徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

免疫系统

指数 免疫系统

免疫系统是生物体体内一系列的生物学结构和所组成的疾病防御系统。免疫系统可以检测小到病毒大到寄生虫等各类病原体和有害物质,并且在正常情况下能够将这些物质与生物体自身的健康细胞和组织区分开来。 病原体可以快速地进化和调整,来躲避免疫系统的侦测和攻击。为了能够在与病原体的对抗中获胜,生物体进化出了多种识别和消灭病原体的机制。就连简单的单细胞生物,如细菌,也发展出了可以对抗噬菌体感染的酶系统。一些真核生物,例如植物和昆虫,从它们古老的祖先那里继承了简单的免疫系统。这些免疫机制包括抗微生物多肽(防御素)、吞噬作用和补体系统。包括人类在内的有颌类脊椎动物则发展出更为复杂多样的防御机制。 典型的脊椎动物免疫系统由多种蛋白质、细胞、器官和组织所组成,它们之间相互作用,共同构成了一个精细的动态网络。作为复杂的免疫应答的一部分,人类的免疫系统可以通过不断地适应来更有效地识别特定的病原体。这种适应过程被定义为“适应性免疫”或“获得性免疫”。针对特定的病原体的初次入侵,免疫系统中的記憶T細胞能够产生“免疫记忆”;当该种病原体再次入侵时,这种记忆就可以使免疫系统迅速作出强化的免疫应答(即“适应性”)。而适应性免疫正是疫苗注射能够产生免疫力的生物学基础。 免疫系统的紊乱会导致多种疾病的产生。免疫系统的活力降低就会发生免疫缺陷,进而导致经常性和致命的感染。免疫缺陷可以是遗传性疾病,如重症聯合免疫缺陷;也可以由药物治疗或病菌感染引发,如艾滋病就是由于艾滋病毒感染而引发的适应性免疫缺陷综合症。另一方面,免疫系统異常会将正常的组织作为入侵者而进行攻击,从而引起自体免疫疾病。常见的自体免疫疾病包括慢性甲状腺炎、类风湿性关节炎、第一型糖尿病和系統性紅斑性狼瘡。.

260 关系: 埃黎耶·埃黎赫·梅契尼可夫原子质量单位半抗原单细胞生物古菌叶酸发展中国家发烧后天免疫系统吞噬作用多糖多株B細胞反應外骨骼妊娠姬松茸寄生寄生虫小肠尿尿道巨噬细胞已開發國家中暑主要组织相容性复合体七鰓鰻亞綱世界卫生组织干扰素乳酸菌产前发育人体生理学人類乳突病毒人類免疫缺陷病毒人類白細胞抗原人蔘传统医学伯克氏菌屬弱化子体液免疫微生物保罗·埃尔利希修昔底德念珠菌症医学化学疗法初潮利什曼病分泌分泌系统呼吸系統...呼吸道咳嗽催乳素傳染病唾液免疫免疫原性免疫学免疫佐剂免疫系统免疫组学免疫缺陷免疫网络学说免疫疗法免疫耐受免疫抑制药先天免疫系統克隆选择前列腺素囊腫性纖維化器官器官移植噬菌体B细胞CD18CD4受体CD8CRISPRCRISPR/Cas 系統皮埃爾·莫佩爾蒂皮膚环孢素灰樹花灵芝睡眠剥夺硫唑嘌呤神经系统神香草穿孔素突变类花生酸粒细胞糖尿病糖皮质激素紅斑性狼瘡綠膿桿菌维生素A维生素B6维生素C维生素D维生素E结缔组织组织 (生物学)细菌细胞分裂细胞凋亡细胞免疫细胞因子细胞膜缺氧罗伯特·科赫真菌真核生物瘧原蟲疟疾疏水性疫苗疫苗接種疾病病原体病原相关分子模式病毒病毒包膜炎症性肠病生命週期生物生物膜生长因子生长激素甲状腺激素甘草片利共生牛初乳益生菌盲鰻白三烯白细胞介素白血球癌基因癌症遠端轉移遺傳性疾病鏈球菌屬類風濕性關節炎补体系统表皮血管血管舒張血液血清颗粒溶素食物中毒裂解親水性香菇訊息傳遞骨髓诺贝尔生理学或医学奖贅生物趨化性超抗原趋化因子路易·巴斯德黏膜黑素細胞黑色素瘤黄热病黄芪鼠尾草輔助型T細胞转化生长因子-β过敏蜂蜜胎兒胎盤胸腺胃酸防御素阴道肥大细胞肥胖症肿瘤坏死因子-α锥虫脊椎动物脾脏重症聯合免疫缺陷自由基自然杀伤细胞自體免疫性疾病金黃色葡萄球菌酪氨酸酶酸奶腸胃炎艾滋病雄激素蛋白质蛋白质合成蛋白酶蛋白酶解造血干细胞限制性修饰系统IgGIII型分泌系统PDFPH值RNA干扰T细胞T细胞受体Toll样受体抗原抗原原罪抗原呈递细胞抗原表位抗体抗微生物肽抗病毒药物抗炎性抗生素抗菌肽接骨木核酶树突植物模式识别受体樹狀細胞正回饋母乳毒素氨基酸氨甲蝶呤泌尿道感染活性己糖相關化合物淋巴因子淋巴细胞溶菌酶溶酶体演化激素机器学习有颔下门昆虫浆细胞无脊椎动物感染慢波睡眠慢性甲状腺炎慢性肉芽腫病1型糖尿病 扩展索引 (210 更多) »

埃黎耶·埃黎赫·梅契尼可夫

埃黎耶·埃黎赫·梅契尼可夫(Илья Ильич Мечников,),出生於烏克蘭,俄國微生物學家與免疫學家,免疫系統研究的先驅者之一。曾在1908年,因為吞噬作用(phagocytosis,一種由白血球執行的免疫方式)的研究,而得到諾貝爾生理學或醫學獎。也因為發現乳酸菌對人體的益處,使人們稱之為「乳酸菌之父」 。.

新!!: 免疫系统和埃黎耶·埃黎赫·梅契尼可夫 · 查看更多 »

原子质量单位

原子质量单位(Atomic mass unit,amu),现称统一原子质量单位(Unified atomic mass unit,u)或道爾頓(dalton,Da),是用来衡量原子质量的单位,定义为靜止未鍵結且處於基態碳12原子质量的1/12。.

新!!: 免疫系统和原子质量单位 · 查看更多 »

半抗原

半抗原(hapten)是指本身分子量過小,無法刺激免疫反應,必須和載體(carrier)結合成較大的才能刺激發生免疫反應。半抗原能與對應抗體結合出現抗原-抗體反應,又不能單獨激發人或動物體產生抗體的抗原,它只有抗原性,不具免疫原性,又稱不完成抗原。大多數多醣和所有類脂都屬於半抗原,如果用化學方法把半抗原與某種純蛋白的分子載體(protein carrier)結合,純蛋白會獲得新的免疫原性,並能刺激動物產生相應的抗體。半抗原一旦與純蛋白質結合,就構成該蛋白質的一個抗原簇。 半抗原的概念是由卡尔·兰德施泰纳所提出 。他還提出了可以用人工合成半抗原來研究免疫化學現象的想法。.

新!!: 免疫系统和半抗原 · 查看更多 »

单细胞生物

生物可以根据构成的细胞数目分为单细胞生物和多细胞生物。单细胞生物只由单个细胞组成,而且经常会聚集成为细胞集落。單細胞生物能獨力完成新陳代謝及繁殖等活動。 地球上最早的生物大約在距今35億至41億年前形成,原核生物是最原始的生物,如細菌和藍綠藻且是在溫暖的水中發生。?! 单细胞生物包括所有古细菌和真细菌和很多原生生物。根据旧的分类法有很多动物,植物和真菌多是单细胞生物。变形虫算作单细胞动物,它的一些种类却算作粘菌,带鞭毛的鞭毛虫如眼虫有时被归为单细胞藻类或者是单细胞动物。新的分类法中,所有的真核单细胞生物都算作原生生物。 粘菌根据最近的研究认为可以独立成界,虽然他们在正常情况下为单细胞,但其直径大小可达80厘米。它可以勉强被归到真菌中,因为它们也会呈现出类似变形虫的状态。 单或多细胞生物的分类只是描述性的,并不能提供任何亲缘、新陈代谢、构造和习性方面的信息。 植物单细胞生物一个特殊的形式是它们有被膜。.

新!!: 免疫系统和单细胞生物 · 查看更多 »

古菌

古菌(Archaea,来自,意为“古代的东西”)又稱古細菌、古生菌或太古生物、古核生物,是单细胞微生物,构成生物分类的一个域,或一个界。这些微生物属于原核生物,它們與细菌有很多相似之處,即它们没有细胞核与任何其他膜结合细胞器,同時另一些特徵相似於真核生物,比如存在重复序列与核小体。 过去曾经将古菌和细菌一同归为原核生物,并将其命名为“古细菌”,但这种分类方式已过时。事实上古菌有其独特的进化历程,并与其它生命形式有显著的生化差异,所以现在将其列为三域系统中的一个域。在这个系统中,古菌、细菌与真核生物各为一个域,并进一步划分为界与门。到目前为止,古菌已被划分为公认的四个门,随着进一步研究,还可能建立更多的门类。在这些类群中,研究最深入的是泉古菌门与广古菌门。但对古菌进行分类仍然是困难的,因为绝大多数的古菌都无法在实验室中纯化培养,只能通过环境宏基因组检测来分析。 古菌和细菌的大小和形状非常相似,但少数古菌有不寻常的形状,如嗜鹽古菌拥有平面正方形的细胞。尽管看起来与细菌更相似,但古菌与真核生物的亲缘关系更为密切,特别是在一些代谢途径(如转录和转译)有关酶的相似性上。古菌还有一些性状是独一无二的,比如由依赖醚键构成的细胞膜。与真核生物相比,古菌有更多的能量来源,从熟悉的有机物糖类到氨到金属离子直到氢气。(如)可以以太阳光为能源,其它一些种类的古菌能进行;但不像蓝藻与植物,没有一种古菌能同时做到这两者而进行光合作用。古菌通过分裂、出芽、断裂来进行无性生殖,但没有发现能产生孢子的种类。 一开始,古菌被认为都是一些生活在温泉、盐湖之类极端环境的嗜极生物,但近来发现它们的栖息地其实十分广泛,从土壤、海洋、到河流湿地。它们也被发现在人类的大肠、口腔、与皮肤。尤其是在海洋中古菌特别多,一些浮游生物中的古菌可能是这个星球上数量最大的生物群体。现在,古菌被认为是地球生命的一个重要组成部分,在碳循环和氮循环中可能扮演重要的角色。目前没有已知的作为病原体或寄生虫的古菌,他们往往是偏利共生或互利共生。一个例子是,生活在人和反刍动物的肠道中帮助消化,还被用于沼气生产和污水处理。嗜极生物古菌中的酶能承受高温和有机溶剂,在被生物技术所利用。.

新!!: 免疫系统和古菌 · 查看更多 »

叶酸

叶酸(Folate、folic acid)也稱為维生素B9,屬於維生素B。葉酸可用於治療由葉酸缺乏症引起的貧血。葉酸也是孕婦的營養補充品。在新生兒的病例中,有超過一半認為是因為懷孕初期葉酸不足所造成。有超過50個國家利用加入葉酸的營養強化食品來減少神經管缺損的比例。長期補充葉酸和中風及心血管疾病風險的小幅下降有關。葉酸可以口服,也可以用注射的方式補充。 正常劑量下的葉酸不會造成副作用,還不確定長期的高劑量攝取是否有需要關注的問題。不過已知的是高劑量的葉酸攝取會讓维生素B12缺乏症的問題較不易檢查到。人體在製造DNA、RNA,以及製造细胞分裂需要的胺基酸代謝時,都必須要用到葉酸。因為人體無法自行製造葉酸,因此葉酸屬於人體必需的维生素。 葉酸攝取不足會造成葉酸缺乏症,會導致,症狀包括疲勞、心悸、呼吸困难、舌頭上的瘡,以及皮膚或髮色的變化,兒童若膳食攝入不足,一個月後會出現葉酸缺乏症。成人體內正常的葉酸總量在10,000–30,000µg,而血液中的濃度則為7 nmol/L(3 ng/mL)。 葉酸是在1931年至1943年之間所發現的,由米切尔(H.K.Mitchell,1941)及其同事首次从菠菜叶中提取纯化出来,命名为叶酸。葉酸列在世界衛生組織基本藥物標準清單中,是基礎中所需,最有效及安全的藥物。2014年在開發中國家,每一劑的葉酸膳食補充品價格在0.001至0.005美金之間。葉酸的英文folic源自拉丁文的folium,意思就是葉子。在許多的食物中都含有葉酸,特別是深綠色的葉菜類以及肝。.

新!!: 免疫系统和叶酸 · 查看更多 »

发展中国家

发展中国家(也称作--,Developing country),指经济、社会方面发展程度较低的国家,與发达国家相對。但現今隨著經濟發展,已有部份的發展中國家的生活水平和发达国家差距不大(包括波斯灣產油國、智利、哥斯大黎加、馬來西亞、汶萊和部份東歐國家),另外相反的是也有部份的發展中國家反而因生活水平退步而滑入-zh-tw:最低度開發國家;zh-hans:最不发达国家;zh-hant:最不發達國家-。.

新!!: 免疫系统和发展中国家 · 查看更多 »

发烧

#重定向 发热.

新!!: 免疫系统和发烧 · 查看更多 »

后天免疫系统

後天性免疫(adaptive immunity)也稱為獲得性免疫、適應性免疫、特異性免疫、專一性防禦,是一種經由與特定病原體接觸後,產生能識別並針對特定病原體啟動的免疫反應。和後天性免疫相對的是先天性免疫。後天免疫系統主要存在於有頜下門的脊椎動物中,近年來也在細菌以及古菌中發現,即 CRISPR/Cas 系統。脊椎動物的後天免疫系統可粗略分為體液免疫和细胞免疫。.

新!!: 免疫系统和后天免疫系统 · 查看更多 »

吞噬作用

吞噬作用(phagocytosis,来自古希腊语φαγεῖν)亦称吞食、噬菌作用,是吞噬细胞和原生动物通过细胞膜从周围环境摄取固体颗粒,并在其内部形成吞噬体的过程。 吞噬作用是细胞内吞作用的特殊形式,是将周围环境中的固体颗粒例如细菌等通过小泡的形式吞食进入细胞内部,这点与吞饮外部液体的胞饮作用等内吞作用的其他形式相区分。对于一些细胞而言,吞噬作用是为了获取营养物质,而在免疫系统中,这一细胞机制更多地用于清理病原体和细胞碎片等。细菌、死亡的组织细胞以及矿物质微粒都可以成为被吞噬的对象。 对于单细胞生物而言,吞噬作用与进食活动是同源的,而对于除丝盘虫以外的多细胞生物而言,这一机制更多地服务于细胞碎片与病原体的清理,而非为细胞活动提供能量。.

新!!: 免疫系统和吞噬作用 · 查看更多 »

多糖

多醣(Polysaccharide)由多個單醣分子脫水聚合,以糖苷键连接而成,可形成直鏈或者有分支的長鏈,水解后得到相应的單醣和寡糖。例如用来储存能量的淀粉和糖原,以及用来组成生物结构的纤维素和甲壳素。 多糖常常由略带修饰的重复单元构成。由于结构不同,多糖高分子和构成它的单糖分子性质迥异,可能无定形,甚至不溶于水。 自然界中存在的糖类(如葡萄糖、果糖和甘油醛)一般为单糖,通式为(CH2O)n,其中 n\ge 3。与此相对,多糖的通式为为CxH2O)y,其中x通常在200到2500之间。鉴于多糖通常由六碳糖构成,多糖的通式也可写作(C6H10O5)n,其中 40\le n\le 3000,不过多糖和寡糖的分界见仁见智。 多糖是一种重要的生物高分子,在生物中有储存能量和组成结构的作用。淀粉(包括直链淀粉和支链淀粉)是葡萄糖的聚合物,在植物中用来储存能量。动物将能量储存在糖原(也叫动物淀粉)中。糖原也是由葡萄糖聚合而成,但分子中支链更多。动物更活跃,所以利用的是代谢更快的糖原。 纤维素和甲壳素是两种组成生物结构的多糖。纤维素构成植物的细胞壁,可谓地球上数量最多的有机分子。纤维素应用广泛,不仅在造纸业和纺织业中举足轻重,而且是生产人造丝、醋酸纤维素、赛璐珞、硝化纤维等的原料。甲壳素结构和纤维素类似,但支链中含有氮,所以强度更高。其存在于节肢动物的外骨骼和真菌的细胞壁中。甲壳素也有很多作用,比如可用作手术缝合线。.

新!!: 免疫系统和多糖 · 查看更多 »

多株B細胞反應

多株B細胞反應(polyclonal B cell response)是一種哺乳類後天免疫系統所表現的自然免疫反應。它確保多株B細胞能辨識單獨抗原,進而攻擊抗原被抗體辨識或結合的部分,即抗原決定位(epitopes)。 在正常的免疫反應中,免疫系統能辨識病原體(如:細菌)的特定部位為外來物(非自我),進而消滅或有效中和病原體,以降低其潛在的破壞性。這種能被辨識的物質稱為抗原。免疫系統有多種對付抗原的途徑;其中一種免疫機制稱為體液免疫,即由B細胞製造抗體對抗抗原。抗體具可溶性,能免去抗原和B細胞之間的直接接觸。 抗原通常是一種巨大而構造複雜的物質,而單一抗體只能和抗原的特定微小部位結合。因此,免疫系統通常由多種不同的B細胞製造出大量不同的抗體,對同一個抗原執行免疫反應。細胞株(clone)是指一群由單一母細胞所產生的細胞,故名為「多株」(polyclonal) 。在多株反應中製造的抗體稱為多株抗體。異質的多株抗體和單株抗體不同;後者彼此間構造完全相同,只針對同一個抗原決定位產生反應,較具有專一性。 多株反應能更有效地對抗病原體,讓免疫系統更具有優勢;然而,由於免疫系統也可能對抗寄主本身製造的分子物質,它同時提高了發展出特定自身免疫疾病的機會。.

新!!: 免疫系统和多株B細胞反應 · 查看更多 »

外骨骼

外骨骼是无脊椎动物外殼的俗稱,因為堅硬有如骨骼,因此得名。如蜗牛的壳、螃蟹的壳、昆虫的角质层等。.

新!!: 免疫系统和外骨骼 · 查看更多 »

奶可能是指:.

新!!: 免疫系统和奶 · 查看更多 »

妊娠

妊娠(pregnancy),又稱懷孕,是指在哺乳類雌性體內孕育成長的過程,而在哺乳動物中研究得最詳細的是人類的妊娠。人類的妊娠約40週,從受精排卵算起則為38週;妊娠始於末次經期,經歷40週(10個月)的孕期,分娩後即結束。受精後的前8週發育型態稱為胚胎,分娩後則稱為胎兒。妊娠早期的症狀包含:無月經來潮、乳房柔軟度增加、噁心嘔吐、飢餓與頻尿。多個胚胎的妊娠稱做,如常見的雙胞胎。性交或會導致妊娠,而妊娠可由妊娠試驗確診。 妊娠通常可分為3個時期。第一期定義為受精當週起算第1-12週。受精後所形成的受精卵,會經輸卵管向下移動,接觸子宮內層著床,並開始發育成胎兒與胎盤。第一期所承受流產(胚胎或胎兒自然死亡)的風險為三期之最 。第二期定義為第13-28週。在第二期中期,可能會感受到胎兒活動。第28週時,如果接受高品質醫療照護,大於90%的胎兒可在子宮外。第三期定義為第29-40週。懷孕初期因初著床,流產機率較高;懷孕中期開始,胎兒較易以儀器監測;懷孕後期,胎兒開始具備母體外存活能力,也因如此,法律和習俗多視懷孕後期的胎兒為個人。 良善的孕期保健有助提升懷孕期身體狀況,包含多攝取葉酸、避免使用毒品與酒精、規律運動、血液檢查與規律體格檢查。因妊娠而造成的包含、妊娠糖尿病、缺鐵性貧血與妊娠劇吐等等。正常孕期約為37-41週,以37週作為早產或足月的分界,在37-38週出生稱為早期足月產、足月產為39-40週、過月為41週;41週以上稱為過期妊娠。嬰兒在20-37週之間出生,稱為早產,可能會造成如腦麻痺等健康風險。如果在39週以前分娩,除非有其他醫療狀況,否則不建議進行人工引產或剖腹產。 2013年全球約有2.13億次妊娠事件發生,其中1.9億次在開發中國家,2,300萬次妊娠則發生在已開發國家。在15-44歲年齡層中,每千名女性就有133名妊娠。約10-15%已知懷有身孕的人因流產而終止妊娠。1990年,因妊娠併發症而死亡的人數為37.7萬人,2013年則降至29.3萬人;其常見原因包含產後出血、墮胎引起的併發症、妊娠高血壓、產褥熱與難產。全球約40%妊娠為非計畫懷孕,其中一半會選擇墮胎。在美國的非計畫懷孕中,60%女性曾施行避孕措施,甚至到受孕的那個月仍有進行避孕措施。.

新!!: 免疫系统和妊娠 · 查看更多 »

姬松茸

姬松茸(Agaricus subrufescens,但亦經常被錯誤寫成:Agaricus blazei、Agaricus blazei、Murrill、Agaricus brasiliensis或Agaricus rufotegulis)是一種可進食的菌類植物,味道帶甜,有杏仁的芳香。姬松茸常見於營養保健食品中,並聲稱有活化免疫系統、預防惡性腫瘤(防癌)的功效。然而,其科學根據一直存疑。日本的國立健康營養研究所自2011年3月開始就相關產品的有效性及安全性進行研究,至今仍未得到可信度高的結果。.

新!!: 免疫系统和姬松茸 · 查看更多 »

寄生

寄生是指一种生物生于另一种生物的体内或体表,并从后者摄取养分以维持生活的现象。前者称寄生物,后者称宿主。 寄生物若寄住在宿主體內,稱為內寄生,例如鉤蟲寄生在動物的消化道;而那些生活在表面的稱為外寄生,例如蚊子和造成足癬(俗稱:香港腳)的黴菌、吸取其他植物養分的菟絲子;若一個寄生物會殺死宿主的,便稱為擬寄生物;另外有一種寄生形式稱為竊取性寄生,寄生物偷取宿主所捕捉的或是準備好的食物。 在定義上必須特別注意「獲利」和「被害」在寄生的關係是種族性的、血統性的,並非個體性的,因此如果一個生物體由於被感染,造成身體變得較為強壯的狀況,卻失去生殖能力(例如被扁蟲寄生的蛇類)在演化的觀點上這種生物體是被傷害的,也因此稱做被寄生物。 許多內寄生物尋找宿主是透過被動的方式達成,例如一種人類小腸內寄生虫,稱做線蟲Ascaris lumbricoides,牠從宿主的消化道排出到外在環境,必須仰賴其他人,因為衛生不良而不慎攝入。另一方面,外寄生物在這方面大多有更好的方式找尋宿主上身,例如一些水生的蛭,在附著上宿主之前會先感應移動狀況,並且透過散發的體溫和化學訊息來確認目標物。 寄生物的宿主通常也演化出良好的防禦機制:植物會製造毒素來殘害寄生真菌和細菌,當然對草食性動物也有害;脊椎動物的免疫系統可以透過體液對多數的寄生物攻擊。許多寄生物,特別是微生物,為此更演化出可以適應特定宿主物種的能力,在這樣特定的互動中,這兩種生物會共同演化出相對穩定的關係,這種狀況下,宿主就不會太快或是根本不會被殺死,因為在演化上宿主的對抗也會對寄生物造成威脅,但是別忘了有一種寄生物是會殺死宿主的,那就是先前提到過的擬寄生物(如寄生蜂)。 有時候寄生物的研究可以幫忙解決系統分類學上的問題,例如過去生物學家對於紅鶴究竟和鴨、雁類還是跟鸛鳥類血緣關係較為親近,在過去一直有很多的爭議,但是由於發現紅鶴和鴨、雁類有共同的寄生物,目前一般傾向認為這兩者的血緣關係比鸛鳥類更親近。.

新!!: 免疫系统和寄生 · 查看更多 »

寄生虫

寄生虫()指一種生物,將其一生的大多數時間居住在另外一種生物體內,且會危害被居住的生物體的生理機能,被寄居的生物則稱為宿主或寄主。寄生蟲會在宿主或寄主体内或附著於體表以获取维持其生存、发育或者繁殖所需的营养或者庇护。除此之外,还有一种叫拟寄生物(Parasitoidism)的种间关系,多见于昆虫,寄生虫的母体利用寄主体内作为卵孵化的场所,吸取寄主营养。这种寄生方式会导致寄主死亡,其关系类似于捕食关系。以生态学种间关系来看,寄生是发生关系的双方中弱小的一方得益,占優勢的一方受损的关系。寄生虫所包括的生物种类繁多,一般都為原生生物、无脊椎动物、脊椎动物。 在社会學领域中,寄生虫也被用作泛指一些依靠别人、自己不肯努力的人。.

新!!: 免疫系统和寄生虫 · 查看更多 »

小肠

小肠(英語:small intestine、Intestinum tenue)是消化系统的一部分,从在胃部后面一直延伸至大肠,是进行食物消化与吸收的主要器官。对于无脊椎动物而言,一般会采用消化系统或者大肠来描述整个肠道。本篇文章主要针对人类消化系统,但对于消化过程描述也适用于胎盘哺乳动物。小肠的主要作用适用于吸收食物中的营养成分与矿物质。 例外情况主要存在于牛或与其类似的哺乳动物,关于这一类动物的消化系统请参见反刍。.

新!!: 免疫系统和小肠 · 查看更多 »

尿

尿,又称尿液,是人类和脊椎动物为了新陈代谢的需要,經由泌尿系统及尿路排出体外的液体排泄物。排出的尿液可调节机体内水和电解质的平衡以及清除代谢废物,尤其是退化变性的蛋白质和核苷酸所产生的含氮化合物。正常成年人日均排尿量约为1500~2500mL。pH值約為6.5。 许多疾病可影响尿液的组成。因而,尿液检查可以揭示出许多的疾病。.

新!!: 免疫系统和尿 · 查看更多 »

尿道

尿道(拉丁语学名:Urethra)是动物体内泌尿系统的器官之一。它从膀胱连通到体外,它的作用是将尿排出体外。在雄性哺乳动物中它还有将精液导出的作用,因此也是生殖器官之一。在胚胎發育的过程中尿道是从泄殖腔的腹面产生的。.

新!!: 免疫系统和尿道 · 查看更多 »

巨噬细胞

巨噬細胞(macrophage,縮寫為mφ)是一種位於組織內的白血球,源自單核球,而單核球又來源於骨髓中的前體细胞。巨噬細胞和單核球皆為吞噬細胞,在脊椎動物體內參與非特異性防衛(先天性免疫)和特異性防衛(细胞免疫)。它們的主要功能是以固定細胞或游離細胞的形式對細胞残片及病原體進行噬菌作用(即吞噬以及消化),并激活淋巴球或其他免疫細胞,令其對病原體作出反應。.

新!!: 免疫系统和巨噬细胞 · 查看更多 »

已開發國家

发达国家(也称作--,developed country)是指經濟和社會發展水準較高,人民生活水準較高的國家,又稱作高經濟開發國家(MEDC)。已開發國家的普遍特徵是較高的人類發展指數、人均國民生產總值、工業化水準和生活品質。藉由開發自然資源也可以達到較高的人均国民生产总值和人類發展指數,但未必屬於已開發國家(比如文莱、沙特阿拉伯、卡塔尔等國)。 發達國家大都處於後工業化時期,服務業(也就是商業)為主要產業,而發展中國家則大都處於工業化(製造業,也就是工業)時期,未開發國家則還在農業時代。根據國際貨幣基金組織2015年的統計資料,發達國家的GDP佔世界60.8%,按購買力平價計算則佔42.9%,人口佔世界比率約16%。.

新!!: 免疫系统和已開發國家 · 查看更多 »

中暑

中暑(Heat stroke)是一種受室外的空氣的高溫多濕或陽光過久直接照射動物體、人體等造成體溫異常升高不降所引起的症狀的通稱。.

新!!: 免疫系统和中暑 · 查看更多 »

主要组织相容性复合体

主要组织相容性复合体(major histocompatibility complex,MHC),又称主要组织相容性複合基因,是存在于大部分脊椎动物基因组中的一个基因家族,与免疫系统密切相关,其中人類的MHC醣蛋白,又稱為人類白血球抗原(英語:human leukocyte antigen,簡稱HLA)。其中有兩類,第一類MHC處理細胞內部被分解後的蛋白質(例如病毒的)、第二類MHC則要經過胞吞並利用溶酶體處理(外部來源),MHC這些再跟這些小片胜肽結合,並呈現在細胞表面上供T細胞所辨識。調控的DNA位於6號染色體上(6p21.31),包括一系列緊密連鎖的基因座,它們與人類的免疫系統功能密切相關。其中部分基因編碼細胞表面抗原,成為每個人的細胞不可混淆的「特徵」,是免疫系統區分本身和異體物質的基礎。 HLA复合体位于6号染色体短臂上的21.31区(6p21.31),由360万个碱基对组成,是目前已知的人类染色体中基因密度最高,也是多态性最为丰富的区域,故有「人類體內的化學指紋」之稱。.

新!!: 免疫系统和主要组织相容性复合体 · 查看更多 »

七鰓鰻亞綱

七鰓鰻亞綱(學名:Petromyzontida),又名八目鰻綱,是脊椎動物的一綱。.

新!!: 免疫系统和七鰓鰻亞綱 · 查看更多 »

世界卫生组织

世界衛生組織(World Health Organization,英文縮寫为 WHO;中文簡稱:世衛組織或世衛)是聯合國专门机构之一,國際最大的公共衛生組織,總部設於瑞士日內瓦,是国际上最大的政府间卫生机构。根據《世界卫生组织组织法》,世界衛生組織的宗旨是使世界各地的人们盡可能獲得高水平的健康。該組織給健康下的定義為“身體,精神及社會生活中的完美狀態”。世界衛生組織的主要職能包括:促進流行病和地方病的防治;提供和改進公共衛生,疾病醫療和有關事項的教學與訓練;推動確定生物製品的國際標準。截至2015年,世界衛生組織組織共有194個成員國。.

新!!: 免疫系统和世界卫生组织 · 查看更多 »

干扰素

干扰素(Interferon,IFN)是动物细胞在受到某些病毒感染后分泌的具有抗病毒功能的宿主特异性醣蛋白。细胞感染病毒后分泌的干扰素能够与周围未感染的细胞上的相关受体作用,促使这些细胞合成抗病毒蛋白防止进一步的感染,从而起到抗病毒的作用,但干擾素對已被感染的細胞沒有幫助。.

新!!: 免疫系统和干扰素 · 查看更多 »

乳酸菌

乳酸菌,可能指:.

新!!: 免疫系统和乳酸菌 · 查看更多 »

产前发育

产前(Prenatal)或产前发育(Prenatal development)是人类胚胎或胎儿在孕期的孕育过程,从受精,至诞生。通常,也可使用术语胚胎发育、胎儿发育,或胚胎学来表示。 胚胎發育始于受精。当胚龄10个月时,人类胚胎發育完成,人体所有主要器官的前体已基本具备。因此,胎儿期,一方面可以局部性的描述,例如从器官发育角度;另一方面可按严格的时间顺序列表,注明不同孕周所发生的重大事件。.

新!!: 免疫系统和产前发育 · 查看更多 »

人体生理学

人體生理學(Human physiology)是研究生物體如何運作的一門學問,也就是說,用來研究人體的功能。應用於人體,涵蓋範圍非常廣泛。最重要必須了解人體生理的運作,了解系統與系統之間的應用關係。 1.

新!!: 免疫系统和人体生理学 · 查看更多 »

人類乳突病毒

人類乳突病毒(Human Papillomavirus,HPV)是一种DNA病毒,属于乳头瘤病毒科乳头瘤病毒属。該類病毒感染人體的表皮與黏膜組織,目前約有170种類型的HPV被判別出來,有些时候HPV入侵人體後會引起疣甚至癌症,但大多数时候則沒有任何临床症狀。 大概有30到40類型的HPV會透過性行為傳染到生殖器及周邊皮膚,而其中又有些會引起性器疣。若反覆感染某些高危險性,且又沒有疣等症狀的HPV類型,可能發展成為癌前病變,甚至是侵襲性癌症。經研究99.7%的子宮頸癌,都是因感染HPV所造成。 在近年,台灣研究指出人類乳突病毒是導致肺腺癌的原因之一。其團隊研究發現,HPV16型病毒所釋放的致癌蛋白E6會使人體抑制癌細胞生長的“抑癌基因P53”失去功能。透過RNA干扰技術,移除E6病毒蛋白後,抑癌基因P53又能重新啟動,發揮其抑制癌細胞的功能。.

新!!: 免疫系统和人類乳突病毒 · 查看更多 »

人類免疫缺陷病毒

人類免疫缺乏病毒(human immunodeficiency virus,缩写为HIV)是一種感染人類免疫系統細胞的慢病毒,屬反轉錄病毒的一種。普遍認為,人類免疫缺陷病毒的感染導致艾滋病,艾滋病是後天性細胞免疫功能出現缺陷而導致嚴重隨機感染及/或繼發腫瘤並致命的一種疾病。愛滋病毒起源於1920年代的非洲金沙萨,自1981年在美國被識別並發展為全球大流行。人類免疫缺陷病毒通常也俗稱為「艾滋病病毒」或「艾滋病毒」。 人類免疫缺陷病毒作為反轉錄病毒,在感染後會整合入宿主細胞的基因組中,而目前的抗病毒治療並不能將病毒根除。世界衛生組織(WHO)在2016年估計全球約有3670萬名愛滋病毒感染者,流行狀況最為嚴重的仍是撒哈拉以南非洲,其次是南亞與東南亞,成長幅度最快的地區是東亞、東歐及中亞。 在人類免疫缺陷病毒感染病程的一些時期,特別是早期及末期,具有感染性的病毒顆粒會存在於含有免疫細胞、血漿、淋巴液或組織液的某些體液中,如血液、精液、 前列腺液、陰道分泌液、乳汁或傷口分泌液;另一方面,病毒在體外環境中極不穩定。因此,人類免疫缺陷病毒的傳播途徑主要是不安全的性接觸、靜脈注射、輸血、分娩、哺乳等;而通常的工作、學習、社交、或家庭接觸,比如完整皮膚間的接觸、共用坐便器、接觸汗液等,不會傳播人類免疫缺陷病毒;與唾液或淚液的通常接觸(如社交吻禮或短暫接吻)也未有導致傳播人類免疫缺陷病毒的報告;但美國疾病控制與預防中心說已感染病毒的母親,可將病毒透過先嚼過的食物(唾液內含血液)傳給孩子。.

新!!: 免疫系统和人類免疫缺陷病毒 · 查看更多 »

人類白細胞抗原

人類白細胞抗原(human leukocyte antigen,缩写为HLA),是編碼人类的主要组织相容性复合体(MHC)的基因。其位于6号染色体的短臂上(6p21.31),包括一系列紧密连锁的基因座,与人类的免疫系统功能密切相关。其中部分基因编码细胞表面抗原,成为每个人的细胞不可混淆的“特征”,是免疫系统区分自身和异体物质的基础。.

新!!: 免疫系统和人類白細胞抗原 · 查看更多 »

人蔘

人參又稱為亞洲參、紅參、生晒參、山曬山參、石柱蔘、朝鮮參、野山參、人銜、鬼蓋、土精、神草,在中国东北土名棒槌,是五加科人参属的一种,具有肉质的根,可藥用,主要生长在东亚,特别是寒冷地区。人参有高丽参(P. ginseng)、参三七(P. notoginseng)、和西洋参(P. quinquefolius)等等。 人參是亞洲常見藥材,北中美洲也普遍使用花旗參(西洋參),許多草藥鋪和超市都能找到各式人參飲片及萃取物保健產品,用於癒後恢復、增強體力、調節荷爾蒙、降低血糖和控制血壓、控制肝指數和肝功能保健等。人參根部所含皂苷是其有效成分,中國長白山野參皂苷成分較高,但取得不易,價格高昂。人蔘不易栽培,韓國於18世紀初開始發展高丽参栽培,美國在19世紀中期開始栽培花旗參。人參對治療慢性肺感染、阿茲海默氏症等具功效,已引起美國國家補充替代醫學中心等研究單位的重視。.

新!!: 免疫系统和人蔘 · 查看更多 »

传统医学

传统医学是指在现代医学之前在不同的文明社会发展起来的多种医疗知识体系。 世界卫生组织把传统医学定义为“利用基于植物、动物、矿物的药物、精神疗法、肢体技法和实践中的一种或者多种方式来进行治疗、诊断和防止疾病或者维持健康的医学。” 传统医学有多种,其中比较著名的有多个民族的草药医学、印度的寿命吠陀医学、希腊和阿拉伯的尤那尼医学、包括针灸等医疗手段在内的中医学体系内的多种东亚传统医学、南非的、西非的,等等。 传统医学是替代医学的一种,非洲、亚洲和拉丁美洲的一些国家利用传统医学代替现代医学来帮助实现对其人民的健保。在非洲,将近80%的人使用传统医学。 Category:传统医学.

新!!: 免疫系统和传统医学 · 查看更多 »

伯克氏菌屬

伯克氏菌屬,或伯克氏菌,又譯伯克霍爾德菌(學名Burkholderia),是伯克氏菌科的一個屬,這個屬下最出名的有鼻疽伯克氏菌(B.

新!!: 免疫系统和伯克氏菌屬 · 查看更多 »

弱化子

弱化子(attenuator,又译衰减子)是指原核生物的操纵子中可以明显衰减乃至终止转录作用的一段核苷酸序列,位于操纵子的上游。在研究大肠杆菌(E.

新!!: 免疫系统和弱化子 · 查看更多 »

体液免疫

体液免疫,即通过B细胞产生抗体来达到保护目的的免疫机制,属于特异性免疫。 体液免疫作用机制如下:当抗原(细菌、病毒、外来物)第一次感染人体时,会被非特异性免疫的細胞所吞噬、清除,而其中一部分细胞特稱抗原呈現細胞(APC)。其中,在刺激B细胞方面主要是树状細胞。抗原呈现細胞除了能吞噬、分解抗原,还能将分解的的碎片(肽链)呈现给B细胞,使之活化、分裂。并经株落选择筛选出对抗原最具亲和力的IgM型抗体。抗体的变异区能与抗原产生专一性的结合,阻止它感染正常细胞,并用另一端的Fc区与巨噬细胞结合,使巨噬细胞吞噬抗原,达到消灭细菌的目的。 活化的B细胞再过一段时间,通常大于四周,之后会把分泌的抗体由IgM转化为IgG型。IgG在人体的寿命比IgM长,大约6个月。受到第一次刺激的B细胞在4周后变为记忆B细胞,除了分泌IgG外,它还能在第二次感染时以更短的时间产生更多的抗体。同时,记忆B细胞在人体对特定抗原的感染而言是有终身的保护作用的。这也是注射疫苗能保护一个人免受特定病菌感染的原因,在作用结束后记忆B细胞在遇到相同病菌的时候可以快速产生浆细胞,浆细胞能稳定地产生出大量的抗体,以快速应对相同的病菌,及早在形成威脅前消滅之,不同病菌之间有特异性,故不同病菌会有对应的记忆细胞存在。.

新!!: 免疫系统和体液免疫 · 查看更多 »

微生物

微生物通常是所有难以用肉眼直接看到或看不清楚的一切微小生物的总称,包括细菌、真菌、放线菌、原生动物、藻类等有细胞结构的微生物,也包括病毒、支原体、衣原体等无完整细胞结构的微生物。一般需要借助显微镜来观察研究。微生物个体微小(直径小于0.1毫米),种类繁多(99%都是未知品種,且不斷增加),之於生態圈卻非常重要(能量來源與物質循環利用),是地球最多的生命形式,可以佔據上所有生物(這裡包含植物、海草等)總重量的一半之多,与人类日常生活、健康关系密切。微生物应用领域日益拓展,广泛应用在食品、医药、环保等领域。.

新!!: 免疫系统和微生物 · 查看更多 »

保罗·埃尔利希

保罗·埃尔利希(旧译欧立希,Paul Ehrlich,),德国细菌学家、免疫学家。較為著名的研究包括血液學、免疫學與化學治療。埃利赫預測了自體免疫的存在,並稱之為「恐怖的自體毒性」(horror autotoxicus)。.

新!!: 免疫系统和保罗·埃尔利希 · 查看更多 »

修昔底德

修昔底德(Θουκυδίδης,前460年至前455年间—约前400年)古希腊历史学家、思想家,以《伯罗奔尼撒战争史》傳世,該書记述了公元前5世纪斯巴达和雅典之间的战争。 因为修昔底德对史料搜集和对因果分析方面严谨的态度,故被称为“科学历史”之父。 修昔底德亦是政治学中现实主义派的创始人,认为个体的政治行为与其所引起的国际政治关系均建构于恐惧与自我利益之上,并受二者调整。修昔底德希望通过认知人性,从而解释诸如瘟疫、屠杀等灾难中人的行为。 今日,修昔底德的著作仍在被世界各地的高校和军事学院研究。其《米洛斯对话》(The Melian dialogue)至今仍是国际关系理论中最为重要的著作之一;《伯利克里葬礼致辞》(Pericles' Funeral Oration)亦在政治理论、历史和古典研究领域被广泛参阅。.

新!!: 免疫系统和修昔底德 · 查看更多 »

念珠菌症

念珠菌症(Candidiasis)是假丝酵母属(酵母菌的一種)所造成的黴菌感染,在感染口腔時,就會引發鵝口瘡(Thrush)。症狀和病徵包括在舌頭、口腔以及咽喉的部位出現小白點,也可能產生例如酸痛或吞嚥困難等的其他徵候。當它感染陰道,就會引起一般稱作酵母菌感染(Yeast infection)的疾病,會有包括外陰部搔癢、灼熱感有時甚至會有類似起司塊狀的分泌物從陰道流出的情形,陰莖的感染較不常見,但若發生感染,則也會有搔癢感。有極少數的病例,可能會引發全身性的感染,且會因不同感染部位而產生不同病徵與發燒症狀。 念珠菌屬的細菌中約有二十種會造成感染,其中最常見的是。常見的感染部位是口部,常出現在一個月內的新生兒、老人,以及免疫系統較弱的病患 -->。免疫系統較弱的病患包括愛滋病患、接受器官移植者、糖尿病患者,以及口服皮質類固醇者 -->。其他風險因子包含使用假牙,以及接受抗生素治療者。陰道感染通常發生於妊娠期,特別是在免疫功能低下並使用抗生素者。全身性感染的風險因子包含進過加護病房、手術後的那段恢復期、,以及免疫系統低下者。 避免口腔感染的方法包含:讓免疫能力較差的人使用含洗必泰(防腐消毒藥)的漱口水漱口、氣喘患者於使用吸入性類固醇後漱口;陰道經常感染的患者則可使用益生菌來治療。口腔感染的患者塗抹克黴樂或耐絲菌素通常有效,但若上述治療無效則可以口服或注射氟可那挫、伊曲康唑,或两性霉素B等藥物。陰道感染目前已知有許多抗真菌藥物可以治療,包含克黴樂。全身性的感染則通常以靜脈注射給予兩性黴素B治療,對於易受感染的特定族群則可能會預防性地給予抗真菌藥物。 出生不到一個月的嬰兒中,6%會有口腔型的念珠菌感染 -->。正接受化療的癌症病患其感染機率會有20%,愛滋病患也有20%的感染風險。差不多有四分之三的女性曾在一生中感染過念珠菌症。全身性的感染並不常見,通常只見於暴露在危險因子中的患者 。這些疾病在學術的名稱分別為念珠菌症、念珠菌性陰道炎(moniliasis)還有卵霉菌病(oidiomycosis)。.

新!!: 免疫系统和念珠菌症 · 查看更多 »

医学

醫學是以診斷、治疗和预防生理和心理疾病和提高人体自身素质为目的的應用科學。狹義的醫學只是疾病的治療,但也有說法稱預防醫學為第一醫學,臨床醫學為第二醫學,复健醫學為第三醫學。醫學的科學面是應用基礎醫學的理論與發現,例如生化、生理、微生物學、解剖、病理學、藥理學、統計學、流行病學等,來治療疾病與促進健康。然而,医学也具有人文與藝術的一面,它關注的不僅是人体的器官和疾病,而是人的健康和生命。「生理、心理、社會模式」是廣為接受的理論,而其他如「生理心理靈性社會的照顧」、「全人、全隊、全程、全家的醫療」也都是現代醫學的重要理論。随着醫學模式的转变,醫學的人文性受到越来越多的重视。醫學倫理目前最廣為人知的是四初確原則方法論:「自主、行善、不傷害、正義」。 在人類社會中,醫學已經存在數千年之久。现代医学起源於17世紀科學革命後的歐洲,以科學的过程及办法來進行醫學治療、研究與驗證。研究领域大方向包括基礎醫學、臨床醫學、檢驗醫學、預防醫學、保健医学、康复医学等等。在現代醫學興起前發展的醫學,稱為傳統醫學;現代則以替代醫學的形式在科学医学尚未普及的地区繼續存在。.

新!!: 免疫系统和医学 · 查看更多 »

化学疗法

化学疗法(Chemotherapy),简称化疗(Chemo),是用特殊的药物来治疗疾病,為目前治疗肿瘤及某些自身免疫性疾病的主要手段之一,不過在治疗中,普遍會為患者帶來明显的恶心及呕吐等副作用,為患者带来不适感。化疗是指应用药物治疗癌症。这些可杀灭肿瘤细胞,有时称为细胞毒药物。许多化疗药物来源于自然,如:植物,其他是人工合成。目前已超过50种化疗药物,常用的有:、阿霉素、柔红霉素、丝裂霉素、5-氟尿嘧啶等。这些药物经常以不同的强度联合应用。 化疗是一种全身性治疗手段对原发灶、转移灶和亚临床转移灶均有治疗作用,但是化疗治疗肿瘤在杀伤肿瘤细胞的同时,也可能将正常细胞和免疫(抵抗)细胞一同杀灭,所以化疗是一种“兩害相權取其輕”的治疗手段。.

新!!: 免疫系统和化学疗法 · 查看更多 »

初潮

初潮,又稱為初經,是指第一次月經。代表少女的身體經歷青春期的變化。初潮通常在胸部開始發育後一兩年出現。 初潮代表子宮內膜受到雌激素刺激而發育了,也代表從子宮到子宮頸到陰道的「通路」打開了。 初潮以及隨後的月經可能並不和排卵一起發生。但也有在初潮之前一至两週排卵的罕見例子。 東方女性初經的平均年齡在12至16歲,不同國家的統計略有些微不同,和飲食習慣、氣候有關。 有一種很罕見的例子,是初潮出現得非常早,早於乳房發育和其他青春期發育。這種症狀稱為「月經早熟症」(Premature menarche)。診斷為此症狀前必須先排除其他造成流血的可能原因。 初潮在乳房發育後超過三年仍未出現,則稱為「原發性無月經症」(Primary amenorrhea)。原發性無月經症者,有約30%和基因異常有關,造成生殖腺機能較差或是生殖器官發育不全,在解剖學上有處女膜閉合造成無月經的狀況。 有些女性的初經發生在十八歲,但是一般認為如果在十六歲時尚未有初經,就應該請醫生進行診斷。引起初經遲到的原因可能是體重過輕或過重,這兩種原因都是因為身體內脂肪比例過低和過高,影響了卵巢的正常生理功能,造成初經遲來。除此之外,掌管內分泌的腦下垂體機能是否正常,生殖相關腺體產生腫瘤、服用藥物、精神壓力等,都會影響初經到來的時間。 初潮被大多女性共同記為青春期的重要里程碑。.

新!!: 免疫系统和初潮 · 查看更多 »

利什曼病

利什曼病(Leishmaniasis)是一種由寄生原生動物利什曼原蟲造成的疾病,是由特定種類的白蛉叮咬所散播。這種疾病主要分為三種:皮膚、黏膜及內臟的利什曼疾病。皮膚利什曼病會有皮膚上的潰瘍、黏膜利什曼病會有皮膚、鼻子上的潰瘍、內臟利什曼病一開始會是皮膚上的潰瘍,後來會有發燒、紅血球數量減少,以及脾臟和肝臟的腫大。 會傳染利什曼病給人類的白蛉超過20種。利什曼病的危險因子有貧窮、營養不良、森林開伐及都市化。三種利什曼病都可以在顯微鏡下觀察病原蟲來診斷,內臟利什曼病也可以用血液檢查來診斷。 若睡在塗有殺蟲劑的蚊帳內,可以降低沙利曼病發生的可能性。其他的方式包括噴灑殺蟲劑消滅白蛉,以及及早治療沙利曼病的病患,避免進一步的感染。治療方式和罹患此疾病時所在的地區、沙利曼病的種類以及感染的方式有關。可治療內臟利什曼病的藥物有:兩性黴素B、及巴龍黴素一起使用、以及。若是皮膚利什曼疾病,可以用巴龍黴素、氟康唑或治療。 目前世界上有98個國家有利什曼病,感染人數約有1,200萬人。每年約有200萬個新的病例,每年死亡人數約為2-5萬人。在亞洲、非洲、中南美洲及南歐,約有2億人住在容易罹患利什曼病的地區。 有研究指出,未適當處理的屍體亦有傳播此疾病之虞。庫爾德紅新月會指控,伊斯蘭國在敘利亞內戰期間隨意在街上處決無辜者、而且沒有埋葬,導致了此疾這病在敘利亞的傳播。 世界衛生組織可以用優惠價取得一些可治療此疾病的藥物。利什曼疾病也會出現在其他動物上,包括狗和鼠。.

新!!: 免疫系统和利什曼病 · 查看更多 »

分泌

分泌(Secretion)是物质,比如细胞、腺体分泌的化学物质,从一个点向另一点移动的过程。与之相对的是排泄作用,指的是从细胞或生命体中移除某些特定物质的过程。细胞分泌一般是通过,细胞质膜处的分泌通道,来完成的。.

新!!: 免疫系统和分泌 · 查看更多 »

分泌系统

#重定向 分泌.

新!!: 免疫系统和分泌系统 · 查看更多 »

呼吸系統

呼吸系统(respiratory system)指生物体内将呼吸气吸入体内并进行气体交换的系统。在人类和其他哺乳动物体内中,呼吸系统包括呼吸道、肺和呼吸肌。氧气与二氧化碳在呼吸系统里通过扩散作用在外环境与血液中进行被动交换,气体交换过程发生在肺腔内。其他动物如昆虫的呼吸系统功能非常简单,对于两栖动物而言,他们的皮肤甚至也对气体交换非常重要。植物也有呼吸構造,植物叶片背面的气孔结构也可使其得到氧氣進行呼吸作用。.

新!!: 免疫系统和呼吸系統 · 查看更多 »

呼吸道

呼吸道是指人体内呼吸过程中空气所要通过的所有器官的总称。呼吸道是呼吸系统的一部分,呼吸系统还包括空气不必通过的、单对呼吸过程依然非常重要的器官,比如橫膈膜。 呼吸道可以分三部分:.

新!!: 免疫系统和呼吸道 · 查看更多 »

咳嗽

咳嗽是一種呼吸道常見的突發性症狀,咳嗽由氣管、支氣管粘膜或胸膜受炎症、異物、物理或化學性刺激引起,咳嗽時先是聲門關閉,呼吸肌收縮,肺內壓升高,然後聲門張開,肺內空氣噴射而出。通常伴隨著聲音。咳嗽具有清除呼吸道異物和分泌物的保護性作用。.

新!!: 免疫系统和咳嗽 · 查看更多 »

催乳素

催乳素(Prolactin,簡稱PRL,又叫促乳素或催乳激素)是一种由垂体前叶腺嗜酸细胞分泌的蛋白质激素。主要作用为促进乳腺发育生长,刺激并维持泌乳。.

新!!: 免疫系统和催乳素 · 查看更多 »

傳染病

傳染病是一種可以從一個人或其他物種,經過各種途徑傳染給另一個人或物種的感染病。通常這種疾病可藉由直接接觸已感染之個體、感染者之體液及排泄物、感染者所污染到的物體,亦可透過飲水、食物、空氣或其他載體(vector)而散佈。 Washington State Department of Health此外,感染症也不可和感染混淆,兩者並非同義詞,因為感染未必會引發疾病症狀或宿主不適。"Infectious disease." McGraw-Hill Encyclopedia of Science and Technology.

新!!: 免疫系统和傳染病 · 查看更多 »

唾液

唾液(亦称口涎、口水)是动物口腔内唾液腺分泌的无色且稀薄的液体,其在食物的消化過程中起到十分關鍵的作用。唾液主要由()、()和()这三對唾液腺共同分泌出来;唾液的分泌受到大脑皮层的控制,也会受到饮食、环境、年龄以及情绪或唾液腺病变等影响。人每日分泌1,000—1,500毫升的唾液为正常现象,而婴儿分泌的唾液比成人多。另外,唾液中會帶有少量卡路里。 一些動物的唾液除了參與消化之外還有其他的作用。例如燕科鳥類會使用唾液來幫助筑巢;雨燕科的雨燕和金絲燕的巢即俗稱的燕窩Marcone, M. F. (2005).

新!!: 免疫系统和唾液 · 查看更多 »

免疫

免疫(immunity),指生物机体识别和排除抗原物质的一种保护性反应。其中包括特异性免疫(後天免疫系統)与非特异性免疫(先天免疫系統)。.

新!!: 免疫系统和免疫 · 查看更多 »

免疫原性

人体免疫系统对于特定抗原能够产生免疫反应,则称其有免疫原性。 与反应原性不同之处在于人体在对某些抗原本身不会直接产生免疫反应,而要在类似的另一种抗原刺激下,获得对前一种抗原的免疫原性,如风湿性心脏病。 Category:免疫學.

新!!: 免疫系统和免疫原性 · 查看更多 »

免疫学

免疫学是生物醫學的一個主要大分支,其探討的是在各器官中所產生的免疫反應。主要討論在健康或是生病時免疫系統所扮演的生理功能角色;一些免疫系統病變所產生的疾病(例如自體免疫反應、過敏反應、免疫功能失調);在體內(in vivo)或是體外(in vitro)免疫系統構成分子的物理、化學、生理性質。免疫學也已被廣泛應用於如下的領域上。.

新!!: 免疫系统和免疫学 · 查看更多 »

免疫佐剂

免疫佐剂(Immunologic adjuvant或 Immunoadjuvant,简称佐剂,adjuvant)是指与抗原同时或预先注射到动物体内,可非特异性地增强机体对该抗原的免疫应答的物质 ,或称为非特异性免疫增强剂。 佐剂(adjuvant)一词源于adiuvare,意为“帮助,协助”。.

新!!: 免疫系统和免疫佐剂 · 查看更多 »

免疫系统

免疫系统是生物体体内一系列的生物学结构和所组成的疾病防御系统。免疫系统可以检测小到病毒大到寄生虫等各类病原体和有害物质,并且在正常情况下能够将这些物质与生物体自身的健康细胞和组织区分开来。 病原体可以快速地进化和调整,来躲避免疫系统的侦测和攻击。为了能够在与病原体的对抗中获胜,生物体进化出了多种识别和消灭病原体的机制。就连简单的单细胞生物,如细菌,也发展出了可以对抗噬菌体感染的酶系统。一些真核生物,例如植物和昆虫,从它们古老的祖先那里继承了简单的免疫系统。这些免疫机制包括抗微生物多肽(防御素)、吞噬作用和补体系统。包括人类在内的有颌类脊椎动物则发展出更为复杂多样的防御机制。 典型的脊椎动物免疫系统由多种蛋白质、细胞、器官和组织所组成,它们之间相互作用,共同构成了一个精细的动态网络。作为复杂的免疫应答的一部分,人类的免疫系统可以通过不断地适应来更有效地识别特定的病原体。这种适应过程被定义为“适应性免疫”或“获得性免疫”。针对特定的病原体的初次入侵,免疫系统中的記憶T細胞能够产生“免疫记忆”;当该种病原体再次入侵时,这种记忆就可以使免疫系统迅速作出强化的免疫应答(即“适应性”)。而适应性免疫正是疫苗注射能够产生免疫力的生物学基础。 免疫系统的紊乱会导致多种疾病的产生。免疫系统的活力降低就会发生免疫缺陷,进而导致经常性和致命的感染。免疫缺陷可以是遗传性疾病,如重症聯合免疫缺陷;也可以由药物治疗或病菌感染引发,如艾滋病就是由于艾滋病毒感染而引发的适应性免疫缺陷综合症。另一方面,免疫系统異常会将正常的组织作为入侵者而进行攻击,从而引起自体免疫疾病。常见的自体免疫疾病包括慢性甲状腺炎、类风湿性关节炎、第一型糖尿病和系統性紅斑性狼瘡。.

新!!: 免疫系统和免疫系统 · 查看更多 »

免疫组学

免疫组学是使用全基因组方法研究免疫系统调节和对病原体的反应。随着基因组学的和蛋白质组学的技术的兴起,科学家已经能够可视化生物网络并推断基因和/或蛋白质之间的相互关系; 最近,这些技术已被用于帮助更好地了解免疫系统的功能和如何被调控。基因组的三分之二在一种或多种免疫细胞类型中是有活性的,并且在给定类型的细胞中少于1%的基因被唯一地表达。 因此,至关重要的是,这些免疫细胞类型的表达模式在网络的背景下被解密,而不是作为个体,以使它们的角色被正确地表征并相互关联。免疫系统的缺陷,如自体免疫性疾病,免疫缺陷病毒和恶性肿瘤,可从病理过程的基础知识中获益。例如,分析基因表达的系统变异可以将这些模式与针对免疫功能重要的特定疾病和基因网络相关联。 传统上,研究免疫系统的科学家不得不在个别的基础上搜索抗原,并确定可以刺激免疫反应的这些抗原(“表位”)的蛋白质序列。 该方法要求将抗原从整个细胞中分离,消化成较小的片段,并针对T细胞和B细胞进行测试以观察T细胞和B细胞反应。这些经典方法只能将该系统视为静态的,并且需要大量的时间和劳动。 免疫学通过其将整个免疫系统看作是动态模型的能力,使得这种方法更容易。它揭示了一些免疫系统最显着的特征是其组成细胞的持续运动,周转和可塑性。此外,目前的基因组技术,如微阵列,可以随着时间捕获免疫系统基因表达,并可以跟踪微生物与先天免疫系统细胞的相互作用。新的蛋白质组学方法,包括T细胞和B细胞-,也可以加速科学家发现抗体-抗原关系的步伐。 免疫组学是免疫学的一个新兴分支,利用高通量的筛选技术(如免疫质谱、免疫微阵列等),对免疫系统进行系统性研究,阐释免疫的分子机制。免疫组学包括免疫基因组学、、肿瘤免疫组学、免疫信息学等。.

新!!: 免疫系统和免疫组学 · 查看更多 »

免疫缺陷

免疫缺陷(immunodeficiency)是指免疫系统抵抗传染病的能力失常或欠缺。免疫缺陷还可能降低肿瘤免疫监视功能。免疫缺陷多为继发性(secondary)免疫缺陷,不过也有些人生来就有原发性(primary)免疫缺陷。罹患免疫缺陷的患者被称为是免疫妥协的(immunocompromised)。这些患者除了会遭受普通感染外,尤其容易遭受机会性感染。.

新!!: 免疫系统和免疫缺陷 · 查看更多 »

免疫网络学说

免疫网络学说是1974年以来,Niels Jerne和Geoffrey W. Hoffmann发展的一个学说,用来解释适应性免疫系统的运作原理。此理论认为,免疫系统是由擁有可变区域的淋巴球和分子所构成的互动网络组成的。除了對相對於脊椎动物外来的物质,可变区也会与其他具有可变区域的分子结合。因此可将免疫系统视作相互连接的可变区组成的网络。 有人提出了克隆选择学说,用來解释此现象。Hoffmann对对称网络学说的拓展可以解释低剂量和高剂量耐受的现象。此现象第一次由Avrion Mitchison对单一抗原报告N.

新!!: 免疫系统和免疫网络学说 · 查看更多 »

免疫疗法

#重定向 免疫治疗.

新!!: 免疫系统和免疫疗法 · 查看更多 »

免疫耐受

免疫耐受(immune tolerance或immunological tolerance)是指免疫系统对特定抗原的特异性无应答状态。免疫耐受包括天然免疫耐受与诱导免疫耐受。天然免疫耐受或自身耐受(self tolerance)是指机体对自身组织成分不产生免疫应答。诱导免疫耐受(induced tolerance)则是对外界抗原的免疫耐受,可以通过诱导方法产生。诱导免疫耐受可分为中枢耐受(central tolerance)、外周耐受(peripheral tolerance)与获得耐受(acquired tolerance)三种形式。 免疫耐受中的遗传缺陷会导致自身免疫性疾病的发生,如I型自身免疫性多内分泌腺病综合征(APS-1)、IPEX综合征等。.

新!!: 免疫系统和免疫耐受 · 查看更多 »

免疫抑制药

#重定向 免疫抑制劑.

新!!: 免疫系统和免疫抑制药 · 查看更多 »

先天免疫系統

先天性免疫(innate immunity)又稱為「非特异性免疫」、「固有免疫」、「非專一性防禦」,包括一系列的细胞及相关机制,可以以非特异性的方式抵御外来感染。先天免疫系统的细胞会非特异地识别并作用于病原体。与後天免疫系統不同,先天免疫系统不会提供持久的保护性免疫,而是作为一种迅速的抗感染作用存在于所有的动物和植物之中。.

新!!: 免疫系统和先天免疫系統 · 查看更多 »

克隆选择

克隆選擇(Clonal selection)又稱株落選擇,于1957年由澳大利亞的伯内特提出。他认为免疫细胞可以随机生成多样性的克隆,每一个免疫细胞的克隆表达针对某一个特定抗原的特异性的(Specific)受体(Receptor)。对于某一特定抗原,该抗原与表达其特异性受体的免疫细胞发生特异性结合,导致此种免疫细胞被活化并大量扩增。不同的抗原活化不同的免疫细胞克隆。免疫耐受(Immunological tolerance)是由于免疫细胞克隆发生了夭折,即与自身抗原结合的免疫细胞在扩增的前体细胞(Precursor or Progenitor)阶段发生了流产。 右圖可見6個階段:.

新!!: 免疫系统和克隆选择 · 查看更多 »

前列腺素

前列腺素(Prostaglandin,简称:PG)是一类具有五元脂肪环、带有两个侧链(上侧链7个碳原子、下侧链8个碳原子)的20个碳的酸。是一类激素。.

新!!: 免疫系统和前列腺素 · 查看更多 »

囊腫性纖維化

囊肿性纤维化(Cystic Fibrosis,CF),亦稱為囊性纤维化、囊腫性纖維變性、囊腫纖維症、纖維性囊腫或囊纖維變性,是一种常见的遺傳疾病,此病症最常影響肺臟,但也常發生於胰臟、肝臟、腎臟,以及腸。長期影響包含肺部感染所導致的呼吸困難以及積痰 -->,其他可能的症狀包括鼻竇炎、發育不良、、、男性不孕,以及其他症狀 -->。每個人的症狀不盡相同。 囊腫性纖維化為體染色體隱性遺傳疾病 -->,发生突变的结果在230 kb的基因,基因位于染色体7q31,要在兩條(CFTR)等位基因的突變時才會發病。只有一個突變基因的人是帶因者(carriers),通常沒有任何顯著症狀。CFTR與汗液、消化液、體液和黏液分泌有關。當CFTR失去功能時,原先分泌較少的位置分泌量會增加。診斷方面可利用和基因檢測進行,有些地區會對此疾病進行新生兒篩檢。 目前尚無可治癒囊腫性纖維化的療法,若是肺部感染,則多以抗生素進行治療,給予方法可分為靜脈注射、吸入式或口服 -->,有時會長期使用像阿奇霉素之類的長效型抗生素 -->,噴霧吸入型的有高張食鹽水和沙丁胺醇也非常有效 -->。如果肺部功能持續惡化,則優先考慮進行 -->。胰脂肪酶以及脂溶性維生素的支持療法對於年輕患者來說是相當重要的 -->,許多病患使用像是的來對抗囊腫性纖維化,然而目前仍沒有足夠的證據支持療效。在已開發國家,囊腫性纖維化的患者平均壽命約在42到50歲,有80%的肺疾患者是因為囊腫性纖維化而死亡。 囊腫性纖維化常見於擁有北歐血統的人,約每3000位新生兒中就有1人患病大約25人裡會有1人為帶因者,阿什肯納茲猶太人也常出現這類的疾病。而在非裔與亞裔人口中較為罕見。本疾病最早的紀錄可以追溯至1595年,但一直到1938年,桃樂絲·安得森才首次將囊腫性纖維化定義為一種疾病。1989年時由分子遺傳學家徐立之教授成功發現囊胞狀纖維症的病因。囊腫性纖維化的英文cystic fibrosis講述的是發生在胰臟的纖維化與囊腫。.

新!!: 免疫系统和囊腫性纖維化 · 查看更多 »

器官

器官是动物体或植物体的由不同的细胞和组织构成的结构,用来完成某些特定功能,并与其他分担共同功能的器官,一起组成各个系统(动物体)或整个个体(植物体)。.

新!!: 免疫系统和器官 · 查看更多 »

器官移植

器官移植(Organtransplantation,organ transplantation)是将一个个体的某一器官整体或部分地转移到另一个体(或本体的另一位置,如自体皮肤移植)的过程。其目的是用来自供体的完好、健全的器官替代损坏的或功能丧失的器官。提供器官的一方为器官移植的供体,可以是在世的人,也可以是刚刚去世的人。接受器官的一方为器官移植的受者。.

新!!: 免疫系统和器官移植 · 查看更多 »

噬菌体

噬菌体(bacteriophage)是病毒的一種,其特別之處是專以細菌為宿主,較為熟知的噬菌體是以大腸桿菌為寄主的T2噬菌體。 跟別的病毒一樣,噬菌體只是一團由蛋白質外殼包裹的遺傳物質,大部分噬菌體還長有「尾巴」,用來將遺傳物質注入宿主體內。超過95%已知的噬菌體以雙螺旋結構的DNA為遺傳物質,長度由5,000個碱基对到5,000,000個碱基对不等;餘下的5%以RNA為遺傳物質。正是通過對噬菌體的研究,科學家證實基因以DNA為載體。(见赫希-蔡斯实验)整個噬菌體的長度由20納米到200納米不等。它們的基因組可含有少至四個、多至數百個基因。在注射其基因組進入細胞質後,噬菌體在細菌內複製。噬菌體是在生物圈中最常見的和多樣化的實體。 噬菌體是一種普遍存在的生物體,而且經常都伴隨着細菌。通常在一些充滿細菌群落的地方,如:泥土、動物的內臟裡,都可以找到噬菌體的蹤影。目前世上蘊含最豐富噬菌體的地方就是海水。在海平面,平均每毫升的海水即含有9×108個病毒粒子(virions),並使海水中70%的細菌受到噬菌體的感染。 噬菌体的命名是由希腊语词汇“吞噬”(φαγεῖν)的首字母Φ開始,然後加上一組序號。 在蘇聯、中歐和法國,噬菌體都曾用作抗生素的替代品,作為醫療用品的時間超過90年。英国广播公司 地平线系列(1997年):The Virus that Cures,一部关于噬菌体药物的纪录片。噬菌體治療已經被更多國家的醫師接受,它們被看作是對於許多細菌的菌株可能的治療。.

新!!: 免疫系统和噬菌体 · 查看更多 »

B细胞

B细胞(B淋巴球)有時稱之為「朝囊定位細胞」(bursa oriented cells),這是因為它們首次在雞的腔上囊(Bursa of Fabricius)被提及的關係。 在腸道的派亞氏腺體(Peyer's glands)中的淋巴組織,被認為具有與鳥類的Fabricius組織中的鳥囊(avian bursa)同樣的功能。在魚類,它們可能就是那位於腸中的淋巴樣組織,因為口服疫苗時,會刺激魚血液中產生相對應的抗體蛋白。 它是一种在骨髓中成熟的细胞,在體液免疫中產生抗體,起到重要作用。當遇到抗原時,會分化成核比例較大的大淋巴球,叫漿細胞。漿細胞的細胞質中且會出現一些顆粒,這些顆粒容易被甲基藍等天青染料所染色,同時會出現抗體,表現在細胞膜或釋放出去。另一部分B细胞经过抗原激活后并不成为浆细胞,而是成为记忆B细胞。当再次遇到相同抗原时,记忆B细胞能迅速做出反应,大量分化增殖。.

新!!: 免疫系统和B细胞 · 查看更多 »

CD18

整联蛋白β-2(Integrin beta-2,CD18)是一个由人类基因 ITGB2 编码的蛋白质,是整联蛋白的一种β亚基。 能与下列四种整联蛋白α亚基搭配形成四种整联蛋白:.

新!!: 免疫系统和CD18 · 查看更多 »

CD4受体

CD4受体,全称“表面抗原分化簇4受体”(Cluster of Differentiation 4 receptors)。在分子生物中,CD4是免疫細胞(例如:輔助T細胞、單核球、巨噬細胞和樹突細胞)表面的醣蛋白分子。它被發現於1970年代晚期,在1984年以前被稱為leu-3和T4。人類的CD4蛋白質是由CD4基因所製造。 CD4受体是辅助T细胞的表面標記(surface markers)之一,也是辅助T细胞行使其功能的重要受體。當抗原呈递細胞(主要是巨噬細胞、棘狀細胞及B細胞本身)將外來病菌分解,把抗原與主要组织相容性复合体結合後,呈递給辅助T细胞(即與辅助T细胞表面的CD4受體結合),辅助T细胞再接著刺激B細胞產生抗體,此即體液性免疫反應的基本過程。 CD4+("+"表示陽性,細胞表面存在此蛋白)的輔助T細胞在人類免疫系統中極重要得白血球。它們通常被稱為「CD4細胞」、「輔助T細胞」或「T4細胞」。它們被稱為「輔助細胞」是因為其中一個主要功能是將訊號送到其他免疫細胞,包括可以殺死感染細胞的CD8胞殺細胞。如果沒有CD4細胞(如HIV感染者、器官移植者),人體將無法對抗大量的病原菌並暴露於危險中。.

新!!: 免疫系统和CD4受体 · 查看更多 »

CD8

#重定向 CD8受体.

新!!: 免疫系统和CD8 · 查看更多 »

CRISPR

CRISPR(IPA:/ˈkrɪspər/;DJ:/ˈkrispə/;KK:/ˈkrɪspɚ/)是存在于细菌中的一类基因组,该类基因组中含有曾攻击过该细菌的病毒的基因片段。细菌通过这些基因片段来侦测并抵御类似病毒的攻击,摧毁其DNA。这类基因组是细菌免疫系统的关键组成部分。通过这类基因组,人类可以准确有效地编辑有机体内的部分基因,也即CRISPR/Cas9基因编辑技术。 CRISPR/Cas系統,為目前發現存在於多數細菌与绝大多数的古菌中的一種後天免疫系統,以消滅外來的質體或者噬菌體,并在自身基因组中留下外来基因片段作为“记忆”。全名為常間回文重複序列叢集/常間回文重複序列叢集關聯蛋白系統(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins)。 目前已發現三種不同類型的 CRISPR/Cas系統,存在于大约40%和90%已测序的细菌和古菌中。其中第二型的組成較為簡單,以Cas9蛋白以及嚮導RNA(gRNA)為核心的組成。 Cas9是第一个被廣泛應用的CRISPR核酸酶,其次是Cpf1,其在的CRISPR/Cpf1系统中被发现。其他这样的系统被认为存在。 由於其對DNA干擾(DNAi)的特性(参见RNAi),目前被積極地應用於遺傳工程中,作為基因體剪輯工具,與鋅指核酸酶(ZFN)及類轉錄活化因子核酸酶(TALEN)同樣利用非同源性末端接合(NHEJ)的機制,於基因體中產生脱氧核醣核酸的雙股斷裂以利剪輯。二型CRISPR/Cas並經由遺傳工程的改造應用於哺乳類細胞及斑馬魚的基因體剪輯。其設計簡單以及操作容易的特性為最大的優點。未來將可應用在各種不同的模式生物當中。.

新!!: 免疫系统和CRISPR · 查看更多 »

CRISPR/Cas 系統

#重定向 CRISPR.

新!!: 免疫系统和CRISPR/Cas 系統 · 查看更多 »

皮埃爾·莫佩爾蒂

埃爾·路易·莫佩爾蒂(Pierre Louis Moreau de Maupertuis,)是一位法國數學家、物理學家、哲學家。他是最先确定地球形狀為近扁球形的科學家。他也擁有首先提出最小作用量原理之榮譽。.

新!!: 免疫系统和皮埃爾·莫佩爾蒂 · 查看更多 »

皮膚

膚,包住脊椎動物的軟層,是組織之一,在人體是最大的組織。皮膚擋住外來侵入,亦保住水分。有保暖、阻隔、感覺之用。 皮膚的作用因物種而異,有保暖、保護色、吸引異性等作用。各物種的皮有厚有薄,厚皮叫革。皮膚是表皮系統的一部份,是動物最大的器官系統,由多層外胚層的组织構成,可保護內部的肌肉、骨骼、韌帶及其他內部的器官。有的物種,例如魚類和爬蟲類,會生鱗保護。鳥類會生羽毛保護。兩棲動物的皮膚是交換氣體的器官。所有哺乳動物的皮膚都有毛,即使看似無毛的海洋哺乳動物其實也有毛。 皮膚的重要性在於其為身體和外界環境的介面,而且是防禦外來影響的第一道防線。例如皮膚在保護身體免受病原影響。Proksch E, Brandner JM, Jensen JM.

新!!: 免疫系统和皮膚 · 查看更多 »

环孢素

环孢素(Cyclosporine、Cyclosporine A、Ciclosporin)也称为“环孢菌素”或“环孢霉素”,是一种被廣泛用於預防器官移植排斥的免疫抑制劑。它藉由抑制T細胞的活性跟生長而達到抑制免疫系統的活性。环孢素于1969年由挪威Sandoz製藥公司科學家於土壤樣本中的真菌——多孔木霉(Tolypocladium inflatum)中首次分離出來。 虽然大部分的多肽都是由核糖体合成的,但环孢素这种具有11個胺基酸并非由核醣體合成,且其中含有一個在自然界非常少見的D-氨基酸。.

新!!: 免疫系统和环孢素 · 查看更多 »

灰樹花

舞菇(学名:Grifola frondosa),又名贝叶多孔菌、云蕈、栗子蘑、栗蘑、千佛菌、莲花菌、甜瓜板、奇果菌、叶奇果菌,日本《今昔物語集》中记载野生灰树花有轻微毒性,使用后毒性发作时人会手舞足蹈,故日文中称舞菇为舞茸,是一种产于北美和日本东北部的食用菌。它的顶端类似于波纹而没有菌伞,通常集簇长在橡树的根部,看起来像一群飞舞的蝴蝶。舞菇最重可达到20千克,因此有“蘑菇之王”之称。 舞菇易与其他类似的蘑菇相混淆,如硫色绚孔菌(Laetiporus sulphureus)。中医和日本医药认为它可以有助于调节身体平衡。多数人喜爱它的味道,但是也有人有过敏反应。.

新!!: 免疫系统和灰樹花 · 查看更多 »

灵芝

#重定向 靈芝屬.

新!!: 免疫系统和灵芝 · 查看更多 »

睡眠剥夺

睡眠剥夺(英語:sleep deprivation)它可以是慢性的,也可以是急性的。慢性的睡眠不足可能会导致疲劳、白天昏昏欲睡、反应迟钝、体重增加或减轻。它对大脑和认知系统有影响。目前缺乏研究资料比较慢性睡眠剥夺和急性、完全的睡眠剥夺。长期完全不睡觉对人类来说是不可能的(除了罹患致死性家族失眠症的人);短暂的昏睡不可避免。被长期剥夺睡眠的实验室动物通常会死亡。.

新!!: 免疫系统和睡眠剥夺 · 查看更多 »

硫唑嘌呤

硫唑嘌呤(Azathioprine)是嘌呤類似物的免疫抑制劑。它可以用於預防器官移植的排斥,還有一系列的自體免疫性疾病,包括類風溼性關節炎、天皰瘡、發炎性腸病,像是克隆氏症和潰瘍性結腸炎、多發性硬化症 、自體免抑性肝炎、過敏性皮膚炎、重症肌無力和其他相關疾病。.

新!!: 免疫系统和硫唑嘌呤 · 查看更多 »

是化学元素,化学符号是Se,原子序数是34,是非金属。 硒對生物來說是必需,但同時也有毒性。硒的性质与硫及碲相似;在有光时,导电性能较黑暗时好,故可用来做光电池。.

新!!: 免疫系统和硒 · 查看更多 »

神经系统

經系統是由神經元這種特化細胞的網路所構成的。其身體的不同部位間傳遞訊號。動物體藉神經系統和內分泌系統的作用來應付環境的變化。動物的神經系統控制著肌肉的活動,协调各个组织和器官,建立和接受外来情报,并进行协调。神經系統是動物體最重要的連絡和控制系統,它能測知環境的變化,決定如何應付,並指示身體做出適當的反應,使動物體內能進行快速、短暫的訊息傳達來保護自己和生存。 神經組織最早是出現在五億到六億年前的埃迪卡拉生物群中。脊椎动物的神经系统分為二部份:分別是中樞神經系統(CNS)及周围神经系统(PNS)。 中樞神經系統包括腦及脊髓,周围神经系统主要是由神經構成,是由長神經纖維或是轴突組成,連接中樞神經系統及身體各部位。 傳送由大腦發出信號的神經稱為運動(motor)神經或是下行(efferent)神經,而將身體各部位產生信號傳送到中樞神經的神經稱為感覺(sensory)神經或是上行(afferent)神經。大部份的神經是雙向傳遞信號,稱為混合神經。 周围神经系统可分為軀體神經系統、自律神經系統及肠神经系统。軀體神經系統處理隨意運動,也就是依生物體意願而產生的運動,自律神經系統又可分為交感神经及副交感神经,交感神经是在緊急情形時驅動,而副交感神经是在器官呈休息狀態時驅動。 肠神经系统則控制消化道。自律神經系統及肠神经系统都會不隨意願的自主動作。從脑部發出的神经稱為脑神经,而從脊髓發出的神经稱為。 以細胞層面來看,神经系统是以一種稱為神經元的細胞組成。神經元有特殊的構造,可以快速且準確的傳送信號給其他細胞,傳送的是電化學信號,藉由稱為轴突的神經纖維傳輸。 在神經元發生衝動時時,會由突触釋放神經傳導物質。神經元之間的連結形成了神經迴路及,神经网络,控制了生物體的感知及其行為。神經系統除了神經元外,還有神經膠質細胞,提供支持及新陳代謝等機能。 大部份的多細胞生物皆有神經系統,但複雜度有很大的差異。多細胞生物中只有多孔动物门、扁盘动物门及中生動物門等結構非常簡單的生物完全沒有神經系統。 放射狀對稱的生物,包括栉水母及刺胞動物門(包括海葵、水螅、珊瑚及水母),其神經系統為發散狀的。 其他大部份的多細胞生物其神經系統都包括一個腦、一條脊髓(或二條脊髓平行排列)及由腦或脊髓發散到全身的神經,只有一些蠕蟲例外。神經系統的大小隨生物體而不同,最簡單的蠕蟲其神經系統由數百個細胞組成,非洲象的神經系統則有三千億個細胞。 中樞神經系統的功用是在身體全部位之間傳送信號,而接收反饋。神經系統的机能障碍可能是因為先天基因問題造成,也可能是因為外傷或是中毒導致的傷害,或是因為感染或是年老所產生。 神經內科研究有關神經系統的疾病,並尋找預防或治療的方式。周围神经系统最常見的問題是神經傳導不良,其原因有很多種,包括,或著是多发性硬化症及肌萎缩性脊髓侧索硬化症等脱髓鞘疾病。 神经科学是研究神經系統的科學。.

新!!: 免疫系统和神经系统 · 查看更多 »

神香草

香草是屬於唇形科神香草屬的一種芳香植物,又名牛膝草、柳薄荷、海索草。唇形科,約15種,原產於歐洲南部、中海地區、中亞的乾旱沙地、中東及裏海的周邊地區。有1種見於蘇聯伏爾加及頓河流域,中國有硬尖神香草(H.cuspidatusBoriss)及寬唇神香草(H.latilabiatusC.Y.WuetH.w.Li)2種,均產新疆。植物體含有抗菌的成分,有止咳化痰的功效,常被拿來做為香草與藥用植物使用。.

新!!: 免疫系统和神香草 · 查看更多 »

穿孔素

穿孔素(法文/英文:Perforin)是人體內一類由PRF1基因编码的蛋白質。.

新!!: 免疫系统和穿孔素 · 查看更多 »

突变

突变(Mutation,即基因突变)在生物学上的含义,是指细胞中的遗传基因(通常指存在於細胞核中的去氧核糖核酸)发生的改变。它包括单个碱基改变所引起的点突变,或多个碱基的缺失、重复和插入。原因可以是细胞分裂时遗传基因的复制发生错误、或受化学物质、基因毒性、辐射或病毒的影响。 突变通常会导致细胞运作不正常或死亡,甚至可以在较高等生物中引发癌症。但同时,突变也被视为演化的“推动力”:不理想的突变会经天择过程被淘汰,而对物种有利的突变则会被累积下去。中性突變(neutral mutation)对物种沒有影响而逐渐累积,会导致间断平衡。.

新!!: 免疫系统和突变 · 查看更多 »

类花生酸

类花生酸(Eicosanoid,又称为类二十烷酸或是類花生油酸)是由含二十个碳的多元不饱和脂肪酸衍生而来的脂类中的一个家族,这类化合物都含有二十个碳原子,因此又被称为“类二十烷酸”。其中包括几类具有多种生物活性的分子:前列腺素(prostaglandins)(以及前列环素)、凝血噁烷(或稱血栓素,thromboxanes)、白三烯(leukotrienes)、脂氧素(lipoxins)、resolvins以及 eoxins等。其前体主要是花生四烯酸,也有少量的γ-高亚麻油酸与二十碳五烯酸。普遍存在于人和哺乳动物的组织细胞中,参与平滑肌的收缩或舒张、血小板聚集及炎症反应。 在生物化學上,類花生酸是一些由有20個碳鏈結的脂肪酸氧化作用而形成的「傳訊分子」(signaling molecules)。由花生油酸(或稱為二十碳四烯酸)或者其他的多元不飽和脂肪酸(PUFAs: polyunsaturated fatty acids)經由酵素性或非酵素性氧化而成。它們是(不同形式碳鏈的脂肪酸氧化物)的次類別;但是由於它們作為細胞信號分子的絕對重要性,因此將它們和其它的脂氧化物區分開來。類花生酸作用在多種生理上以及病理上的系統,這些包括了:促進或抑制發炎、過敏、發燒以及其他免疫反應;左右或者影響妊娠流產和正常生產;促成疼痛的感知;調控細胞的生長;控制血壓;調節局部性的血流進入組織。在這些作用運作的過程中,類花生酸最常作為「自泌傳訊劑」(autocrine signaling agents)去影響他們自身的細胞,或者作為「旁分泌傳訊劑」(paracrine signaling agents)去影響鄰近他們自身細胞的細胞。然而,他們也可以作為「內分泌劑」(endocrine agents)去控制遠端細胞的運作。由類花生酸主導的控制網絡在人類身體中是最為複雜的。 在這許多種類花生酸的家族中,對於每一個亞家族,有可能具有至少5個獨立系列的代謝物,兩個系列從ω-6 PUFA 衍生出來,分別是花生四烯酸(Arachidonic acid)和(dihomo-gamma-linolenic acids),一個系列從ω-3 PUFA 衍生出來,即為二十碳五烯酸(eicosapentaenoic acid,簡稱EPA),一個系列從ω-9 PUFA 衍生出來,即為(mead acid)。 類花生酸主要由兩大類的多元不飽和脂肪酸所形成,亦即 omega-6 (ω-6) 和 omega-3 (ω-3) 脂肪酸。由於人類以及其他的哺乳類動物無法將omega-6 (ω-6) 轉化成 omega-3 (ω-3) 脂肪酸,因此,這兩大類脂肪酸在哺乳類動物組織中的相關基準量以及這些組織中「ω-6脂肪酸衍生類花生酸」對 「ω-3 脂肪酸衍生類花生酸」的對應量,是直接取決於「膳食ω-6」和「ω-6脂肪酸消耗」的對應量。這些觀點是非常重要的,因為類花生酸是從這兩大類通常有著相反作用的脂肪酸所衍生出來的。例如,許多的「ω-6 脂肪酸衍生類花生酸」有著「促炎」的作用而「ω-3 脂肪酸衍生類花生酸」則是有著弱或無「促炎」的作用;在這些情形下,ω-3 脂肪酸和ω-6脂肪酸彼此競爭使用相同的代謝途徑,因此,相對上非活性的ω-3 脂肪酸衍生產物取代了活性的ω-6 脂肪酸衍生產物。更進一步來說,一些「ω-3 脂肪酸衍生類花生酸」,被稱為resolvins(如同ω-3 脂肪酸的代謝物[被稱為docosanoids〕,二十二碳六烯酸[docosahexaenoic acid〕),有著強力的抗炎作用。同樣地,在「ω-3 脂肪酸衍生類花生酸」被抑制的時候,「ω-6 脂肪酸衍生類花生酸」會促使過敏反應、動脈粥樣硬化、高血壓、癌細胞增長、以及其它生理上致病的過程。因此,富含ω-6 脂肪酸的飲食建議將會促進,而相反的富含ω-3 脂肪酸的飲食建議則將會抑制發炎以及過敏反應、動脈粥樣硬化、高血壓、癌症增長,以及其他致病過程。.

新!!: 免疫系统和类花生酸 · 查看更多 »

粒细胞

粒细胞是一类细胞质中包含的白细胞,又因其细胞核形态多样而称多形核白细胞,(PMN或PML)。术语多形核白细胞通常特指最常见的中性粒细胞。粒细胞由补体调节蛋白调控从骨髓中产生。.

新!!: 免疫系统和粒细胞 · 查看更多 »

糖尿病

糖尿病(diabetes mellitus,缩写为DMs,简称diabetes)是一種代謝性疾病,它的特徵是患者的血糖長期高於標準值。高血糖會造成俗稱「三多一少」的症狀:、 、及體重下降。對於第一型糖尿病,其症狀會在一個星期至一個月期間出現,而對於第二型糖尿病則較後出現。不論是哪一種糖尿病,如果不進行治療,可能會引發許多併發症。一般病徵有視力模糊、頭痛、肌肉無力、傷口癒合緩慢及皮膚很癢。急性併發症包括糖尿病酮酸血症與;嚴重的長期併發症則包括心血管疾病、中風、慢性腎臟病、、以及視網膜病變等。 糖尿病有兩個主要成因:胰臟無法生產足夠的胰島素,或者是細胞對胰島素不敏感。全世界糖尿病患人數,1997 年為 1 億 2,400 萬人,2014年全球估计有4.22亿成人患有糖尿病。由於糖尿病患人數快速增加及其併發症,造成財務負擔、生活品 質下降,因此聯合國將每年的 11 月 14 日定為「聯合國世界糖尿病日」。.

新!!: 免疫系统和糖尿病 · 查看更多 »

糖皮质激素

糖皮质激素(;又稱葡萄糖皮質素)是一種腎上腺皮質激素,是由肾上腺皮质中層的束状带分泌的類固醇激素,也可由化学方法人工合成。人體的可的松和皮質醇即屬於糖皮質激素。由於可用於一般的抗生素或消炎藥所不及的病症,如SARS、敗血症等,具有调节糖、脂肪、和蛋白质的生物合成和代谢的作用,还具有抗炎作用,称其为“糖皮质激素”是因为其调节糖类代谢的活性最早为人们所认识。 糖皮质激素的基本结构特征包括肾上腺皮质激素所具有的C3的羰基、Δ4和17β酮醇侧链以及糖皮质激素独有的17α-OH和11β-OH。 目前糖皮质激素这个概念不仅包括具有上述特征和活性的内源性物质,还包括很多经过结构优化的具有类似结构和活性的人工合成药物,目前糖皮质激素类药物是临床应用较多的一类药物。.

新!!: 免疫系统和糖皮质激素 · 查看更多 »

紅斑性狼瘡

紅斑狼瘡(Lupus erythematosus)為一系列自體免疫性疾病,即免疫系統非正常地攻擊自身正常组织。症狀可能發生於全身各處,包含关节、皮膚、腎、血球、心臟,以及肺。最常見且最嚴重的形式為全身性紅斑狼瘡。.

新!!: 免疫系统和紅斑性狼瘡 · 查看更多 »

綠膿桿菌

綠膿桿菌,又稱銅綠假單胞菌(學名:Pseudomonas aeruginosa),是一種革蘭氏陰性菌、好氧、呈長棒形的細菌,只有單向的運動性。牠是一種機會性感染細菌,且對植物亦是機會性感染的。 與其他假單胞菌屬的細菌一樣,綠膿桿菌分泌多種的色素,包括綠膿菌素(呈青色)、螢光素(呈螢光黃色)及綠膿菌紅素(呈啡紅色)。假單胞菌屬培養基P就是用作增加綠膿菌素及綠膿菌紅素的生產,而假單胞菌屬培養基F就是加強螢光素的生成。 綠膿桿菌的特徵是牠那如珠母般的外形及在試管內的葡萄氣味。臨床確認綠膿桿菌的方法是在於綠膿菌素及螢光素的生成,且在42℃的環境下生長的能力。綠膿桿菌在柴油及航空燃料中仍能生長,更被稱為「氫碳分解菌」,能引發微生物腐蝕作用。牠會產生一種暗色的凝膠墊,一般被誤解為藻類。.

新!!: 免疫系统和綠膿桿菌 · 查看更多 »

维生素A

#重定向 維生素A.

新!!: 免疫系统和维生素A · 查看更多 »

维生素B6

维生素B6(Vitamin B6)是B族维生素的一种,又名抗皮炎维生素、吡哆素,在食物中分布较广,同氨基酸代谢有密切关系,是氨基酸脱羧酶、转氨酶等的辅酶。 此为一种水溶维生素,在烹饪过程中易损失。动物缺乏维生素B6的症状有皮炎、痉挛、贫血等;单纯的维生素B6缺乏症在人类极少见。 维生素B6主要作用在人体的血液、肌肉、神经、皮肤等。功能有協助排出含氮廢物、抗体的合成、消化系统中胃酸的制造、脂肪与蛋白质利用(尤其在减肥时应补充)、维持钠/钾平衡(稳定神经系统)。缺乏维生素B6的通症,一般缺乏时会有食欲不振、食物利用率低、失重、呕吐、下痢等毛病。严重缺乏会有粉刺、贫血、关节炎、小孩痉挛、忧郁、头痛、掉髮、易发炎、学习障碍、衰弱。.

新!!: 免疫系统和维生素B6 · 查看更多 »

维生素C

維生素C(Vitamin C/ascorbic acid,又稱L-抗壞血酸,又譯維他命C)是高等靈長類動物與其他少數生物的必需營養素。是一種存在於食物中的維他命,可作為營養補充品。維生素C在大多数生物體内可藉由新陳代謝製造出來,但是有许多例外,比如人類,缺乏維生素C會造成壞血病。 維他命C可作營養補充劑以預防或治療壞血病,目前並無證據顯示可預防感冒。維他命C可藉由口服或注射來攝取。 維生素C的藥效基團是抗壞血酸離子。在生物體內,維生素C是一種抗氧化劑,因為它能夠保護身體免於氧化劑的威脅,維生素C同時也是一種輔酶。 一般而言,維他命C的耐受性很好,大劑量服用可能導致腸胃不適、頭痛、睡眠困難以及肌膚泛紅。懷孕期間攝取正常劑量通常是安全無虞的,維他命C為一種基本營養成分,有助於組織修復。含有維他命C的食物包含柑橘類水果、番茄以及馬鈴薯。當它作為食品添加劑。 維生素C也是一種抗氧化劑和防腐劑的酸度調節劑。多個E字首的數字(E number)收錄維生素C,不同的數字取決於它的化學結構,像是E300是抗壞血酸,E301為抗壞血酸鈉鹽,E302為抗壞血酸鈣鹽,E303為抗壞血酸鉀鹽,E304為酯類抗壞血酸棕櫚和抗壞血酸硬脂酸,E315為異抗壞血酸除蟲菊酯。 維他命C最早發現於1912年,在1928年首次被分離出來,在1933年首次被製造出來,於世界衛生組織基本藥物標準清單上名列有案,是建立照護系統時相當重要的必備基礎藥物之一。維他命C已經是通用名藥物,也是成藥。在發展中國家的批發價約在每月0.19到0.54美元之間,有些國家將抗壞血酸加入食物,像是營養麥片。3 g mol-1,熔点是190~192℃。在1 M水溶液中的旋光性是20.5-21.5度。pK1是4.17,pK2是11.57。在5mg/ml的水溶液中,pH值是3。氧化还原电位是0.166V(pH.

新!!: 免疫系统和维生素C · 查看更多 »

维生素D

維他命D也称抗佝偻病維他命,是一类脂溶性維他命,属类固醇化合物。在人类所需的维他命中,维他命D非常特殊,是一种激素的前体,而且在阳光充足的情况下,人体自身可以合成维他命D3。 血浆维生素D水平(來自)可以反映紫外线照射皮肤合成的和食物摄入的维生素D的总水平,而现在认为,人体自身合成的维生素D是人体内获取维生素D的主要途径。美国饮食营养摄入参考中维生素D摄入标准是假设没有日照,所有维生素D都取自食物摄取而制定的。 经过肝脏和肾脏的进一步转化,维生素D转化为骨化三醇,作为一种激素重新进入循环,调节钙和磷的吸收,促进骨骼的生长和重构,维生素D可以用来预防小儿佝偻病和成人骨软化症,维生素D与钙合用可以预防老年人骨质疏松。维生素D对神经肌肉功能、炎症都有作用,还影响许多基因的表达和翻译,调节细胞的增殖、转化和凋亡。 在一般人口統計中并沒有一致的證據顯示維生素D對健康影響效果。 维生素D对人体有益的最佳证据是对骨骼有益并减少老年女性的死亡率。 维生素D3由紫外線照射7-脱氢胆固醇經光照後進行光化學反應轉變成,动物皮肤細胞中含有7-脱氢胆固醇,所以多晒日光是获取維生素D的简易方法。但它的活性不高,必須經肝臟及腎臟的酶反應,最終生成骨化三醇(1,25-二羟胆钙化醇),這才是活性最高的形式,可以調節小腸、腎臟和骨骼對鈣的吸收與代謝。维生素D3的缺乏易患有軟骨病,此病症在寒帶地區較常發生,因當地居民須穿著厚重衣物以防寒,但也因此隔絕陽光的照射,無法產生维生素D3,此症可經由飲食攝取來改善。 維生素D是荷爾蒙的前驅物,與血液中鈣的代謝有關。如果维生素D攝取過量導致中毒,會使柔軟組織形成鈣化現象.

新!!: 免疫系统和维生素D · 查看更多 »

维生素E

維生素E(Vitamin E)是一種脂溶性維生素,是最主要的抗氧化劑之一。溶於脂肪和乙醇等有機溶劑中,不溶於水,對熱、酸穩定,對鹼不穩定,對氧敏感,對熱不敏感,但油炸時維生素E活性明顯降低。在缺乏维生素E后进行补充,能促進性激素分泌,使男子精子活力和數量增加;使女子雌性激素濃度增高,提高生育能力,預防流產。 近来还发现维生素E可抑制眼睛晶状体内的过氧化脂反应,使末梢血管扩张,改善血液循环。维生素E苯环上的酚羟基被乙酰化, 酯水解为酚羟基后为生育酚。人们常误认为维生素E就是生育酚。.

新!!: 免疫系统和维生素E · 查看更多 »

结缔组织

結締組織(connective Tissue)爲脊椎動物基本組織之一,由細胞和大量細胞外基質組成。廣義上的結締組織包括固有結締組織、軟骨組織和骨組織、血液以及淋巴。一般所指的結締組織指固有結締組織。其中,固有結締組織又分爲疏鬆結締組織(蜂窩組織)、、脂肪組織,以及。 結締組織在生物體內起連接、支持、營養、運輸和保護等作用。在胚胎發育中,結締組織係由中胚層的間充質發育而來。.

新!!: 免疫系统和结缔组织 · 查看更多 »

组织 (生物学)

组织是生物学中介于细胞和器官之间的层次,它由许多属于同一器官的形态相似的细胞以及细胞间质组成,并且具有一定功能。不同的组织分工合作形成器官。研究组织的学科是组织学,研究其病态的学科是组织病理学。.

新!!: 免疫系统和组织 (生物学) · 查看更多 »

细菌

細菌(学名:Bacteria)是生物的主要類群之一,屬於細菌域。也是所有生物中數量最多的一類,據估計,其總數約有5×1030個。細菌的個體非常小,目前已知最小的細菌只有0.2微米長,因此大多--能在顯微鏡下看到它們;而世界上最大的細菌可以用肉眼直接看見,有0.2-0.6毫米大,是一種叫納米比亞嗜硫珠菌的細菌。細菌一般是單細胞,細胞結構簡單,缺乏細胞核以及膜狀胞器,例如粒線體和葉綠體。基於這些特徵,細菌屬於原核生物。原核生物中還有另一類生物稱做古細菌,是科學家依據演化關係而另闢的類別。為了區別,本類生物也被稱做真細菌(Eubacteria)。古細菌與真細菌在生活環境、營養方式以及遺傳上有所不同。細菌的形狀相當多樣,主要有球狀、桿狀,以及螺旋狀。 細菌廣泛分佈於土壤和水中,或著與其他生物共生。人體身上也帶有相當多的細菌。據估計,人體內及表皮上的細菌細胞總數約是人體細胞總數的十倍。此外,也有部分種類分布在極端的環境中,例如溫泉,甚至是放射性廢棄物中,它們被歸類為嗜極生物,其中最著名的種類之一是海棲熱袍菌,科學家是在意大利的一座海底火山中發現這種細菌的。甚至在太空梭上也能生長。然而,細菌種類是如此多,科學家研究過並命名的種類只佔其中的小部份。細菌域下所有門中,只有約一半能在實驗室培養的種類。 細菌的營養方式有自养及异养,其中异养的腐生細菌是生态系统中重要的分解者,使碳循環能順利進行。部分細菌會進行固氮作用,使氮元素得以轉換為生物能利用的形式。細菌也對人類活動有很大的影響。一方面,細菌是許多疾病的病原體,包括肺結核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由細菌所引發。然而,人類也時常利用細菌,例如乳酪及酸奶和酒釀的製作、部分抗生素的製造、廢水的處理等,都與細菌有關。在生物科技領域中,細菌有也著廣泛的運用。 總的來說,這世界上約有5×1030 隻細菌。其生物量遠大於世界上所有動植物體內細胞數量的總和。細菌還在營養素循環上扮演相當重要的角色,像是微生物造成的腐敗作用,就與氮循環相關。而在海底火山和在冷泉中,細菌則是靠硫化氫和甲烷來產生能量。2013年3月17日,研究者在深約11公里的馬里亞納海溝中發現了細菌。其他研究則指出,在美國西北邊離岸2600米的海床下580米深處,仍有許多的微生物根據這些研究人員的說法:「你可以在任何地方找到他們,他們的適應力遠比你想像的還要強,可以在任何地方存活。.

新!!: 免疫系统和细菌 · 查看更多 »

细胞分裂

细胞分裂(cell division)是生物体生长和繁殖的基础,通常由一个母细胞产生两个或若干子细胞,是細胞週期的一部分。产生两个不同子细胞的分裂被称为不对称细胞分裂,也称为异裂。 根据类型常可区分为有丝分裂(mitosis)和无丝分裂,在真核生物中以有丝分裂尤为重要,它不改变染色体的倍数。 细胞分裂的另外一种形式是减数分裂(meiosis)。减数分裂产生染色体倍数减半的生殖细胞,即配子,这是有性生殖的必要条件。 如果细胞分裂失去控制,常常导致特定细胞团的增生,异生或肿瘤。严重的情况下发生恶性肿瘤,其中上皮组织来源的被称为癌症。.

新!!: 免疫系统和细胞分裂 · 查看更多 »

细胞凋亡

细胞凋亡(apoptosis,源自απόπτωσις,有堕落,死亡之意),為一種細胞程序性死亡。相对于细胞坏死(necrosis),细胞凋亡是细胞主动实施的。細胞凋亡一般由生理或病理性因素引起。而細胞壞死則主要為缺氧造成,两者可以很容易通过观察区分开来。在细胞凋亡过程中,细胞缩小,DNA被核酸内切酶降解成180bp-200bp片段屬於有層次之斷裂,(可以通过凝胶电泳证明),而细胞坏死时,细胞肿胀,细胞膜被破坏,通透性改变。细胞器散落到细胞间质,需要巨噬细胞去清除,结果是该局部组织发炎。相比起细胞坏死,细胞凋亡是更常见的细胞死亡形式。 细胞凋亡受到抑凋亡因子和促凋亡因子的调控。.

新!!: 免疫系统和细胞凋亡 · 查看更多 »

细胞免疫

#重定向 细胞介导免疫.

新!!: 免疫系统和细胞免疫 · 查看更多 »

细胞因子

细胞因子,也翻译为細胞激素(cytokine),是一组蛋白质及多肽,在生物中用作信号蛋白。这些类似激素或神经递质的蛋白用作细胞间沟通的信号。细胞因子多是水溶性蛋白和糖蛋白,分子量小(8-30千道耳顿)。 细胞因子可以由多种细胞释放,尤其重要的是在先天性免疫反应和适应性免疫反应。由于其免疫系统中的作用,细胞因子参与免疫性疾病、炎症及传染性疾病。不过,并非所有的功能仅限于免疫系统,细胞因子还涉及多个胚胎發育环节。 细胞因子是由多种细胞类型(如造血性和非造血细胞)产生。并能对邻近细胞或整个机体有作用。这些效应强烈依赖于其他化学因子和细胞因子的存在。.

新!!: 免疫系统和细胞因子 · 查看更多 »

细胞膜

细胞膜,又称原生質膜(英語:cell membrane),为细胞結構中分隔细胞内、外不同介质和组成成份的界面。原生質膜普遍认为由磷脂質双层分子作为基本单位重复而成,即磷脂双分子层,其上镶嵌有各种类型的膜蛋白以及与膜蛋白结合的糖和糖脂。原生質膜是细胞与周围环境和细胞与细胞间进行物质交换和信息传递的重要通道。原生質膜通过其上的孔隙和跨膜蛋白的某些性质,达到有选择性的,可调控的物质运输作用。.

新!!: 免疫系统和细胞膜 · 查看更多 »

缺氧

缺氧(hypoxia),即生物的組織或細胞不能獲取足夠的氧,或能獲取但無法運用。缺氧可能是全身性的,也可能只有身體部份部位缺氧。缺氧多半是病理過程,不過正常人動脈內的氧氣濃度也會因劇烈運動或是而降低。 缺氧和及無氧血症(anoxemia)不同,缺氧是指人體吸取的氧氣不足,低氧血症及無氧血症是指動脈內的氧氣濃度偏低或是沒有氧氣若缺氧到完全沒有氧氣的情形,會稱為anoxia。 一般人在高海拔下也會有缺氧的情形,也就是高山症,可能會造成以下嚴重的併發症:像是.

新!!: 免疫系统和缺氧 · 查看更多 »

罗伯特·科赫

海因里希·赫尔曼·罗伯特·科赫(德语:Heinrich Hermann Robert Koch,),德國醫師兼微生物學家,為細菌學始祖之一,與路易·巴斯德共享盛名。1905年,因結核病的研究獲得諾貝爾生理學或醫學獎。 科赫因發現炭疽桿菌、結核桿菌和霍亂弧菌而出名,發展出一套用以判斷疾病病原體的依據—柯霍氏法则。以他命名的羅伯·柯霍獎是德國醫學最高獎。.

新!!: 免疫系统和罗伯特·科赫 · 查看更多 »

真菌

真菌即真菌界(学名:Fungi)生物的通称,又稱菌物界,是真核生物中的一大類群,包含酵母、黴菌之類的微生物,及最為人熟知的菇類。真菌自成一界,與植物、動物和原生生物相區別。真菌和其他三種生物最大不同之處在於,真菌的細胞有含幾丁質為主要成分的細胞壁,而植物的細胞壁主要是由纖維素組成。卵菌和黏菌、水黴菌等在構造上和真菌相似,但都不屬於真菌,而是屬於原生生物。研究真菌的學科稱為真菌學,通常被視為植物學的一個分支。但事實顯示,真菌和動物之間的關係要比和植物之間更加親近。 雖然真菌遍及全世界,但大部分的真菌不顯眼,因為它們體積小,而且它們會生活在土壤內、腐質上、以及與植物、動物或其他真菌共生。部分菇類及黴菌可能會在結成孢子時變得較顯眼。真菌在有機物質的分解中扮演著極重要的角色,對養分的循環及交換有著基礎的作用。真菌從很久以前便被當做直接的食物來源(如菇類及松露)、麵包的膨鬆劑及發酵各種食品(如葡萄酒、啤酒及醬油)。1940年代後,真菌亦被用來製造抗生素,而現在,許多的酵素是由真菌所製造的,並運用在工業上。真菌亦被當做生物農藥,用來抑制雜草、植物疾病及害蟲。真菌中的許多物種會產生有的物質,稱為(如生物鹼和聚酮),對包括人類在內的動物有毒。一些物種的孢子含有精神藥物的成份,被用在娛樂及古代的宗教儀式上。真菌可以分解人造的物質及建物,並使人類及其他動物致病。因真菌病(如)或食物腐敗引起的作物損失會對人類的食物供給和區域經濟產生很大的影響。 真菌各門的物種之間不論是在生態、生物生命周期、及形態(從單細胞水生的壺菌到巨大的菇類)都有很巨大的差別。人類對真菌各門真正的生物多樣性了解得很少,預估約有150萬-500萬個物種,其中被正式分類的則只有約5%。自從18、19世紀,卡爾·林奈、克里斯蒂安·亨德里克·珀森及伊利阿斯·馬格努斯·弗里斯等人在分類學上有了開創性的研究成果之後,真菌便已依其形態(如孢子顏色或微觀構造等特徵)或依生理學給予分類。在分子遺傳學上的進展開啟了將DNA測序加入分類學的道路,這有時會挑戰傳統依形態及其他特徵分類的類群。最近十幾年來在系统发生学上的研究已幫助真菌界重新分類,共分為一個亞界、七個門、及十個亞門。.

新!!: 免疫系统和真菌 · 查看更多 »

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

新!!: 免疫系统和真核生物 · 查看更多 »

瘧原蟲

瘧原蟲屬(Plasmodium)是一類單細胞、寄生性的囊泡蟲。本屬生物通稱為瘧原蟲。本屬生物中有五種瘧原蟲會使人類感染瘧疾,包括惡性瘧原蟲(Plasmodium falciparum)、三日瘧原蟲(Plasmodium malariae)、蛋形瘧原蟲(Plasmodium ovale)及間日瘧原蟲(Plasmodium vivax)、 諾氏瘧原蟲(Plasmodium knowlesi)。而其他種類的瘧原蟲會感染它種動物,包括其他靈長目動物、囓齒目動物、鳥類及爬蟲類。.

新!!: 免疫系统和瘧原蟲 · 查看更多 »

疟疾

瘧疾(Malaria,中文俗称打擺子、冷熱病、發瘧子)是一種會感染人類及其他動物的全球性寄生蟲傳染病,其病原瘧原蟲藉由蚊子散播,隸屬原生生物界,皆為单细胞生物。瘧疾引起的典型症狀有發燒、畏寒、疲倦、嘔吐和頭痛;在嚴重的病例中會引起黃疸、癲癇發作、昏迷或死亡。這些症狀通常在蚊子叮咬後的十到十五天內出現,若病人沒有接受治療,症狀緩解後數月內症狀可能再次出現。曾感染瘧疾的患者再次感染所引起的症狀通常較輕微,如果患者沒有持續暴露於瘧疾的環境,此種部分抵抗力會在數月至數年內消失。 瘧疾最常透過受感染的雌性瘧蚊來傳播,瘧原蟲會在瘧蚊叮咬時從蚊子的唾液傳入人類的血液,接著瘧原蟲會隨血液移動至肝臟,在肝細胞中發育成熟和繁殖。瘧原蟲屬(Plasmodium)中有五個種可以感染人類並藉此散播,多數死亡案例由惡性瘧(P. falciparum)、(P. vivax)及(P. ovale)所造成,(P. malariae)產生的症狀較輕微,而(P. knowlesi,又稱諾氏瘧原蟲)則較少造成人類疾病。瘧疾的診斷方式主要為鏡檢或前者配合,近年也發展聚合酶鏈式反應來偵測瘧原蟲的DNA,但因為成本和複雜性較高,目前尚未廣泛地應用於瘧疾的盛行地區。 避免瘧蚊叮咬能降低感染瘧疾的風險,實務上包括使用蚊帳、防蚊液或(如噴灑殺蟲劑和清除積水)。前往瘧疾盛行地區的旅客可以使用數種藥物來,而瘧疾好發地區的嬰兒及第一個三月期以後的孕婦也建議適時使用進行防治。20世紀中葉,以屠呦呦為首的中國科學家研製出抗瘧效果良好的藥物青蒿素,屠呦呦也因此獲得2015年諾貝爾生理醫學獎。儘管有所需求,但瘧疾目前尚無疫苗,相關研究仍在進行。現在建議的治療方法是併用青蒿素及另一種抗瘧藥物(可能是甲氟喹、苯芴醇或);如果青蒿素無法取得,則可使用奎寧加上去氧羥四環素。為避免瘧原蟲抗藥性增加,瘧疾盛行地區的病患應盡量在確診後才開始投藥。瘧原蟲已逐漸對幾種藥物產生抗藥性,具有(氯喹)抗性的惡性瘧已經散布到多數的瘧疾盛行區,青蒿素抗藥性的問題在部分東南亞地區也日益嚴重。 主要流行地區包括非洲中部、南亞、東南亞及拉丁美洲,這其中又以非洲的疫情最甚。根據世界衛生組織的統計,2013年全球瘧疾病例共有1.98億例,造成584,000至855,000人死亡,當中有90%是在非洲發生。 瘧疾普遍存在熱帶及亞熱帶地區位於赤道周圍的廣大帶狀區域,包含漠南非洲、亞洲,以及拉丁美洲等等 -->。2015年,全球約有2.14億人新感染瘧疾,並造成多達43.8萬人死亡,其中有90%的死亡病例位於非洲。2000年至2015年間,病例數減少37%,但自2014年的1.98億例之後開始回升。瘧疾與貧困息息相關,並严重影響經濟發展。瘧疾會造成醫療衛生支出增加、勞動力減少、並衝擊觀光業,非洲每年估計因瘧疾損失120億美元。.

新!!: 免疫系统和疟疾 · 查看更多 »

疏水性

在化學裡,疏水性指的是一個分子与水互相排斥的物理性質。这种分子称为疏水物。 疏水性分子偏向於非極性,並因此較會溶解在中性和非極性溶液(如有机溶剂)。疏水性分子在水裡通常會聚成一團,而水在疏水性溶液的表面時則會形成一個很大的接觸角而成水滴状。 舉例來說,疏水性分子包含有烷烴、油、脂肪和多數含有油脂的物質。 疏水性通常也可以稱為親脂性,但這兩個詞並不全然是同義的。即使大多數的疏水物通常也是親脂性的,但還是有例外,如矽橡膠和碳氟化合物(Fluorocarbon)。.

新!!: 免疫系统和疏水性 · 查看更多 »

疫苗

疫苗是用细菌、病毒、肿瘤细胞等制成的可使机体产生特异性免疫的生物制剂,通过疫苗接种使接受方获得免疫力。 英语中,疫苗一詞“vaccine”源自於愛德華·金納所使用的牛痘。“vacca”為拉丁文,意即牛。當人類接種牛痘後,能對天花產生抗體。牛痘為巴斯德及其他人繼續研究。而派發及接受疫苗的過程稱為接種。.

新!!: 免疫系统和疫苗 · 查看更多 »

疫苗接種

疫苗接種,是將疫苗製劑接种到人或動物体内的技術,使接受方获得抵抗某一特定或与疫苗相似病原的免疫力,藉由免疫系統對外來物的辨認,進行抗體的篩選和製造,以產生對抗該病原或相似病原的抗體,進而使受注射者對該疾病具有較強的抵抗能力。今日醫學上常见的接種方式为注射,而“接種”一词乃是由種痘技術而來,其本意與今日用法有所区别,在現代免疫學研究的運用範疇也有些微差距。.

新!!: 免疫系统和疫苗接種 · 查看更多 »

疾病

病是生物在一定原因的损害性作用下,因自稳调节紊乱而发生的异常生命活动过程,是特定的異常病理情形,而且會影響生物體的部份或是所有器官。一般會解釋為「身體病況」(medical condition),而且伴隨著特定的症狀及醫學徵象。机体对病因所引起的损害发生一系列抗损害反应;自稳调节的紊乱,损害和抗损害反应,表现为疾病过程中各种复杂的机能、代谢和形态结构的异常变化,而这些变化又可使机体各器官系统之间以及机体与外界环境之间的协调关系发生障碍,从而引起各种症状、体征和行为异常,特别是对环境适应能力和体力减弱甚至丧失。 疾病有致病原因,可能是由外在因素而造成,例如傳染病,也有可能是因為內在的機能不良而導致,例如自體免疫疾病。但疾病不一定是由单一因素引起。致病的原因往往因为环境因素作用于遗传易感体;它是有规律的发展过程。疾病导致一系列的功能、代谢和形态结构的变化,并由此而产生各种症状和体征,这是认识疾病的基础。疾病是完整机体的反应,但不同的疾病又在一定部位(器官或系统)有它特殊的变化。生病时,机体内各器官系统之间的平衡关系和机体与外界环境之间的平衡关系受到破坏,机体对外界环境适应能力降低,体力减弱或丧失。 對人類而言,疾病一般會用來泛指會造成疼痛、異常行為甚至死亡的條件。在此定義下,疾病有時也包括受傷、身心障礙、功能失調、症候群、感染、獨立的症狀、特異的行為等。不過在其他領域可能會有不同的分類。疾病不一定只影響人的生理,灳會對人的情緒造成影響,患有某一疾病可能會影響人的生活態度及人格。 由於疾病造成的死亡會歸類為。疾病可以分為四類:病原類疾病、营养缺乏類疾病、遺傳類疾病及心理類疾病。疾病也可以用傳染病及非傳染病來分類。造成最多人死亡的疾病是冠狀動脈疾病,再來是及。.

新!!: 免疫系统和疾病 · 查看更多 »

病原体

病原体,泛指对可以引致疾病的生物及非生物的一个总称。病原体包括了:细菌(病原菌)、真菌、朊毒體、線蟲、寄生蟲、其他的生物,以及非生物,例如:病毒、 重金屬、各種化學毒素、霾害、汙染等等。 他发现医院內由产科護士負責接生的貧窮產妇,她们的死亡率比由医生負責接生的產妇高上幾倍。他从他的观察中认定两者死亡率的差別,与环境的清洁有关连。.

新!!: 免疫系统和病原体 · 查看更多 »

病原相关分子模式

病原相关分子模式(Pathogen-associated molecular patterns, PAMP)是与病原体相关的小分子序列。它们可被Toll样受体和其它模式识别受体(pattern recognition receptors, PRR)识别。细菌内毒素脂多糖(LPS)被认为是原型的病原相关分子模式。 其他的病原相关分子模式包括细菌鞭毛,革兰氏阳性菌脂磷壁酸(LTA),肽聚糖和病毒的核酸如双链RNA或非甲基化的CpG特征序列 。尽管病原相关分子模式的概念比较新,但病原体的分子必须被多细胞生物上的受体识别的概念已经有几十年了。在一些旧的文献中可以见到“内毒素受体”。另外,病原相关分子模式的概念已经批评,因为大多数的微生物,不仅是病原体呈現这些分子。.

新!!: 免疫系统和病原相关分子模式 · 查看更多 »

病毒

病毒(virus,中文舊稱“濾過性病毒”)是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态,靠寄生生活的介於生命体及非生命體之間的有機物種,它既不是生物亦不是非生物,目前不把它歸於五界(原核生物、原生生物、真菌、植物和動物)之中。它是由一个保护性外壳包裹的一段DNA或者RNA,藉由感染的機制,这些简单的有機体可以利用宿主的细胞系统进行自我复制,但无法独立生长和复制。病毒可以感染几乎所有具有细胞结构的生命体。第一个已知的病毒是烟草花叶病毒,由马丁乌斯·贝杰林克于1899年发现并命名,迄今已有超过5000种类型的病毒得到鉴定。研究病毒的科学称为病毒学,是微生物学的一个分支。 病毒由两到三个成份组成:病毒都含有遺傳物質(RNA或DNA,只由蛋白质组成的朊毒體并不属于病毒);所有的病毒也都有由蛋白质形成的衣壳,用来包裹和保护其中的遗传物质;此外,部分病毒在到达细胞表面时能够形成脂质包膜环绕在外。病毒的形态各异,从简单的螺旋形和正二十面體形到複合型结构。病毒颗粒大约是细菌大小的百分之一。Collier pp.

新!!: 免疫系统和病毒 · 查看更多 »

病毒包膜

大部分病毒(如流感病毒等许多动物病毒)都拥有病毒包膜(viral envelopes)结构,覆盖在衣壳的外面。病毒包膜物质通常源自于宿主的细胞膜(携带宿主的磷脂和蛋白质),但也包含有病毒的醣蛋白。病毒包膜帮助病毒躲避宿主的免疫系统的监视。包膜表面的糖蛋白可以用于识别并激活宿主细胞膜表面的受体,在病毒进入细胞后,病毒包膜会与宿主的细胞膜融合在一起,使得病毒的衣壳和基因組可以进入并感染宿主细胞。 The cell from which the virus itself buds will often die or be weakened and shed more viral particles for an extended period.

新!!: 免疫系统和病毒包膜 · 查看更多 »

炎症性肠病

症性肠病、發炎性腸道疾病(英语:Inflammatory Bowel Disease, 简称IBD)是一组特定的肠道慢性疾病的统称,主要包括克隆氏症和溃疡性结肠炎两种。.

新!!: 免疫系统和炎症性肠病 · 查看更多 »

生命週期

生命週期(Life Cycle)可以指:.

新!!: 免疫系统和生命週期 · 查看更多 »

生物

生物(拉丁语,德语: Organismus, ,又称有機體)是指稱類生命的个体。在生物学和生态学中, 地球上约有870萬種物種(±130萬),其中650萬種物種在陆地上,220万种生活在水中。 生物最重要和基本的特徵在生物會進行新陳代謝及遺傳兩點,前者說明所有生物一定會具備合成代谢以及分解代谢(兩個是完全相反的兩個生理反應過程),並且可以將遺傳物質複製,透過自我分裂生殖(無性生殖)或有性生殖,交由下一代繁殖下去以避免滅絕,这是類生命现象的基础。 生命的起源和生命各个分支之间的关系一直存在争议,古早的生命分類已經過時,近代古典生物學的分類又受到分子生物學的挑戰。一般而言,我們將生物分為兩大類:原核生物和真核生物。原核生物分为兩大域:细菌(Bacteria)和古菌(Archaea),这两个域相互之间的关系并不比他们和真核生物的关系更为接近。在演化史的研究上,原核生物和真核生物之间一直缺乏联系。類似麻煩的還有病毒與內共生細菌等的分類,隨著現代生物化學的研究逐漸深入,出現了有如物理學中存在量子現象一般,在特定微觀世界下許多傳統認知出現錯誤,導致以往常理被顛覆的情況。 真核生物的特徵是有細胞核以及其他膜狀細胞器(例如動物和植物體內的粒線體粒線體也可以說是植物動物體的發電廠因為他可以製造很多的能量,以及植物及藻類中的葉綠素),一種假說是叶绿体和线粒体是由内共生细菌(endosymbiotic bacteria)演化而来T.Cavalier-Smith (1987) The origin of eukaryote and archaebacterial cells, Annals of the New York Academy of Sciences 503, 17–54 。多细胞生物(又稱至於生物實在30班一年且出來則指包含多于一个细胞的生物,在地質學上直到五億年前才出現大爆發。.

新!!: 免疫系统和生物 · 查看更多 »

生物膜

生物膜(Biological membrane)是对生物体内所有膜结构的统称。它是一层封闭的、有分隔作用的膜,在生物体中担任选择透过性屏障。细胞膜是生物膜的一种,通常由磷脂双分子层组成,其上带有内在膜蛋白或外周膜蛋白,这些膜蛋白用于运输化学物质与离子。膜上的大量脂质给蛋白质提供了旋转运动及横向扩散的流体环境。细胞膜不应与细胞层叠而成的、具有分隔功能的组织混淆,如黏膜和基底膜。 生物膜可分为:.

新!!: 免疫系统和生物膜 · 查看更多 »

生长因子

生长因子(英文:Growth factor)一词是指天然的蛋白能刺激细胞增殖和细胞分化。生长因子调节细胞的各类活动与功能。生长因子通常充当细胞间的信号分子。生长因子结合到靶细胞表面的特异受体上。生长因子通常促进细胞分化和成熟。当然,因生长因子不一,其功能也多样。例如,骨形成蛋白刺激骨细胞的分化;而血管内皮生长因子刺激促进血管内皮细胞增殖。.

新!!: 免疫系统和生长因子 · 查看更多 »

生长激素

生长激素(HGH)是一种肽类激素。它可以促进动物和人的发育以及细胞的增殖。它是一种一百九十一单链肽,含有191个氨基酸分子,由垂体中的生长激素细胞合成、存储和分泌。通过重组DNA技術制造的生长激素简称rhGH。 临床上生长激素被用于治疗儿童生长迟缓和成人的生长激素不足。近年来,使用人類生長激素(HGH)来防止衰老的替代治疗非常流行。據報導,有减少体内脂肪、增加肌肉、增加骨密度、增加体力、改善皮膚光泽和肌理、改善免疫系统功能等疗效。目前,HGH仍然是一种非常复杂的激素,许多功能仍不清楚。 HGH自1970年代以来一直为许多体育选手使用,被国际奥委会和美国大学体育协会列为禁药。传统的尿液检测无法测出HGH,因此禁令到21世纪初能够区别自然HGH和人为HGH的血液检测出现才得以实施。世界反興奮劑組織(World Anti-doping Agency,WADA)在2004年雅典奥运会上主要检测的就是这种禁药。.

新!!: 免疫系统和生长激素 · 查看更多 »

甲状腺激素

腺激素(thyroid hormones)是由甲状腺滤泡上皮细胞合成的酪氨酸碘化物。主要是四碘甲腺原氨酸(又名甲状腺素,缩写为T4)和三碘甲腺原氨酸(缩写为T3),此外,还有少量逆-三碘甲腺原氨酸(缩写为rT3)。注意,甲状腺分泌的激素除了甲状腺激素外,还有降钙素。由于降钙素是甲状腺滤泡旁细胞产生的,所以,不属于甲状腺激素的范畴。 T4和T3均有生理活性,区别在于作用时间和强度:T4活性低、起效较慢,但持续时间长;T3活性高、起效快,但持续时间短。体内研究显示,在细胞水平发挥生理作用的主要是T3;绝大多数T4需转化为T3之后才能发挥生理效应,从这个意义上讲,T4更像是一种前激素。 rT3没有明显的生理活性,因此,在多数语境下,“甲状腺激素”只是指T4和T3。 到目前为止,甲状腺激素是唯一一类含碘的生理物质。.

新!!: 免疫系统和甲状腺激素 · 查看更多 »

甘草

草(學名:Glycyrrhiza uralensis,Licorice),又名乌拉尔甘草、生草、生甘草、粉草、粉甘草、灸草、國老、甜草根,是多年生草本植物,屬豆科。.

新!!: 免疫系统和甘草 · 查看更多 »

片利共生

#重定向 偏利共生.

新!!: 免疫系统和片利共生 · 查看更多 »

牛初乳

初乳是產犢後3天內的乳汁,其營養成分與普通奶相比,含有較高蛋白質,而脂肪和糖含量則較低。另外,初乳亦含有大量的免疫和生長因子,如免疫球蛋白、乳鐵蛋白、溶菌酶、類胰島素生長因子、表皮生長因子等。 初乳的顔色發黃,濃稠,有腥味,酸度高,口感差,加上其成分相當複雜,人類不宜直接食用(况且直接饮用很可能会摄入不良微生物),只有經過特殊處理後才能入口。其加工方法有乾燥昇華和巴士德消毒法兩種。由於其擁有很高營養成分,故初乳在20世紀開始成為一種普遍的保健食品及兒童營養品。.

新!!: 免疫系统和牛初乳 · 查看更多 »

益生菌

生菌(Probiotics)是指一般認為食入後對宿主(如動物或人類)有正面效益的食入性微生物。 在醫學上,目前科學證據無法顯示益生菌的使用有助於改善免疫系統、改善腸道健康、緩解便秘及預防感冒等健康支持作用,美國聯邦貿易委員會也不允許這類宣稱療效的廣告。 益生菌一般來說是安全的,但在極少數個案中可能造成細菌-宿主交互作用及不良反應。 。.

新!!: 免疫系统和益生菌 · 查看更多 »

盲鰻

鰻亞綱(學名:Myxini)是一種海洋脊椎動物,分類上屬於清除者。過去是無頜綱(Agnatha)之下的一目,現在則是無頜總綱下的頭甲魚綱下的一亞綱。.

新!!: 免疫系统和盲鰻 · 查看更多 »

白三烯

白三烯(Leukotriene, LTs)是一类含三个共轭双键的20碳直链羟基酸的总称,是与过敏性反应有关的生物活性物质,其他与过敏性反应有关的生物活性物质包括组胺、缓激肽、血小板活化因子等。白三烯由于最早是在白细胞中发现故而得名。它们在体内的主要作用是引起气管平滑肌的收缩,同时也增加微血管通透性。白三烯的过多释放是引起哮喘和过敏性鼻炎的主要原因之一。白三烯拮抗剂(Leukotriene antagonist)可通过抑制白三烯的产生和活动达到治疗哮喘和过敏性鼻炎的效果。.

新!!: 免疫系统和白三烯 · 查看更多 »

白细胞介素

白细胞介素或介白素(interleukin)是一组细胞因子(分泌的信号分子)。最早发现在白细胞中表达作为细胞间信号传递的手段。实际上,白细胞介素可以由多种细胞产生。免疫系统的功能,在很大程度上依赖于白细胞介素。一些罕见的白细胞介素缺陷不足都常出现自身免疫性疾病或免疫缺陷。.

新!!: 免疫系统和白细胞介素 · 查看更多 »

白血球

白血--球,又稱為白細--胞,(拉丁语 leucocytus,來自古希臘語 leukós「白」和 kýtos「中空」;德语 Leukozyt、英语 white blood cell 或 leukocyte,簡稱 WBCs),是血液重要的血细胞。除白血球外,人体血液中还含有紅血球、血小板和血浆。 白血球作为免疫系统的一部分帮助身体抵抗传染病以及外来的东西。白血球可以由骨髓的造血幹細胞產生。白血球有核,能作变形运动,正常情况下白血球在健康成人体内为4×109到1.1×1010/每升血液。白血球胞作为免疫细胞,在机体发生癌症或其他疾病时,血液内的白血球总数或细胞分类百分比可有变化。 除了在血液外,白血球还存在于淋巴系统、脾,扁桃腺以及身体的其他组织。 由於白血球的异常增生失去控制而引起的一种恶性疾病稱為白血病。.

新!!: 免疫系统和白血球 · 查看更多 »

癌基因

基因(Oncogene,亦称为致癌基因)是细胞遗传物质的一部分, 它们参与细胞从正常生长状态到肿瘤的过程。它们通过诱导或突变被激活。.

新!!: 免疫系统和癌基因 · 查看更多 »

癌症

症(英語:Cancer)又名為腫瘤(英語:Malignant tumor),指的是細胞不正常增生,且這些增生的細胞可能侵犯身體的其他部分;中医学中称岩,為由控制細胞分裂增殖机制失常而引起的疾病。癌细胞除了分裂失控外,还会週遭正常組織甚至經由体内循環系統或淋巴系統转移到身體其他部分。不是所有的腫瘤都會癌化,有些細胞增生不會侵犯身體其他部分,稱為良性腫瘤。癌症常見的徵象與症狀包括新發生的腫塊、異常的出血、慢性咳嗽、無法解釋的體重減輕、以及腸胃蠕動的改變等等,但其他疾病也可能會出現這些症狀,因此發現這些症狀並不一定表示得了癌症。在人類身上,目前已知的癌症超過一百種。 癌症有許多類型,因吸菸而罹癌者佔了癌症死者中的22%,肥胖、飲食不佳、運動不足、飲酒則共佔了10%。其他可能造成癌症的因素還包括某些感染、暴露於游離輻射、以及環境汙染因子。在發展中國家約有20%的癌症是由於感染症(如B型肝炎、C型肝炎、以及人類乳突病毒等)造成。致癌因子通常是透過改變細胞中的遺傳物質運作,通常許多這類遺傳物質的變化是癌症產生所必要的。約5-10%的癌症是由於遺傳自雙親的基因異常。癌症可以由症狀和徵候或透過的方式發現,然後再以影像檢查和切片檢查來確診。癌細胞持續生長而不受外在訊息調控,可能是原本正常的原癌基因被激活,将细胞引入到癌变状态,但主要还是因为一些与控制細胞分裂有关的蛋白质出现異常,如腫瘤抑制基因的功能失常。导致这种局面,可能是为该蛋白编码的DNA因突变而出现了损伤,轉译而出的蛋白质因此也出现错误。要將一個正常細胞轉化成一個惡性腫瘤細胞通常需要許多次突變,或是基因轉譯為蛋白質的过程受到干扰。引起基因突變的物质被稱為致癌物質,又以其造成基因損傷的方式可分為化學性致癌物與物理性致癌物。例如接觸放射性物質,或是一些環境因子,例如,香煙、輻射、酒精。还有一些病毒可將本身的基因插入細胞的基因裡,激活癌基因。但突变也会自然產生,所以即使避免接觸上述的致癌因子,仍然無法完全預防癌症的產生。发生在生殖细胞的突变有可能傳至下一代。 許多癌症都可以預防,預防的方式包括戒烟、不要攝取太多酒精、多吃蔬菜水果及類食品、減少紅肉與速食(包含)的攝取、維持健康體重、多運動、減少陽光曝曬、以及施打疫苗預防某些感染症等等。透過篩檢早期發現,對於部分的癌症(包括大腸直腸癌和子宮頸癌等)有用,但乳癌篩檢的價值則有爭議性。對癌症的治療方式通常結合化學療法、放射療法、手術以及標靶治療等。疼痛控制與症狀控制是癌症治療中重要的一環,而安寧緩和醫療對於癌症晚期的病人來說相當重要。癌症病人的存活率端看癌症的種類與開始治療時的疾病狀況。在已開發國家兒童癌症病人的五年存活率平均高達80%,在美國的成年癌症病人的平均五年存活率則有66%。而病症的嚴重程度取決於癌細胞所在部位以及惡性生長的程度。多數癌症根據其類型、所處的部位和發展的階段可以治療甚至治癒。一旦診斷確定,癌症通常以結合手術、化療和放射療法的方式進行治療。隨著科學研究的進步,開發出許多針對特定類型癌症的藥物,也增進治療上的效果。如果癌症未經治療,通常最終結果將導致死亡,也有出現因癌症未及時治療或是改用另類療法而延誤正規治療,因此影響病情的情形。 在2012年,大約有1,410萬人得到癌症,並且造成820萬人身亡(相當於全年總死亡人數的14.6%)。男性身上最常見的癌症包括肺癌、前列腺癌(攝護腺癌)、大腸直腸癌、以及胃癌;在女性身上最常見的則是乳癌、大腸直腸癌、肺癌和子宮頸癌。兒童以急性淋巴性白血病和腦瘤最常見,不過非洲除外,非何杰金氏淋巴瘤在那裡更常見。2012年,大約16.5萬個15歲以下的兒童被診斷出罹患癌症。各個年齡層的人都有可能產生癌症,由於DNA的損傷會隨著年齡而累積增加,罹癌的風險會隨著年齡的增長而升高,同時有數種癌症在已開發國家較常見。美国每年逝世的5个人当中有一人是因癌症致死,这一数字在世界范围则是100-350/100000。癌症在发达国家中已成為主要死亡原因之一,在台灣則是長年位居十大死因之首。隨著人類越來越長壽及開發中國家生活習慣的改變,全球的罹癌率整體而言在上升中。.

新!!: 免疫系统和癌症 · 查看更多 »

遠端轉移

遠端轉移(Metastasis)也稱作惡性轉移,是指腫瘤細胞從原始發生的部位藉由侵入循環系統,轉移到身體其他部位繼續生長的過程。通常良性腫瘤不會產生遠端轉移,而發生轉移的病患預後情形都非常差。也因為癌細胞轉移到身體各部位,癌症治療上變得更為困難,幾乎不可能使用外科手術切除根治,多半只能用大範圍循環全身的放射治療或化療等手段來抑制已轉移的癌細胞繼續擴散生長。事實上,癌症病患的死亡常是在發生遠端轉移之後,由於癌細胞轉移到身體各重要器官持續生長,影響身體正常功能而導致死亡。所以一般遠端轉移的發生與否,常被視作癌症患者病程的嚴重程度及治療效果的指標。.

新!!: 免疫系统和遠端轉移 · 查看更多 »

遺傳性疾病

遺傳性疾病是指以基因為主要致病原因的疾病。依據成因又可以細分成:單一基因缺陷的遺傳疾病、染色體變異所引起的遺傳疾病及由多重基因共同影響所造成的遺傳疾病及粒線體基因變異所引起的疾病。其中因單一基因缺陷而引起的遺傳疾病又稱為孟德爾型病症。臨床上大多透過遺傳基因檢測來輔助診斷以及帶因篩檢。.

新!!: 免疫系统和遺傳性疾病 · 查看更多 »

鏈球菌屬

鏈球菌(学名:Streptococcus)是一類球形的革蘭氏陽性細菌,屬於厚壁菌門的一個屬。這些細菌細胞分裂時總是沿一個軸,所以通常成對或者鏈狀的。因爲這些特徵,他們被稱作“鏈球菌”,區別於可以沿多個軸分裂而形成一团細胞的“葡萄球菌”(Staphylococcus)。鏈球菌屬包含了很多個種,其中多數是在人和动物表皮,呼吸道等处的共生菌(commensal flora), 也有对人类有益的菌种如嗜热链球菌(Streptococcus thermophilus),但其中也有相当数量的致病菌种.

新!!: 免疫系统和鏈球菌屬 · 查看更多 »

類風濕性關節炎

類風濕性關節炎(英文:Rheumatoid arthritis,簡稱RA),是一個主要影響關節的長期持續性疾病。它通常導致關節發熱、腫脹和疼痛。疼痛和僵硬往往於休息後更惡化。最常見的是手腕和手涉及到身體兩側相同的關節。這個疾病也可能影響身體其他部分。這可能導致低紅血球細胞、肺部炎症、和心臟炎症。也可能會發燒和缺乏活力。通常症狀是逐漸超過數周至數月。 類風濕性關節炎的成因不明,但和基因與環境因素有關。作用機制包括了身體的免疫系統攻擊關節,造成關節囊的發炎與增厚,通常也會影響到骨頭和軟骨。診斷方式大多根據病患的身體表徵與症狀。X光和實驗室測試可以協助診斷或排除一些相似的疾病。如紅斑性狼瘡、,和纖維肌痛等疾病可能會有類似的症狀。 治療主要針對改善疼痛、減少發炎以及改善全身機能。適當的休息及運動、使用或輔具等皆能幫助治療改善。藥物方面,常使用止痛劑、類固醇、非類固醇抗發炎藥物來緩解症狀;(DMARD,包括羟氯喹、氨甲蝶呤等)亦可用來控制減緩病程,通常是在其他療程對病人無效時才會使用到此類藥物,然而此類藥物相較於其他療程也可能對病人造成較大的副作用。在特定狀況下,可能使用外科手術方式針對關節進行修復、、。大部份的替代療法皆無證據支持其有效。 類風溼性關節炎在已開發國家會影響約0.5至1%的成年人,每年十萬人中約有5至50人會罹患此疾病。此疾病多在中年發作,女性的好發程度為男性的2.5倍。類風溼性關節炎從1990年造成28000人死亡,到2013年則造成38000人死亡。第一個做出關於類風濕性關節炎描述是在1800年的巴黎,由 博士(1772–1840)做出 reproduced in 。類風溼性關節炎的原文「rheumatoid arthritis」源自希臘文,表示關節的出水與發炎。.

新!!: 免疫系统和類風濕性關節炎 · 查看更多 »

补体系统

補體系统在無指明情況下,本文中的「補體系統」指人體的補體系統(complement system)由一系列的蛋白質組成,屬先天免疫系統的一部分。補體系統透過一連串的酵素相互切割啟動,最終在目標微生物上形成類似孔洞的膜攻擊複合物(Membrane attack complex,MAC),使微生物破裂而死亡。補體成分能被抗原抗體複合物或者抗體激活,通過、調理、吞噬以及介導炎症反應來清除免疫複合物,表現出相應的生物學功能。 補體系統的出現遠遠早於特異性免疫的出現(早了600-700萬年),最早出現在後口無脊椎動物中。朱爾·博爾代在1890年發現了補體系統。 高等哺乳動物的補體系統有三條活化途徑:經典途徑、替代途徑以及凝集素途徑。在生物的演化過程中,替代途徑應是最早出現的;其次應該是凝集素途徑,而經典途徑應該出現得最晚。.

新!!: 免疫系统和补体系统 · 查看更多 »

表皮

表皮可以指:.

新!!: 免疫系统和表皮 · 查看更多 »

血管

血管(德语: Blutgefäße;;西班牙语,葡萄牙语: vasos sanguineos)是生物運送血液的管道,依運輸方向可分為動脈、靜脈與微血管。動脈從心臟將血液帶至身體組織,靜脈將血液自組織間帶回心臟,微血管則連接動脈與靜脈,是血液與組織間物質交換的主要場所。各種生物擁有的血管型態各不相同:開放式循環()生物,如昆蟲,只有動脈,血液自動脈流出直接接觸身體組織,再由心臟上的開孔回收血液;閉鎖式循環()生物,如哺乳類、鳥類、爬蟲類、魚類,則由動脈連接微血管再接至靜脈,最後回歸心臟。.

新!!: 免疫系统和血管 · 查看更多 »

血管舒張

血管舒張是指在血管壁的平滑肌鬆弛下,令體內血管擴闊的情況。由於空間增大讓血液流過,這會降低了血壓。它的相反過程稱為血管收縮。 血管舒張可以自然產生或經由血管舒張劑引起。某些肌肉及神經是在體內負責控制血管舒張的,稱為「血管舒縮肌肉/神經」。而血管舒張劑是一種物質能引起血管舒張。多種血管舒張劑被用作讓血液容易流過血栓的藥物,一般使用後都會出現暈紅等情況。.

新!!: 免疫系统和血管舒張 · 查看更多 »

血液

血液(英語:blood)是在動物的循環系統、心脏和血管腔内循环流动的一种组织,可以將氧氣及營養素送到各器官,並將細胞的代謝廢棄物帶離細胞。血液組織是結締組織的一種,由血浆和血球组成。血浆内含血浆蛋白(白蛋白、球蛋白、纤维蛋白原)、脂蛋白等各种营养成分以及无机盐、氧、激素、酶、抗體和细胞代謝產物等。血细胞有红血球、白血球和血小板。哺乳類的血液具有凝血機制,血管破裂時,血小板會結集,堵塞血管破口,此時血漿中原本可水溶的血纖維蛋白等凝固成為血塊,剩餘的透明液體就叫做血清。 生物體的生理变化和病理变化往往引起血液成分的改变,所以血液成分的检测有重要的临床意义。 以人類的血液為例,成人的血液约占体重的十三分之一,相对密度为1.050~1.060,pH值为7.3~7.4,渗透压为313毫摩每升。ABO血型是人类的主要血型分類,可分為A型、B型、AB型及O型,另外還有Rh血型系统,MNS血型系统,P血型系统等血型系统。 另外,人類還有淋巴循環系統,跟血液和組織液有關係的。蚯蚓、昆虫等的循環系統液體稱為血淋巴,作用不是免疫而是类似血液运输营养和废物。.

新!!: 免疫系统和血液 · 查看更多 »

血清

血清(Serum)是指血液中既不含血细胞(血清不含红血球和白血球)也不含凝血因子的成分;也就是除去纖維蛋白原的血浆。.

新!!: 免疫系统和血清 · 查看更多 »

颗粒溶素

颗粒溶素(Granulysin,又译为“颗粒溶解素”)是一种由细胞毒性T细胞(CD8阳性T细胞)在接触被感染的细胞时释放的物质。其功能为通过靶细胞的膜上形成的小孔,从而诱导靶细胞凋亡,另外也与抗微生物相关。 颗粒溶素是一种能产生细胞溶解和炎症反应的分子,最早通过抑制消减杂交寻找在人细胞毒性T细胞激活3–5天时表达的基因发现。颗粒溶素会与具有穿孔能力的穿孔素和颗粒酶形成溶细胞颗粒。颗粒溶素具有广谱的抗微生物功能,能杀伤结核杆菌、疟原虫等,甚至能杀伤一些肿瘤。一系列源自颗粒溶素的氨基酸序列的多肽能作为潜在的抗细菌药。 颗粒溶素最近被认为与史蒂芬斯-強森症候群的发生--发展有关。.

新!!: 免疫系统和颗粒溶素 · 查看更多 »

食物中毒

食源性疾病(foodborne illness或foodborne disease),俗稱食物中毒(food poisoning),泛指所有因為進食了受污染食物、致病細菌、病毒,又或被寄生蟲、化學品或天然毒素(例如:有毒蘑菇)感染了的食物。根據如上各種致病源,食物中毒可以分為以下四类,即:化学性食物中毒、细菌性食物中毒黃麴毒素、霉菌毒素与霉变食品中毒和有毒动植物中毒。 食物中毒发病为非传染性的急性、亚急性疾病,可区别于其他食源性疾患。1994年中国卫生部颁发的《食物中毒诊断标准及技术处理总则》从技术上和法律上明确了食物中毒的定义。 食物中毒既不包括因暴饮暴食而引起的急性胃肠炎、食源性肠道传染病(如伤寒)和寄生虫病(如囊虫病),也不包括因一次大量或者长期少量摄入某些有毒有害物质而引起的以慢性毒性为主要特征(如致畸、致癌、致突变)的疾病。.

新!!: 免疫系统和食物中毒 · 查看更多 »

裂解

裂解(Pyrolysis,或称热解、热裂、热裂解、高温裂解)指有机物质於无氧气存在下的分解反应。它涉及的化学成分和物理相位的同时变化,并且是不可逆的反應。 裂解与干馏及烷烃的裂化反应有相似之处,同属于;但由於細部的差異與專門用途的不同,因此有不同的稱呼,如干馏、,和裂化反应。如果裂解的温度再升高,则会发生,所有的反应物都会转变为碳。 裂解与燃烧和水解等其他工艺不同之处在于它通常不涉及与氧,水或任何其它试剂的反应 ,但是在实作上,不一定會在完全无氧的环境下進行熱裂解反應,因为任何裂解系统中都存在一些空氣(含有氧),因此會发生少量的氧化反應。此外,若着火时(如火災)氧气供应较少,便會發生類似裂解的反应,这也是目前研究裂解反应机理和性质的重要原因。.

新!!: 免疫系统和裂解 · 查看更多 »

親水性

親水性指分子能夠透過氫鍵和水分子形成短暫鍵結的物理性質。因為熱力學上合適,這種分子不只可以溶解在水裡,也可以溶解在其他的極性溶液內。 一個親水性分子,或說分子的親水性部份,是指其有能力極化至能形成氫鍵的部位,並使其對油或其他疏水性溶液而言,更容易溶解在水裡面。親水性和疏水性分子也可分別稱為極性和非極性分子。 肥皂擁有親水性和疏水性兩端,以使其可以溶解在水裡,也可以溶解在油裡。因此可得,肥皂可以去除掉水和油之間的界面。.

新!!: 免疫系统和親水性 · 查看更多 »

香菇

香菇(学名:Lentinula edodes)又叫做冬菇、北菇、香蕈、厚菇、薄菇、花菇、椎茸,为小皮伞科香菇属的物种,是一种食用菇類。 一般食用的成員為,鲜香菇脱水即成乾香菇,便于运输保存,是一种重要的南北货。中菜广泛使用乾/鲜香菇。烹饪时需将乾香菇先行泡水发制。素三鲜中,香菇往往作为其中的一鲜出现。在斋食中,香菇亦为重要原料之一。.

新!!: 免疫系统和香菇 · 查看更多 »

訊息傳遞

訊息傳遞可以指.

新!!: 免疫系统和訊息傳遞 · 查看更多 »

骨髓

髓(bone marrow)位於較大骨骼的腔中,佔人體體重的4-6%,含有造血幹細胞以及多種其他的幹細胞,他們可以分化產生不同的組織。骨髓是重要的造血及免疫器官。血液的所有細胞成分都來源於造血幹細胞,其中髓系細胞(紅細胞系、粒細胞系、單核細胞系與巨核細胞-血小板系)是完全在骨髓內分化生成的;淋巴系細胞(T細胞與B細胞)的發育前期是在骨髓內完成;另外B細胞分化為漿細胞後,也回到骨髓,並在這裡大量產生抗體。通常人體在穩定狀況下,每小時約有1010個紅細胞與108-109個白細胞生成,以維持外周血循環中血細胞的組成與數量。.

新!!: 免疫系统和骨髓 · 查看更多 »

诺贝尔生理学或医学奖

诺贝尔生理学或医学奖(Nobelpriset i fysiologi eller medicin)由诺贝尔基金会管理,该奖项每年颁发一次,用于表彰在生理学或医学领域作出重要发现或发明的人。它是五项诺贝尔奖中的一项,诺贝尔奖是根据硝酸甘油炸药的发明者瑞典化学家阿尔弗雷德·诺贝尔的遗愿于1895年设立的。诺贝尔本人对实验生理学很感兴趣,并想为那些通过在实验室的科学发现而取得的新进展设立奖项。诺贝尔奖于每年12月10日的颁奖典礼上授予获奖者,这一天是诺贝尔的逝世纪念日,获奖者将被授予获奖证书及奖金证书。诺贝尔生理学或医学奖奖章的正面与物理学、化学及文学奖奖章相同,都镌刻着诺贝尔的浮雕像;但奖章的背面是独特的。 截至2015年,106次诺贝尔生理学或医学奖被授予了208名男性以及12名女性。第一枚诺贝尔生理学或医学奖于1901年授予德国生理学家埃米尔·阿道夫·冯·贝林,用于表彰他在血清疗法及白喉疫苗等方面所做的贡献。格蒂·科里是第一位获得该奖项的女性,她于1947年获得该奖,因其阐释了葡萄糖的代谢作用,这对治疗糖尿病以及解决众多医学问题有重要作用。 一些奖项至今仍有争议。包括1949年因提出前脑叶白质切除术而授予安东尼奥·埃加斯·莫尼斯的奖章,尽管这一做法受到了医疗机构的抗议。其他争议是由于对获奖人员的分歧而引起的。1952年,获奖者赛尔曼·瓦克斯曼被起诉至法庭,最终一半的专利权被赋予了其共同发现者之一但并未获得诺奖认同的艾伯特·沙茨。1962年这一奖项被授予詹姆斯·沃森,弗朗西斯·克里克和莫里斯·威尔金斯,表彰其在DNA的结构与性质方面所做的工作,但并未承认其他人的贡献,如在提名时已经逝世的奥斯瓦尔德·埃弗里和罗莎琳·富兰克林。因为诺贝尔奖的规则禁止提名死者,长寿也成为获奖的资产,有一项研究在长达50年之后才获得此奖。同时诺贝尔奖也禁止同一奖项的获奖者超过3人,鉴于过去半个世纪以来科学家们越来越倾向于团队合作,这一制度也导致了一些争议。.

新!!: 免疫系统和诺贝尔生理学或医学奖 · 查看更多 »

贅生物

新生物、息肉或贅生物(neoplasm),是指身體細胞組織不正常的增生,當生長的數量龐大,便會成為腫瘤(tumour)。而腫瘤亦可以是良性或惡性的。 肿瘤(英語:tumor或tumour)在医学上是指细胞的异常病变,而不一定是身体上面的肿块。这一种病变,使身体部分细胞有不受控制的增生,許多時会集结成为肿块。肿瘤分为良性肿瘤、恶性肿瘤。 良性肿瘤生长速度缓慢,表面较光滑。并不侵入邻近的正常组织内。瘤体周围常形成包膜,因此与正常组织分界明显。除非长在要害部位,良性肿瘤一般不会致命,大多数可被完全切除,很少有复发。癌症即是最常见的恶性肿瘤。恶性肿瘤分为上皮源性的“癌”和间质源性的“肉瘤”。在恶性肿瘤中,这一些增生的细胞,除了会集结成为肿块,还会扩散至其他部位增生。 肿瘤细胞与正常细胞相比,有结构、功能和代谢的异常,它们具有超过正常的增生能力,这种增生和机体不相协调。非肿瘤性增生和肿瘤性增生不同,前者常有明显的刺激性因素,且增生限于一定的程度和时间,一旦此因素消除,即不再增生,但如超越一定的限度,发生质变,则也可变为肿瘤性增生。.

新!!: 免疫系统和贅生物 · 查看更多 »

趨化性

趨化性(Chemotaxis,亦被称为化學趨向性)是趨向性的一種,指身體細胞、細菌及其他單細胞、多細胞生物依據環境中某些化學物質而趨向的運動(详细请看细胞迁移)。這對細菌尋找食物(如葡萄糖)十分重要,細菌以此趨進有較高食物分子濃度的地方,或遠離有毒(如苯酚)的地方。在多細胞生物中,趨化性對其發展和其他正常功能一樣不可或缺。另外,已證實此機制會在癌細胞移轉中被破壞掉。 正趨化性指趨向較高化學物質濃度的運動,而負趨化性則相反。.

新!!: 免疫系统和趨化性 · 查看更多 »

超抗原

#重定向 超级抗原.

新!!: 免疫系统和超抗原 · 查看更多 »

趋化因子

趋化因子(chemokines),也稱做趨化激素、趨化素或是化學激素。是一小分子细胞因子家族蛋白。趋化因子蛋白的共同结构特征包括,分子量小 (约8-10 千道尔顿),有四个位置保守的半胱氨酸残基以保证其三级结构。这些小蛋白因其有定向细胞趋化作用而得名。当然,这些蛋白有些趋化因子历史上还有其他的名字,包括已知的SIS细胞因子家族、 SIG细胞因子家族,SYC细胞因子家族和血小板因子-4家族。有的趋化因子被认为促进炎症反应,而有些趋化因子被认为在正常的修复过程或发育中控制细胞的迁徙。在所有脊椎动物和一些病毒和一些细菌中有趋化因子存在,但不存在于其他无脊椎动物。这些蛋白质结合到趋化因子受体而起作用,趋化因子受体是G蛋白偶联受体,选择性地表达在靶细胞表面。.

新!!: 免疫系统和趋化因子 · 查看更多 »

路易·巴斯德

路易·巴斯德(Louis Pasteur,),法国微生物学家、化学家,微生物学的奠基人之一。他以借生源说否定自然发生说(自生说)、倡导疾病细菌学说(--)以及发明预防接种方法而闻名,為第一個創造狂犬病和炭疽病疫苗的科學家,被世人称颂为 “进入科学王国的最完美无缺的人”。他和以及罗伯特·科赫一起开创了细菌学,被认为是微生物学的奠基者之一,常被稱为“微生物學之父”。 2005年,法国国家二台举行了“最伟大的法国人”的评选活动,结果巴斯德名列第二位,仅次于夏尔·戴高乐。.

新!!: 免疫系统和路易·巴斯德 · 查看更多 »

黏膜

黏膜是生物体(口腔、器官、胃、肠、尿道等器官里面)中由上皮组织和结缔组织构成的膜状结构。其结缔组织部分被称为固有层,其上皮组织部分被称为上皮,内有血管和神经,能分泌黏液。其作用是作为人体免疫系统的第一道防线。.

新!!: 免疫系统和黏膜 · 查看更多 »

黑素細胞

黑素細胞(melanocyte),又叫痣细胞(nevus cell),是一種動物細胞,帶有黑色素或是其他類似的色素。通常位於皮膚的表皮與眼睛的葡萄膜(虹膜後面的色素層)中。恆溫動物的黑色素細胞又稱為黑素細胞(melanocyte),除了黑色的色素以外,還能夠製造一些紅色或黃色的色素。變溫動物的黑色素細胞則只能製造黑色的色素。 黑素細胞的代謝若是受到破壞或抑制,會產生一些疾病,例如遺傳疾病白化症,與一種稱為黑色素細胞瘤(melanoma)的癌症。此外皮膚、毛髮和眼睛的顏色,以及黑痣、雀斑等皮膚上的斑點,也都與黑色素細胞有關。.

新!!: 免疫系统和黑素細胞 · 查看更多 »

黑色素瘤

黑色素瘤,又稱惡性黑色素瘤,是一種從黑色素細胞發展而來的癌症,是皮肤癌中罕见的癌症。好發於皮膚但也可能出現在口腔、腸道或眼睛中。女性患者的黑色素瘤最常出現在腿,而男性患者則最常出現在背部。有時黑色素瘤是由痣轉變發展而來,有這種轉變的痣外觀上的改變包括尺寸變大、邊緣變得不規則、顏色改變、發癢、或皮膚破壞。 對於膚色較淺的人而言,紫外線暴露是造成黑色素瘤的主因。太陽或日曬床都是可能的紫外線來源。大約有25%的黑色素瘤是從痣發展而來。有很多痣、家中曾有人得過黑色素瘤,以及免疫力低下的人,罹患黑色素瘤的風險都較高。一些罕見的基因缺陷,例如著色性乾皮症,也會增加罹患的風險。診斷方法是對可疑的皮膚病變部位進行切片檢查。 避免紫外線暴露以及使用防曬油可以預防黑色素瘤的產生。治療方法通常是手術切除。對於黑色素瘤較大的病患,會檢測鄰近的淋巴結來判斷是否發生轉移。若沒有轉移的話大部分的病患可被治癒。對於黑色素瘤已發生轉移的病患,、生物性治療、放射線治療或化學治療可能可以增加存活率在美國,病患在接受治療後,若只有局部病變五年存活率為98%,若已發生轉移,五年存活率則為17%。復發或轉移的可能性取決於該、細胞分裂速度、以及覆蓋其上的皮膚是否被破壞。 黑色素瘤是皮膚癌當中最危險的一種,其恶性程度高,是皮肤癌的主要死亡原因之一。2012年全球有232,000人罹患黑色素瘤,並造成55,000人死亡。澳洲和紐西蘭的黑色素瘤發生率為全球最高。歐洲和北美洲也有高發生率,但在亞洲、非洲和拉丁美洲,發生率則較低。男性得病的比例高於女性。1960年代以來,黑色素瘤在以白人為主的區域變得越來越常見。.

新!!: 免疫系统和黑色素瘤 · 查看更多 »

黄热病

黃熱病(la fièvre jaune; Yellow Fever, Yellow Jack, Yellow Plague,俗稱黃傑克、黑嘔,有時又稱美洲瘟疫)是一種急性病毒病。症狀通常包括發燒、冷顫、食慾下降、噁心、肌肉痛(特別是背部)與頭痛。症狀通常在發病5天內會改善;有些病人會在症狀改善1到2天後,發燒再度發生,出現腹痛,肝臟損傷導致黃疸,這類病患併發出血和腎衰竭的風險較高。 黃熱病是一種黃病毒科的節肢介體病毒引起的,此病毒是人类历史上发现的第一个人类病毒(发现的第一个病毒是烟草花叶病毒)。也是第一个被证实由蚊子进行传播的病毒,是最小的人外核糖核酸病毒之一,主要的傳播方式是蚊蟲叮咬。黃熱病只會感染人類、靈長類、白鼠、以及數種蚊蟲。在都市中,主要的黃熱病病媒蚊是埃及斑蚊。患黃熱病初期的症狀相當不容易與其他疾病分辨,若要確認,通常需要採取血液檢體接受聚合酶連鎖反應試驗。 目前已有安全有效的黃熱病疫苗,有些國家會要求旅客入境前需接種;其他預防感染措施包括減少病媒蚊等。在缺乏疫苗的流行區域,預防黃熱病爆發疫情很重要的是早期診斷及廣泛施打疫苗增加具免疫力之族群。一旦被感染,目前沒有有效對抗黃熱病毒的方法,處置以支持性療法為主。病情嚴重的病患若無處置死亡率約達五成。 黃熱病源自非洲,17世紀時因奴隸貿易傳往美洲,並在歐美非三洲都過大流行,直到18、19世紀,黃熱病都還被視為最危險的疾病之一。現在黃熱病每年感染約20萬人,並造成3萬人死亡(近九成發生在非洲)。有十億人口生活在黃熱病疫區,包括位處於熱帶的南美洲與非洲,但亞洲則沒有。自1980年代起,雖然早已有了特效疫苗黃熱病感染數再次開始上升,推測是由於具免疫力的人口減少、都市化造成人口密度提升、便利的人口移動、以及氣候變遷。黃熱病毒是第一個被發現的人類病毒。.

新!!: 免疫系统和黄热病 · 查看更多 »

黄芪

左:沙黃芪(黃芪 藜)右:熊辣椒(黃芪 膜質) 黃芪 膜質 (Astragalus glycyphyllos) 黄芪,又称北芪,亦作黄耆,常用中药之一,一般指豆科黄芪屬(Astragalus)植物。主产于中國大陸的内蒙古、山西、黑龙江等地。春秋两季采挖,除去须根及根头,晒干,切片,生用或蜜炙用。高学敏.

新!!: 免疫系统和黄芪 · 查看更多 »

鼠尾草

尾草(学名:Salvia japonica),又名𦳲(qing2)、日本紫花鼠尾草、南丹参,为唇形科鼠尾草属下的一个种。原产中国大陆浙江、安徽、江苏、江西、湖南,福建、广东、广西以及台湾和日本。.

新!!: 免疫系统和鼠尾草 · 查看更多 »

鼻,又称鼻子,是陸上動物呼吸的器官,屬呼吸系統一部份,也是許多哺乳類動物感應嗅覺的器官。 鼻一般在動物的頭部,可能是隆起,鼻對體外的開口叫作鼻孔,鼻孔讓空氣進入鼻腔內,兩孔氣流速度不同,且每隔幾小時就會交換一次。鼻有兩腔,被鼻中隔隔開,哺乳類動物的鼻腔內通常長有鼻毛,作用是過濾及吸收空氣中飄浮的塵埃及雜質,鼻腔壁有黏膜,有助於溼潤吸入的空氣,並附著雜質。鼻腔內後部則是鼻竇,位於鼻兩側的顱骨下,是感應嗅覺的神經,鼻腔連接咽喉,並與消化系統共用管道,再分支進入呼吸系統至肺部。 人類的鼻在面部的正中間。 除了動物,鼻亦可用作形容形狀與鼻相近的東西,例如飛機的前端便被稱為機鼻。.

新!!: 免疫系统和鼻 · 查看更多 »

輔助型T細胞

辅助T细胞(T helper cells,Th)是一种T细胞(白细胞的一种),它的表面有抗原受体,可以辨識抗原提呈細胞的MHC - II 类分子呈獻的抗原片段。 一旦受到抗原刺激,Th细胞就增殖和分化成作用性Th细胞(effector Th)和记忆Th(memory Th)细胞。.

新!!: 免疫系统和輔助型T細胞 · 查看更多 »

转化生长因子-β

1.

新!!: 免疫系统和转化生长因子-β · 查看更多 »

过敏

過敏(ἀλλεργία; 德语、法语: Allergie;allergy, allergic diseases)為人體接觸環境中部分對一般人影響不大的過敏原因子後,所引發的一系列超敏反應現象,人體對於某些過度反應的現象,包含過敏性鼻炎、食物過敏、蕁麻疹、異位性皮膚炎、哮喘與全身型過敏性反應等;症狀可能有紅眼、引起搔癢的皮疹、流鼻水、呼吸困難與腫脹等。食物耐受不佳與食物中毒是兩種不一樣的現象。 常見的過敏原有食物和花粉。金屬和其他物質也可能引發過敏。食物、蚊蟲叮咬和藥物常造成嚴重的過敏反應。症狀的發展同時取決於遺傳和環境。過敏的原始機制是免疫球蛋白E抗體,它是人體免疫系統的一部份,會與過敏原結合,並釋放組織胺等引起發炎的化學物質。過敏的確診通常依據病患的醫療史進行判斷。特定病例必須進行或血液檢驗做進一步判定。然而,檢驗結果為陽性,並不代表所檢驗的過敏原就是引發過敏的單一物質。 在幼年時期,暴露在常見的過敏原也許具有保護作用。美國1997-2011年間對18歲以下兒童進行調查,各年齡組間食物過敏患病率無差異顯著。然而,皮膚過敏隨著年齡的增加而下降,而呼吸道過敏隨著年齡的增加而增加。過敏的治療包括:避開已知的過敏原和使用皮質類固醇與抗組織胺藥。嚴重過敏時,應緊急靜脈注射腎上腺素。所謂的,是一種藉由將病人逐漸暴露在,越來越大量的過敏原下的治療方式,常用在某些特定的過敏疾病,像是乾草熱或是昆蟲叮咬。過敏原免疫療法,對於食物過敏的效果還不清楚。 過敏是相當常見的症狀。在開發中國家,大約20%的人被過敏性鼻炎所困擾,大約6%的人至少有過一次食物過敏的經驗,有將近20%的人,一生之中至少經歷一次異位性皮膚炎。依據國家的不同,有 1%到18%的人有氣喘的症狀,0.05%到2%的人會經歷全身性過敏。許多過敏性的疾病的比例有上升的趨勢。1906年,首次使用「allergy」這個字來命名過敏。 也有一種過敏稱「電視過敏」是因電視看太多所導致的過敏現象。.

新!!: 免疫系统和过敏 · 查看更多 »

蜂蜜

蜂蜜,--,是昆蟲蜜蜂從開花植物的花中採得的花蜜在蜂巢中釀製的蜜,为半透明、带光泽、浓稠的白色至淡黄色或橘黄色至黄褐色液体。自古被當成食物及藥物來使用,也被用於製作蠟燭等各種用品。中醫認為,蜂蜜性味甘、平,对腹痛、干咳、便秘等有疗效。 蜂蜜(因已由蜜蜂的唾液中的酵素分解)為兩種單糖類的葡萄糖和果糖所構成,可以被人體直接吸收,而不需要先分解为单糖,所以比白砂糖(蔗糖)更容易被人體吸收。成分除了葡萄糖、果糖之外還含有各種維生素、礦物質和氨基酸。1kg的蜂蜜含有2940kcal的熱量。 市售蜂蜜經過濃縮處理或天然封蓋熟成,水分含量可低於20%以下,細菌和酵母菌都不能在蜂蜜中存活,因此蜂蜜並不需要放入冰箱保存,某些厭氧菌(如肉毒桿菌)可以以非活性的孢子形態存在其中,因為嬰幼兒腸胃等消化器官过于稚嫩,胃酸的分泌較差,所以,一歲內的嬰兒不要食用沒有經過消毒的蜂蜜。蜂蜜中孢子並不會繁殖產生毒素,一般情況下,蜂蜜中的厭氧菌也沒有在人體內繁殖的危險。尚未封蓋熟成且未經濃縮處理的蜂蜜,因水分含量偏高,室溫下會快速發酵變質,因此仍需放入冰箱低溫保存。.

新!!: 免疫系统和蜂蜜 · 查看更多 »

胎兒

胎兒(拉丁語:fetus)是指已經懷於母體但尚未出生的人類。在法律上,胎兒因為尚非為人,不具權利主體地位,沒有權利能力。但是為了保護其將來得享有的利益,通常以非死產者為限,增設法律來保護胎兒之利益。 |- | width.

新!!: 免疫系统和胎兒 · 查看更多 »

胎盤

胎盤(學名:),又稱「胞衣」,是一種只有在雌性哺乳類動物懷孕時或是每一隻哺乳類動物還是胎兒時才有的暫時器官,位於子宮內側的表面。 胎盤由兩部分組成。一部分和胚胎在生物學與基因上都相連,另一部分是母體的一部分。 胎盤內層是羊膜囊,羊膜囊包含羊水。胎盤植入於子宮壁,並且從母體的血液獲取營養與氧氣,排出廢物。這個介面也是一個障壁,攔下某些可能會傷害胚胎的物質。但是很多物質是胎盤無法攔截的,像是酒精以及一些抽煙產生的物質。幾種病毒也可以穿過胎盤,如德國麻疹。 胎盤還有新陳代謝跟內分泌活動。胎盤會分泌黃體激素,對維持懷孕很重要。也會分泌乳促素,增加母體的血糖與血脂,使得胎兒的營養攝取增加。 胎盤由以血管與結締組織構成的臍帶與胚胎相連。 中醫學上,胎盤具有藥效,可補身養顏。製成中藥材的胎盤稱為紫河車。.

新!!: 免疫系统和胎盤 · 查看更多 »

胸腺

胸腺是动物的初级淋巴器官。人体內的其中一種腺體,部分骨髓免疫细胞(例如T细胞)在此成熟。 胸腺在人體內的胸骨上端,左右兩肺葉之間,甲狀腺下方,由两叶不对称的淡红色或略带黄色的薄片样组织构成。以前人們把胸腺和闌尾(盲肠下面的管子)一樣看待,認為是一個演化過程中的痕迹器官。随着近半世纪以來免疫學的進展,才認識到胸腺在人體免疫功能中的重要作用。 人胸腺的大小和结构随年龄的不同而有明显差异。胸腺出现于胚胎第9周,在胚胎第20周发育成熟,已具有正常胸腺的结构,是发生最早的免疫器官。新生期胸腺约重15-20g,至青春期可达30-40g。青春期以后,胸腺随年龄增长而逐渐萎缩,表现为胸腺细胞减少,间质细胞增多,并含有大量脂肪细胞。老年期胸腺萎缩,多被脂肪组织取代,功能衰退,造成细胞免疫力下降,机体容易发生感染和肿瘤。.

新!!: 免疫系统和胸腺 · 查看更多 »

胃是人和脊椎动物消化系統的一部分,是贮藏和消化食物的器官。 胃上接食道,下接十二指腸。位置大约位于人体的左上腹,肋骨以下。胃主要將大塊食物研磨成小塊,將食物中的大分子降解成較小的分子,以便進一步吸收。.

新!!: 免疫系统和胃 · 查看更多 »

胃酸

胃酸(gastric acid、gastric juice、stomach acid)是胃中的一种主要分泌物,為一種消化液,形成於胃用來消化食物。其pH值為1.5〜3.5,由鹽酸(HCl)(0.2%~0.5%的盐酸)和大量的氯化鉀(KCl)、氯化鈉(NaCl)所組成。酸起着蛋白質消化的關鍵作用,通過激活消化酶,並使得攝入的蛋白質瓦解,以便消化酶分解氨基酸長鏈。部分病人會因胃食道逆流而常產生咳嗽症狀。.

新!!: 免疫系统和胃酸 · 查看更多 »

防御素

防御素(defensins)是一種蛋白質,是分子很小(15-20残基)、富含半胱氨酸的阳离子蛋白质,属于抗微生物肽的一类。存在于脊椎动物和无脊椎动物。防御素有很强的抗细菌,真菌和具外套膜病毒作用。它们一般由15-20个氨基酸残基组成,包括6至8个保守的半胱氨酸残基。免疫系统的细胞含有这些肽协助杀死被吞噬的细菌,防御素存于嗜中性粒细胞和几乎所有的上皮细胞。大部分防御素的功能是一电子吸引力穿透微生物细胞膜,一旦嵌入,造成有胞膜不完整而至胞浆外溢。.

新!!: 免疫系统和防御素 · 查看更多 »

阴道

道(vagina)是一種纖維肌形成有彈性的柱狀通道的性器官,主要利於雌雄性交與分娩時的產道。在胎盤哺乳動物中(特別是灵长類),月经常是代表生殖繁衍能力的象徵,也是陰道另一個主要功能——週期性從子宮內膜剝落的黏膜組織和血液藉由陰道排出。陰道的型態大小與部位隨物種而不同,甚至同一物種在大小上亦有差異。人類陰道介於陰戶的開口到子宮之間,但陰道的末端止於子宮頸。 在(regio urogenitalis),不像雄性的哺乳動物常是以尿道出口作為單獨的外部尿生殖孔,雌性的哺乳動物常是兩個尿生殖孔,分別為尿道、陰道之用。陰道的開口比尿道孔大很多,兩者外有陰唇保護。而在兩棲動物、鳥類、爬行动物及單孔目的哺乳類動物的雌性身上,動物學家會稱之為泄殖腔的單獨開孔,功能上為腸道、尿道及生殖道共用。 陰道在女人的性與歡愉扮演要角。在人類或其他動物的性喚起過程中,陰道分泌液逐漸增加了陰道濕潤程度、減低摩擦、使通道環境平滑,而在性行為时,阴茎受到分泌液濕潤程度不一的摩擦助其勃射,使雌雄生殖細胞受精。另外,除了功能障碍的因素,會影響陰道的風險尚有各種性傳染疾病(STIs/STDs),因此有關當局如世界卫生组织等公共衛生與保健部門宣導推行安全性行為。 自古以來陰道在文化上存有若干認知上刻板概念,比如將陰道視為性渴望的焦點、生命至出生的譬喻象徵、地位屈在阴茎之下的器官、視覺上不討喜或其他不入流的代稱。.

新!!: 免疫系统和阴道 · 查看更多 »

蒜(学名:Allium sativum),亦名蒜頭。底下鳞茎味道辣,有刺激性气味,称为“蒜头”,可作调味料,亦可入药。蒜叶称为青蒜或蒜苗,花薹称为蒜薹,均可作蔬菜食用。蒜為五辛之一。林經緯等人.大蒜栽培管理技術.行政院農業委員會臺南區農業改良場,臺南.

新!!: 免疫系统和蒜 · 查看更多 »

肥大细胞

肥大細胞(mast cell),可分兩種,黏膜肥大細胞(mucosal mast cell)與結締組織肥大細胞(connective tissue mast cell),其中黏膜肥大細胞(MMC)必需依賴T細胞才能增殖。 肥大細胞類似嗜鹼性球,皆含有肝素(heparin)、組織胺、SRS-A及ECF-A。肥大細胞受到過敏原的刺激會發生脫顆粒作用。.

新!!: 免疫系统和肥大细胞 · 查看更多 »

肥胖症

肥胖症(Obesity)是指體脂肪累積過多而對健康造成負面影響的身體狀態,可能導致壽命減短及各種健康問題。肥胖的標準常使用身體質量指數(BMI)來衡量,即以體重(公斤)除以身高(公尺)的平方 。西方人認為BMI大於 即為肥胖,介於25到間則為過重;一些东亚国家採用更严格的标准,例如台灣行政院衛生署(今衛生福利部)於2002年4月公布台灣成人的BMI≧27 即為肥胖,24≦BMI<27 則為過重。但幼兒並不適合用成人的BMI標準來評量。 肥胖會增加心血管疾病、第二型糖尿病、睡眠呼吸中止症、某些癌症、退化性關節炎及其他疾病的發生機會。而造成肥胖的主因常包括熱量攝取過多、欠缺運動及體質問題等,其他如基因缺陷、內分泌異常、藥物影響及精神疾病也可能造成肥胖。有種說法認為「肥胖的人由於代謝慢,因此即使吃得不多也會越來越胖」,但目前的科學證據傾向不支持此種論點,因為肥胖的人必須花更多能量維持較重的體重,所以他們的代謝率反而高於常人。 肥胖的主要治療方式有飲食計畫和運動。患者在日常飲食中必須避免高熱量(高油高糖)食物並增加高纖食物,若良好的飲食控制無法有效減重,則可以考慮搭配來減低食慾和抑制脂肪吸收。如果飲食、運動、甚至搭配藥物都不見效,用來減少胃容積的胃內水球置放術可能會有幫助,以手術來減少胃容積或腸道長度也能直接降低食量並減少營養素的吸收。 肥胖是一種很常見的,也是21世紀最重要的公共衛生問題之一。目前成人與兒童的肥胖盛行率都在上升,且女性較男性更常發生。2014年,全球有6億名成人(13%)和4200萬名五歲以下的孩童有肥胖問題。歷史上,常視肥胖為財富與多產的象徵,部分國家現今仍保有這樣的看法;然而在現代社會中(尤其是西方國家),肥胖已經受到汙名化。2013年,美國醫學會將肥胖定義為一種疾病。.

新!!: 免疫系统和肥胖症 · 查看更多 »

肺是很多进行空气呼吸的动物的呼吸系统中重要的一个器官,大部分四足类动物、一些鱼类和蜗牛都有肺。哺乳动物和其他身体结构较为复杂的动物则拥有两个肺,其位于胸腔中靠近脊柱,并分别位于心脏的左右两侧。 肺的主要功能是将氧气从空氣运输到血液中,并将二氧化碳从血液中排出至大气中。气体交换过程是在一种特殊细胞中进行的,而这些细胞是由成千上万的微小薄壁泡囊组成的,这些微小泡囊被称作"肺泡"。 为了能够完整解释肺部的结构,需要首先对从口腔到肺泡的这一呼吸道进行讨论。当空气通过嘴或者鼻子被吸入后,会通过咽、喉头、气管和逐渐分化的支气管和小支气管,并最终到达肺泡,在那里将发生二氧化碳和氧气的气体交换过程。 空气的呼入与排出(也称换气)是由肌肉进行控制和驱动的。在早期的四足类动物中,空气是由咽部肌肉通过泵抽的形式被驱动的,而爬行动物、鸟类和哺乳动物则使用一个更为复杂的肌肉骨骼系统。 与肺相关的英语医学术语通常都以pulmo-作为词根,这个词根来自于拉丁语pulmonarius,意为“肺部的”;或者以pneumo-作为词根,这个词根来自于希腊语πνεύμων,意思为“肺”。.

新!!: 免疫系统和肺 · 查看更多 »

肽(peptide,來自希臘文的“消化”),即胜肽,又稱縮氨酸,是天然存在的小生物分子,介於胺基酸和蛋白質之間的物質。 由於胺基酸的分子最小,蛋白質最大,而它們則是氨基酸單體組成的短鏈,由肽(酰胺)鍵連接。當一個氨基酸的羧基基團與另一個氨基酸的氨基反應時,形成該共價化學鍵。肽由氨基酸組成的短鏈是精準的蛋白質片段,其分子只有纳米般大小,腸胃、血管及肌膚皆極容易吸收。二胜肽(簡稱二肽),就是由二個胺基酸組成的蛋白質片段,兩個或以上的胺基酸脫水縮合形成若干個肽鍵從而組成一個肽,多個肽進行多級折叠就組成一個蛋白質分子。蛋白質有時也稱為“多肽”。.

新!!: 免疫系统和肽 · 查看更多 »

肿瘤坏死因子-α

肿瘤坏死因子-α(TNF-α)是一种涉及到系统性炎症的细胞因子,同时也是属于引起的众多细胞因子中的一员。主要由巨噬细胞分泌,不过有一些其它类型的细胞也能生产。 肿瘤坏死因子α的主要作用是调节免疫细胞的功能。作为一种内源性致热原,它能够促使发热,引起细胞凋亡,(通过诱使产生''IL1''和)引发败血症,引起恶病体质,引发炎症,阻止肿瘤发生和。 肿瘤坏死因子α生产的失调被认为与许多人类疾病有关,包括阿茲海默氏症、癌症、重性抑郁障碍和肠炎。虽然仍有争议,不过当前的研究认为肿瘤坏死因子α的水平与抑郁和肠炎有关。基因工程生产的肿瘤坏死因子α被用作(国际非专利药品名称为他索纳明)。 肿瘤的恶变过程中,肿瘤坏死因子α常异位表达,而其过量表达同副甲狀腺素一道与引发继发性高钙血症和癌症有关。.

新!!: 免疫系统和肿瘤坏死因子-α · 查看更多 »

铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.

新!!: 免疫系统和铁 · 查看更多 »

铜(copper)是化学元素,化学符号Cu(来自cuprum),原子序数29。纯铜是柔软的金属,表面刚切开时为红橙色帶金屬光澤、延展性好、导热性和导电性高,因此在电缆和电气、电子元件是最常用的材料,也可用作建筑材料,以及組成众多種合金。铜合金机械性能优异,电阻率很低,其中最重要的是青铜和黄铜。此外,铜也是耐用的金属,可以多次回收而无损其机械性能。 人类使用铜及其合金已有数千年历史。古罗马时期铜的主要开采地是塞浦路斯,因此最初得名cyprium(意为塞浦路斯的金属),后来变为cuprum,这是copper、cuivre和Kupfer的来源。二价铜盐是常见的铜化合物,常呈蓝色或绿色,是蓝铜矿和绿松石等矿物颜色的来源,历史上曾广泛用作颜料。铜质建筑结构受腐蚀后会产生铜绿(碱式碳酸铜)。装饰艺术主要使用金属铜和含铜的颜料。 铜是所有生物所必需的微量膳食矿物质,因为它是呼吸酶复合体细胞色素c氧化酶的关键组分。软体动物和甲壳亚门动物的血液色素血蓝蛋白中含有铜。鱼类和其他哺乳动物的血液中则是含铁的复合物血红蛋白。铜在人体中主要分布于肝脏、肌肉和骨骼中。铜的化合物可用作、杀真菌剂和木材防腐剂。.

新!!: 免疫系统和铜 · 查看更多 »

锥虫

锥虫(Trypanosoma,希腊语:trypaô钻,soma体)是一种带鞭毛的原生动物(鞭毛虫),它可寄生在多种温血动物和冷血动物中。 布氏罗得西亚锥虫(Trypanosoma brucei rhodesiense)和布氏冈比亚锥虫(Trypanosoma brucei gambiense)是非洲昏睡症的病原体。.

新!!: 免疫系统和锥虫 · 查看更多 »

锌(zinc)是一种化学元素,它的化学符号是Zn,它的原子序数是30,相对原子质量是65.39,是一种浅灰色的过渡金属;鋅由於形、色類似鉛,故也稱為亞鉛,古稱倭鉛。 外觀呈現銀白色,主要用途為鍍鋅,在現代工業中對於電池製造上有不可磨滅的地位,最具代表性之用途為「鍍鋅鐵板」,該技術被廣泛用於汽車、電力、電子及建築等各種產業中,於生活中相當重要的金屬。.

新!!: 免疫系统和锌 · 查看更多 »

脊椎动物

脊椎动物亚门是脊索动物门下的一个亚门。拉丁文学名是Vertebrata,词根是“vertebra”,意为脊椎骨。目前所知最早的脊椎動物是中國雲南省昆明發現的豐嬌昆明魚,距今約五億三千萬年前。 和節肢動物殼長在體外或軟體動物無骨骼不同,脊椎动物亚门的动物的脊椎都包在骨头里面,是脊索动物门中最大和最先进的亚门。这个亚门的成员拥有的肌肉大多数是一对一对的肌肉。神经系统有一部分在脊梁骨中间。循环系统较完善,有心脏可以促进血液循环。脂肪組織是絕大多數脊椎動物特有的構造,可以使之一段時間不進食,而不會能量耗竭而死。 脊椎动物亚门动物的脊椎是体内骨,有软骨也有硬骨。在动物成长时,这个骨架支持体型。因此脊椎动物可以比无脊动物长得大,而且平均体量也比较大。.

新!!: 免疫系统和脊椎动物 · 查看更多 »

脾脏

脾臟是脊椎動物的一種外周淋巴器官在無特別指明情況下,本文中「脾」或「脾臟」專指人的脾臟。人類的脾臟位於腹腔的左上方,由紅髓、白髓、邊緣區,以及將之被覆的被膜、小樑組成。健康成人的脾臟約重150-200克。活體時,脾爲暗紅色,質軟而脆,在受暴擊時容易破裂。 脾是人類成體最大的淋巴器官。在成體內的主要功能爲儲存免疫細胞、濾血以及儲血。脾臟內有各類淋巴細胞,主要由B細胞(大約60%)和T細胞組成,另外亦有少量NK細胞,當機體受病原體入侵時,脾內的免疫細胞即會做出免疫反應。脾臟的濾血作用則主要由巨噬細胞執行。脾內的巨噬細胞可以清除血液中的異物、抗原,以及衰老的紅細胞, Internet Encyclopedia of Science。另外,脾內可以儲存一定的血液,馬、犬的脾臟的儲血量甚至可達總血量的1/4,但人脾儲血量較少,只有40毫升。機體缺血時,脾臟被膜和小樑中的平滑肌可發生收縮,將其中的血液擠出。 在胚胎發育早期,脾亦有造血功能,但紅骨髓開始造血後,脾即逐漸喪失造血功能,惟成年後,脾内仍有少量造血幹細胞,當機體嚴重缺血或出現嚴重造血障礙時,脾可恢復造血功能。.

新!!: 免疫系统和脾脏 · 查看更多 »

重症聯合免疫缺陷

#重定向 嚴重複合型免疫缺乏症.

新!!: 免疫系统和重症聯合免疫缺陷 · 查看更多 »

自由基

自由基(英語:Free Radical),又称游离基,是指化合物的分子在光热等外界条件下,共价键发生均裂而形成的具有不成对电子的原子或基团。在书写时,一般在原子符号或者原子团符号旁边加上一个“·”表示没有成对的电子。如氢自由基(H·,即氢原子)、氯自由基(Cl·,即氯原子)、(OH·),甲基自由基(CH3·)和四甲基哌啶氧自由基等。自由基极易发生反应(如二聚反应、夺氢反应、氧化反应、歧化反应等)。自由基可以是带正电荷,负电荷或者不带电荷。虽然金属以及它们的离子或者它们的络合物有不成对的电子,但按照常规习惯定义不算是自由基。 除了极个别情况, 大多数的未成对电子形成的自由基都具有较高的化学活性。 自由基反应在燃烧、大气化学、聚合反应、等离子体化学、生物化学和其他各种化学学科中扮演很重要的角色。在化学生物学当中,过氧化物和一氧化氮调节着许多生物过程比如控制血管张力。这样的自由基可以作为一种称为氧化还原信号当中的信使。自由基可被溶剂笼包围。.

新!!: 免疫系统和自由基 · 查看更多 »

自然杀伤细胞

自然殺手細胞(natural killer cell)是一種細胞質中具有大顆粒的细胞,也稱NK细胞(NK cell)。由骨髓淋巴样干细胞發育而成,其分化、发育依赖于骨髓或胸腺微环境,主要分布于外周血和脾脏,在淋巴结和其他组织中也有少量存在。因為其非專一性的細胞毒殺作用而被命名。沒有T細胞與B細胞所具的受體,不會進行受體的基因重組(B細胞、T細胞的V(D)J重組,以及B細胞的)。但仍具有一些特殊受體,稱為“殺傷細胞免疫球蛋白樣受體”,可以活化或抑制其作用在血液中循環,但也在骨髓,脾臟、淋巴結中出現,約佔所有淋巴球的細胞的5~10%,但它可以消滅許多種病原體及多種腫瘤細胞。自然殺手細胞會直接和陌生細胞接觸,並以細胞膜破裂之方式殺死此細胞,可利用分泌穿孔素及腫瘤壞死因子,摧毀目標細胞。 一般认为在外周血单核细胞(PBMC)中分选到CD56+/CD3-的细胞即为NK细胞。.

新!!: 免疫系统和自然杀伤细胞 · 查看更多 »

自體免疫性疾病

自體免疫性疾病(Autoimmune disease),亦作自體免疫問題,是人體內的異常的免疫反應攻擊了正常細胞。至少有80種自體免疫性疾病。身體任何部位都可能發生。常見症狀包括輕度發燒,感覺疲倦。症狀常常快速出現與消退。 所謂異常的免疫能力,就是認友為敵,把自己身體裡本來不是病毒或細菌的東西,當成病毒或細菌來攻擊,希望將之驅出體外。人體內免疫系統的抗體原本是針對外來的抗原或體內不正常的細胞(如腫瘤細胞)進行攻擊與清除,是保護身體的一種生理機制。但在一些情形下,免疫系統可能會產生出對抗自己身體內正常細胞(甚至細胞內的各種正常組成部份)的抗體,造成不正常的過度發炎反應或是組織傷害,進而影響身體健康造成疾病。這些認友為敵、攻擊不該攻擊對象的抗體,便稱為自體免疫抗體(Autoantibody,亦作自體抗體)。 目前發生原因仍不明確。某些自體性免疫疾病如家族性紅斑性狼瘡以及某些案例中是由感染或其他環境因子誘發。一般認為是自體免疫造成的常見疾病包括乳糜瀉,第1型糖尿病,格雷夫斯病,炎性腸病,多發性硬化症,牛皮癬,類風濕性關節炎和系統性紅斑狼瘡。診斷上難以鑑定。 治療方式取決於病情的類型和嚴重程度,常使用非甾體抗炎藥(NSAIDs)和免疫抑製劑,也可使用靜脈免疫球蛋白。治療會改善症狀,但通常不能治癒這些疾病。 美國約有2400萬(7%)人受到自體免疫性疾病的影響。女性發生比例較男性高。通常在成年期間開始發生。自身免疫性疾病在20世紀初第一次被描述。.

新!!: 免疫系统和自體免疫性疾病 · 查看更多 »

金黃色葡萄球菌

金黄色葡萄球菌(學名:Staphylococcus aureus)为一种革兰氏染色阳性球型细菌。工业上利用金黄色葡萄球菌制备蛋白质A——抗激素化学分析中的细胞壁组成成分。.

新!!: 免疫系统和金黃色葡萄球菌 · 查看更多 »

酪氨酸酶

#重定向 酪氨酸羟化酶.

新!!: 免疫系统和酪氨酸酶 · 查看更多 »

酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.

新!!: 免疫系统和酶 · 查看更多 »

腸可以是:.

新!!: 免疫系统和腸 · 查看更多 »

酸奶

酸奶(英語:Youghurt或Yogurt,又称--、酸乳、優酪乳)是乳製品的一种,由动物乳汁经乳酸菌發酵而產生。優--格一词源自土耳其語的yoğurt(讀音:),引申自形容詞yoğun,意思是濃稠及豐厚,又或是另一動詞yoğurmak意思為「揉、使之濃稠」,都是製作乳酪的動作和方法。.

新!!: 免疫系统和酸奶 · 查看更多 »

腸胃炎

肠胃炎是以胃和小肠炎症为特征的胃肠道病症,可导致腹泻、呕吐、腹部的疼痛和绞痛合并而成疾病表现。虽然与流感并无关系,但该病也被称为肠胃型感冒和消化道流感。 全球大部份兒童的腸胃炎是因爲受到轮状病毒感染。成年人則以轮状病毒和弯曲杆菌感染爲主,其他原因包括不同的細菌或細菌毒素,與及寄生蟲。感染途徑是進食不潔食物或飲用污染的水,或近距離接觸病人。 治疗以充分补水为基础。对于轻度或中度病例,可通过口服补液溶液来完成。对于更为严重的病例,可能需要静脉补液。肠胃炎的主要患病人群是儿童和发展中国家的人们。 食慾不振,感覺不到飢餓。.

新!!: 免疫系统和腸胃炎 · 查看更多 »

艾滋病

获得性免疫缺陷综合征(acquired immune deficiency syndrome,缩写为AIDS,音译为艾滋病),源自于一种反轉錄病毒——人類免疫缺乏病毒(human immunodeficiency virus,缩写为HIV)感染后,导致免疫系統被破壞,逐漸成為許多伺機性疾病的攻擊目標,进而促成多種臨床症狀New disease baffles medical community, J. L. Marx, Science, 2003, 217 (4560): 618–621. 。 HIV為脆弱的RNA病毒,如暴露在空氣中,依照病毒量多寡会在幾秒鐘至幾分鐘之內全數死亡。HIV特性原本即特別脆弱且不能接觸空氣,HIV的感染大多於較封閉環境,如血管裡面傳播(輸血/共用針筒方式等), 陰道或肛門直腸的環境(如無套陰交、肛交),透過潛藏在血液、精液、陰道分泌液、母乳等傳染,不包括唾液, 汗液, 尿液或其他體液。一般情况下,接吻不会造成感染HIV。 愛滋病與HIV感染兩者,具有本意上的不同。HIV感染後,若獲得控制(有些不須藥物即可控制)、或在發病前的潛伏期,HIV病患則為HIV帶原者。唯病發後之相關症狀,則稱為愛滋病。.

新!!: 免疫系统和艾滋病 · 查看更多 »

雄激素

素(androgen、androgenic hormones或testoids),也譯為雄性激素、男性激素、男性荷爾蒙,是一種化學成合物的泛稱。在於脊椎動物中,凡是能夠與雄激素受器(androgen receptor)結合,造成男性性徵的發展、維持的化學合成物,都可稱為雄性激素。雄性激素通常屬於類固醇激素,是天然合成的,但是現代化學家已經發展出人工合成的方法。值得注意的是成年男人無論施打多少劑量的雄激素都無法讓生殖器再次發育成長,反而容易因劑量掌控不當衍生出更多的生殖疾病。.

新!!: 免疫系统和雄激素 · 查看更多 »

蛋,是鳥類、爬蟲類和兩棲動物所生、帶有硬殼的卵,受精之後可孵出小動物,為人類食用已有幾千年歷史。蛋由蛋殼保護,而當中的蛋白和蛋黃被各種薄膜包裹。 蛋黃和全蛋存儲大量的蛋白質、膽鹼和其他營養素。故此,美國農業部將蛋在飲食金字塔中界定為肉類。 最常為人類食用的蛋是雞蛋,其他較常作食用的蛋有鴨蛋、鵪鶉蛋、鵝蛋等。.

新!!: 免疫系统和蛋 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

新!!: 免疫系统和蛋白质 · 查看更多 »

蛋白质合成

蛋白质合成是根據DNA和RNA組成蛋白質。蛋白質自然合成和人工合成的方法大不相同。.

新!!: 免疫系统和蛋白质合成 · 查看更多 »

蛋白酶

蛋白酶(protease)是生物體內的一類酶(酵素),它們能夠分解蛋白質。分解方法是打斷那些將氨基酸連結成多肽鏈的肽鍵。 抑制蛋白酶活性的小分子化合物被称蛋白酶抑制剂。许多病毒蛋白酶的抑制剂是很有效的抗病毒药。.

新!!: 免疫系统和蛋白酶 · 查看更多 »

蛋白酶解

蛋白酶解或蛋白水解(Proteolysis)是指蛋白质降解为较小的多肽或氨基酸的过程。通常情况下,被水解的都是肽键,且在蛋白酶的作用下进行,因此常用蛋白酶解。但也可能发生分子内消化,以及不依赖酶的途径,如酸和热的作用而产生的降解。 蛋白酶解在有机体中有多种用途,比如消化酶降解食物中的蛋白,为机体提供氨基酸;完成翻译的多肽链也需要水解加工才能产生有活性的蛋白质;某些生理和细胞过程的调控也是通过蛋白质的酶解进行;还有蛋白酶解可以防止不必要的或不正常的蛋白质在细胞中的积累。.

新!!: 免疫系统和蛋白酶解 · 查看更多 »

造血干细胞

造血干细胞(Hematopoietic stem cell)是所有血细胞的原始细胞。所有的血细胞都是由造血干细胞定向分化、增殖而成。 人类的造血干细胞在胚龄第2~3周时开始产生,主要产生造血干细胞的位置在卵黄囊。胚龄第2~3月时,主要产生造血干细胞的位置在肝和脾。胚龄第5个月起,一直到出生之后,主要产生造血干细胞的位置在骨髓。.

新!!: 免疫系统和造血干细胞 · 查看更多 »

限制性修饰系统

#重定向 限制修飾系統.

新!!: 免疫系统和限制性修饰系统 · 查看更多 »

IgG

#重定向 免疫球蛋白G.

新!!: 免疫系统和IgG · 查看更多 »

III型分泌系统

III型分泌系统(Type III secretion system 缩写TTSS或T3SS)是革兰氏阴性菌的一个由多组分蛋白复合体形成的跨膜通道,它通过分泌蛋白,或把这些毒力蛋白直接注入宿主细胞中发挥致病作用。 在病原性细菌中,针状结构被用作传感探针来检测真核生物体的存在和分泌蛋白以帮助细菌感染它们。分泌的是直接从细菌细胞分泌到真核(宿主)细胞,在那里它们施加了许多效果,可有助于病原体存活和逃避免疫反应。.

新!!: 免疫系统和III型分泌系统 · 查看更多 »

PDF

#重定向 可移植文档格式.

新!!: 免疫系统和PDF · 查看更多 »

PH值

pH,亦称pH值、氢离子浓度指数、酸鹼值,是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。这个概念是1909年由丹麦生物化学家瑟倫·索倫森(Søren Peder Lauritz Sørensen)提出的。「pH」中的「H」代表氫離子(H+),而「p」的來源則有幾種說法。第一種稱p代表德语「Potenz」,意思是力度、強度;第二種稱pH代表拉丁文「pondus hydrogenii」,即「氫的量」;第三種認為p只是索倫森随意选定的符号,因为他也用了q。现今的化学界把p加在无量纲量前面表示该量的负对数。 通常情况下(25℃、298K左右),当pH小于7的时候,溶液呈酸性,当pH大于7的时候,溶液呈碱性,当pH等于7的时候,溶液为中性。 pH允许小于0,如鹽酸(10 mol/L)的pH为−1。同样,pH也允许大于14,如氫氧化鈉(10 mol/L)的pH为15。.

新!!: 免疫系统和PH值 · 查看更多 »

RNA干扰

RNA干扰(RNA interference,缩写为RNAi)是指一种分子生物学上由双链RNA诱发的基因沉默现象,其机制是通过阻碍特定基因的轉译或转录来抑制基因表达。当细胞中导入与内源性mRNA编码区同源的双链RNA时,该mRNA发生降解而导致基因表达沉默。与其它基因沉默现象不同的是,在植物和線蟲中,RNAi具有传递性,可在细胞之间传播,此現象被稱作系統性RNA干擾(systemic RNAi)。在秀丽隐杆线虫上实验时还可使子一代产生基因突变,甚至於可用喂食細菌給線蟲的方式讓線蟲得以產生RNA干擾現象。RNAi现象在生物中普遍存在。2006年,安德鲁·法厄(Andrew Z. Fire)与克雷格·梅洛(Craig C. Mello)由于在秀丽隐杆线虫的RNAi机制研究中的贡献而共同获得诺贝尔生理及医学奖。 RNAi与转录后基因沉默(post-transcriptional gene silencing and transgene silencing)在分子層次上被证实是同一种现象。.

新!!: 免疫系统和RNA干扰 · 查看更多 »

T细胞

T细胞(T cell、T淋巴細胞/T lymphocyte)是淋巴细胞的一种,在免疫反應中扮演着重要的角色。T细胞在胸腺内分化成熟,成熟后移居于周围淋巴组织中。T是“胸腺”(thymus)而不是甲狀腺(thyroid)的英文缩写。T细胞膜表面分子与T细胞的功能相关,也是T细胞的表面标志(cell-surface marker),可以用以分离、鉴定不同亚群的T细胞。.

新!!: 免疫系统和T细胞 · 查看更多 »

T细胞受体

T细胞受体(T cell receptor, TCR)是T细胞表面的特异性受体,负责识别由主要组织相容性复合体(MHC)所呈递的抗原,与B细胞受体不同,并不能识别游离的抗原。通常情况下,T细胞受体与抗原间拥有较低的亲和力,因而同一抗原可能被不同的T细胞受体所识别,某一受体也可能识别许多种抗原。 T细胞受体是异源二聚体,由两个不同的亚基所构成。95%的T细胞的受体由α亚基和β亚基构成,另外5%的受体由γ亚基和δ亚基构成。这个比例会因为个体发育或是疾病而变化。 T细胞受体与MHC所呈递的多肽的特异性结合会引发一系列生化反应,并通过众多的辅助受体、酶和转录因子激活T细胞,促进其分裂与分化。.

新!!: 免疫系统和T细胞受体 · 查看更多 »

Toll样受体

類鐸受体(Toll-like receptors,缩写TLR,或译为--)是I型跨膜蛋白质,识别侵入体内的微生物进而激活免疫细胞的应答。被认为在先天性免疫系统中起关键作用。類Toll受体是模式识别受体(pattern recognition receptors,PRR)的一类,识别与宿主不同的病原体分子。这些分子被统称为病原相关分子模式(pathogen-associated molecular patterns,PAMP)。但是,也有一些例外情况。在脊椎动物(包括鱼类、两栖类、 哺乳类、鸟类、爬虫类)以及无脊椎动物(如昆虫果蝇已被广泛研究)发现有類Toll受体。在细菌和植物以及更高的生物界中也发现有類Toll受体。所以,類Toll受体是最古老最保守的免疫系统的组成部分,也被称作原始模式识别受体,因为它们在免疫系统的其他部分之前演变, 尤其是在后天免疫系统之前。 「類鐸受體」這個名稱是來自於1985年在黑腹果蠅體內發現的鐸基因。「鐸」來自於的德文的「toll」,為嘆詞。當時研究人員在發現時說出一句「這太棒了!」("Das ist ja toll!"〉,因此而得名。.

新!!: 免疫系统和Toll样受体 · 查看更多 »

抗原

抗原(antigen,縮寫Ag)為任何可誘發免疫反應的物質,不只是從病原體那裡取得,一般來說體內發現分子夠大的有機物就有可能作為一個適合的抗原,這樣也就會導致例如過敏等問題。外來分子可經過B細胞上免疫球蛋白的辨識或經抗原呈現細胞的處理並與主要組織相容性複合體結合成複合物再活化T細胞,引發連續的免疫反應。.

新!!: 免疫系统和抗原 · 查看更多 »

抗原原罪

抗原原罪(英文:original antigenic sin),又稱霍斯金現象(Hoskins effect), 是指身體免疫系統在遭遇到與初次感染有些微不同的外來物(如:病毒或細菌)時,傾向利用初次產生的免疫記憶,而非再次產生免疫反應的一種特性。這會使免疫系統「受制於」初次抗原引起的免疫反應,而不能針對之後的抗原感染產生最有效的反應(前提是兩次接觸的不同抗原僅能有些許差異)。抗原原罪的現象被認為與流感病毒、登革熱、人類免疫缺陷病毒(HIV)和其餘一些病毒有關。 此現象最初由Thomas Francis二世於1960年提出,以” On the Doctrine of Original Antigenic Sin”之名在專欄發表。 他以神學中原罪的概念作為類比來命名此現象。下文根據最初發現者Thomas Francis,並引述自Richard Krause: "The antibody of childhood is largely a response to dominant antigen of the virus causing the first type A influenza infection of the lifetime.

新!!: 免疫系统和抗原原罪 · 查看更多 »

抗原呈递细胞

抗原呈递细胞(antigen-presenting cell、APC)也称为抗原提呈细胞、辅佐细胞或抗原呈現細胞,是指在免疫应答过程中,能将抗原物质提呈给T细胞的一类辅佐细胞。APC是一群异质性细胞,白细胞中主要有单核-巨噬细胞和树突状细胞,一些非白细胞在细胞因子的影响下,也可呈现提呈细胞的功能(如内皮细胞等)。其细胞表面的MHC分子可以和抗原结合。T细胞可以识别这些MHC分子和抗原的复合体。.

新!!: 免疫系统和抗原呈递细胞 · 查看更多 »

抗原表位

抗原表位(antigenic epitope),简称“表位”,也称为“抗原决定簇”(antigenic determinant),是指抗原表面上决定抗原特异性的化学基团。抗原表位可被免疫系统(尤其是抗体、B细胞或者T细胞)识别。抗体中能识别抗原表位的区域叫做“互补位”或“抗体决定簇”。尽管通常抗原表位是指外来蛋白质等物质的其中一部分,但只要能被自身免疫系统所识别的表位,也被归为抗原表位。 蛋白质抗原的表位根据它们的结构以及与互补位的交互作用,被分为构象表位和线性表位这两种类型。其中构象表位有抗原氨基酸序列中的不连续部分组成,因此互补位和抗原表位的交互作用是基于表面的三位特征和形状,或者是抗原的三级结构。大部分的抗原表位都属于构象表位。与此相反,线性表位是由一段连续的抗原氨基酸序列构成,与抗原的交互作用的基础是其一级结构。.

新!!: 免疫系统和抗原表位 · 查看更多 »

抗体

抗體,又稱免疫球蛋白(immunoglobulin,簡稱Ig),是一种主要由浆细胞分泌,被免疫系统用来鉴别与中和外来物质如细菌、病毒等病原体的大型Y形蛋白质,仅被发现存在于脊椎动物的血液等体液中,及其B细胞的细胞膜表面。抗体能通过其可变区唯一识别特定外来物的一个独特特征,该外来目标被称为抗原。蛋白上Y形的其中两个分叉顶端都有一被称为互补位(抗原結合位)的锁状结构,该结构仅针对一种特定的抗原表位。这就像一把钥匙只能开一把锁一般,使得一种抗体仅能和其中一种抗原相结合。 抗体和抗原的结合完全依靠非共价键的相互作用,这些非共价键的相互作用包括氢键、范德华力、电荷作用和疏水作用。这些相互作用可以发生在侧链或者多肽主干之间。正因这种特异性的结合机制,抗体可以“标记”外来微生物以及受感染的细胞,以诱导其他免疫机制对其进行攻击,又或直接中和其目标,例如通过与入侵和生存至关重要的部分相结合而阻断微生物的感染能力等,就像通緝犯上了手銬和腳鐐一樣。针对不同的抗原,抗体的结合可能阻断致病的生化过程,或者召唤巨噬细胞消灭外来物质。而抗体能够与免疫系统的其它部分交互的能力,是通过其Fc区底部所保留的一个糖基化座实现的 。体液免疫系统的主要功能便是制造抗体。抗体也可以与血清中的补体一起直接破壞外来目标。 抗體主要由一種B细胞所分化出来的叫做漿細胞的淋巴細胞所製造。抗体有两种物理形态,一种是从细胞分泌到血浆中的可溶解物形态,另一种是依附于B细胞表面的膜结合形态。抗体与细胞膜结合后所形成的复合体又被称为B细胞感受器(B Cell Receptor,BCR),这种复合体只存在于B细胞的细胞膜表面,是激活B细胞以及后续分化的重要结构。B细胞分化后成为生产抗体的工厂的浆细胞,或者长期存活于体内以便未来能迅速抵抗相同入侵物的记忆B细胞。在大多数情况下,与B细胞进行互动的辅助型T细胞对于B细胞的完全活化是至关重要的,因为辅助型T细胞负责识别抗原,并促使B细胞能分化出能与该抗原相结合的抗体的浆细胞和记忆型B细胞。而可溶性抗体则被释放到血液等体液当中(包括各种分泌物),持续抵抗正在入侵的外来微生物。 抗体是免疫球蛋白超家族中的一种醣蛋白 。它们是血浆中丙种球蛋白的主要构成成分。抗体通常由一些基础单元组成,每一个抗体包括:两个長(大)的重链,以及两个短(小)的轻链。而輕鏈和重鏈之間以雙硫鍵連接。輕鏈和重鏈又分為可變區和恆定區,而不同类型的重链恆定區,将会导致抗体种型的不同。在哺乳类动物身上已知的不同种型的抗体有五种,它们分别扮演不同的角色,并引导免疫系统对所遇到的不同类型外来入侵物产生正确的免疫反應。 尽管所有的抗体大体上都很相似,然而在蛋白质Y形分叉的两个顶端有一小部分可以发生非常丰富的变化。这一高变区上的细微变化可达百万种以上,该位置就是抗原结合位。每一种特定的变化,可以使该抗体和某一个特定的抗原结合。这种极丰富的变化能力,使得免疫系统可以应对同样非常多变的各种抗原。之所以能产生如此丰富多样的抗体,是因为编码抗体基因中,编码抗原结合位(即互补位)的部分可以随机组合及突变。此外,在免疫种型转换的过程中,可以修改重链的类型,从而制造出对相同抗原專一性的不同种型的抗体,使得同种抗体可以用于不同的免疫系统过程中。.

新!!: 免疫系统和抗体 · 查看更多 »

抗微生物肽

抗微生物肽(Antimicrobial peptides)是先天免疫反应进化过程中相对保守的成分。在所有生物类别都有抗微生物肽。 抗微生物肽是强效的,广谱抗生素,可望成为新型治疗剂。实验证明抗微生物肽能杀死革兰氏阴性菌和革兰氏阳性菌(包括那些对常规 抗生素有抗药性的菌种), 分枝杆菌(包括结核杆菌),具外套膜病毒,真菌,甚至转化的细胞或癌细胞。不同于许多传统的抗生素,抗微生物肽还可以作为免疫调节剂以提高免疫力。.

新!!: 免疫系统和抗微生物肽 · 查看更多 »

抗病毒药物

抗病毒药物(antiviral drug)是一类用于特异性治疗病毒感染的药物。就像抗生素治疗细菌感染一样,特定的抗病毒药物对特定的病毒起作用;但抗病毒药物和抗生素不同的是,後者消灭细菌,前者只是抑制病毒的发展。抗病毒药物与杀病毒剂(viricide)不同,前者是用于抑制体内的病毒,而后者是用于消灭体外的病毒。 目前大多数的抗病毒药物是用于对抗艾滋病毒、疱疹病毒、乙肝和丙肝病毒以及甲型流感病毒和乙型流感病毒。.

新!!: 免疫系统和抗病毒药物 · 查看更多 »

抗炎性

抗炎性(anti-inflammatory)指药物减少炎症的特性。 抗炎性药物占了约止痛药的一半。抗炎药通过消炎来减少疼痛,区别于镇静剂(opioids)通过影响大脑来减轻疼痛感。.

新!!: 免疫系统和抗炎性 · 查看更多 »

抗生素

#重定向 抗细菌药.

新!!: 免疫系统和抗生素 · 查看更多 »

抗菌肽

抗菌肽(Cathelicidin),係一系列可在巨噬細胞和中性粒細胞的溶酶體中找到的具有抗菌作用的多肽。這種多肽在哺乳動物對侵襲性細菌感染的先天免疫中扮演着重要的角色。抗菌肽家族被歸爲抗微生物肽(antimicrobial peptides ,縮寫爲AMPs)的一種。防禦素則是抗微生物肽家族的另一成員。儘管抗菌肽家族與防禦素具有相同的結構特徵,但它們卻具有高度異質性。 抗菌肽家族的成員可通過一個高度穩定的區域(即凱薩林域(cathelin domain))和另一個高度可變的域來表徵。 哺乳動物的各個種的抗菌肽之間是互相孤立的。最初,科學家在中性粒細胞中發現了抗菌肽,不過,隨後,科學家發現,在經過細菌或病毒或骨化三醇(維生素D的活性形式)的刺激後,上皮細胞和巨噬細胞中亦會產生抗菌肽。.

新!!: 免疫系统和抗菌肽 · 查看更多 »

接骨木

接骨木(学名:Sambucus williamsii)亦称“扦扦活”,是五福花科接骨木属的植物。20-30种,大多原产于两半球温带或亚热带森林地区。主要为灌木及小乔木,是重要的森林树种,灌木是重要的庭园栽培植物,其浆果为野生动物的食物或制酒、药品等。.

新!!: 免疫系统和接骨木 · 查看更多 »

核酶

核酶(ribozyme,又譯核糖酶),又称核酸类酶、酶RNA、类酶RNA,是具有催化特定生物化学反应的功能的RNA分子,类似于蛋白质中的酶。.

新!!: 免疫系统和核酶 · 查看更多 »

树突

树突(英语:Dendrites)是神经元解剖结构的一部分,为从神经元的细胞本体发出的多分支突起。树突為神经元的输入通道,其功能是將自其他神经元所接收的动作电位(电信号)传送至細胞本体。其他神经元的动作电位藉由位於树突分支上的多个突触传送至树突上。树突在整合自这些突触所接收到的信号、以及决定此神经元将产生的动作电位强度上,扮演了重要的角色。.

新!!: 免疫系统和树突 · 查看更多 »

植物

植物(Plantae)是生命的主要形態之一,並包含了如乔木、灌木、藤類、青草、蕨類及綠藻等熟悉的生物。種子植物、苔蘚植物、蕨類植物和擬蕨類等植物,據估計現存大約有350000個物種。直至2004年,其中的287655個物種已被確認,有258650種開花植物15000種苔蘚植物(参见条目中表格)。綠色植物大部份的能源是經由光合作用從太陽光中得到的。.

新!!: 免疫系统和植物 · 查看更多 »

模式识别受体

模式识别受体为免疫系统细胞表达的,与病原微生物或细胞应激相关的蛋白。可以被模式识别受体识别的微生物特定分子为病原相关分子模式。包括细菌的碳水化合物(如脂多糖和甘露糖);革兰氏阳性菌的肽聚糖和脂磷壁酸,及真菌多糖.

新!!: 免疫系统和模式识别受体 · 查看更多 »

樹狀細胞

樹突狀細胞(dendritic cell)是一種存在於哺乳動物的一種白血球。它存在於血液和暴露於環境中的組織中,如皮膚和鼻子、肺、胃和小腸的上皮組織。它們的作用是調節對當前環境刺激的先天和後天免疫反應。它的其中一個最重要的功能就是將抗原處理後展示給免疫系統的其他白細胞,故是一種抗原呈遞細胞。 樹狀細胞是一種哺乳類的免疫細胞。簡而言之,主要功能為施加抗原物質在免疫系統中其他的細胞上。 它們通常少量分佈於與外界接觸的皮膜(黏膜)部位,主要為皮膚(在皮膚上的,稱為郎格罕细胞,和內層的鼻子、肺、胃與腸的內層。血液中也可發現他們的未成熟型式。他們被活化時,會移至淋巴組織中與T細胞與B細胞互相作用,以刺激與控制適當的免疫反應。 在一段成長過程中他們長出樹枝狀的突起,原文dendrite來自希臘文的dentrites(關於樹的),因此本文譯為樹狀的細胞。然而,這些並不與神經元有特殊的關聯,雖然其也有相似的部位。未成熟的樹狀細胞也叫做隱匿性細胞,不若樹枝狀的突起,它們具有吞噬功能。.

新!!: 免疫系统和樹狀細胞 · 查看更多 »

正回饋

正回饋(),是反馈的一種。是指一系統的輸出影響到輸入,使得輸出變動後會影響到輸入,造成輸出變動持續加大的情形;同理,如果輸出變動持續減少,就稱為負回饋。 簡單來說,當A產生了更多的B,B會回過來產生更多的A,這個過程就稱為正回饋。在機械、電機、電子、化學、經濟或是其他系統都會有類似的情形。.

新!!: 免疫系统和正回饋 · 查看更多 »

母乳

母乳,又稱人乳、人奶,為產後婦女乳房產生的乳水,用于哺育嬰兒,世界衛生組織亦推薦用母乳哺育六個月以下的嬰兒,乳汁內含有碳水化合物、蛋白質、脂肪、維生素、礦物質、脂肪酸和牛磺酸等,能滿足嬰兒的營養需要,同時,母乳哺育亦能增加與嬰兒密切的肌膚接觸,建立更親密的母子關係。.

新!!: 免疫系统和母乳 · 查看更多 »

毒素

本文所指的毒素(英語:Toxin),是指生物體所生產出來的毒物(poison),這個術語最早是由有機化學家路德維希(Ludwig Brieger)所提出。這些物質通常是一些會干擾生物體中其他大分子作用的蛋白質,例如蓖麻毒蛋白。由生物體産生的、極少量即可引起動物中毒的物貭。毒素在其嚴重程度差異很大,從一般輕微的急性(如蜂蜇)或是幾乎立即致命的(如肉毒毒素)。 據紅十字國際委員會的審查生物武器公約,“生物毒素是有毒的產品,不像生物製劑,它們是沒有生命的,而不是複製自己的能力。”和“自公約簽署後,不斷有各方面的生物製劑或毒素的定義各方沒有爭議……”.

新!!: 免疫系统和毒素 · 查看更多 »

氨基酸

胺基酸是生物學上重要的有機化合物,它是由胺基(-NH2)和羧基(-COOH)的官能團組成的,以及一個側鏈连到每一個胺基酸。胺基酸是構成蛋白質的基本單位。賦予蛋白質特定的分子結構形態,使他的分子具有生化活性。蛋白質是生物体內重要的活性分子,包括催化新陳代謝的酶(又称“酵素”)。 不同的胺基酸脱水缩合形成肽(蛋白質的原始片段),是蛋白質生成的前.

新!!: 免疫系统和氨基酸 · 查看更多 »

氨甲蝶呤

氨甲蝶呤(Methotrexate,又称甲氨喋呤、甲氨蝶呤、氨甲喋呤),台灣商品名─滅殺除癌錠。 本藥為葉酸拮抗劑,與葉酸差異僅在N10上的NH上的氫改為甲基(CH3),以及環上C4酮基改為氨基(NH2),故可與葉酸競爭同一酵素,是抗代謝療法藥物可阻止尿嘧啶透過葉酸轉移一個甲基形成胸腺嘧啶,即是抗腫瘤藥,或預防移植體對宿主排斥反应之葯物。它能夠壓抑骨髓活動及引致肝炎。 本藥於1950年代氨甲喋呤開始取代毒性更大的抗葉酸藥物時使用。這種藥物最初由印度生物化學家合成,他的大部分職業生涯都在美國,而由美國兒科醫生西德尼·法伯 (Sidney Farber) 臨床開發。這是在世界衛生組織基本藥品名單上的藥物,這最為重要的藥物名單是在基本醫療衛生體系中所必需的。 本药是目前最重要的控制抗類風濕性關節炎 (rheumatoid arthritis,RA)的藥物之一,属于(DMARDs),其药理为減輕部份白血球(抗體)的炎症活動,進一步阻慢骨骼的損害。 本藥僅可由對於抗代謝療法具有知識及經驗之醫師使用。高劑量治療惡性疾病曾有死亡之報告。 category:二氢叶酸还原酶抑制剂 Category:免疫抑制剂 Category:抗肿瘤抗代谢物 Category:抗风湿药 Category:抗叶酸物 Category:苯酰胺类 Category:世界卫生组织基本药物 Category:IARC第3类致癌物质.

新!!: 免疫系统和氨甲蝶呤 · 查看更多 »

泌尿道感染

泌尿道感染(urinary tract infection,UTI),也稱為急性膀胱炎或膀胱感染,是一種會影響到部分泌尿道的感染。泌尿道分為上、下泌尿道,感染部位不同對應到不同疾病名稱:當影響到下泌尿道,稱為膀胱炎;當影響到上泌尿道,也就是腎臟的時候,則稱為。 不同感染位置,症狀會稍有不同:下泌尿道感染的症狀主要是解尿時會疼痛,也可能會有頻尿或是一直想要解尿的感覺;上泌尿道感染除了會有跟下泌尿道感染同樣症狀外,還會有發燒、腹痛的症狀。有些情況,可能沒有解尿也能感受到尿道灼熱痛感。年長者和很年輕的人若感染,以上症狀可能不會表現得十分明顯。最常見造成泌尿道感染(上下泌尿道都有可能)的病菌是大腸桿菌,而其他細菌、病毒或黴菌則鮮少造成感染。 女性其尿道較短,肛門和尿道開口距離也較近,因此較容易有泌尿道感染,約過半數的女性在其一生中有出現過泌尿道感染的情形。泌尿道感染也常會復發。其他的危險因子還包括性交及家族病史。若有出現腎盂腎炎,可能是因為膀胱感染而引起,但 也可能是因為而造成。若病患是年輕健康的女性,泌尿道感染可以只以其症狀來診斷。針對一些模糊的症狀,會比較不容易診斷,因為可能有些部位已有 細菌存在,只是沒有感染症狀。若是有併發症或是治療不成功的例子,可以進行,若頻繁感染,可用低劑量抗生素進行預防性醫療。 若是沒有併發症的泌尿道感染,可以用短療程抗生素進行治療,不過不少抗生素已用來治療泌尿道感染,細菌抗生素抗藥性也漸漸提高。若是已有併發症,需要長療程的抗生素或是注射抗生素,若症狀在二至三天還沒有改善,需要進一步的诊断测试。在女性中,泌尿道感染是最常見的細菌感染,每年約會增加10%。若病患在尿液中有病菌或白血球,但沒有症狀,一般不建議使用抗生素,但若病患是已懷孕的婦女,仍需使用抗生素。.

新!!: 免疫系统和泌尿道感染 · 查看更多 »

活性己糖相關化合物

活性己糖相關化合物(AHCC, Active Hexose Correlated Compound,在台灣又名高級擔子菌菌絲體提出物)含有豐富的α-葡聚醣成分,由擔子菌科香菇(Lentinula edodes)的菌絲體製造,屬於天然保健食品類,不是合格的藥物。 AHCC最初目的為降血壓。然而東京大學的研究團隊發現AHCC可能對先天免疫系統有影響,並於1992年發表研究成果,然而,這一研究報告並不被發表在索引期刊中作為官方引用。這份文獻中,研究者聲稱AHCC促進自然殺手細胞(NK)之活性,並強化殺手T細胞和細胞因子。然而,至今並沒有足夠的研究或主流文獻支持這一理論。.

新!!: 免疫系统和活性己糖相關化合物 · 查看更多 »

淋巴因子

淋巴因子(Lymphokine)是细胞因子的一亚类,指由免疫细胞产生的细胞因子。通常是由T细胞产生的通过影响其他免疫细胞的功能而改变免疫系统的反应。这一分类方法已经过时。现常统称为细胞因子。.

新!!: 免疫系统和淋巴因子 · 查看更多 »

淋巴细胞

淋巴细胞(lymphocyte),也称--,为白细胞中体积最小的一种,直径6—8微米;在人体约--白细胞的20—30%,圆形细胞核,细胞质很少。 某些疾病可以影响淋巴细胞数目的增减,如患肺结核时,有显著增加。 淋巴细胞是一类具有免疫识别功能的细胞系。按其发生迁移、表面分子和功能的不同,可分为T细胞、B细胞和自然杀伤(NK)细胞。淋巴细胞的膜表面分子(分化群抗原)可用于鉴定和区分其亚群和亚类,是研究淋巴细胞的重要工具。.

新!!: 免疫系统和淋巴细胞 · 查看更多 »

溶菌酶

溶菌酶(英文名称:Lysozyme,又譯溶解酶)是一个分子量为14.4kDa的酶,它經由催化肽聚糖中N-乙酰胞壁酸和N-乙酰氨基葡萄糖残基间和壳糊精中N-乙酰葡糖胺残基间的1,4-β链的水解,而破坏细菌的细胞壁。一些人体细胞分泌液中含有溶菌酶在,如唾液、眼泪、鼻涕;溶菌酶也存在于粒線體中的细胞质颗粒体和蛋清中。.

新!!: 免疫系统和溶菌酶 · 查看更多 »

溶酶体

溶酶体(lysosome),又稱--,存在於細胞(多存在于动物细胞中,植物细胞内不常见)中,是單層膜的囊狀胞器,內部含有數十種從高基氏體送來的水解酶,這些酶在弱酸性環境之下(通常為PH值5.0)能有效分解生命所需的有機物質。.

新!!: 免疫系统和溶酶体 · 查看更多 »

演化

--(evolution),指的是生物的可遺傳性狀在世代間的改變,操作定義是種群內基因頻率的改變。基因在繁殖過程中,會經複製並傳遞到子代。而基因的突变可使性狀改變,進而造成個體之間的遺傳變異。新性狀又會因為物種迁徙或是物種之間的水-平-基因轉移,而隨著基因在族群中傳遞。當這些遺傳變異受到非隨機的自然选择或隨機的遺傳漂變影響,而在族群中變得較為普遍或稀有時,就是演化。演化會引起生物各個層次的多樣性,包括物種、生物個體和分子 。 地球上所有生命的共同起源,約35-38億年前出現,其被稱為最後共同祖先,但是2015年一項在西澳的古老岩石進行的研究中發現41億年前「的行跡」。 新物種(物種形成)、種內的變化()和物種的消失(絕種)在整個地球的不斷發生,這被形態學和生化性狀證實,其中包括共同的DNA序列,這些共同性狀在物種之間更相似,因為它源於最近的共同祖先,並且可以作為進化關係的依據建立生命之樹(系统发生学),其利用現有的物種和化石建立,化石記錄的事物包括由的石墨 、,以至多細胞生物的化石。生物多樣性的現有模式被物種形成和滅絕塑造。據估計,曾經生活在地球上的物種99%以上已經滅絕。地球目前的物種估計有1000萬至1400萬。其中約120萬已被記錄。 物種是指一群可以互相進行繁殖行為的個體。當一個物種分離成各個交配行為受到阻礙的不同族群時,再加上突變、遺傳漂變,與不同環境對於不同性狀的青睞,會使變異逐代累積,進而產生新的物種。生物之間的相似性顯示所有已知物種皆是從共同祖先或是祖先基因池逐漸分化產生。 以自然選擇為基礎的演化理論,最早是由查爾斯·達爾文與亞爾佛德·羅素·華萊士所提出,詳細闡述出現在達爾文出版於1859年的《物種起源》.

新!!: 免疫系统和演化 · 查看更多 »

激素

素(英語:hormone)也音譯作荷尔蒙或賀爾蒙,在希腊文原意为“興奋活动”。激素是指体内的某一细胞、腺体或者器官所产生的可以影响机体内其他细胞活动的化学物质。仅需很小剂量的激素便可以改变细胞的新陈代谢。可以说激素是一种从一个细胞传递到另一个细胞的化学信使。 所有的多细胞生物都会产生激素,植物产生的激素也被称为植物激素。动物产生的激素通常通过血液运输到体内指定位置,细胞通过其特殊的接受某种激素的受体来对激素进行反应。激素分子与受体蛋白结合后,打开了信号通路进行信号转导,并最终使细胞做出特异性反应。 内分泌系统分泌的激素分子通常都会直接被释放进入血液中,主要是进入有孔毛细血管。可以进行旁分泌信号传送的激素分子可以通过组织间隙渗透进入邻近的靶组织中。 此外还有许多自然或者人工合成的外生化合物对人类和其他动物也有类似激素的效果。他们也会像内源产生的激素一样,对体内自然激素的合成、分泌、运输、结合、功效或消除产生干扰,并进而影响人体稳态、生殖、发展或者是行为。.

新!!: 免疫系统和激素 · 查看更多 »

机器学习

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论、统计学、逼近论、、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。 机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域。.

新!!: 免疫系统和机器学习 · 查看更多 »

有颔下门

有颔下门(Gnathostomata)原为有頷總綱(Gnatha),是脊椎動物亞門中擁有頷的一群,與無頷總綱相對應,屬於較高等的一類。此總綱下分成數個綱:.

新!!: 免疫系统和有颔下门 · 查看更多 »

昆虫

昆虫在分类学上属于昆虫纲(学名:Insecta),是世界上最繁盛的动物,已发现超過100万种。其中單鞘翅目(Coleoptera)中所含的種數就比其它所有動物界中的種數還多。昆字原作。 昆虫的构造有异于脊椎动物,它们的身体并没有内骨骼的支持,外裹一层由几丁质(英文 chitin)构成的壳。这层壳会分节以利于运动,犹如骑士的甲胄。昆虫的身體會分為頭、胸、腹三節,有六隻腿,複眼及一對觸角。昆虫有脂肪體,成分類似脊椎動物的脂肪組織,但作用不同,主要為代謝功能,類似脊椎動物的肝。 昆虫對生態扮演着很非常重要的角色。虫媒花需要得到昆虫的帮助,才能传播花粉。而蜜蜂采集的蜂蜜,也是人们喜欢的食品之一。昆蟲是蜥蜴、青蛙、小型鳥類的重要食物來源。在东南亚和南美的一些地方,昆虫本身就是当地人的食品。 但昆虫也可能對人類產生威脅,如蝗虫會破壞農作物,白蟻破壞木材及建築物。而有一些昆虫,例如蚊子,还是疾病的传播者。 有一些昆蟲能夠藉由毒液或是叮咬會對人類造成傷害,例如虎頭蜂在有人入侵地盤時會以螫針注入毒液等。紅火蟻會分泌有毒物質使接觸動物及人類出現敏感症狀甚至致命。.

新!!: 免疫系统和昆虫 · 查看更多 »

浆细胞

浆细胞(Plasma cell),亦称为效应B细胞(effector B cell),是免疫系统中释放大量抗体的细胞。直径10-20μm,细胞核较小,占细胞的一半以下,多偏于一侧,偶尔可有双核。浆细胞的染色质粗密、 聚集成堆、常呈紫丁香色、不均匀,在近核处一边常伸出半月状淡染区;浆中偶见有空泡或有泡沫感。 浆细胞系统包括原始浆细胞、幼浆细胞、Russell小体、Dutcher小体和火焰状细胞等部分。 浆细胞是由B细胞对于CD4+淋巴细胞的刺激异化而来,因此也称浆B细胞(Plasma B cell)。抗原入侵后,B细胞起到一个APC(抗原呈递细胞)的作用,吞噬了相应的抗原。此抗原被B细胞的吞噬作用(phagocytosis)吸收后,在吞噬体(phagosomes)中因和溶酶體(lysosomes)结合而分解,释放出付着在抗原上的蛋白酶。此酶分解了抗原后,抗原的碎片就付着在MHC II(主要组织相容性复合体 II)分子上,并出现在其外表面。一旦出现在MHC II分子外表面,CD4+輔助型T細胞就和MHC II/抗原分子结合,并激活B细胞。该激活过程包括B细胞异化为浆细胞以及紧接下来的抗体生成过程以消灭抗原。 Category:免疫学.

新!!: 免疫系统和浆细胞 · 查看更多 »

无脊椎动物

无脊椎动物(Invertebrate)是背侧没有脊柱的动物,包括棘皮动物、软体动物、腔肠动物、节肢动物、海绵动物、线形动物以及脊索動物門的頭索動物及尾索動物等。其种类数占动物总种类数的95%,是动物的原始形式。无脊椎动物多数体型小,但软体动物门头足纲大王乌贼属的动物体长可达18米,体重约2吨。.

新!!: 免疫系统和无脊椎动物 · 查看更多 »

感染

感染是指由其他物種在身為宿主的個體內進行有害的複製、繁殖過程。 具傳染性的生物體會尋找並且利用宿主體內資源,以利自身生存,但這個過程一旦干擾了宿主正常的生理運作,可能造成慢性症狀、急性症狀、壞疽(gangrene)、器官及組織被吞噬、甚至死亡,因此這類物種又稱為病原體,通常是微生物,但事實上感染的定義可以更廣,包括細菌、病毒、寄生蟲、真菌、類病毒,甚或是具有致病能力、但並非生物的傳染性物質,例如普恩蛋白。由於醫學領域研究的疾病多由傳染而來,傳染病因此成為醫學中重要的一個學術分支。 傳染在中文定義上不同於感染,傳染乃是指疾病或病原體由一個體轉移至另一個體上的過程。但由於一般可感染生物體的疾病,也通常具有傳染力,因此兩者常混用。.

新!!: 免疫系统和感染 · 查看更多 »

慢波睡眠

慢波睡眠是用來指正常生理性睡眠中非快速动眼睡眠的第三、四期睡眠階段。.

新!!: 免疫系统和慢波睡眠 · 查看更多 »

慢性甲状腺炎

#重定向 桥本氏甲状腺炎.

新!!: 免疫系统和慢性甲状腺炎 · 查看更多 »

慢性肉芽腫病

慢性肉芽腫病是一種遺傳病,患者體內的中性白血球無法正常殺死微生物,因此患者易受重複性的嚴重感染。 其發生率為1/200000。 遺傳方面,其遺傳方式為X染色體性聯隱性遺傳的方式,但也有30%個案為體染色體隱性來遺傳。.

新!!: 免疫系统和慢性肉芽腫病 · 查看更多 »

1型糖尿病

1型糖尿病 (旧称青少年糖尿病或胰岛素依赖型糖尿病)是糖尿病的一种类型,患者的身體不能產生足夠的胰島素,導致血糖水平过高,典型的1型糖尿病发病症状包括:多尿、口渴、以及体重减轻。其他症狀包括視力模糊、疲憊、癒合不良。典型症狀的發展期一般為較短。 1型糖尿病目前成因不明。不過可能是遺傳和環境因子的共同作用所致。風險因子包括家族病患史。根本機制是負責產生胰島素的胰脏遭破壞。糖尿病可通过測試血糖或糖化血紅蛋白的水平來診斷 。1型糖尿病跟2型糖尿病可以由自身抗體檢測區分。 並沒有辦法防止1型糖尿病發生。施打胰島素是維持患者性命所必需的。胰島素療法通常是以皮下注射的方式施行,但也可以透過一個胰島素泵輸送胰島素給身體。糖尿病患者的飲食和運動是病情管理的重要部分。未經妥善控制的糖尿病可引起多種併發症,急性併發症包括糖尿病酮症酸中毒和;長期併發症包括心臟病、中風、腎衰竭、和糖尿病視網膜病變。此外,併發症可由施打過多胰島素所導致的低血糖引起。 1型糖尿病佔所有糖尿病病例的5%-10% 。全球的1型糖尿病患總人數不明;但據估計,每年大約有8萬名兒童患上1型糖尿病。美國國內受影響的人數估計在一百萬至三百萬之間。新發病例的情況因國家和地區而異:最低年發病率的國家為日本和中國,每10萬人中有1名新病例;最高年發病率為芬蘭,每10萬人中有57名新病例。美國和其他北歐國家每年每10萬人中有介乎8-17名之間的新病例。它一般於兒童和青壯年開始發病。.

新!!: 免疫系统和1型糖尿病 · 查看更多 »

重定向到这里:

免疫反應免疫应答免疫机制免疫系統免疫记忆免疫调节

传出传入
嘿!我们在Facebook上吧! »