徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

Delta位勢阱

指数 Delta位勢阱

在量子力學裏,Delta位勢阱是一個阱內位勢為負狄拉克Delta函數,阱外位勢為0的位勢阱。Delta位勢阱問題專門研討,在這種位勢的作用中,一個粒子的量子行為。這是一個常見的理論問題。假若,粒子的能量是正值的,我們想要知道的是,在被Delta位勢壘散射的狀況下,粒子的反射係數與透射係數。假若,粒子的能量是負值的,這粒子會被束縛於Delta位勢阱的阱內。這時,我們想要知道的是粒子的能量與束縛的量子態。.

28 关系: 势阱原子单位制亚历山大·达尔加诺球對稱位勢無限深方形阱狄拉克δ函数Delta位勢壘行列式边值问题达德利·赫施巴赫薛定谔方程量子力学量子穿隧效應量子態自由粒子透射係數機率幅歸一條件氫原子波函数波數朗伯W函数有限位勢壘有限深方形阱时间擬設散射

势阱

势阱(Potential well)是一个包围着势能局部极小点的邻域。被势阱捕获的能量无法转化为其它形式的能量(例如能量从重力势阱中逃脱转化为动能),因为它被势阱的局部极低点捕获。也正是因此,一个被势阱捕获的物体不能继续向全局势能最低处运动,即使它根据熵的原理自然地倾向于向全局最低点运动。 粒子在某力场中运动,势能函数曲线在空间的某一有限范围内势能最小,形如陷阱,称为势陷 就是电子的势能图像类似一个波的形状,那么当电子处于波谷,就好像处在一口井里,比较稳定,很难跑出来。所以称为势阱。不单单是量子力学里有这个势阱,任何形式的势只要具有这种样子,我们都可以称它有势阱,比如重力势阱。量子力学与经典物理的在这里有一个小小的差别,就是量子力学里,电子具有某些概率穿过势阱跑出来,称之为隧道效应。隧道电子显微镜就是利用这个原理。.

新!!: Delta位勢阱和势阱 · 查看更多 »

原子单位制

原子单位制(au)是一套广泛应用于原子物理学中的单位制,在研究电子的相关性质时,应用得尤为广泛。有两套不同的原子单位制:哈特里单位制与里德伯单位制。两者的主要区别在于质量单位与电荷单位的选取。下面主要介绍哈特里单位制,在这种单位制中,根据定义,以下的六个物理学常量的数值均为1。.

新!!: Delta位勢阱和原子单位制 · 查看更多 »

亚历山大·达尔加诺

亚历山大·达尔加诺(Alexander Dalgarno,),英国物理学家,哈佛大学菲利普斯天文学教授。.

新!!: Delta位勢阱和亚历山大·达尔加诺 · 查看更多 »

球對稱位勢

球對稱位勢乃是一種只與徑向距離有關的位勢。許多描述宇宙交互作用的基本位勢,像重力勢、電勢,都是球對稱位勢。這條目只講述,在量子力學裏,運動於球對稱位勢中的粒子的量子行為。這量子行為,可以用薛丁格方程式表達為 其中,\hbar是普朗克常數,\mu是粒子的質量,\psi是粒子的波函數,V是位勢,r是徑向距離,E是能量。 由於球對稱位勢V(r)只與徑向距離有關,與天頂角\theta、方位角\phi無關,為了便利分析,可以採用球坐標(r,\ \theta,\ \phi)來表達這問題的薛丁格方程式。然後,使用分離變數法,可以將薛丁格方程式分為兩部分,徑向部分與角部分。.

新!!: Delta位勢阱和球對稱位勢 · 查看更多 »

無限深方形阱

在物理學裏,無限深方形阱(infinite square potential),又稱為無限深位勢阱(infinite potential well),是一個阱內位勢為 0 ,阱外位勢為無限大的位勢阱。思考一個或多個粒子,永遠地束縛於無限深位勢阱內,無法逃出。關於這些粒子的量子行為的問題,稱為無限深方形阱問題,又稱為無限深位勢阱問題,盒中粒子問題(particle in a box problem),是一個理論問題。假若,阱內只有一個粒子,則稱為單粒子無限深方形阱問題。假若,阱內有兩個粒子,則稱為雙粒子無限深方形阱問題。假若,這兩個粒子是完全相同的粒子,則問題又複雜許多,稱為雙全同粒子無限深方形阱問題。在這裏,只討論單粒子無限深方形阱問題。 在經典力學裏,應用牛頓運動定律,可以非常容易地求得無限深方形阱問題的解答。假設粒子與阱壁的碰撞是彈性碰撞,粒子的動能保持不變。則這粒子在方形阱的兩阱壁之間來回移動,碰撞來,碰撞去,而速率始終保持不變。在任意時間,粒子在阱內各個位置的機率是均勻的。 在量子力學裏,這問題突然變得很有意思。許多基要的概念,在這問題的解析中,呈現了出來。由於問題的理想化與簡易化,應用薛丁格方程,可以很容易地,雖然並不是很直覺地,求得解答。滿足這薛丁格方程的能量本徵函數,是表達粒子量子態的波函數。每一個能量本徵函數的能量,只能是離散能級譜中的一個能級。很令人驚訝的是,離散能級譜中最小的能級不是 0 ,而是一個有限值,稱為零點能量!這系統的最小能級量子態的能級不是 0 。 更加地,假若測量粒子的位置,則會發現粒子在阱內各個位置的機率大不相同。在有些位置,找到粒子的機率是 0 ,絕對找不到粒子。這些結果與經典力學的答案迥然不同。可是,這些結果所根據的原理,早已在許多精心設計的實驗中,廣泛地證明是正確無誤的。.

新!!: Delta位勢阱和無限深方形阱 · 查看更多 »

狄拉克δ函数

在科學和數學中,狄拉克函數或簡稱函數(譯名德爾塔函數、得耳他函數)是在實數線上定義的一個廣義函數或分佈。它在除零以外的點上都等於零,且其在整個定義域上的積分等於1。函數有時可看作是在原點處无限高、无限细,但是总面积为1的一個尖峰,在物理上代表了理想化的質點或点电荷的密度。 從純數學的觀點來看,狄拉克函數並非嚴格意義上的函數,因為任何在擴展實數線上定義的函數,如果在一個點以外的地方都等於零,其總積分必須為零。函數只有在出現在積分以內的時候才有實質的意義。根據這一點,函數一般可以當做普通函數一樣使用。它形式上所遵守的規則屬於的一部分,是物理學和工程學的標準工具。包括函數在內的運算微積分方法,在20世紀初受到數學家的質疑,直到1950年代洛朗·施瓦茨才發展出一套令人滿意的嚴謹理論。嚴謹地來說,函數必須定義為一個分佈,對應於支撐集為原點的概率測度。在許多應用中,均將視為由在原點處有尖峰的函數所組成的序列的極限(),而序列中的函數則可作為對函數的近似。 在訊號處理上,函數常稱為單位脈衝符號或單位脈衝函數。δ函數是對應於狄拉克函數的離散函數,其定義域為離散集,值域可以是0或者1。.

新!!: Delta位勢阱和狄拉克δ函数 · 查看更多 »

Delta位勢壘

在量子力學裏,Delta位勢壘是一個壘內位勢為狄拉克Delta函數,壘外位勢為0的位勢壘。Delta位勢壘問題專門研討,在這種位勢的作用中,一個移動的粒子的量子行為。我們想要知道的是,在被Delta位勢壘散射的狀況下,粒子的反射係數與透射係數。在許多量子力學的教科書裏,這是一個常見的習題。.

新!!: Delta位勢阱和Delta位勢壘 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

新!!: Delta位勢阱和行列式 · 查看更多 »

边值问题

在微分方程中,边值问题是一个微分方程和一组称之为边界条件的约束条件。边值问题的解通常是符合约束条件的微分方程的解。 物理学中经常遇到边值问题,例如波动方程等。許多重要的边值问题屬於Sturm-Liouville問題。這類問題的分析會和微分算子的本徵函數有關。 在实际应用中,边值问题应当是适定的(即:存在解,解唯一且解會隨著初始值連續的變化)。許多偏微分方程領域的理論提出是為要證明科學及工程應用的許多边值问题都是适定問題。 最早研究的边值问题是狄利克雷问题,是要找出调和函数,也就是拉普拉斯方程的解,後來是用狄利克雷原理找到相關的解。.

新!!: Delta位勢阱和边值问题 · 查看更多 »

达德利·赫施巴赫

达德利·赫施巴赫(Dudley R. Herschbach,),美国化学家。因为研究化学基元反应体系在位能面运动过程的动力学,与李远哲和约翰·波拉尼(John Polanyi)共同分享了1986年的诺贝尔化学奖。现在是哈佛大学和德州農工大學 的研究教授。 Category:美国国家科学院院士 Category:诺贝尔化学奖获得者 Category:美国国家科学奖获奖者 Category:美国化学家 Category:物理化学家 Category:弗賴堡大學教師 Category:哈佛大學教師 Category:史丹佛大學校友 Category:哈佛大学校友 Category:德國裔美國人 Category:加州人 Category:杰出鹰级童军奖得主.

新!!: Delta位勢阱和达德利·赫施巴赫 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

新!!: Delta位勢阱和薛定谔方程 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: Delta位勢阱和量子力学 · 查看更多 »

量子穿隧效應

在量子力學裏,量子穿隧效應(Quantum tunnelling effect)指的是,像电子等微观粒子能夠穿入或穿越位勢壘的量子行為,儘管位勢壘的高度大於粒子的總能量。在經典力學裏,這是不可能發生的,但使用量子力學理論卻可以給出合理解釋。 量子穿隧效應是太陽核聚變所倚賴的機制。量子穿隧效應限制了太陽燃燒的速率,是太陽聚變循環的瓶頸,因此維持太陽的長久壽命。許多現代器件的運作都倚賴這效應,例如,隧道二極管、場致發射、約瑟夫森結、等等。扫描隧道显微镜、原子鐘也應用到量子穿隧效應。量子穿隧理論也被應用在半導體物理學、超導體物理學等其它領域。 至2017年為止,由於對於量子穿隧效應在半導體、超導體等領域的研究或應用,已有5位物理學者獲得諾貝爾物理學獎。.

新!!: Delta位勢阱和量子穿隧效應 · 查看更多 »

量子態

在量子力學裏,量子態(quantum state)指的是量子系統的狀態。態向量可以用來抽像地表示量子態。採用狄拉克標記,態向量表示為右矢|\psi\rangle;其中,在符號內部的希臘字母\psi可以是任何符號,字母,數字,或單字。例如,在計算氫原子能譜時,能級與主量子數n有關,所以,每個量子態的態向量可以表示為|n \rangle。 一般而言,量子態可以是純態或混合態。上述案例是純態。混合態是由很多純態組成的機率混合。不同的組合可能會組成同樣的混合態。當量子態是混合態時,可以用密度矩陣做數學描述,這密度矩陣實際給出的是機率,不是密度。純態也可以用密度矩陣表示。 哥本哈根詮釋以操作定義的方法對量子態做定義:量子態可以從一系列製備程序來辨認,即這程序所製成的量子系統擁有這量子態。例如,使用z-軸方向的斯特恩-革拉赫實驗儀器,如右圖所示,可以將入射的銀原子束,依照自旋的z-分量S_z分裂成兩道,一道的S_z為上旋,量子態為|\uparrow\rangle或|z+\rangle,另一道的S_z為下旋,量子態為|\downarrow\rangle或|z-\rangle,這樣,可以製備成量子態為|\uparrow\rangle的銀原子束,或量子態為|\downarrow\rangle的銀原子束。銀原子自旋態向量存在於二維希爾伯特空間。對於這純態案例,相關的態向量|\psi\rangle.

新!!: Delta位勢阱和量子態 · 查看更多 »

自由粒子

在物理學裏,自由粒子是不被位勢束縛的粒子。在經典力學裏,一個自由粒子所感受到外來的淨力是0。 假若,一個粒子的能量大於在任何地點x\,\!的位勢,E > V(x) \,\!,不會被位勢束縛,則稱此粒子為自由粒子。更強版的定義,還要求位勢為常數V(x).

新!!: Delta位勢阱和自由粒子 · 查看更多 »

透射係數

透射係數專門表示透射波的振幅或強度,相對於入射波的振幅或強度。當波從一種介質傳播到另外一種不同的介質的時候,當波傳播的介質有不連續處的時候,就會有透射與反射的產生。原本傳播的波,稱為入射波。透過不連續處的波,稱為透射波。沒有透過不連續處,而反向傳播的波,稱為反射波。 在不同的學術界,透射係數有不同的定義。.

新!!: Delta位勢阱和透射係數 · 查看更多 »

機率幅

在量子力學裏,機率幅,又稱為量子幅,是一個描述粒子的量子行為的複函數。例如,機率幅可以描述粒子的位置。當描述粒子的位置時,機率幅是一個波函數,表達為位置的函數。這波函數必須符合薛丁格方程。 一個機率幅\psi\,\!的機率密度函數是 \psi^*\psi\,\!,等於 \mid\psi\mid^2\,\!,又稱為機率密度。在使用前,不一定要將機率密度函數歸一化。尚未歸一化的機率密度函數可以給出關於機率的相對大小的資訊。 假若,在整個三維空間內,機率密度 \mid\psi\mid^2\,\!是一個有限積分。那麼,可以計算一個歸一常數 c\,\!,替代 \psi\,\!為 c\psi\,\!,使得有限積分等於1。這樣,就可以將機率幅歸一化。粒子存在於某一個特定區域V\,\!內的機率是 \mid\psi\mid^2\,\!在區域V\,\!的積分。這句話的含義是,根據量子力學的哥本哈根詮釋,假若,某一位觀察者試著測量這粒子的位置。他找到粒子在 \varepsilon\,\!區域內的機率 P(\varepsilon)\,\!是 不光局限於粒子觀,機率幅的絕對值平方可以詮釋為「在某時間、某位置發生相互作用的概率」。.

新!!: Delta位勢阱和機率幅 · 查看更多 »

歸一條件

在量子力學裏,表達粒子的量子態的波函數必須滿足歸一條件(歸一化,be normalized),也就是說,在空間內,找到粒子的機率必須等於 1 。這性質稱為歸一性。用數學公式表達, 其中,x 是粒子的位置,\psi(x) 是波函數。.

新!!: Delta位勢阱和歸一條件 · 查看更多 »

氫原子

氫原子是氫元素的原子。電中性的原子含有一個正價的質子與一個負價的電子,被庫侖定律束縛於原子核內。在大自然中,氫原子是豐度最高的同位素,稱為氫,氫-1 ,或氕。氫原子不含任何中子,別的氫同位素含有一個或多個中子。這條目主要描述氫-1 。 氫原子擁有一個質子和一個電子,是一個的簡單的二體系統。系統內的作用力只跟二體之間的距離有關,是反平方連心力,不需要將這反平方連心力二體系統再加理想化,簡單化。描述這系統的(非相對論性的)薛丁格方程式有解析解,也就是說,解答能以有限數量的常見函數來表達。滿足這薛丁格方程式的波函數可以完全地描述電子的量子行為。因此可以這樣說,在量子力學裏,沒有比氫原子問題更簡單,更實用,而又有解析解的問題了。所推演出來的基本物理理論,又可以用簡單的實驗來核對。所以,氫原子問題是個很重要的問題。 另外,理論上薛丁格方程式也可用於求解更複雜的原子與分子。但在大多數的案例中,皆無法獲得解析解,而必須藉用電腦(計算機)來進行計算與模擬,或者做一些簡化的假設,方能求得問題的解析解。.

新!!: Delta位勢阱和氫原子 · 查看更多 »

波或波动是扰动或物理信息在空间上传播的一种物理現象,扰动的形式任意,傳遞路徑上的其他介質也作同一形式振動。波的传播速度总是有限的。除了电磁波、引力波(又稱「重力波」)能够在真空中传播外,大部分波如机械波只能在介质中传播。波速與介質的彈性與慣性有關,但與波源的性質無關。.

新!!: Delta位勢阱和波 · 查看更多 »

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

新!!: Delta位勢阱和波函数 · 查看更多 »

波數

在物理學裏,波數是波動的一種性質,定義為每  長度的波長數量(卽每單位長度的波長數量乘以 )。更明確地說,波數是每  長度內,波動重複的次數(一個波動取同樣相位的次數)。波數與波長成反比。用方程的語言說, 其中,\lambda\,\! 是波長。 角频率是單位時間內的角度變化,而波數為單位長度內的角度變化,因此波數即是空間上的角频率。波數對應向量爲波向量。 有時候,波數也會定義為每單位長度的波長的數目。但這樣定義比較不好使用。 從隨著時間而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個頻率譜;而從隨著位置而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個波數譜。 採用國際單位制,波數的單位是m^\,\!。.

新!!: Delta位勢阱和波數 · 查看更多 »

朗伯W函数

朗伯W函数(Lambert W function,又称为欧米加函数或乘积对数),是f(w).

新!!: Delta位勢阱和朗伯W函数 · 查看更多 »

有限位勢壘

在量子力學裏,有限位勢壘是一種位勢。在壘外,位勢為 0 ,在壘內,位勢為有限值 。有限位勢壘問題專門研討在這種位勢的作用中,一個粒子的量子行為。如圖右,最簡單的有限位勢壘是方形壘,壘高是一個常數。在這條目裏,只研討這種位勢壘。 通常,在經典力學裏,一維的有限位勢壘問題會設定一個粒子,從位勢壘的左邊,往位勢壘移動。假若,粒子的能量大於位勢壘的位勢。則這粒子,在經過位勢壘的時候,因為動能的轉換為位能,速度會降低,但方向不會改變。當移動至位勢壘外時,速度又會回復至原本值。假若,粒子的能量小於位勢壘的位勢,則在與位勢壘彈性碰撞之後,這粒子會改變方向,以同樣的速率,往回移動。粒子絕對無法存在於位勢壘內或越過位勢壘。 在量子力學裏,粒子的量子行為,是取決於其波函數。由於粒子沒有被有限位勢壘束縛,粒子的能量不是離散能量譜的特殊容許值,而是大於 0 的任意值,因此不需要求算粒子的能量。在這裏,主要研究的是粒子的一維散射 。這是一個很有意思的領域。假若,粒子的能量大於位勢壘的位勢。由於往位勢壘傳播的波函數,並不是完全地透射過位勢壘,仍舊有一部分反射回來。所以,反射的機率幅大於 0 ,粒子被反射回來的機率大於 0 。假若,粒子的能量小於位勢壘的位勢,雖然波函數會呈指數地遞減,在位勢壘內,機率幅仍舊大於 0 。所以,這粒子存在於位勢壘內的機率大於 0。不止這樣,機率幅在位勢壘外的另一邊也大於 0 。假若,位勢壘的位勢並不大大的超過粒子的能量,位勢壘的壘寬也並不很寬,則粒子穿越位勢壘的機率會是很顯著的,稱這效應為量子穿隧效應。透射的可能性,稱為透射係數;反射的可能性,則稱為反射係數。.

新!!: Delta位勢阱和有限位勢壘 · 查看更多 »

有限深方形阱

在量子力學裏,有限深方形阱,又稱為有限深位勢阱,是無限深方形阱的延伸。有限深方形阱是一個阱內位勢為0,阱外位勢為有限值的位勢阱。關於一個或多個粒子,在這種位勢作用中的量子行為的問題,稱為有限深位勢阱問題。與無限深方形阱問題不同的是,在阱外找到粒子的機率大於0。 在經典力學裏,假若,粒子的能量小於阱壁的位勢,則粒子只能移動於阱內,無法存在於阱外。截然不同地,在量子力學裏,雖然粒子的能量小於阱壁的位勢,在阱外找到粒子的機率大於0。.

新!!: Delta位勢阱和有限深方形阱 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: Delta位勢阱和时间 · 查看更多 »

擬設

擬設(ansatz)是數學和物理學術語。意思是先作出一個假設,並且按照這個假設去進行一系列的演算,用所得到的結果來檢驗最初的假設是否成立。當一個問題難以用直接的方法解決的時候,擬設經常是解決問題的出發點。.

新!!: Delta位勢阱和擬設 · 查看更多 »

散射

傳播中的輻射,像光波、音波、電磁波、或粒子,在通過局部性的位勢時,由於受到位勢的作用,必須改變其直線軌跡,這物理過程,稱為散射。這局部性位勢稱為散射體,或散射中心。局部性位勢各式各樣的種類,無法盡列;例如,粒子、氣泡、液珠、液體密度漲落、晶體缺陷、粗糙表面等等。在傳播的波動或移動的粒子的路徑中,這些特別的局部性位勢所造成的效應,都可以放在散射理論(scattering theory)的框架裏來描述。.

新!!: Delta位勢阱和散射 · 查看更多 »

重定向到这里:

Delta 位势阱Delta 位勢阱Δ势阱

传出传入
嘿!我们在Facebook上吧! »