徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

Δ键

指数 Δ键

化学中,δ键(Delta键)是共价键的一种,由两个d轨域四重交疊而成。δ键只有两个节面(电子雲密度为零的平面)。 从键轴看去,δ键的轨道对称性与d轨道的没有区别,而希腊字母δ也正来源于d轨道。 δ键常出现在有机金属化合物中,尤其是钌、钼和铼所形成的化合物。教科书中常以Re2Cl82−离子中的四重键来介绍δ键,而这四重键中包含1个σ键、2个π键和1个δ键。以通俗的话讲,σ键是“头碰头”,π键是“肩并肩”,而δ键则是“面对面”。 从δ键可以推出涉及f轨道和g轨道的可能新键型:φ键和γ键,它们涉及到原子轨道更多重瓣的重叠。2005年化学家声称已发现φ键,存在于双铀分子(U2)的铀-铀单键,但还没有观测到γ键。.

12 关系: 反键轨道乙炔弗兰克·阿尔伯特·科顿分子结构共价键四重键非键轨道G轨道杰弗里·威尔金森

反键轨道

原子轨道在线性组合成分子轨道时(即两个波函数相加得到的分子轨道),能量较高的分子轨道叫反键轨道。反键轨道总是与成键轨道成对出现,其余为非键轨道。 反键轨道中,核间的电子的機率密度小。电子填入反键轨道中会使分子的稳定性降低。 Category:分子轨道理论.

新!!: Δ键和反键轨道 · 查看更多 »

乙炔

乙炔,俗稱風煤(實際上風煤是指氧氣與乙炔組成之套件,風指壓縮氧、煤指乙炔,並非單單乙炔稱為風煤)、電石氣、電土,是炔烴化合物系列中體積最小的一員,主要作工業用途,特別是燒焊金屬方面。 乙炔於1836年由英國科學家艾德蒙·戴维(Edmund Davy)發現,化學式為,有一個如下圖所示的直线型結構: 乙炔在室溫下是無色、極易燃的氣體。純乙炔是無臭的,但工業用乙炔由於含有硫化氫、磷化氫等雜質,而有一股大蒜的氣味。乙炔的化學能主要貯存於它的三鍵中。 在攝氏400度以上, 乙炔會聚合生成乙烯基乙炔()和苯()。在攝氏900度以上則會形成炭黑。 碳酸鈣(石灰岩)和煤炭是生產乙炔的主要原料。首先,碳酸鈣會轉化為氧化鈣,煤炭則轉化為焦炭。然後氧化鈣和焦炭會發生反應形成碳化鈣和一氧化碳: 碳化钙加水會形成乙炔和氫氧化鈣:CaC2 +2H2O → C2H2↑ + Ca(OH)2.

新!!: Δ键和乙炔 · 查看更多 »

弗兰克·阿尔伯特·科顿

弗兰克·阿尔伯特·科顿(Frank Albert Cotton,),曾任W·T·达赫迪-韦尔奇基金会主席、德州農工大學特聘教授。科顿因对过渡金属的研究而知名。他撰写了超过1700篇科学论文。.

新!!: Δ键和弗兰克·阿尔伯特·科顿 · 查看更多 »

分子结构

分子结构,或称分子立体结构、分子形状、分子几何、分子几何构型,建立在光谱学数据之上,用以描述分子中原子的三维排列方式。分子结构在很大程度上影响了化学物质的反应性、极性、相态、颜色、磁性和生物活性。 分子结构最好在接近绝对零度的温度下测定,因为随着温度升高,分子转动也增加。量子力学和半实验的分子模拟计算可以得出分子形状,固态分子的结构也可通过X射线晶体学测定。体积较大的分子通常以多个稳定的构象存在,势能面中这些构象之间的能垒较高。 分子结构涉及原子在空间中的位置,与键结的化学键种类有关,包括键长、键角以及相邻三个键之间的二面角。.

新!!: Δ键和分子结构 · 查看更多 »

共价键

共价键(Covalent Bond),是化学键的一种。两个或多个非金屬原子共同使用它们的外层电子(砷化鎵為例外),在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做共价键。与离子键不同的是进入共价键的原子向外不显示电荷,因为它们并没有获得或损失电子。共价键的强度比氢键要强,比离子键小。 同一種元素的原子或不同元素的原子都可以通過共​​價鍵結合,一般共價鍵結合的產物是分子,在少數情況下也可以形成晶體。 吉爾伯特·路易斯于1916年最先提出共价键。 在简单的原子轨道模型中进入共价键的原子互相提供单一的电子形成电子对,这些电子对围绕进入共价键的原子而属它们共有。 在量子力学中,最早的共价键形成的解释是由电子的复合而构成完整的轨道来解释的。第一个量子力学的共价键模型是1927年提出的,当时人们还只能计算最简单的共价键:氢气分子的共价键。今天的计算表明,当原子相互之间的距离非常近时,它们的电子轨道会互相之间相互作用而形成整个分子共用的电子轨道。.

新!!: Δ键和共价键 · 查看更多 »

四重键

四重键(),在有機化學,是指用4對價電子在两个原子间的共價鍵。 四重键比常见的双键和叁键更加复杂。 过渡金属(包括铼、钨、钼和铬)常可以形成稳定的四重键,而且四重键中涉及的配体也大多是π碱,而非π酸配体。 多數關於四重键的研究都是出自Cotton和他的同事之手。 1844年,Eugène-Melchior Péligot第一个合成了含有四重键的化合物——Cr2(OAc)4(H2O)2「乙酸铬(II)」。但接下来的一个世纪内却没有人意识到其中成键的独特性。 1964年,Frank Albert Cotton以K2·2H2O的例子,首次提出了四重键的概念。 K2·2H2O中Re-Re键长只有2.24Å。在分子轨道理论中,四重键以σ2π4δ2来描述,包括一个σ键、两个π键和一个δ键。 K4与上述的K2是等电子体。含钨四重键的例子则包括W2(hpp)4。.

新!!: Δ键和四重键 · 查看更多 »

非键轨道

在分子轨道理论中,能级与原子轨道能级相等的分子轨道叫非键轨道。成键轨道与反键轨道成对出现,其余的都为非键轨道。 Category:分子轨道理论.

新!!: Δ键和非键轨道 · 查看更多 »

钼(Molybdenum)是一种化学元素,它的化学符号是Mo,它的原子序数是42,是一种灰色的过渡金属。Molybdenum 来自新拉丁语 molybdaenum,后者来自古希臘語 Μόλυβδος molybdos,意思是铅,因为钼矿石与铅矿石被混淆了。钼矿石在历史上被人们所熟知,但该元素的发现(即从其它金属中区分出来)是在1778年,由 卡尔·威廉·舍勒识别出来。该金属在1781年第一次被彼得·雅各·耶尔姆分离得出。 钼在地球上没有自然金属的形态,但是在矿物中以各种氧化物的形式出现。在单体元素形式中,钼是一种灰色金属,呈灰口铸铁颜色,是所有元素中熔点排名第六高。它很容易在合金中形成坚硬、稳定的碳化物,因此,世界上大多数钼产品(约80%)都被用作某种铁合金,包括高强度合金和高温合金。 大多数钼化合物在水中微溶,但是当含钼的矿物与氧气和水接触时可以形成钼离子。在工业上,钼化合物(世界上约有14%的产品)被用于高压和高温应用品,如色素或催化剂等。 目前,一些细菌在打破大气氮分子的化学键上最常用的催化剂是含钼酶,能起到生物固氮作用。在细菌和动物中,虽然只有细菌和蓝藻酶会参与到固氮活动中,但已知的含钼酶至少有50种。这些固氮酶含钼的形式与其它含钼酶不同,但都有氧化形式的钼,用以搭配钼辅因子。由于钼的各种辅因子酶的多样功能,钼成为所有高于真核生物组织的膳食矿物质,虽然并非所有细菌都用到钼。.

新!!: Δ键和钼 · 查看更多 »

钌是一种化学元素,它的化学符号是Ru,它的原子序数是44。 它的英文名称是羅塞尼亞的意思。钌是在1844年由波羅的海德裔俄国科学家Karl Ernst Claus发现的。 钌是硬质的银白色的过渡金属。钌可在铂矿中发现,仅在高温时才能加工。亦在一些铂合金中用作催化剂。.

新!!: Δ键和钌 · 查看更多 »

錸是一種化學元素,符號為Re,原子序為75。錸是種銀白色的重金屬,在元素週期表中屬於第6週期過渡金屬。它是地球地殼中最稀有的元素之一,平均含量估值為十億分之一,同時也是熔點和沸點最高的元素之一。錸是鉬和銅提煉過程的副產品。其化學性質與錳和鍀相似,在化合物中的氧化態最低可達−3,最高可達+7。 科學家在1925年發現了錸元素,因此它成為了最後被發現的穩定元素。其名稱(Rhenium)取自歐洲的萊茵河。 鎳錸高溫合金可用於製造噴氣發動機的燃燒室、渦輪葉片及排氣噴嘴。這些合金最多含有6%的錸,這是錸最大的實際應用,其次就是作為化工產業中的催化劑。錸比鑽石更難取得,所以價格高昂,2011年8月平均每公斤售4,575美元(每金衡盎司142.30美元)。由於錸可應用在高效能噴射引擎及火箭引擎,所以在軍事戰略上十分重要。.

新!!: Δ键和铼 · 查看更多 »

G轨道

#重定向 g軌域.

新!!: Δ键和G轨道 · 查看更多 »

杰弗里·威尔金森

杰弗里·威尔金森爵士(Sir Geoffrey Wilkinson,),英国化学家,皇家学会院士(Fellows of the Royal Society, FRS)。因对金属有机化合物的研究与德国化学家恩斯特·奥托·菲舍尔一起获得1973年诺贝尔化学奖。.

新!!: Δ键和杰弗里·威尔金森 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »