我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

電磁應力-能量張量

指数 電磁應力-能量張量

物理學中,電磁應力-能量張量是指由電磁場貢獻於應力-能量張量(又稱能量-動量張量)的部份。在自由空間中,以國際單位制之單位可表示成: 若以明顯的矩陣形式,可寫為: S_x & -\sigma_ & -\sigma_ & -\sigma_ \\ S_y & -\sigma_ & -\sigma_ & -\sigma_ \\ S_z & -\sigma_ & -\sigma_ & -\sigma_ \end, 其中 B_i B_j - \frac \left(\right)\delta _.

目录

  1. 3 关系: 经典电磁理论的协变形式馬克士威應力張量應力-能量張量

经典电磁理论的协变形式

经典电磁理论的协变形式是指将经典的电磁学定律(主要包括馬克士威方程組和洛伦兹力)纳入狭义相对论的框架,利用洛伦兹协变的四维矢量和四维张量写成“外在协变”的形式。这种形式的好处在于,经典的电磁学定律在任意惯性坐标系下具有相同的形式,并能够使场和力在不同惯性系下的变换更加容易表述。 在本文中,闵可夫斯基度规的形式被规定为diag(1, -1, -1, -1)\,,这是参考了John David Jackson所编写的《经典电动力学》中所采用的形式;并且从头彻尾都使用了经典的张量代数以及爱因斯坦求和约定。.

查看 電磁應力-能量張量和经典电磁理论的协变形式

馬克士威應力張量

在電磁學裏,馬克士威應力張量(Maxwell stress tensor)是描述電磁場帶有之應力的二階張量。馬克士威應力張量可以表現出電場力、磁場力和機械動量之間的相互作用。對於簡單的狀況,例如一個點電荷自由地移動於均勻磁場,應用勞侖茲力定律,就可以很容易地計算出點電荷所感受的作用力。但是,當遇到稍微複雜一點的狀況時,這很普通的程序會變得非常困難,方程式洋洋灑灑地一行又一行的延續。因此,物理學家通常會聚集很多項目於馬克士威應力張量內,然後使用張量數學來解析問題。.

查看 電磁應力-能量張量和馬克士威應力張量

應力-能量張量

應力-能量張量,也稱應力-能量-動量張量、能量-應力張量、能量-動量張量、簡稱能動張量,在物理學中是一個張量,描述能量與動量在時空中的密度與通量(flux),其為牛頓物理中應力張量的推廣。在廣義相對論中,應力-能量張量為重力場的源,一如牛頓重力理論中質量是重力場源一般。應力-能量張量具有重要的應用,尤其是在愛因斯坦場方程式。.

查看 電磁應力-能量張量和應力-能量張量