所有生物一定會具備合成代谢以及分解代谢(兩個是完全相反的兩個生理反應過程),並且可以將遺傳物質複製,透過自我分裂生殖(無性生殖)或有性生殖,交由下一代繁殖下去以避免滅絕,这是類生命现象的基础。 生命的起源和生命各个分支之间的关系一直存在争议,古早的生命分類已經過時,近代古典生物學的分類又受到分子生物學的挑戰。一般而言,我們將生物分為兩大類:原核生物和真核生物。原核生物分为兩大域:细菌(Bacteria)和古菌(Archaea),这两个域相互之间的关系并不比他们和真核生物的关系更为接近。在演化史的研究上,原核生物和真核生物之间一直缺乏联系。類似麻煩的還有病毒與內共生細菌等的分類,隨著現代生物化學的研究逐漸深入,出現了有如物理學中存在量子現象一般,在特定微觀世界下許多傳統認知出現錯誤,導致以往常理被顛覆的情況。 真核生物的特徵是有細胞核以及其他膜狀細胞器(例如動物和植物體內的粒線體粒線體也可以說是植物動物體的發電廠因為他可以製造很多的能量,以及植物及藻類中的葉綠素),一種假說是叶绿体和线粒体是由内共生细菌(endosymbiotic bacteria)演化而来T.Cavalier-Smith (1987) The origin of eukaryote and archaebacterial cells, Annals of the New York Academy of Sciences 503, 17–54 。多细胞生物(又稱至於生物實在30班一年且出來則指包含多于一个细胞的生物,在地質學上直到五億年前才出現大爆發。.

新!!: 化學元素豐度和生物 · 查看更多 »

白矮星

白矮星(white dwarf),也稱為簡併矮星,是由简并态物质構成的小恆星。它們的密度極高,一顆質量與太陽相當的白矮星體積只有地球一般的大小,微弱的光度則來自過去儲存的熱能。在太陽附近的區域內已知的恆星中大約有6%是白矮星。這種異常微弱的白矮星大約在1910年就被亨利·諾利斯·羅素、愛德華·皮克林和威廉·佛萊明等人注意到, p. 1白矮星的名字是威廉·魯伊登在1922年取的。 白矮星被認為是中、低質量恆星演化階段的最終產物,在我們所屬的星系內97%的恆星都屬於這一類。, §1.

新!!: 化學元素豐度和白矮星 · 查看更多 »

行星

行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.

新!!: 化學元素豐度和行星 · 查看更多 »

貴金屬

贵金属(Precious metal),通常用来指代黄金、银、铂、鈀四种价格昂贵、外表美观、化学性质稳定、具有较强的保值能力的金属,其中黄金的地位尤其重要,另一說是包括了金銀鉑和所有鉑族金屬,但因為除鉑和鈀外其他四種鉑族元素並未被國際認可為期貨買賣的對像,所以一般把其他鉑族元素稱為稀有金屬而非貴金屬。在布雷顿森林体系崩溃之前,西方各国货币均与美元挂钩,美元则与黄金挂钩,许多国家都公布本国货币的含金量,黄金的地位非常重要。1970年代後,随着世界金融格局的重组和通货膨胀得到缓解,黄金等贵金属的地位有所下降,但仍被视为世界通用的交易媒介和保值工具。 貴金屬在市場交易時,常使用鑄造成錠或幣的方式,例如黃金交易市場中的金條或金幣。.

新!!: 化學元素豐度和貴金屬 · 查看更多 »

質子

|magnetic_moment.

新!!: 化學元素豐度和質子 · 查看更多 »

質子-質子鏈反應

#重定向 質子﹣質子鏈反應.

新!!: 化學元素豐度和質子-質子鏈反應 · 查看更多 »

黑洞

黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

新!!: 化學元素豐度和黑洞 · 查看更多 »

鈾(Uranium)是一種銀白色金屬化學元素,屬於元素週期表中的錒系,化學符號為U,原子序為92。每個鈾原子有92個質子和92個電子,其中6個為價電子。鈾具有微放射性,其同位素都不稳定,并以鈾-238(146個中子)和鈾-235(143個中子)最为常见。鈾在天然放射性核素中原子量第二高,仅次于钚。其密度比鉛高出大約70%,比金和鎢低。天然的泥土、岩石和水中含有百萬分之一至百萬分之十左右的鈾。採礦工業從瀝青鈾礦等礦物中提取出鈾元素。 自然界中的鈾以三种同位素的形式存在:鈾-238(99.2739至99.2752%)、鈾-235(0.7198至0.7202%)、和微量的鈾-234(0.0050至0.0059%)。鈾在衰變的時候釋放出α粒子。鈾-238的半衰期為44.7億年,鈾-235的則為7.04億年,因此它们被用于估算地球的年齡。 鈾獨特的核子特性有很大的實用價值。鈾-235是唯一自发裂變的同位素。鈾-238在快速中子撞擊下能夠裂變,屬於增殖性材料,即能在核反應爐中經核嬗變成為可裂變的鈈-239。鈾-233也是一種用於核科技的可裂變同位素,可從自然釷元素製成。鈾-238自發裂變的機率极低,快中子撞擊可诱导其裂變;鈾-235和233可被慢中子撞击而裂变,如果其质量超过临界质量,就都能夠維持核連鎖反應,在核反应过程中的微小质量损失会转化成巨大的能量。这一特性使它们可用于生产核裂变武器与核能发电。耗尽后的鈾-235发电原料被称为貧鈾(含238U),可用做钢材添加剂,製造贫铀弹和裝甲。.

新!!: 化學元素豐度和鈾 · 查看更多 »

钍(Thorium,,舊譯作釖、鋀)是原子序数为90的元素,其元素符號為Th,屬锕系元素,具有放射性。其拉丁文名称來自北欧神话的雷神索尔(Thor)。 钍-232会通过吸收慢中子而变成可作核燃料之用的铀-233。钍、铀两种元素是核能发电厂最重要的燃料。.

新!!: 化學元素豐度和钍 · 查看更多 »

钠(Natrium,化学符号:Na)是一种化学元素,它的原子序数是11,相对原子质量为23。鈉单质不會在地球自然界中存在,因為鈉在空氣中會迅速氧化,並與水產生劇烈反應,所以常見於化合物中,元素狀態的鈉通常以特殊物質(如石蠟、煤油)保存,以防與空氣中的水份或氧氣產生化合物。.

新!!: 化學元素豐度和钠 · 查看更多 »

鍅(Francium,或譯作--)是一種化學元素,符號為Fr,原子序為87。鍅是電負性最低的元素之一。鈁是一種放射性極高的金屬,會衰變成砹、鐳和氡。和其他鹼金屬一樣,鈁有一顆價電子。 從來沒有人製成過可觀量鈁金屬,但根據元素週期表的規律,鈁的熔點比銫低,接近室溫,可能為液態。不過該元素的製備極為困難,其衰變發熱(最穩定同位素的半衰期只有22分鐘)會立即氣化所製成的鈁金屬。 1939年,法國科學家馬格利特·佩里發現了鍅元素。這是最後一次在自然界中發現元素,而非經過人工合成。一些人造元素後來也被發現在自然界中,如鍀和鈈。鍅在實驗室以外極為罕見,痕量出現在鈾和釷礦石中,其中同位素鍅-223一直在形成和衰變中。地球地殼中只有20至30克的鍅會同時存在。除鍅-223和221以外,其他的同位素都是合成的。實驗室中產生的最大一批鍅元素共有300,000個鍅原子。.

新!!: 化學元素豐度和钫 · 查看更多 »

钴是一种化学元素,符号为Co,原子序数27,属过渡金属,铁系元素之一,具有磁性。鈷礦主要為砷化物、氧化物和硫化物。此外,放射性的鈷-60同位素可進行癌症治療。.

新!!: 化學元素豐度和钴 · 查看更多 »

钷(Promethium)為一化学元素,化学符号為Pm,原子序61,属于镧系元素與稀土元素,它所有同位素皆帶有放射性,半衰期最长只有17.7年,故常以人工合成的方法制得。 在原子序82号(鉛)以前只有两个元素没有稳定的同位素,其中一个即為鉕,另一个是锝。在化學上,钷是一種鑭系元素,會與其他元素形成鹽類。钷會以+3氧化態形成穩定的鹽,但是也有少數化合物中存在+2的钷。 在1902年時,预测在當時已知的釹(60)和釤(62)之間存在一個與它們性質相似的未知元素。1914年,亨利·莫塞萊利用原子序與原子核電荷之間的關係(莫塞萊定律),確認當時還未知的61號元素確實存在。不過他測定當時所有已知元素的原子序,却發現沒有任何元素的原子序是61。 1926年,兩個義大利佛羅倫薩的化學家声称他們發現了第61號元素,將其命名為Florentium(中文譯作鉘);同年,一批美國伊利諾大學的化學家亦宣布61號元素的發現,將其命名為Illinium(中文譯作鉯),但這兩個發現都被證實是錯誤的。 1938年,俄亥俄州立大學在進行核試驗的過程中,產生了一些放射性元素,且已确定不是釹或釤的放射性同位素。但此發現因缺乏化學證據證明那是61號元素,所以并沒有得到普遍的認可。1945年,美國橡樹嶺國家實驗室利用離子交換層析法(IEC)分析石墨核子反應堆中的鈾(235U)衰變產物,才真正发现並確認钷的存在。發現者原本打算以研究機構的名稱將之命名為Clintonium(源自橡樹嶺國家實驗室的前身柯林頓實驗室),但之後提出的名稱為“Prometheum”(現改變為Promethium),來自普羅米修斯(祂在希臘神話中偷走了火,從奧林匹斯山帶给人類),以象徵“大膽”以及“人類才智的濫用”。第一件钷的金屬樣本於1963年被制造出來。 自然钷有兩個可能的來源:銪-151衰變(產生钷-147),和鈾(產生各種同位素)。實際應用方面,虽然钷-145是最穩定的钷同位素,但只有钷-147的化合物有实际运用,用於夜光漆,核電池和厚度測量裝置。钷在自然界非常稀有,製作钷常用的方法是用熱中子轟擊鈾-235(濃縮鈾)来產生钷-147。.

新!!: 化學元素豐度和钷 · 查看更多 »

钾(Kalium,化学符号:K)是原子序数为19的化学元素,银白色有光泽的1A族碱金属元素,质软,和鈉的化學性質相似但更活泼。.

新!!: 化學元素豐度和钾 · 查看更多 »

钕(舊譯作釢、鋖)是化学元素,化学符号是Nd,原子序数是60,属于镧系元素(稀土元素)。1885年由冯·韦尔塞巴赫发现。银白色金属,较活泼,室温下在空气中缓慢氧化,能与水和酸作用放出氢。有顺磁性。存在于独居石中,由含水氯化钕经脱水后用金属钙还原,或由无水氯化钕经熔融后电解而制得。用于制造特种合金、电子仪器和光学玻璃。在制造激光器材方面,有着重要的应用。 Category:镧系元素 6F 6F *.

新!!: 化學元素豐度和钕 · 查看更多 »

钋是一种化学元素,它的化学符号是Po,它的原子序数是84,是银白色的金属(有時歸為類金屬)。 钋的化学性质与硒及硫类似,但带有放射性。 钋在1898年由居里夫人及她丈夫皮埃尔·居里发现。钋的拼音名称是居里夫人纪念她的故乡波兰(Polska)而命名。 沥青铀矿及锡石中有微量钋存在。.

新!!: 化學元素豐度和钋 · 查看更多 »

钙(Calcium)是一種化学元素。其化学符号是Ca,原子序数是20。鈣是银白色的碱土金属,具有中等程度的軟性。雖然在地殼的含量也很高,為地殼中第五豐富的元素,占地殼總質量3%,因其化學活性頗高,可以和水或酸反應放出氫氣,或是在空氣中便可氧化(形成緻密氧化層(氧化鈣)),因此在自然界多以離子狀態或化合物形式存在,而沒有单质存在。在工業的主要礦物來源如石灰岩、石膏等,在建筑(水泥原料)、肥料、制鹼、和医疗上用途佷广。.

新!!: 化學元素豐度和钙 · 查看更多 »

铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.

新!!: 化學元素豐度和铁 · 查看更多 »

铝(Aluminium 或Aluminum)是一种化学元素,属于硼族元素,其化学符号是Al,原子序数是13。相对密度是2.70。铝是一种较软的易延展的银白色金属。铝是地壳中第三大丰度的元素(仅次于氧和硅),也是丰度最大的金属,在地球的固体表面中占约8%的质量。铝金属在化学上很活跃,因此除非在极其特殊的氧化还原环境下,一般很难找到游离态的金属铝。被发现的含铝的矿物超过270种。最主要的含铝矿石是铝土矿。 铝因其低密度以及耐腐蚀(由于钝化现象)而受到重视。利用铝及其合金制造的结构件不仅在航空航太工业中非常关键,在交通和结构材料领域也非常重要。最有用的铝化合物是它的氧化物和硫酸盐。 尽管铝在环境中广泛存在,但没有一种已知生命形式需要铝元素。.

新!!: 化學元素豐度和铝 · 查看更多 »

铥是一種化學元素,符號Tm,原子序數69,是一種金屬。铥是第二稀少的鑭系元素(僅次於钷,後者僅痕量存在於地球上),是一種質軟、容易加工的金屬,具有明亮的銀灰色光澤,在空氣中緩慢氧化而失去光澤。銩價格昂貴且相當稀有,通常被用於在便攜式透視設備和固態激光器作為輻射源。 1879年,瑞典化學家佩尔·提奥多·克勒夫從稀土元素鉺的氧化物中分離出了兩種從前未知的元素的氧化物,後來被確認分別為鈥和銩的氧化物。純淨的銩化合物直到1911年才獲得。 和其他鑭系元素一樣,銩最常見的氧化態是+3,出現於其氧化物、鹵化物和其他化合物中。在水溶液中,銩化合物通常與九個水分子結合。銩元素對於生物而言沒有已知的作用,也沒有顯著的毒性。.

新!!: 化學元素豐度和铥 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

新!!: 化學元素豐度和银河系 · 查看更多 »

錸是一種化學元素,符號為Re,原子序為75。錸是種銀白色的重金屬,在元素週期表中屬於第6週期過渡金屬。它是地球地殼中最稀有的元素之一,平均含量估值為十億分之一,同時也是熔點和沸點最高的元素之一。錸是鉬和銅提煉過程的副產品。其化學性質與錳和鍀相似,在化合物中的氧化態最低可達−3,最高可達+7。 科學家在1925年發現了錸元素,因此它成為了最後被發現的穩定元素。其名稱(Rhenium)取自歐洲的萊茵河。 鎳錸高溫合金可用於製造噴氣發動機的燃燒室、渦輪葉片及排氣噴嘴。這些合金最多含有6%的錸,這是錸最大的實際應用,其次就是作為化工產業中的催化劑。錸比鑽石更難取得,所以價格高昂,2011年8月平均每公斤售4,575美元(每金衡盎司142.30美元)。由於錸可應用在高效能噴射引擎及火箭引擎,所以在軍事戰略上十分重要。.

新!!: 化學元素豐度和铼 · 查看更多 »

铜(copper)是化学元素,化学符号Cu(来自cuprum),原子序数29。纯铜是柔软的金属,表面刚切开时为红橙色帶金屬光澤、延展性好、导热性和导电性高,因此在电缆和电气、电子元件是最常用的材料,也可用作建筑材料,以及組成众多種合金。铜合金机械性能优异,电阻率很低,其中最重要的是青铜和黄铜。此外,铜也是耐用的金属,可以多次回收而无损其机械性能。 人类使用铜及其合金已有数千年历史。古罗马时期铜的主要开采地是塞浦路斯,因此最初得名cyprium(意为塞浦路斯的金属),后来变为cuprum,这是copper、cuivre和Kupfer的来源。二价铜盐是常见的铜化合物,常呈蓝色或绿色,是蓝铜矿和绿松石等矿物颜色的来源,历史上曾广泛用作颜料。铜质建筑结构受腐蚀后会产生铜绿(碱式碳酸铜)。装饰艺术主要使用金属铜和含铜的颜料。 铜是所有生物所必需的微量膳食矿物质,因为它是呼吸酶复合体细胞色素c氧化酶的关键组分。软体动物和甲壳亚门动物的血液色素血蓝蛋白中含有铜。鱼类和其他哺乳动物的血液中则是含铁的复合物血红蛋白。铜在人体中主要分布于肝脏、肌肉和骨骼中。铜的化合物可用作、杀真菌剂和木材防腐剂。.

新!!: 化學元素豐度和铜 · 查看更多 »

铈()是一种化学元素,它的化学符号是Ce,它的原子序数是58,属于镧系元素,也是稀土元素之一。灰色软金属。在独居石中占稀土总量的40%以上。 化学性质活泼,在空气中用刀刮即着火,溶于酸,不溶于碱。 鈰的拉丁名稱Cerium是以小行星穀神星來命名的,另一種以小行星來命名的元素是鈀。.

新!!: 化學元素豐度和铈 · 查看更多 »

锝(--)是一種化學元素,其原子序數是43,化學符號是Tc。其所有同位素都具有放射性,是原子序最小的非穩定元素。地球上現存的大部分鍀都是人工製造的,自然界中僅有極少量存在。在鈾礦中,鍀是一種自發裂變產物;在鉬礦石中,鉬經中子俘獲后可以生成鍀。鍀是一種銀灰色的金屬晶體,其化學性質介於錳和錸之間。 在鍀發現以前,德米特里·門捷列夫就已經預測了它的許多性質。在他的周期表中,門捷列夫把這種尚未發現的元素叫做“類錳”,符號為Em。1937年,鍀(準確的說是鍀-97)成為第一個大部分由人工製造的元素。它的英文名來自希腊語τεχνητός,意為“人造”。 鍀的短壽命同位素鍀-99m具有γ放射性,廣泛用於核醫學。鍀-99僅具有β放射性。商業上,鍀的長壽命同位素是反應堆中鈾-235裂變的副產物,可以從乏燃料中提取得到。鍀最長壽命的同位素是鍀-98(半衰期為420萬年)。1952年,有人在壽命超過十億年的紅巨星中發現了鍀-98,讓人們認識到恆星可以製造重元素。.

新!!: 化學元素豐度和锝 · 查看更多 »

锌(zinc)是一种化学元素,它的化学符号是Zn,它的原子序数是30,相对原子质量是65.39,是一种浅灰色的过渡金属;鋅由於形、色類似鉛,故也稱為亞鉛,古稱倭鉛。 外觀呈現銀白色,主要用途為鍍鋅,在現代工業中對於電池製造上有不可磨滅的地位,最具代表性之用途為「鍍鋅鐵板」,該技術被廣泛用於汽車、電力、電子及建築等各種產業中,於生活中相當重要的金屬。.

新!!: 化學元素豐度和锌 · 查看更多 »

锂(Lithium)是一种化学元素,其化学符号Li,原子序数为3,三个电子中两个分布在K层,另一个在L层。锂是碱金属中最轻的一种。锂常呈+1或0氧化态,是否有-1氧化态則尚未得到证实。但是锂和它的化合物并不像其他的碱金属那么典型,因为锂的电荷密度很大并且有稳定的氦型双电子层,使得锂容易极化其他的分子或离子,自己却不容易受到极化。这一点就影响到它和它的化合物的稳定性刘翊纶任德厚《无机化学丛书》第一卷 北京:科学出版社289-354页1984年。锂的英文名称来源于希腊文lithos,意为“石头”。其中文名则来源于“Lithos”的第一个音节发音“里”,因为是金属,在左方加上部首“钅”。.

新!!: 化學元素豐度和锂 · 查看更多 »

錒是一種放射性化學元素,符號為Ac,原子序為89。錒在1899年被發現,是首個得到分離的非原始核素。雖然釙、鐳和氡比錒更早被發現,但是科學家到1902年才分離出這些元素。在元素週期表中,錒系元素始於錒,止於鐒,一共有15種元素。 錒是一種柔軟的銀白色放射性金屬。在空氣中,錒會迅速與氧氣和水氣反應,在表面形成具保護性的白色氧化層。和大部份鑭系元素和錒系元素一樣,錒的氧化態一般是+3。在自然界中,只有少量的錒出現在鈾礦石當中,主要為同位素227Ac,並進行β衰變,半衰期為21.772年。每一噸鈾礦石約含0.2毫克的錒元素。由於錒和鑭的化學和物理特性過於接近,因此要從礦石中分離出錒元素並不現實。科學家則是在核反應爐中以中子照射鐳-226來產生錒的。 錒因為稀少、昂貴,且具放射性,所以沒有大的工業用途。目前錒被用作中子源,以及在放射線療法中作為輻射源。.

新!!: 化學元素豐度和锕 · 查看更多 »

重子

重子(Baryon)是一個現代粒子物理學名詞,在標準模型理論中,「重子」這一名詞是指由三个夸克(或者三个反夸克组成的「反重子」)组成的複合粒子。在這理論中它是強子的一類。值得注意的是,因為重子屬於複合粒子,所以「不是」基本粒子。最常见的重子有組成日常物質原子核的质子和中子,合称为核子。其它重子中,有比这两種粒子更重的粒子,所谓的超子。重子这个称呼是指其质量相对重于轻子和介于两者之间的介子起的。 重子是强相互作用的费米子,也就是说它们遵守费米-狄拉克统计和泡利不相容原理,它们通过组成它们的夸克参加强相互作用。同时它们也参加弱相互作用和引力。带电荷的重子也参加电磁力作用。 重子与由一个夸克和一个反夸克组成的介子一起被合称为强子。强子是所有强相互作用的粒子的总称。 质子是唯一独立稳定的重子。中子假如不与其它中子或者质子一起组成原子核的话就不會稳定,並產生衰变。.

新!!: 化學元素豐度和重子 · 查看更多 »

金(gold)是化学元素,化学符号Au(来自aurum),原子序数79。纯金是有明亮光泽、黄中带红、柔软、密度高、有延展性的金属。金在元素周期表中在11族,属过渡金属,是化学性质最不活泼的几种元素之一。金在标准状况下是固体,在自然界中常以游离态单质形式(自然金)存在,如岩石、地下及沖積層中堆积的砂金或金粒。金能和游离态的银形成固溶体琥珀金,在自然界中也能和铜、钯形成合金。矿物中的金化合物不太常见,主要是碲化金。 金的原子序数在宇宙中天然存在的元素中是较高的。据信这种重元素是在两颗中子星碰撞时的超新星核合成中产生,在太阳系形成前的尘埃中就已存在。由于地球形成之初还处于熔化状态,的金几乎都已沉入地核。因此,现在地球上地壳和地幔的金多是拜后来后期重轰炸期(约40亿年前)的小行星撞击事件所赐。 金能抵抗单一酸的侵蚀,但却能被王水溶解(“王水”因此得名)。这种混合酸能和金反应生成四氯合金酸根离子。金也能溶于碱性氰化物溶液,这是其开采和电镀的原理。能夠溶解銀及卑金屬的硝酸不能溶解金,这些性質是黃金精煉技術的基础,也是用硝酸来鉴别物品裡是否含有金的原理,这一方法是英語諺語「acid test」的語源,意指用「測試黃金的標準」来測試目標物是否名副其實。此外,金能溶于水銀,形成汞齊(也是一种合金),但这并非化学反應。 金在有历史记载以前就是一種廣受歡迎的貴金屬,用于貨幣、保值物、珠寶和艺术品。以前国内和国际通常实行以金为基础的金本位货币制度,但1930年代时金币已停止流通。70年代,随着布雷頓森林協定的结束,世界范围内的金本位制终于让位给法定货币制度。不过因其稀有,易于熔炼、加工和铸币,色泽独特,抗腐蚀,不易和其他物质反应等特点,金的价值不减。 底,人类总共开采18.36万公噸(相当于9513立方米)的金。 产量中的50%用于珠宝,40%用于投资,还有10%用于工业。 因其高延展性,抗腐蚀性,在大多数反应中的惰性和导电性,金一直在各类电子设备中用作耐腐蚀的电子连接器,这是它的主要工业用途。此外它还用于屏蔽红外线,生产和金箔,以及修补牙齿。有些金盐在医学上仍作为消炎药使用。.

新!!: 化學元素豐度和金 · 查看更多 »

金屬量

金屬量是天文學和物理宇宙學中的一個術語,它是指恒星之內除了氫和氦元素之外,其他的化學元素所占的比例(這個術語不同於一般所認知的“金屬”,因為在宇宙中氫和氦的組成量占了壓倒性的大數量,天文學家將所有更重的元素都視為金屬。) 。例如,碳化合物含量較多的星雲被稱為“富金屬”,但在其他的場合都不會將碳當成金屬。 一個天體的金屬量也許可以提供年齡的訊息。當宇宙剛形成時,依據大霹靂的理論,它幾乎完全都是氫原子,經由太初核合成,創造出相當大比例的氦和微量跡證的鋰。最初的恒星,被認為是第三星族星,完全不含任何金屬。這些恒星的質量是難以置信的巨大,因此在短促的恒星演化中經由核融合創造出週期表內比鐵輕的元素,然後經由壯觀的超新星將元素散佈在宇宙中。雖然,它們存在於主流的宇宙起源模型,但直至2007年,仍未發現第三星族星。下一代的恒星於第一代恒星死亡釋出的物質中创造出来,被觀測到最老的恒星,被認為是第二星族星,有非常少量的金屬;後續世代出生的恒星,因由先前世代的富含金屬的塵埃中创生出来,金屬含量越來越豐富。而當這些恒星死亡時,它們會將更豐富的金屬,經由行星狀星雲或超新星散佈到外面的雲氣中,讓新誕生的恒星有更豐富的金屬。最年輕的恒星,包括我們的太陽,含有的金屬最豐富的恒星,被認為是第一星族星。 橫跨銀河系,金屬量在銀心是最高的,並向外逐漸遞減。在群星之間的金屬量梯度隨恒星的密度變化:在星系的中心有最多的恒星,隨著時間的過去,有越來越多的金屬回到星際物質內,並且成為新恒星的原料。由相似的機制,較大的星系相較於較小的星系,也會有較高的金屬量。在兩個環繞著銀河系的小不規則星系,麥哲倫雲的例子中,大麥哲倫星系的金屬量是銀河系的40%,小麥哲倫星系的金屬量是銀河系的10%。.

新!!: 化學元素豐度和金屬量 · 查看更多 »

镁(Magnesium)是一种化学元素,它的化学符号是Mg,它的原子序数是12,是一種银白色的碱土金属。鎂是在地球的地殼中第八豐富的元素,約佔2%的質量,亦是宇宙中第九多元素。.

新!!: 化學元素豐度和镁 · 查看更多 »

是一種化學元素,化學符號為Ni,原子序數為28。它是一種有光澤的銀白色金屬,其銀白色帶一點淡金色。鎳屬於過渡金屬,質硬,具延展性。純鎳的化學活性相當高,這種活性可以在反應表面積最大化的粉末狀態下看到,但大塊的鎳金屬與周圍的空氣反應緩慢,因為其表面已形成了一層帶保護性質的氧化物。即使如此,由於鎳與氧之間的活性夠高,所以在地球表面還是很難找到自然的金屬鎳。地球表面的自然鎳都被封在較大的鎳鐵隕石裏面,這是因為隕石在太空的時候接觸不到氧氣的緣故。在地球上,這種自然鎳總會和鐵結合在一起,這點反映出它們都是超新星核合成主要的最終產物。一般認為地球的地核就是由鎳鐵混合物所組成的。 鎳的使用(天然的隕鎳鐵合金)最早可追溯至公元前3500年。阿克塞尔·弗雷德里克·克龙斯泰特於1751年最早分離出鎳,並將它界定為化學元素,儘管他最初把鎳礦石誤認為銅的礦物。鎳的外語名字來自德國礦工傳說中同名的淘氣妖精(Nickel,與英語中魔鬼別稱"Old Nick"相近),這是由於鎳銅礦不能用煉銅的方法煉出銅來,所以被比擬成妖魔。鎳最經濟的主要來源為鐵礦石褐鐵礦,含鎳量一般為1-2%。鎳的其他重要礦物包括硅鎂鎳礦及鎳黃鐵礦。鎳的主要生產地包括加拿大的索德柏立區(一般認為該處是隕石撞擊坑)、太平洋的新喀里多尼亞及俄羅斯的諾里爾斯克。 由於鎳在室溫時的氧化緩慢,所以一般視為具有耐腐蝕性。歷史上,因為這一點鎳被用作電鍍各種表面,例如金屬(如鐵及黃銅)、化學裝置內部及某些需要保持閃亮銀光的合金(例如鎳銀)。世界鎳生產量中的約6%仍被用於抗腐蝕純鎳電鍍。鎳曾經是硬幣的常見成份,但現時這方面已大致上被較便宜的鐵所取代,尤其是因為有些人的皮膚對鎳過敏。儘管如此,英國還是在皮膚科醫生的反對下,於2012年開始再使用鎳鑄造錢幣。 只有四種元素在室溫時具有鐵磁性,鎳就是其中一種。含鎳的鋁鎳鈷合金永久磁鐵,其磁力強度介乎於含鐵的永久磁鐵與稀土磁鐵之間。鎳在現代世界的的地位主要來自於它的各種合金。全世界鎳產量中的約60%被用於生產各種鎳鋼(特別是不鏽鋼)。其他常見的合金,還有一些的新的高溫合金,就幾乎就佔盡了餘下的世界鎳用量。用於製作化合物的化學用途只佔了鎳產量的不到3%。作為化合物,鎳在化學製造有好幾種特定的用途,例如作為氫化反應的催化劑。某些微生物和植物的酶用鎳作為活性位點,因此鎳是它們重要的養分。.

新!!: 化學元素豐度和镍 · 查看更多 »

(Protactinium,旧译作鎃)是一种放射性化学元素,化学符号为Pa,原子序为91。鏷是一种银灰色、密度大的锕系元素,容易与氧、水蒸汽和无机酸反应。 鏷在自然界中非常稀少,在地壳中的平均浓度是通常为兆分之一,但在一些晶质铀矿的矿床中可能达到百万分之一。鏷因为稀少,具有高放射性和高毒性,除了科学研究之外没有其他用途。由于由于镤和其他锕系元素的化学和物理特性过于接近,难以分离,故目前研究用的鏷主要是从用过核燃料中提炼。鏷寿命最长且最主要的天然同位素为235U的衰变产物231Pa,半衰期为32760年。.

新!!: 化學元素豐度和镤 · 查看更多 »

鎦(Lutetium,--,舊譯作鏴)是一種化學元素,符號為Lu,原子序為71。鎦是一種銀白色金屬,在乾燥空氣中能抵抗腐蝕。鎦是最後一個鑭系元素,有時也算作第六週期首個過渡金屬,一般歸為稀土元素。 法國科學家喬治·於爾班(Georges Urbain)、奧地利礦物學家卡爾·奧爾·馮·威爾斯巴赫(Carl Auer von Welsbach)男爵以及美國化學家查爾斯·詹姆士(Charles James)於1907年分別獨自發現了鎦元素。他們都是在氧化鐿礦物中,發現了含有鎦的雜質。發現者隨即爭論誰最早發現鎦,不同的命名方案也引起了爭議。最終定下的名稱是「Lutecium」,取自巴黎的拉丁文名盧泰西亞(Lutetia),後拼法改為「Lutetium」。 鎦在地球地殼中的含量並不高,但仍比銀要常見得多。鎦-176是一種較常見的放射性同位素(佔所有鎦的2.5%),半衰期約為380億年,可用於測量隕石的年齡。鎦一般與釔一同出現,可作合金材料,以及為某些化學反應作催化劑。177Lu-DOTA-TATE可用於放射線療法,治療神經內分泌腫瘤。----------------->.

新!!: 化學元素豐度和镥 · 查看更多 »

镧是化学元素,化学符号是La,原子序数是57,属于镧系元素,为稀土金屬中最活泼的金属,在空气中很容易氧化。镧在独居石矿中约占稀土总量的25%。银白色的软金属,有延展性。能与水作用。易溶于稀酸。在空气中易氧化;加热能燃烧,生成氧化物和氮化物。在氢气中加热生成氢化物。它是稀土元素中第二个最丰富的元素,常与其他稀土元素一起存在于独居石中、氟碳锶镧矿中。它是铀、钍或钚裂变的放射性产物之一。它能赋予玻璃特殊的折光性能,使玻璃具有较高的折射率。 镧的制备一般由水合氯化镧经脱水后,用金属钙还原,或由无水氯化镧经熔融后电解而制得。常用来制造昂贵的照相机镜头。138La是放射性的,半衰期为1.1×1011年,曾被试用来治疗癌症。 氧化镧可用于制造玻璃;六硼化镧可用以制造电子管的阴极材料;金属镧用于氧化物金属热还原法制备钐、铕及镱。.

新!!: 化學元素豐度和镧 · 查看更多 »

()是一种化学元素,它的化学符号是Pr,它的原子序数是59,属于镧系元素,也是稀土元素之一。.

新!!: 化學元素豐度和镨 · 查看更多 »

镭(舊譯作鈤、銧)是一种化学元素,它的化学符号是Ra,它的原子序数是88,是一种银白色的碱土金属,带有放射性,而且十分贵重,每克约100美金。 镭在1898年由居里夫人及她丈夫皮埃尔·居里在捷克北波希米亚发现。他们发现铀在衰变后,衰变物仍带放射性。镭的拼音名称Radium即是放射性的意思。 镭-226為鐳的最穩定同位素,半衰期為1600年,进行α-蜕变,放出α射线和γ射线。它衰变时会放出氡气到大气中。氡仍有放射性,且可被生物吸入,危害生命。 镭能够致癌,但是它也能够治疗癌症。.

新!!: 化學元素豐度和镭 · 查看更多 »

鉑系元素

鉑系元素是指8族元素、9族元素、10族元素不是鐵系元素的其他元素(第七、八週期除外)。鉑系元素電子殼層的最外層都只有1個電子,第六族的鉑系元素最外層也都只有2個電子,但第二外層的3d電子數不同,分別為相差1,在加上它們具有相近的原子半徑,因此它們的性質也會很相似。熔点都很高,在1500℃以上,性质稳定。 鉑系元素不容易與酸反應,也不易與其他物質反應,因此,鉑系元素几乎完全可以以单质状态存在,且分散在地殼岩層的各種礦石中。 鉑系元素在自然界中绝大部分主要矿石是以铂为主的铂矿,以及少量的锇铱矿等。.

新!!: 化學元素豐度和鉑系元素 · 查看更多 »

ΛCDM模型

ΛCDM模型(英语:ΛCDM Model或Lambda-CDM Model)是所谓Λ-冷暗物质(Cold Dark Matter)模型的简称。它在大爆炸宇宙学中经常被称作索引模型,这是因为它尝试解释了对宇宙微波背景辐射、宇宙大尺度结构以及宇宙加速膨胀的超新星观测。它是当前能够对这些现象提供融洽合理解释的最简单模型。.

新!!: 化學元素豐度和ΛCDM模型 · 查看更多 »

暗物质

在宇宙学中,暗物质(Dark matter),是指無法通過电磁波的觀測進行研究,也就是不與电磁力產生作用的物质。人们目前只能透过重力产生的效应得知,而且已經發现宇宙中有大量暗物质的存在。 现代天文学經由引力透镜、宇宙中大尺度结构的形成、微波背景辐射等方法和理论来探测暗物质。而根据ΛCDM模型,由普朗克卫星探测的数据得到:整个宇宙的构成中,常規物質(即重子物質)占4.9%,而暗物质則占26.8%,还有68.3%是暗能量(质能等价)。暗物质的存在可以解决大爆炸理论中的不自洽性(inconsistency),对结构形成也非常关键。暗物质很有可能是一种(或几种)粒子物理标准模型以外的新粒子所構成。对暗物质(和暗能量)的研究是现代宇宙学和粒子物理的重要课题。 2015年11月,NASA噴射推進實驗室的科學家蓋瑞‧普里茲奧(Gary Prézeau)以ΛCDM模型模擬銀河系內暗物質流過地球與木星等行星的情形,發現這會使該暗物質流的密度明顯上升(地球:10^7倍、木星:10^8倍),並呈現毛髮狀的向外輻射分佈結構。.

新!!: 化學元素豐度和暗物质 · 查看更多 »

暗能量

在物理宇宙學中,暗能量是一種充溢空間的、增加宇宙膨脹速度的難以察覺的能量形式。暗能量假說是當今對宇宙加速膨脹的觀測結果的解釋中最為流行的一種。在宇宙標準模型中,暗能量佔據宇宙68.3%的質能。 Sean Carroll, Ph.D., Cal Tech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 46, Accessed Oct.

新!!: 化學元素豐度和暗能量 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

新!!: 化學元素豐度和恒星 · 查看更多 »

核聚变

--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.

新!!: 化學元素豐度和核聚变 · 查看更多 »

核裂变

核裂变(;),--,是指由較重的(原子序数較大的)原子,主要是指鈾或鈽,分裂成较輕的(原子序数较小的)原子的一種核反應或放射性衰變形式。核裂变是由莉澤·邁特納、奥托·哈恩及奥托·罗伯特·弗里施等科學家在1938年發現。原子彈以及核电站的能量来源都是核裂变。早期原子彈應用鈽-239為原料製成。而鈾-235裂變在核電廠最常見。 重核原子經中子撞擊後,分裂成為兩個較輕的原子,同時釋放出數個中子,並且以伽马射线的方式釋放光子。釋放出的中子再去撞擊其它的重核原子,從而形成鏈式反應而自發分裂。原子核分裂時除放出中子還會放出熱,核電廠用以發電的能量即來源於此。因此核裂变產物的結合能需大於反應物的的結合能。 核裂变會將化學元素變成另一種化學元素,因此核裂变也是核遷變的一種。所形成的二個原子質量會有些差異,以常見的可裂变物质同位素而言,形成二個原子的質量比約為3:2。大部份的核裂变會形成二個原子,偶爾會有形成三個原子的核裂变,稱為,大約每一千次會出現二至四次,其中形成的最小產物大小介於質子和氬原子核之間。 現代的核裂变多半是刻意產生,由中子撞擊引發的人造核反應,偶爾會有自發性的,因放射性衰變產生的核裂变,後者不需要中子的引發,特別會出現在一些質量數非常高的同位素,其產物的組成有相當的機率性甚至混沌性,和质子发射、α衰變、等單純由量子穿隧產生的裂变不同,後面這些裂变每次都會產生相同的產物。原子彈以及核电站的能量来源都是核裂变。核燃料是指一物質當中子撞擊引發核裂变時也會釋放中子,因此可以產生鏈式反應,使核裂变持續進行。在核电站中,其能量產生速率控制在一個較小的速率,而在原子彈中能量以非常快速不受控制的方式釋放。 由於每次核分裂釋放出的中子數量大於一個,因此若對鏈式反應不加以控制,同時發生的核分裂數目將在極短時間內以幾何級数形式增長。若聚集在一起的重核原子足夠多,將會瞬間釋放大量的能量。原子彈便應用了核分裂的這種特性。製成原子彈所使用的重核含量,需要在90%以上。 核能發電應用中所使用的核燃料,鈾-235的含量通常很低,大約在3%到5%,因此不會產生核爆。但核電廠仍需要對反應爐中的中子數量加以控制,以防止功率過高造成爐心熔毀的事故。通常會在反應爐的慢化劑中添加硼,並使用控制棒吸收燃料棒中的中子以控制核分裂速度。從鎘以後的所有元素都能分裂。 核分裂時,大部分的分裂中子均是一分裂就立即釋出,稱為瞬發中子,少部分則在之後(一至數十秒)才釋出,稱為延遲中子。.

新!!: 化學元素豐度和核裂变 · 查看更多 »

氟是一种化学元素,符号为F,其原子序数为9,是最轻的卤素。其单质在标准状况下为浅黄色的双原子气体,有剧毒。作为电负性最强的元素,氟极度活泼,几乎与所有其它元素,包括某些惰性气体元素,都可以形成化合物。 在所有元素中,氟在宇宙中的丰度排名为24,在地壳中丰度排名13。萤石是氟的主要矿物来源,1529年该矿物的性质首次被描述。由于在冶炼中将萤石加入金属矿石可以降低矿石的熔点,萤石和氟包含有拉丁语中表示流动的词根fluo。尽管在1810年就已经认为存在氟这种元素,由于氟非常难以从其化合物中分离出来,并且分离过程也非常危险,直到1886年,法国化学家亨利·莫瓦桑才采用低温电解的方法分离出氟单质。许多早期的实验者都因为他们分离氟单质的尝试受到伤害甚至去世。莫瓦桑的分离方法在现代生产中仍在使用。自第二次世界大战的曼哈顿工程以来,单质氟的最大应用就是合成铀浓缩所需的六氟化铀。 由于提纯氟单质的费用甚高,大多数的氟的商业应用都是使用其化合物,开采出的萤石中几乎一半都用于炼钢。其余的萤石转化为具有腐蚀性的氟化氢并用于合成有机氟化物,或者转化为在铝冶炼中起到关键作用的冰晶石。有机氟化物具有很高的化学稳定性,其主要用途是制冷剂、绝缘材料以及厨具(特氟龙)。诸如阿托伐他汀和氟西汀等药物也含有氟。由于氟离子能够抑制龋齿,氟化水和牙膏中也含有氟。全球与氟相关的化工业年销售额超过150亿美元。 气体是温室气体,其温室效应是二氧化碳的100到20000倍。由于碳氟键强度极高,有机氟化合物在环境中难以降解,能够长期存在。在哺乳动物中,氟没有已知的代谢作用,而一些植物能够合成能够阻止食草动物的有机氟毒素。.

新!!: 化學元素豐度和氟 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 化學元素豐度和氢 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

新!!: 化學元素豐度和氦 · 查看更多 »

氦-3

氦-3,是氦的同位素之一,元素符號為3He。它的原子核由二顆質子和一顆中子所組成。是穩定同位素。其相對豐度是0.000137%。一般相信,月球表面的風化層(表皮土)富含著大量的氦-3。.

新!!: 化學元素豐度和氦-3 · 查看更多 »

氦-4

氦-4,是氦的同位素之一,元素符號為4He。它的原子核由二顆質子和二顆中子所組成,其自旋量子數為0,是玻色子。氦-4是穩定同位素。其相對豐度是99.999863%。.

新!!: 化學元素豐度和氦-4 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 化學元素豐度和氧 · 查看更多 »

氩(Argon)是一种化学元素,在希臘語有「不活潑」的意思,由它的特性而來。Hiebert, E. N. Historical Remarks on the Discovery of Argon: The First Noble Gas.

新!!: 化學元素豐度和氩 · 查看更多 »

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

新!!: 化學元素豐度和氮 · 查看更多 »

氮-14

氮-14(Nitrogen-14)是氮的同位素之一,為穩定同位素,原子核包含了七個質子和七的中子,是最常見的同位素,豐度有99%,在高空中,氮-14被宇宙射線轟擊,並產生有放射性的碳-14。一般來說,氮-14在宇宙中是被恆星合成的,在碳氮氧循環中扮演重要的角色。.

新!!: 化學元素豐度和氮-14 · 查看更多 »

氯是一种卤族化学元素,化学符号為Cl,原子序数為17。.

新!!: 化學元素豐度和氯 · 查看更多 »

氘(注音:ㄉㄠ;拼音:dāo(1);客家話:dao(1);粵語:dou(1);台語:to(1);英语:Deuterium)為氢的一种穩定形態同位素,又称重氢,元素符号一般为D或2H。它的原子核由一颗质子和一颗中子组成。在大自然的含量约为一般氢的7000分之一。.

新!!: 化學元素豐度和氘 · 查看更多 »

氖(舊譯作氝,訛作氞)是一种化学元素,它的化学符号是Ne,它的原子序数是10,是一种无色的稀有气体,把它放电时呈橙红色。氖最常用在霓红灯之中。空气中含有少量氖。.

新!!: 化學元素豐度和氖 · 查看更多 »

溴,是一個化學元素及一種鹵素;元素符號Br,原子序35。溴分子在標準溫度和壓力下是有揮發性的紅棕色液體,活性介於氯與碘之間。纯溴也称溴素。溴蒸氣具有腐蝕性,并且有毒。在2007年,約有556,000公噸的溴被製造。Jack F. Mills "Bromine" in Ullmann's Encyclopedia of Chemical Technology Wiley-VCH Verlag; Weinheim, 2002.

新!!: 化學元素豐度和溴 · 查看更多 »

星系

星系(galaxy),或譯為銀河,源自於希臘语的「γαλαξίας」(galaxias)。廣義上星系指無數的恆星系(當然包括恆星的自體)、塵埃(如星雲)組成的運行系統。參考我們的銀河系,是一個包含恆星、星團、星雲、氣體的星際物質、宇宙塵和暗物質,並且受到重力束縛的大質量系統,通常距離都在幾百萬光年以上。星系平均有數百億顆恆星,是構成宇宙的基本單位。。典型的星系,從只有數千萬(107)顆恆星的矮星系到上兆(1012)顆恆星的橢圓星系都有,全都環繞著質量中心運轉。除了單獨的恆星和稀薄的星際物質之外,大部分的星系都有數量龐大的多星系統、星團以及各種不同的星雲。 歷史上,星系是依據它們的形状分類的(通常指它們視覺上的形狀)。最普通的是橢圓星系,有橢圓形狀的明亮外觀;螺旋星系是圓盤的形狀,加上彎曲的塵埃旋渦臂;形狀不規則或異常的,通常都是受到鄰近其他星系影響的結果。鄰近星系間的交互作用,也許會導致星系的合併,或是造成恆星大量的產生,成為所謂的星爆星系。缺乏有條理結構的小星系則會被稱為不規則星系。 在可以看見的可觀測宇宙中,星系的總數可能超過一千億(1011)個以上。大部分的星系直徑介於1,000至100,000秒差距,彼此間相距的距離則是百萬秒差距的數量級。星系際空間(存在於星系之間的空間)充滿了極稀薄的電漿,平均密度小於每立方公尺一個原子。多數的星系會組織成更大的集團,成為星系群或團,它們又會聚集成更大的超星系團。這些更大的集團通常被稱為薄片或纖維,圍繞在宇宙中巨大的空洞週圍。 雖然我們對暗物質的了解很少,但在大部分的星系中它都佔有大約90%的質量。觀測的資料顯示超大質量黑洞存在於星系的核心,即使不是全部,也佔了絕大多數,它們被認為是造成一些星系有著活躍的核心的主因。銀河系,我們的地球和太陽系所在的星系,看起來在核心中至少也隱藏著一個這樣的物體。.

新!!: 化學元素豐度和星系 · 查看更多 »

海水

海水即是海洋內的水,佔據地球水體的97%,一公升海水有約35公克的鹽溶於其中,還有少量的微量元素。海水是複雜的溶液,並且會隨著時間變動,例如地球早期的海水是酸性的,而非現在因為融入大量鹽類物質而呈現的鹼性,但近代以來人類活動使海水水質出現過度變動,例如海洋酸化等問題,威脅著海洋生態系統的未來。.

新!!: 化學元素豐度和海水 · 查看更多 »

重定向到这里:

化学元素丰度元素的丰度克拉克值

传出传入
嘿!我们在Facebook上吧! »