徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

亚纯函数

指数 亚纯函数

在复分析中,一个复平面的开子集D上的亚纯函数是一个在D上除一个或若干个孤立点集合之外的区域全纯的函数,那些孤立点称为该函数的极点。 每个D上的亚纯函数可以表达为两个全纯函数的比(其分母不恒为0):极点也就是分母的零点。 直观的讲,一个亚纯函数是两个性质很好的(全纯)函数的比。这样的函数本身性质也很“好”,除了分式的分母为零的点,那时函数的值为无穷。 从代数的观点来看,如果D是一个连通集,则亚纯函数的集合是全纯函数的整域的分式域。这和有理数 \mathbb和整数 \mathbb的关系类似。.

23 关系: 域扩张可去奇点可數集同构复平面复数 (数学)孤立点代數幾何與解析幾何开集分式環函数全纯函数複分析解析拓延黎曼球面黎曼ζ函數黎曼曲面连通空间Γ函数极点 (复分析)本质奇点整环

域(field)可以指:.

新!!: 亚纯函数和域 · 查看更多 »

域扩张

域扩张(field extensions)是数学分支抽象代数之域论中的主要研究对象,基本想法是从一个基域开始以某种方式构造包含它的“更大”的域。域扩张可以推广为环扩张。.

新!!: 亚纯函数和域扩张 · 查看更多 »

可去奇点

在复分析中,一个全纯函数的可去奇点(removable singularity),有时称为装饰性奇点(cosmetic singularity)是这样的点,在此处函数表面上没有定义,但是通过细致地分析,函数的定义域可以扩大到该奇点,使得延拓后的函数仍然全纯。 例如函数: 对 z ≠ 0 有一个奇点 z.

新!!: 亚纯函数和可去奇点 · 查看更多 »

可數集

在数学上,可数集,或称可列集、可数无穷集合,是与自然数集的某个子集具有相同基數(等势)的集合。在这个意义下不是可数集的集合称为不可数集。这个术语是康托尔创造的。可数集的元素,正如其名,是“可以计数”的:尽管计数永远无法终止,集合中每一个特定的元素都将对应一个自然数。 “可数集”这个术语也可以代表能和自然数集本身一一对应的集合。例子参见两个定义的差别在于有限集合在前者中算作可数集,而在后者中不算作可数集。 为了避免歧义,前一种意义上的可数有时称为至多可数,参见.

新!!: 亚纯函数和可數集 · 查看更多 »

同构

在抽象代数中,同构(isomorphism)指的是一个保持结构的双射。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。 正式的表述是:同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。.

新!!: 亚纯函数和同构 · 查看更多 »

复平面

数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.

新!!: 亚纯函数和复平面 · 查看更多 »

复数 (数学)

複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.

新!!: 亚纯函数和复数 (数学) · 查看更多 »

孤立点

孤立点(acnode),在数学上是指坐标满足曲线方程,但并不落在曲线上的点,是一種奇点。 以以下函數為例, 此函數在原點有一孤立點,此函數可改寫成 注意x^2(x-1)只在x\ge 1或x.

新!!: 亚纯函数和孤立点 · 查看更多 »

代數幾何與解析幾何

在數學中,代數幾何與解析幾何是兩個關係密切的學科。代數幾何研究代數簇,在複數域上,同時也能以複分析及微分幾何的技術研究代數簇。讓-皮埃爾·塞爾在1956年的同名論文中比較了這兩種觀點。在 SGA 第一冊附錄中,則以概形論的語言重新表述。.

新!!: 亚纯函数和代數幾何與解析幾何 · 查看更多 »

开集

開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).

新!!: 亚纯函数和开集 · 查看更多 »

分式環

在抽象代數中,分式環或分式域是包含一個整環的最小域,典型的例子是有理數域之於整數環。此外分式環也可以推廣到一般的交換環,此時通常稱作全分式環。 分式環有時也被稱為商域,但此用語易與商環混淆。.

新!!: 亚纯函数和分式環 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 亚纯函数和函数 · 查看更多 »

全纯函数

全纯函数(holomorphic function)是複分析研究的中心对象;它们是定义在複平面C的开子集上的,在複平面C中取值的,在每点上皆複可微的函数。这是比实可微强得多的条件,暗示著此函数无穷可微并可以用泰勒级数來描述。 解析函数(analytic function)一词经常可以和“全纯函数”互相交换使用,虽然前者有几个其他含义。 全纯函数有时称为正则函数。在整个複平面上都全纯的函数称为整函数(entire function)。「在一点a全纯」不仅表示在a可微,而且表示在某个中心为a的複平面的开邻域上可微。双全纯(biholomorphic)表示一个有全纯逆函数的全纯函数。.

新!!: 亚纯函数和全纯函数 · 查看更多 »

複分析

複變分析是研究複變函數,特別是亞純函數和複變解析函數的數學理論。 研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。複變分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。.

新!!: 亚纯函数和複分析 · 查看更多 »

解析拓延

#重定向 解析延拓.

新!!: 亚纯函数和解析拓延 · 查看更多 »

黎曼球面

数学上,黎曼球面是一种将複數平面加上一个无穷远点的扩张,使得下面这类公式至少在某种意义下有意义 它由19世纪数学家黎曼而得名。也称为.

新!!: 亚纯函数和黎曼球面 · 查看更多 »

黎曼ζ函數

黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.

新!!: 亚纯函数和黎曼ζ函數 · 查看更多 »

黎曼曲面

数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被視为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。 黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函數。 每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个複結構),因为全純函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有複結構,但是莫比乌斯带,克莱因瓶和射影平面没有。 黎曼曲面的几何性质是最妙的,它们也给與其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。.

新!!: 亚纯函数和黎曼曲面 · 查看更多 »

连通空间

拓扑空间X称为是连通的。当且仅当以下叙述之一成立:.

新!!: 亚纯函数和连通空间 · 查看更多 »

Γ函数

\Gamma \,函数,也叫做伽瑪函數(Gamma函数),是階乘函數在實數與複數上的擴展。對於實數部份為正的複數z,伽瑪函數定義為: 此定義可以用解析開拓原理拓展到整個複數域上,非正整數外。 如果z為正整數,則伽瑪函數定義為: 這顯示了它與階乘函數的聯繫。可見,伽瑪函數將n!拓展到了實數與複數域上。 在概率論中常見此函數,在組合數學中也常見。.

新!!: 亚纯函数和Γ函数 · 查看更多 »

极点 (复分析)

亚纯函数的极点是一种特殊的奇点,它的表现如同z-a.

新!!: 亚纯函数和极点 (复分析) · 查看更多 »

本质奇点

在复分析中,一个函数的本质奇点(Essential Singularity)又称本性奇点,是奇点中的“嚴謹”的一类。函数在本质奇点附近会有“极端”的行为。 粗略来说,对复平面 C 上的给定的开子集 U,以及 U 中的一点 a,亚纯函数 f: U\ → C 在 a 处有本质奇点当且仅当它不是极点也不是可去奇点。 例如,函数 f(z).

新!!: 亚纯函数和本质奇点 · 查看更多 »

整环

整环(Integral domain),又譯作整域,是抽象代數中的一个概念,指含乘法单位元的无零因子的交换环。一般假设环中乘法单位元1不等于加法单位元0,以除去平凡的环\。整环是整数环的抽象化,它很好地继承了整数环的整除性质,使得我们能够更好地研究整除理论。 整环也可以定义为理想\是素理想的交换环,或交换的无零因子环。.

新!!: 亚纯函数和整环 · 查看更多 »

重定向到这里:

亚纯

传出传入
嘿!我们在Facebook上吧! »