徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

指数 钋

钋是一种化学元素,它的化学符号是Po,它的原子序数是84,是银白色的金属(有時歸為類金屬)。 钋的化学性质与硒及硫类似,但带有放射性。 钋在1898年由居里夫人及她丈夫皮埃尔·居里发现。钋的拼音名称是居里夫人纪念她的故乡波兰(Polska)而命名。 沥青铀矿及锡石中有微量钋存在。.

109 关系: 动量守恒定律基态原子电子组态列表原子半径厄尔士山脉同位素列表吉尔伯特铀-238原子能实验室中子布拉格定律世界史年表 (16世纪-19世纪)乔治·科瓦尔亚西尔·阿拉法特亞歷山大·瓦爾杰洛維奇·利特維年科人工合成元素以地點命名的化學元素列表弗雷德里克·约里奥-居里化学年表化學元素化學元素名稱詞源列表化學元素發現年表化學元素豐度北投石喬治·馬可夫六氟化钋共价半径元素列表元素的电子组态列表元素熔点列表元素氧化态列表元素沸点列表CPK配色皮埃尔·居里玛丽·居里砹化氫硫族化物碱金属离子半径稀有气体第6周期元素类金属羰基钋痕量同位素生物半衰期电子亲合能电离能表电负性物理学史相对原子质量表荒勝文策...香煙詹姆斯·查德威克諾貝爾獎女性得主列表謝爾蓋·維克托羅維奇·斯克里帕爾诺贝尔奖诺贝尔化学奖得主列表貧金屬辐射间谍钍衰变链钋化氢铊中毒锕衰变链醇類似物金屬列表釙化銫釙化鈉釙的同位素英國前俄羅斯間諜毒殺案P区元素PO恩里科·费米核嬗变核化学核裂变产物核武器设计方案毒物氧的同素异形体氧族元素汽化热法国核能未發現元素列表月球月球大氣層月球車月球车2号月球探勘者月球步行者有色金属放射性扩展元素周期表時事通識1898年2006年11月2006年12月2007年5月2013年11月44007440-08-67月18日84 扩展索引 (59 更多) »

动量守恒定律

动量守恒定律(Conservation of momentum):如果物体系受到的合外力为零,则系统内各物体动量的矢量合保持不变,系統質心維持原本的運動狀態。.

新!!: 钋和动量守恒定律 · 查看更多 »

基态原子电子组态列表

这是一个关于基态电中性原子的电子组态──即原子核外电子排布方式的列表。此列表按照原子序数的递增顺序进行排列,列表表头由左至右依次为原子序数、元素名称和由1至7的电子层数。.

新!!: 钋和基态原子电子组态列表 · 查看更多 »

原子半径

原子半径通常指原子的尺寸,并不是一个精确的物理量,并且在不同的环境下数值也不同。 一个特定的原子的半径值和所选用的原子半径的定义相关,而在不同的环境下给原子半径不同定义比统一的定义更合适。 术语原子半径本身就有疑问:可能指一个自由原子的尺寸,或者可能用作原子(包括分子中的原子和自由原子)尺寸不同测量方式的一个笼统的术语。在下文中,这个术语还包括离子半径,主要是因为共价键和离子键区别不大。而原子的定义“能区分出化学元素的最小粒子”本身就比较含糊,包括了自由原子以及与其它相同或不同原子一起组成化学物的原子。除了离子半径,其他可能指代的半径值包括玻尔半径,范德华半径,共价半径和金属半径等。 原子半径完全由电子决定,原子核的大小为是电子云的十万分之一。值得注意的是原子核没有固定的位置,而电子云没有固定的边界。 虽然有上述的困难,目前还是有很多的测量原子(包括离子)的方法,这些方法通常基于实验测量和计算方式的结合。目前普遍认为原子像一个球体,尺寸在30–300皮米之间,在元素周期表中的原子半径变化有规律可循,从而对元素的化学特性造成影响。.

新!!: 钋和原子半径 · 查看更多 »

厄尔士山脉

厄尔士山脉(德語:Erzgebirge,意为“矿山”),捷克语称为克鲁什内山脉(Krušné hory),因盛产各种金属矿产和高岭土而闻名,是德国和捷克边境的一条山脉,东为苏台德山脉,西伸入巴伐利亚,为奥德河和易北河的分水岭。主峰为捷克境内的克利诺韦茨峰,海拔1244米,德国境内最高点为菲希特尔峰,高1214米。该山脉德国侧平缓,而捷克侧较险峻。.

新!!: 钋和厄尔士山脉 · 查看更多 »

同位素列表

同位素列表列出了所有已知的化学元素的同位素。 此表由左到右按照原子序数的增长而排列,由下到上依照中子数目由少到多排列。 表格中的颜色表示各个同位素的半衰期(参见图例),表格边缘的颜色表示最稳定的核素的半衰期。.

新!!: 钋和同位素列表 · 查看更多 »

吉尔伯特铀-238原子能实验室

吉尔伯特铀-238原子能实验室(Gilbert U-238 Atomic Energy Laboratory)是由于1950至1951年生产并销售的玩具实验室, retrieved December 15, 2006.

新!!: 钋和吉尔伯特铀-238原子能实验室 · 查看更多 »

中子

| magnetic_moment.

新!!: 钋和中子 · 查看更多 »

布拉格定律

在物理學中,布拉格定律給出晶格的相干及不相干散射角度。當X射線入射於原子時,跟任何電磁波一樣,它們會使電子雲移動。電荷的運動把波動以同樣的頻率再發射出去(會因其他各種效應而變得有點模糊);這種現象叫瑞利散射(或彈性散射)。散射出來的波可以再相互散射,但這種進級散射在這裏是可以忽略的。當中子波與原子核或不成對電子的相干自旋進行相互作用時,會發生一種與上述電磁波相近的過程。這些被重新發射出來的波來相互干涉,可能是相長的,也可能是相消的(重疊的波某程度上會加起來產生更強的波峰,或相互消抵),在探測器或底片上產生繞射圖樣。而所產生的波干涉圖樣就是繞射分析的基本部份。這種解析叫布拉格繞射。 布拉格繞射(又稱X射線繞射的布拉格形式),最早由威廉·勞倫斯·布拉格及威廉·亨利·布拉格於1913年提出,他們早前發現了固體在反射X射線後產生的晶體線(與其他物態不同,例如液體),而這項定律正好解釋了這樣一種效應。他們發現,這些晶體在特定的波長及入射角時,反射出來的輻射會形成集中的波峰(叫布拉格尖峰)。布拉格繞射這個概念同樣適用於中子繞射及電子繞射 。中子及X射線的波長都於原子間距離(~150 pm)相若,因此它們很適合在這種長度作“探針”之用。 威廉·勞倫斯·布拉格使用了一個模型來解釋這個結果,模型中晶體為一組各自分離的平行平面,相鄰平面間的距離皆為一常數d。他的解釋是,如果各平面反射出來的X射線成相長干涉的話,那麼入射的X射線經晶體反射後會產生布拉格尖峰。當相位差為2π及其倍數時,干涉為相長的;這個條件可經由布拉格定律表示: 其中n為整數,λ為入射波的波長,d為原子晶格內的平面間距,而θ則為入射波與散射平面間的夾角。注意移動中的粒子,包括電子、質子和中子,都有對應其速度及質量的德布羅意波長。 布拉格定律由物理學家威廉·勞倫斯·布拉格爵士於1912年推導出來,並於1912年11月11日首度於劍橋哲學會中發表。儘管很簡單,布拉格定律確立了粒子在原子大小下的存在,同時亦為晶體研究了提供了有效的新工具──X射線及中子繞射。威廉·勞倫斯·布拉格及其父,威廉·亨利·布拉格爵士獲授1915年諾貝爾物理學獎,原因為晶體結構測定的研究,他們測定了氯化鈉、硫化鋅及鑽石的結構。 他們是唯一一隊同時獲獎的父子隊伍,而威廉·勞倫斯·布拉格時年25歲,因此成了最年輕的諾貝爾獎得主。.

新!!: 钋和布拉格定律 · 查看更多 »

世界史年表 (16世纪-19世纪)

*1501年:西班牙人首次抵達巴拿馬,直布羅陀併入西班牙版圖。.

新!!: 钋和世界史年表 (16世纪-19世纪) · 查看更多 »

乔治·科瓦尔

乔治·科瓦尔(a,佐爾茲·阿布拉莫维奇·科瓦尔,)是一位苏联情报特工。俄罗斯政府表示其服务格鲁乌期间,对于曼哈顿计划的渗透工作“大幅降低了苏联研发核武器耗费的时间”Chervonnaya, citing Russian sources.

新!!: 钋和乔治·科瓦尔 · 查看更多 »

亚西尔·阿拉法特

拉赫曼·阿卜杜勒·拉乌夫·阿拉法特·古德瓦·侯赛尼(محمد ياسر عبد الرحمن عبد الرؤوف عرفات القدوة الحسيني,),通称亚西尔·阿拉法特(ياسر عرفات)或他的昵称(كنية;Kunya) 阿布·阿马尔(أبو عمار,),巴勒斯坦解放运动领袖,巴勒斯坦领导人,巴勒斯坦解放组织主席及巴解组织最大派别法塔赫的领导人,1994年巴勒斯坦民族权力机构成立后任主席。他是1994年诺贝尔和平奖的获得者之一。.

新!!: 钋和亚西尔·阿拉法特 · 查看更多 »

亞歷山大·瓦爾杰洛維奇·利特維年科

亞歷山大·瓦爾杰洛維奇·利特維年科(俄語:Александр Вальтерович Литвиненко;英語:Alexander Valterovich Litvinenko,),前蘇聯克格勃上校,原俄羅斯聯邦安全局(以下簡稱FSB)中校。曾批評部門高層及受罰,2000年离开俄羅斯前往英國,其後出版兩本书批評普京政府,至2006年10月歸化英籍,后中毒,於同年11月23日不治身亡,体内被验出高浓度剧毒金屬釙,疑因普京派遣特工到英國将其毒杀,事件引起國際注意,並為全球多家媒體所報導。.

新!!: 钋和亞歷山大·瓦爾杰洛維奇·利特維年科 · 查看更多 »

人工合成元素

人工合成元素,在化学中是指自然界中不存在,只有通过人工方法才能製造出來的化学元素。一般透過將兩種元素以高速撞擊,增大自然存在的元素原子核质子的个数,达到增大原子序数,制造出新的元素。 至今已有20多种人工合成元素被合成出来,它们均是不稳定元素,半衰期从几年到仅仅只有数毫秒。另外,还有十几种元素最初是通过人工合成的方式发现,但是后来在自然界中,也发现有痕迹量的存在。.

新!!: 钋和人工合成元素 · 查看更多 »

以地點命名的化學元素列表

下表列出了一些以地點或地名或天體名稱來命名的化學元素。第一個表列出了以地點或地名命名的元素,第二個表列出以天體命名的元素。.

新!!: 钋和以地點命名的化學元素列表 · 查看更多 »

弗雷德里克·约里奥-居里

让·弗雷德里克·约里奥-居里(Jean Frédéric Joliot-Curie,原姓氏为Joliot,),法国物理学家,1935年诺贝尔化学奖获得者。.

新!!: 钋和弗雷德里克·约里奥-居里 · 查看更多 »

化学年表

化学年表列出了深远地改变人们对化学这门现代科学认识的重要著作、发现、思想、发明以及实验等。化学作为一门对物质组成和相互作用进行研究的自然科学,虽然其根源可以追溯到自有文字记载之时,但我们可以认为现代化学史是从英国科学家罗伯特·波义耳开始的。 后来被引入到现代化学中的早期思想主要有两个:一是自然哲学家(例如亚里士多德和德谟克利特)试图使用演绎推理来解释所处的世界,二是炼金术士(例如贾比尔和拉齐)和炼丹家(比如孙思邈和葛洪)试图使用实验方法来延长生命或进行物质的转化,例如用丹炉炼金丹,或将贱金属转化成金。 17世纪时,“演绎”和“实验”两种思想正融合到了一起,这种处于发展中的思想被称为科学方法。随着科学方法的引入,现代化学诞生了。 被称为“中心科学”的化学很大程度上受到其他学科的影响,也在许多科学技术领域发挥着强大的影响力。许多化学领域的重大事件对其他领域来说也是关键的发现,如物理学、生物学、天文学、地质学、材料科学,不一而足 。.

新!!: 钋和化学年表 · 查看更多 »

化學元素

化學元素指自然界中一百多种基本的金属和非金属物质,同一種化學元素是由相同的原子組成,也就是其原子中的每一核子具有同样数量的質子,用一般的化学方法不能使之分解,并且能构成一切物质。一些常見元素的例子有氫、氮和碳。 原子序數大於82的元素(即鉛之後的元素)沒有穩定的同位素,會進行放射衰變。另外,第43和第61種元素(即锝和鉕)沒有穩定的同位素,會進行衰變。可是,即使是原子序數大於94,沒有穩定原子核的元素,有些仍可能存在在自然界中,如鈾、釷、钚等天然放射性核素。 所有化學物質都包含元素,即任何物質都包含元素,隨著人工的核反應,會發現更多的新元素。 1923年,国际原子量委员会作出决定:化学元素是根据原子核电荷的多少对原子进行分类的一种方法,把核电荷数相同的一类原子称为一种元素。 2012年,總共有118種元素被發現,其中地球上有94種。.

新!!: 钋和化學元素 · 查看更多 »

化學元素名稱詞源列表

该列表列出了所有化学元素名称的词源。.

新!!: 钋和化學元素名稱詞源列表 · 查看更多 »

化學元素發現年表

化学元素發现年表将各种化学元素的发现按时间顺序列出。其中--发现的时间以提炼出元素单质的时间为准,因为元素化合物的发现时间无法准确定义。表中列出了每种元素的名称、原子序数、发现时间、发现者姓名和发现方式的简介。.

新!!: 钋和化學元素發現年表 · 查看更多 »

化學元素豐度

化學元素豐度(Abundance of the chemical elements)是在測量上與所有元素相比較所得到含量多寡的比值。豐度可以是質量的比值或是莫耳數(氣體的原子數量比值或是分子數量比值),或是容積上的比值。在混合的氣體中測量氣體容積上的比值是最常用於表示豐度的方法,對混合的理想氣體(相對於是低密度和低壓的氣體)這與莫耳數是相當一致的。 例如,氧在水中的質量比是89%,因為這是水的質量和氧的質量的比值,但是氧在水中的莫耳比值只有33%,因為在水的莫耳數中只有三分之一是氧原子。在整個宇宙中,和在如同木星這樣的巨大的氣體行星中,氫和氦在質量上的豐度比值分別相對是74%和23-25%,但是摩爾(原子)比值卻高達92%和8%。但是,因為氫是雙原子分子,而氦在木星外層的大氣環境下只是單原子分子,以分子的摩爾數來比較,在木星大氣層中氫的豐度是86%,而氦的豐度是13%。 在本文中所提到的豐度,多數都是質量百分比的豐度。.

新!!: 钋和化學元素豐度 · 查看更多 »

北投石

北投石(Hokutolite)是以台灣地名命名的稀有放射性溫泉礦物,全球僅發現於台灣台北市北投溫泉、日本秋田縣。於日本被文部省指定為「特別天然記念物」;臺灣則指定為「自然文化景觀」,並由台北市政府劃定自然保留區於北投溫泉博物館上游北投溪河段。.

新!!: 钋和北投石 · 查看更多 »

喬治·馬可夫

喬治·伊萬諾夫·馬可夫(保加利亞文:Георги Иванов Марков,英文:Georgi Ivanov Markov;)是一名保加利亞的異見人士。他本來是一個詩人和創作家,但在1969年,他逃離保加利亞, 然後這個共產主義國家由托多爾·日夫科夫領導。到達西方後,他先後成為英國廣播公司國際台、自由歐洲電台和德國的德國之聲記者和主播。他曾多次批評保加利亞的共產政權,也被認為是保加利亞政府要委托KGB來除去他的原因。.

新!!: 钋和喬治·馬可夫 · 查看更多 »

六氟化钋

六氟化钋(PoF6)是钋的一种氟化物,也是十八种已知的二元六氟化物之一。它是一种白色不稳定的固体。.

新!!: 钋和六氟化钋 · 查看更多 »

共价半径

共价半径定义为由共价键结合的两个原子核之间距离的一半,單位通常使用皮米(pm)或埃(Å)。He、Ne、Ar等原子无共价半径数据,因至今未合成其任何共价化合物。 同周期元素的单键共价半径的变化规律为从左至右逐渐缩小,可认为是原子核对电子引力增大的缘故。.

新!!: 钋和共价半径 · 查看更多 »

元素列表

本条目提供按元素序号排列的元素列表。.

新!!: 钋和元素列表 · 查看更多 »

元素的电子组态列表

这是一个关于基态电中性原子的电子组.

新!!: 钋和元素的电子组态列表 · 查看更多 »

元素熔点列表

元素熔点列表按化学元素在标准情况下的熔点排列。 以下元素熔点未知:.

新!!: 钋和元素熔点列表 · 查看更多 »

元素氧化态列表

元素氧化态列表列出化学元素的所有已知整数氧化态,常见氧化态以粗体标记,所有元素单质氧化态为零。 该列表主要参考《元素化学》(Chemistry of the Elements),显示出元素周期律在元素价态上的一些趋势。 下图是欧文·朗缪尔1919年在研究八隅体规则时所画:.

新!!: 钋和元素氧化态列表 · 查看更多 »

元素沸点列表

元素沸点列表按标准情况下化学元素的沸点排列,列出了热力学温标、摄氏温标和华氏温标的数据。 以下元素沸点未知:.

新!!: 钋和元素沸点列表 · 查看更多 »

CPK配色

在化學中,CPK配色是一種國際通用的原子或分子模型的配色方式,也是最常用、最多人使用的分子模型上色方式,可用於各種分子模型或元素標示,最常用於CPK模型、球棒模型和空間填充模型。該配色方式由CPK模型的設計者Corey、Pauling(萊納斯·鮑林)與Koltun提出且改進。.

新!!: 钋和CPK配色 · 查看更多 »

皮埃尔·居里

埃爾·居里(Pierre Curie,),法國物理学家、化学家,曾經由於發現放射性元素鐳而獲得諾貝爾物理學獎。.

新!!: 钋和皮埃尔·居里 · 查看更多 »

玛丽·居里

玛丽亚·斯克沃多夫斯卡-居里(Maria Skłodowska-Curie,),通常稱為玛丽·居里(Marie Curie)或居里夫人(Madame Curie),波兰裔法国籍物理学家、化学家。她是放射性研究的先驱者,是首位获得诺贝尔奖的女性,获得两次诺贝尔奖(獲得物理学奖及化学奖)的第一人(另一位為鲍林,獲得化學奖及和平奖)及唯一的女性,是唯一獲得二種不同科學類诺贝尔奖的人。她是巴黎大学第一位女教授。1995年,她与丈夫皮埃尔·居里一起移葬先贤祠,成为第一位凭自身成就入葬先贤祠的女性。 玛丽·居里原名玛丽亚·斯克沃多夫斯卡(Maria Salomea Skłodowska),生于当时俄罗斯帝国统治下的波兰会议王国的华沙,即现在波兰的首都。她在华沙地下读书,并开始接受真正的科学训练。她在华沙生活至24岁,1891年追随姊姊布洛尼斯拉娃至巴黎读书。她在巴黎取得学位并在毕业后留在巴黎从事科学研究。1903年她和丈夫皮埃尔·居里及亨利·贝可勒尔共同獲得了诺贝尔物理学奖,1911年又因放射化学方面的成就获得诺贝尔化学奖。 玛丽·居里的成就包括开创了放射性理论,放射性的英文Radioactivity是她造的词,她发明了分离放射性同位素的技术,以及发现两种新元素釙(Po)和镭(Ra)。在她的指导下,人们第一次将放射性同位素用于治疗肿瘤。她在巴黎和华沙各创办了一座居里研究所,这两个研究所至今仍是重要的医学研究中心。在第一次世界大战期间,她创办了第一批战地放射中心。 雖然玛丽·居里是法國公民,人身在異國,但也从未忘记她的祖国波兰。她教女兒波蘭文,多次帶她們去波蘭。她以祖国波兰的名字命名她所发现的第一种元素釙。 第一次世界大战時期,瑪麗·居里利用她本人发明的流動式X光機協助外科醫生。1934年病逝於法國上薩瓦省療養院,享年66岁。.

新!!: 钋和玛丽·居里 · 查看更多 »

砹(Astatine,--,舊訛作「鈪」、「銰」)是一種放射性化學元素,符號為At,原子序為85。地球上所有的砹都是更重的元素衰變過程中產生的。其同位素壽命都很短,其中最穩定的是砹-210,半衰期為8.5小時。科學家對這一元素所知甚少。砹在元素週期表中位於碘之下,其許多性質可以從碘推算出來,推算值與砹的已知性質相符。 人們尚未觀測過砹元素的單質,因為所有肉眼能觀察到量都會產生大量的放射性熱量,使它瞬間氣化。它的熔點很可能比碘高很多,與鉍和釙相近。砹的化學屬性與其他鹵素相似:它會與包括其他鹵素在內的非金屬形成共價化合物,估計能夠與鹼金屬和鹼土金屬形成砹化物。不過,砹正離子的化學屬性則有別於較輕的鹵素。壽命第二長的砹-211同位素是唯一一種具有商業應用的砹同位素,目前在醫學中用作α粒子射源,以診斷及治療某些疾病。由於放射性極強,所以砹的使用量非常低。 伯克利加州大學的戴爾·科爾森(Dale R. Corson)、肯尼斯·羅斯·麥肯西(Kenneth Ross MacKenzie)和埃米利奧·塞格雷在1940年發現了砹元素。由於產物極不穩定,所以他們根據希臘文「αστατος」(astatos,意為「不穩定」)將其命名為「astatine」。三年後,該元素被發現存在於大自然中,是在地殼中豐度最低的非超鈾元素,任一時刻的總量不到1克。自然界中的重元素經各種衰變途徑一共產生6種砹的同位素,原子量介乎214和219,但最穩定的兩種同位素砹-210和砹-211都不存在於自然中。.

新!!: 钋和砹 · 查看更多 »

砹化氫

砹化氫,又稱氫砹酸(化學式:),是一種鹵氫酸,由氫原子與砹原子組成的共價化合物。 這種化合物溶於水生成氫砈酸,性質和其他四種鹵化氫相似——實際上具備氫鹵酸中最強的酸性。但它極易分解為氫與砈單質,加之砈的同位素半衰期均很短,因此它的用途有限。由於氫原子和砹原子有著幾乎相等的電負度,砹的陽離子已被觀察到,解離時極易造成在氫攜帶負電荷。因此,砹化氫可以進行以下反應: 此外,鹵化氫HX的趨勢是隨著鹵化物的周期增加,形成的焓降低。儘管氫碘酸溶液是穩定的,但是砈化氫溶液明顯不如水-氫-砈系統穩定。砈原子核的輻解也可能會切斷H-At鍵。 進一步的,砈沒有穩定的同位素,其中最穩定的是砹-210,它的半衰期約為8.1小時,使得它的化學成分及結構改變,特別難以處理,由於砹會衰變成其他元素(鉍或釙),所以可能會變成鉍化氫或釙化氫或分子崩解。.

新!!: 钋和砹化氫 · 查看更多 »

硫族化物

硫族化物或硫属化物(chalcogenide)是指至少含有一個硫族元素(氧族元素中除了氧以外的元素)離子及一個电负性較小元素的化合物。一般硫族元素是指硫、硒、碲、釙及𫟷等元素,而电负性較小元素一般是指砷、鍺、磷、銻、銻、鉛、硼、铝、鎵、鎵、銦、鈦、鈉等元素。 及電視中都有用到具有光电导性的。 雪梨大學開發了用硫族化物作為光偵測器的光學處理晶片,可能可以提昇光纖網路和電腦之間的傳輸速度。 許多以離子鍵鍵結的硫族化物(例如硫化鐵或硫化镉)存在含硫的礦石中,也常作為顏料使用,例如硃砂(硫化汞)、鎘黃(硫化鎘)、鎘紅(硒化鎘)及可用作白色顏料的硫化鋅。 硫族化物常溫下為氣體或固體,若是固體,一般會以離子鍵或共價鍵的方式鍵結。硫族化物一般會形成晶體,但也可以形成无定形体的玻璃狀結構。.

新!!: 钋和硫族化物 · 查看更多 »

碱金属

碱金属是指在元素周期表中同属一族的六个金属元素:锂、钠、钾、铷、铯、钫.

新!!: 钋和碱金属 · 查看更多 »

(),是化学元素,化学符号是Te,原子序数是52,是银白色的类金属。 碲的化学性质与硒及硫类似。主要用作合金及半导体。碲化铋用作热电装置中。 碲-128及碲-130是最常见的碲同位素,但它们都有微弱的放射性。 碲是制造碲化镉太阳能薄膜电池的主要原料。 碲矿资源分布稀散,多伴生在其它矿物中或以杂质形式存在于其它矿中。中国四川石棉县大水沟碲矿是至今发现的唯一碲独立矿床。.

新!!: 钋和碲 · 查看更多 »

离子半径

离子半径(rion)是对晶格中离子的大小的一种量度。离子半径通常以皮米(pm)或埃(Å,1Å.

新!!: 钋和离子半径 · 查看更多 »

稀有气体

--、鈍氣、高貴氣體,是指元素周期表上的18族元素(IUPAC新规定,即原来的0族)。它们性质相似,在常温常压下都是无色无味的单原子气体,很难进行化学反应。天然存在的稀有气体有六种,即氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)和具放射性的氡(Rn)。而人工合成的Og原子核非常不稳定,半衰期很短。根据元素周期律,估计Og比氡更活泼。不過,理论计算显示,它可能会非常活泼,并不一定能称为稀有气体;根據預測,同為第七週期的碳族元素鈇反而能表現出稀有氣體的性質。 稀有气体的特性可以用现代的原子结构理论来解释:它们的最外电子层的电子已「满」(即已达成八隅体状态),所以它们非常稳定,极少进行化学反应,至今只成功制备出几百种稀有气体化合物。每种稀有气体的熔点和沸点十分接近,温度差距小于10 °C(18 °F),因此它们仅在很小的温度范围内以液态存在。 经气体液化和分馏方法可从空气中获得氖、氩、氪和氙,而氦气通常提取自天然气,氡气则通常由镭化合物经放射性衰变后分离出来。稀有气体在工业方面主要应用在照明设备、焊接和太空探测。氦也会应用在深海潜水。如潜水深度大于55米,潜水员所用的压缩空气瓶内的氮要被氦代替,以避免氧中毒及氮麻醉的徵状。另一方面,由于氢气非常不稳定,容易燃烧和爆炸,现今的飞艇及气球都采用氦气替代氢气。.

新!!: 钋和稀有气体 · 查看更多 »

第6周期元素

6周期元素是元素周期表第六行(即周期)的元素,包括镧系元素。该周期元素都具有一定毒性。 有: 第1周期元素 - 第2周期元素 - 第3周期元素 - 第4周期元素 - 第5周期元素 - 第6周期元素 - 第7周期元素 - 第8周期元素.

新!!: 钋和第6周期元素 · 查看更多 »

类金属

类金属(metalloid)是一个用来分类化学元素的化学名词。基于它们的物理和化学特性,几乎所有元素周期表上的化学元素都可被分类为金属或非金属;但也有一些特性介于金属与非金属之间的元素,称为类金属。硼、硅、锗、砷、锑、碲、钋、砈、Ts等9种元素一般被视为类金属。 “类金属”一词并没有明确的定义,但类金属一般被认为拥有以下特性:.

新!!: 钋和类金属 · 查看更多 »

羰基钋

羰基钋是一种无机化合物,化学式COPo。有强放射性。.

新!!: 钋和羰基钋 · 查看更多 »

痕量同位素

痕量同位素是微量的自然放射性同位素。一般来说,痕量同位素的半衰期比地球的年龄短,由于原始核素往往大于微量。微量放射性同位素的存在是因为他们产生了地球上的自然过程。.

新!!: 钋和痕量同位素 · 查看更多 »

生物半衰期

生物半衰期(英語:Biological Half-Life)是一個物質(如代謝物、藥、訊息分子、放射性核種)失去一半的藥理、生理、或放射性效應所需的時間。通常這個詞用來描述肝、腎或排泄過程將物質自身體中清除的效率。在臨床上,半衰期可以用來描述血漿中某個物質的濃度減半的時間(血漿半衰期)。取決於那是什麼物質,生物半衰期和血漿半衰期的關係可能非常複雜,有的物質可能在組織中纍積、和血漿蛋白結合、和代謝物或受器互動。 生物半衰期是藥代動力學的重要參數,常用的代表符號是t_。 有別物放射性同位素衰變的半衰期,生物半衰期的反應速率並不是固定的常數,而是依據更複雜的化學動力學,可以用速率方程描述。.

新!!: 钋和生物半衰期 · 查看更多 »

电子亲合能

在一般化學與原子物理學中,电子亲合能(或电子亲和势、电子亲和力,electron affinity,Eea)的定義是,將一個電子加入一個氣態的原子或分子所需耗費,或是釋出的能量。 在固態物理學之中,對於一表面的電子親合能定義不同。.

新!!: 钋和电子亲合能 · 查看更多 »

电离能表

这是各种元素的电离能的列表,单位为kJ·mol−1。.

新!!: 钋和电离能表 · 查看更多 »

电负性

电负性(electron negativity,簡寫EN),也譯作離子性、負電性及陰電性,是综合考虑了电离能和电子亲合能,首先由莱纳斯·鲍林于1932年提出。它以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性。元素电负性数值越大,原子在形成化学键时对成键电子的吸引力越强。.

新!!: 钋和电负性 · 查看更多 »

物理学史

物理学主要是研究物质、能量及它們彼此之間的關係。它是最早形成的自然科学学科之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理學》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比伦和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德的学说以及其后的经院哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自於这些哲学传统,并在中世纪时由当时的哲学家、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。.

新!!: 钋和物理学史 · 查看更多 »

相对原子质量表

* 本相对原子质量表按照原子序数排列。.

新!!: 钋和相对原子质量表 · 查看更多 »

荒勝文策

荒勝文策(,)是一名日本高能物理學家。他出生於日本兵庫縣姬路市,畢業於東京高等師範學校數物化學科,為京都帝國大學理學部物理學博士。他也曾短暫留學德國,跟隨阿爾伯特·愛因斯坦進行研究。 1928年,荒勝文策出任臺北帝國大學首任物理學講座教授。他領導建造直線粒子加速器,於臺灣做出亞洲第一次人工撞擊原子核實驗。1936年,他轉任京都帝國大學教授,並曾吸引湯川秀樹回母校旁聽其課程。後者於1949年成為日本首位諾貝爾物理學獎得主。二戰期間,荒勝文策曾為大日本帝國海軍的原子能研究計畫服務,並於其後不久成為京都大學名譽教授。他在二戰後期被委任調查廣島市原子彈爆炸的受害區域,以了解原子彈的影響力,其調查報告數據之精確震驚世界。 聯合國軍最高司令官總司令部(GHQ)於戰後下令拆除京都大學荒勝研究室的迴旋加速器,使大量荒勝文策的報告與其製作的儀器因此而流失。該次拆除行動也引來國際的批評。此外,中華民國國民政府為發展核子技術,曾派遣教育部次長前往日本訪問荒勝文策等人,希望他們能協助發展原子科學研究,然未成功。荒勝文策於晚年曾參與創辦私立的甲南大學,並成為其首任校長。1973年,他於神戶市逝世,享壽83歲。.

新!!: 钋和荒勝文策 · 查看更多 »

香煙

香煙(Cigarette),是煙草製品的一種。製法是把煙草烤乾後切絲,然後以紙捲成長約120mm,直徑10mm的圓桶形條狀。吸食時把其中一端點燃,然後在另一端用口吸咄產生的煙霧。雪茄是以煙草捲成圓桶形條狀吸食。香煙跟雪茄的主要分別在於香煙體積較小,煙草經過煉製和切碎。烟卷最初在土耳其一帶流行,當地的人喜歡把煙絲以報紙捲起來吸食。在克里米亞戰爭中,英國士兵從當時的鄂圖曼帝國士兵中學會了吸食方法,之後傳播到不同地方。吸食香菸對人類的健康有相當嚴重的危害,許多疾病都與吸菸有直接的關聯(如癌症)。.

新!!: 钋和香煙 · 查看更多 »

詹姆斯·查德威克

詹姆斯·查德威克爵士,CH,FRS(Sir James Chadwick,),英国物理学家,因於1932年发现中子而获1935年诺贝尔物理学奖。1941年,他为核武器报告的最後稿本执笔,这份报告促使美國政府開始积极进行核武器研究。第二次世界大戰期間,他担任曼哈頓計劃英國小組的組長。因對物理學的貢獻,他於1945年在英格蘭被冊封為爵士。.

新!!: 钋和詹姆斯·查德威克 · 查看更多 »

諾貝爾獎女性得主列表

诺贝尔奖由瑞典皇家科学院、瑞典学院、卡罗琳学院和挪威诺贝尔委员会每年颁发一次,分别授予在化学、物理学、文学、和平、生理学或医学和经济学领域作出杰出贡献的人士。除经济学奖外,其他五个奖项都是于1895年根据阿尔弗雷德·诺贝尔的遗嘱设立,这五个奖项也就都是由诺贝尔基金会进行管理。诺贝尔经济学奖又名“瑞典国家银行纪念阿尔弗雷德·诺贝尔经济学奖”,由瑞典中央銀行于1968年设立,旨在奖励在经济学领域作出杰出贡献的人士。每个奖都是由独立的委员会颁发,瑞典皇家科学院颁奖物理学、化学和经济学奖,瑞典学院颁奖文学奖,卡罗琳学院颁奖生理学或医学奖,挪威诺贝尔委员会颁奖和平奖。每位获奖者都将获得一枚奖牌,一份证书以及不同数额的奖金。1901年,首批诺贝尔奖获得者拿到了15万零782瑞典克朗的奖金,相当于2007年12月的773万1004瑞典克朗。2008年,获奖者的奖金数额为一千万瑞典克朗。除和平奖是在奥斯陆颁发外,另外五个奖都是在斯德哥尔摩举行的仪式上颁发,颁奖日期为每年的12月10日,这天是诺贝尔的忌日。 截至2017年,诺贝尔奖有844次授予男性,48次授予女性,此外还有27次授予组织。首位赢得诺贝尔奖的女性是玛丽·居里,她和亨利·贝可勒尔以及自己的丈夫皮埃尔·居里一起赢得了1903年的诺贝尔物理学奖。瑪麗·居禮也是唯一一位多次获奖的女性,她还在1911年获得诺贝尔化学奖,所以诺贝尔奖女性得主一共是47位。瑪麗·居禮的女儿伊雷娜·约里奥-居里于1935年获诺贝尔化学奖,两人也是唯一一对获诺贝尔奖的母女。共有16位女性曾获诺贝尔和平奖,14位曾获诺贝尔文学奖,12位曾获诺贝尔生理学或医学奖,4位曾获诺贝尔化学奖,两位曾获诺贝尔物理学奖,而2009年获奖的埃莉诺·奥斯特罗姆则成为唯一一位获诺贝尔经济学奖的女性,这年共有5位女性获得诺贝尔奖,是历史上最多的一年。.

新!!: 钋和諾貝爾獎女性得主列表 · 查看更多 »

謝爾蓋·維克托羅維奇·斯克里帕爾

謝爾蓋·維克托罗維奇·斯克里帕爾(Серге́й Ви́кторович Скрипаль,Sergei Viktorovich Skripal;),前俄罗斯聯邦軍上校,曾為英国當间谍。 斯克里帕爾在俄罗斯被判定犯有「为英国軍情六處刺探情报」的罪行,於2006年8月以间谍罪判處入獄13年。他於2010年美國與俄羅斯達成交换被捕间谍協議後獲釋,在英国获得庇护。 2018年3月4日,斯克里帕爾和其女兒尤利娅被發現倒在英格蘭威爾特郡索爾茲伯里一处购物中心的长椅上不省人事,應是遭神经毒素謀害,二人被送进加护病房,初時病情危殆,經治療後已先後甦醒並逐漸康復。.

新!!: 钋和謝爾蓋·維克托羅維奇·斯克里帕爾 · 查看更多 »

诺贝尔奖

诺贝爾奖(Nobelpriset,Nobelprisen),是根据瑞典化学家阿尔弗雷德·诺贝尔的遗嘱於1901年開始頒發的奖项。诺贝尔奖分设物理、化学、生理学或医学、文学、和平和经济学六个奖项(经济学奖于1968由瑞典中央银行增设,全称“瑞典银行纪念诺贝尔经济科学奖”,通称“诺贝尔经济学奖”)。诺贝尔奖普遍被认为是所颁奖的领域内最重要的奖项。.

新!!: 钋和诺贝尔奖 · 查看更多 »

诺贝尔化学奖得主列表

诺贝尔化学奖 (Nobelpriset i kemi)是诺贝尔奖的六个奖项之一,1895年设立,由瑞典皇家科学院每年颁发给在化学相关的各个领域中做出杰出贡献的科学家。根据奖项设立者阿尔弗雷德·诺贝尔的遗愿,该奖由诺贝尔基金会管理,瑞典皇家科学院每年选出五人委员会来评选出当年获奖者。第一个诺贝尔化学奖于1901年颁发给荷兰科学家雅各布斯·亨里克斯·范托夫。每一位获奖者都会得到一块奖牌,一份获奖证书,以及一笔不菲的奖金,奖金的数额每年会有变化。例如,1901年,范托夫得到的奖金为150,782瑞典克朗,相当于2007年12月的7,731,004瑞典克朗;而2008年,下村脩、马丁·查尔菲和钱永健分享了总数为一千万瑞典克朗的奖金(略多于100万欧元,或140万美元)。该奖每年于12月10日,即阿尔弗雷德·诺贝尔逝世周年纪念日,以隆重的仪式在斯德哥尔摩颁发。 就获奖领域而言,有至少25名获奖者在有机化学研究中做出贡献,比其他化学领域的获奖者都多。有两位诺贝尔化学奖获奖者,德国的里夏德·库恩(1938年获奖)和阿道夫·布特南特(1939年获奖),受其政府阻止不能接受奖金。他们虽然后来收到了奖牌和获奖证书,但没有收到奖金。弗雷德里克·桑格是至今唯一一位两次(1958年和1980年)获得诺贝尔化学奖的科学家。其他两次获得诺贝尔奖的玛丽·居里(1903年获物理学奖,1911年获化学奖)和萊納斯·鮑林(1954年获化学奖,1962年获和平奖)都是在不同领域获奖。有四位女性获得过化学奖:玛丽·居里、伊雷娜·约里奥-居里(1935年获奖)、多萝西·克劳福特·霍奇金(1964年获奖)和阿达·约纳特(2009年获奖)。截至2015年,已经有171人获得诺贝尔化学奖。从1901年至今,该奖有8年因故停发(1916-1917年、1919年、1924年、1933年、1940-1942年)。.

新!!: 钋和诺贝尔化学奖得主列表 · 查看更多 »

貧金屬

貧金屬(poor metal),也稱“其他金屬”(other metal),用於指代在元素周期表的p區塊的金屬。相比過渡金屬,貧金屬的電負度較高,熔點和沸點較低,并且也更软。但由於它們的熔沸點還是比同週期其他的主族元素高很多,貧金屬被與「類金屬」區分開。 貧金屬不是一個嚴格的IUPAC承認的命名法,然而貧金屬約定俗成地包括鋁、鎵、銦、錫、鉈、鉛和鉍。少數時候也包括鍺、銻和釙,儘管這些是通常認為是類金屬或“半金屬”。113至116號元素(鉨、鈇、鏌和鉝)的化學性質預測將與貧金屬相近,然而現在還無法大量制取以供研究。.

新!!: 钋和貧金屬 · 查看更多 »

辐射

物理學上的輻射指的是能量以波或是次原子粒子移動的型態,在真空或介質中傳送。包含.

新!!: 钋和辐射 · 查看更多 »

间谍

谍是指潜入敌对势力或竞争对手从事秘密刺探情报或是进行破坏活动工作的人,以此来使其所效力的一方有利。古代亦稱作細作。打入敵方组织內部并取得公开合法身份的稱為臥底。根据业务领域不同,间谍可分为军事间谍与工业间谍(或稱商業間諜、經濟間諜);根据秘密工作性质不同,可分为情报间谍(刺探情报)、行动间谍(颠覆、破坏、宣传煽动等)、联络间谍(策反勾连)等。间谍为多方势力同时服务,称为“多重間諜”或“多面諜”。反间谍,也称“反谍(报)”、防諜、肃伪。 法律意义上,间谍一般指外机构、组织、个人实施或者指使、资助、勾连策划、配合的活动。境内的竞争企业之间的经济间谍活动不构成刑事法律概念的“间谍”。.

新!!: 钋和间谍 · 查看更多 »

钍(Thorium,,舊譯作釖、鋀)是原子序数为90的元素,其元素符號為Th,屬锕系元素,具有放射性。其拉丁文名称來自北欧神话的雷神索尔(Thor)。 钍-232会通过吸收慢中子而变成可作核燃料之用的铀-233。钍、铀两种元素是核能发电厂最重要的燃料。.

新!!: 钋和钍 · 查看更多 »

钍衰变链

钍衰变链是指钍-232的4n链。由自然产生的钍-232开始,这个衰变链的衰变产物包括以下几种元素:锕、铋、铅、钋、镭及氡,它们都短暂或长期地存在于任何含有钍元素的合金、化合物或矿藏中。.

新!!: 钋和钍衰变链 · 查看更多 »

钷(Promethium)為一化学元素,化学符号為Pm,原子序61,属于镧系元素與稀土元素,它所有同位素皆帶有放射性,半衰期最长只有17.7年,故常以人工合成的方法制得。 在原子序82号(鉛)以前只有两个元素没有稳定的同位素,其中一个即為鉕,另一个是锝。在化學上,钷是一種鑭系元素,會與其他元素形成鹽類。钷會以+3氧化態形成穩定的鹽,但是也有少數化合物中存在+2的钷。 在1902年時,预测在當時已知的釹(60)和釤(62)之間存在一個與它們性質相似的未知元素。1914年,亨利·莫塞萊利用原子序與原子核電荷之間的關係(莫塞萊定律),確認當時還未知的61號元素確實存在。不過他測定當時所有已知元素的原子序,却發現沒有任何元素的原子序是61。 1926年,兩個義大利佛羅倫薩的化學家声称他們發現了第61號元素,將其命名為Florentium(中文譯作鉘);同年,一批美國伊利諾大學的化學家亦宣布61號元素的發現,將其命名為Illinium(中文譯作鉯),但這兩個發現都被證實是錯誤的。 1938年,俄亥俄州立大學在進行核試驗的過程中,產生了一些放射性元素,且已确定不是釹或釤的放射性同位素。但此發現因缺乏化學證據證明那是61號元素,所以并沒有得到普遍的認可。1945年,美國橡樹嶺國家實驗室利用離子交換層析法(IEC)分析石墨核子反應堆中的鈾(235U)衰變產物,才真正发现並確認钷的存在。發現者原本打算以研究機構的名稱將之命名為Clintonium(源自橡樹嶺國家實驗室的前身柯林頓實驗室),但之後提出的名稱為“Prometheum”(現改變為Promethium),來自普羅米修斯(祂在希臘神話中偷走了火,從奧林匹斯山帶给人類),以象徵“大膽”以及“人類才智的濫用”。第一件钷的金屬樣本於1963年被制造出來。 自然钷有兩個可能的來源:銪-151衰變(產生钷-147),和鈾(產生各種同位素)。實際應用方面,虽然钷-145是最穩定的钷同位素,但只有钷-147的化合物有实际运用,用於夜光漆,核電池和厚度測量裝置。钷在自然界非常稀有,製作钷常用的方法是用熱中子轟擊鈾-235(濃縮鈾)来產生钷-147。.

新!!: 钋和钷 · 查看更多 »

钋化氢

钋化氢是一种无机化合物,化学式为H2Po。.

新!!: 钋和钋化氢 · 查看更多 »

铊中毒

铊中毒(Thallium poisoning)是机体摄入含铊化合物后产生的中毒反应。铊对哺乳动物的毒性高于铅、汞等金属元素,与砷相当,其对成人的最小致死剂量为12mg/kg体重,对儿童为8.8~15mg/kg体重。铊中毒的典型--有:毛发脱落、胃肠道反应、神经系统损伤等。鉈中毒者的指甲上通常都留有米氏線。铊具有强蓄积性毒性,可以对患者造成永久性损害,包括肌肉萎缩、肝肾的永久性损伤等。人体摄入铊化合物可以通过误食含铊化合物、饮用含铊水源、食用含铊果蔬、职业接触等途径。铊中毒的治疗方法包括:使用普鲁士蓝、二巯基丙酸钠、硫代硫酸钠等药物促进铊离子排泄;口服氯化钾溶液促进铊经肾代谢;使用利尿药加速铊排泄;使用血液灌流疗法在体外吸附清除铊离子等。职业性铊中毒是中华人民共和国法定职业病。.

新!!: 钋和铊中毒 · 查看更多 »

鈹(舊譯作鋍、鑉、鋊)是一種化學元素,符號為Be,原子序為4,屬於鹼土金屬。鈹通常在宇宙射线散裂過程中產生,是宇宙中較為稀有的元素之一。所有自然界中的鈹都與其他元素結合,形成礦物,如綠柱石(海藍寶石、祖母綠)和金綠寶石等。單質鈹呈鋼灰色,輕、硬而易碎。 在鋁、銅、鐵和鎳中加入鈹作為合金材料,可以加強其物理性質。用鈹銅合金製成的工具十分堅硬,在敲擊鋼鐵表面時也不會產生火花。由於鈹的抗彎剛度、熱穩定性、熱導率都很高,密度卻很低(只有水的1.85倍),所以適合做航空航天材料,用於導彈、航天器和衛星之中。X射線等電離輻射能夠穿透低密度和低原子量的鈹,所以在X光儀器和粒子物理學實驗中都常用鈹作為窗口材料。鈹和氧化鈹可以很好地傳導熱量,因此被用於控制器械的溫度。 在處理鈹的時候,必須使用適當的措施控制粉塵,因為吸入含鈹粉塵會引致可致命的慢性過敏性鈹中毒。.

新!!: 钋和铍 · 查看更多 »

铋(Bismuth)是一种化学元素,它的化学符号是Bi,它的原子序数是83,是有银白色光泽的金属。 铋的化学性质与砷及锑类似。铋是最反磁性(又稱抗磁性)的金属,亦是除汞以外有最低热导率的金属。铋还拥有最高的霍尔系数 ,它具有较高的电阻 。当铋以極薄的层在物体表面沉积时具有半导体的性质,尽管铋是一个后过渡金属。可用于制备易熔合金及与锡融合防止锡疫。 鉍是一種脆性金屬,在自然界中,常以單質形式出現。鉍晶體的表面有時會呈現出不同顏色的色調,這是由於鉍晶體在空氣中氧化時形成的氧化層厚度不一,導致不同波長的光受到不同程度的反射,因此呈現出彩虹的顏色。 以前鉍被認爲是最重的穩定元素,然而在2003年時发现,铋唯一的天然同位素铋209可經α衰變變爲鉈-205。其半衰期為1.9×1019年左右,達到宇宙年龄的10億倍。所以,鉛被认为是質量最大的穩定元素。 與其他重金屬不同的是,铋的毒性與鉛或銻相比是相對的較低。铋不容易被身體吸收、不致癌、不損害DNA構造、可透過排尿帶出體外。基於這些原因,鉍經常被用於取代鉛的應用上(目前约铋产量的三分之一)。例如用於無鉛子彈,無鉛銲錫、藥物和化妝品上,特别是水杨酸铋,用来治疗腹泻。而铋的化合物的产量约占铋总产量的一半。.

新!!: 钋和铋 · 查看更多 »

鋦(Curium)是一種放射性超鈾元素,符號為Cm,原子序為96,屬於錒系元素,以研究放射性的科學家瑪莉·居禮(Marie Curie)和其丈夫皮埃爾·居禮命名。伯克利加州大學的格倫·西奧多·西博格等人在1944年7月首次專門合成鋦元素。發現起初被列為機密,到1945年11月才公佈於世。大部分的鋦是在核反應爐中通過對鈾或鈈進行中子撞擊產生的。每噸用盡的核燃料中含有大約20克鋦。 鋦是一種銀白色的堅硬高密度金屬,熔點和沸點是錒系元素中較高的。鋦在標準溫度和壓力下具順磁性,並在冷卻後變為反鐵磁性;許多鋦化合物也具有磁性的轉變。鋦在化合物中的氧化態通常為+3和+4,而在溶液中主要呈+3態。鋦很容易被氧化,而形成的氧化物是鋦最常見的形態。鋦可以和各種有機化合物形成螢光配合物,但不出現在任何細菌或古菌中。當攝入人體之後,鋦會累積在骨骼、肺部和肝臟中,並可致癌。 鋦的所有已知同位素都具有放射性,並具有較小的臨界質量(維持核連鎖反應所需的最低質量)。這些同位素主要放射α粒子,輻射釋放的熱量可以在放射性同位素熱電機中用來產生電力。然而由於量的稀少,以及製造費用的昂貴,鋦難以用來發電。鋦被用於製造更重的錒系元素,及在心律調節器中作為能源的238Pu放射性同位素。它也作為α粒子射源,被用在α粒子X射線光譜儀中。許多火星探測任務都使用該光譜儀來分析火星表面岩石的結構和成份,羅塞塔號的菲萊登陸器(Philae Lander)也用它來探測楚留莫夫-格拉希門克彗星的表面。.

新!!: 钋和锔 · 查看更多 »

錒是一種放射性化學元素,符號為Ac,原子序為89。錒在1899年被發現,是首個得到分離的非原始核素。雖然釙、鐳和氡比錒更早被發現,但是科學家到1902年才分離出這些元素。在元素週期表中,錒系元素始於錒,止於鐒,一共有15種元素。 錒是一種柔軟的銀白色放射性金屬。在空氣中,錒會迅速與氧氣和水氣反應,在表面形成具保護性的白色氧化層。和大部份鑭系元素和錒系元素一樣,錒的氧化態一般是+3。在自然界中,只有少量的錒出現在鈾礦石當中,主要為同位素227Ac,並進行β衰變,半衰期為21.772年。每一噸鈾礦石約含0.2毫克的錒元素。由於錒和鑭的化學和物理特性過於接近,因此要從礦石中分離出錒元素並不現實。科學家則是在核反應爐中以中子照射鐳-226來產生錒的。 錒因為稀少、昂貴,且具放射性,所以沒有大的工業用途。目前錒被用作中子源,以及在放射線療法中作為輻射源。.

新!!: 钋和锕 · 查看更多 »

锕衰变链

锕衰变链是指锕-227的4n+3链。由少量存在于自然中的钚-239开始,该衰变链的衰变产物有铀、钍、镤、锕、钫、镭、氡、钋、砹、铋、铅、铊。它们都短暂或长期地存在于任何含有铀元素的合金、化合物或矿藏中。该系列于稳定同位素铅-207处终止。 在整个过程中释放出的能量(指从U-235到Pb-207,包括中微子能量),为46.4MeV。.

新!!: 钋和锕衰变链 · 查看更多 »

醇類似物

醇類似物是泛指任何有類似於醇類或羥基結構的有機化合物,例如硫醇、酚等。大部分的醇類似物都有類似的性質,例如易揮發和刺激性等性質。.

新!!: 钋和醇類似物 · 查看更多 »

金屬列表

金屬列表包含了金屬的不同性質。.

新!!: 钋和金屬列表 · 查看更多 »

釙化銫

釙化銫是一種無機化合物,化學式為:Cs2Po。釙化銫之晶體結構為反螢石結構.

新!!: 钋和釙化銫 · 查看更多 »

釙化鈉

釙化鈉是一種無機化合物,由2種金屬化合而成:釙和鈉,化學式為:Na2Po。釙化鈉的晶體結構為反螢石型結構.

新!!: 钋和釙化鈉 · 查看更多 »

釙的同位素

釙有25个已知的同位素,都具有放射性,目前已觀測到的釙同位素質量數在186到227之間,其中有七個屬於天然放射性的痕量元素,當中以最為穩定。.

新!!: 钋和釙的同位素 · 查看更多 »

鉝(Livermorium,Lv)是原子序為116的人造元素。其被正式命名前的臨時名稱為Ununhexium(Uuh),現名於2012年5月30日經國際純粹與應用化學聯合會同意後正式使用。 它是元素週期表16族最重的元素,位於釙之下,但由於沒有足夠穩定的同位素,因此目前無法用實驗來研究它的特性。 科學家於2000年發現鉝,至今成功合成約30個原子。這些原子都是直接合成或是Og衰變的產物。已合成的鉝同位素質量數介乎290至293,其中293Lv是最穩定的,半衰期約為60毫秒。.

新!!: 钋和鉝 · 查看更多 »

英國前俄羅斯間諜毒殺案

英國前俄羅斯間諜毒殺案,2018年3月4日,前俄羅斯上校謝爾蓋·斯克里帕爾和其女兒尤利婭被發現倒在英格蘭威爾特郡索爾茲伯里一处购物中心的长椅上不省人事,经诊断两人神经毒剂中毒,二人被送进加护病房,初時病情危殆,經治療後已先後甦醒並康復出院。毒殺案過後,同月12日,一名流亡英國的俄羅斯商人尼古拉·格盧什科夫在倫敦家中離奇身亡,但尚未有證據顯示與這起毒殺案有關。14日起,英國、歐洲及美國紛紛對俄羅斯採取抵制行動。.

新!!: 钋和英國前俄羅斯間諜毒殺案 · 查看更多 »

P区元素

p区元素包括元素周期表中IIIA族元素~VIIIA族元素。 IIIA族元素又称为硼族元素,包括硼、铝、镓、铟、铊、鉨、Uht等元素; IVA族元素又称作碳族元素,包括碳、硅、锗、锡、铅、鈇、Uhq等元素; VA族元素又称作氮族元素,包括氮、磷、砷、锑、铋、镆、Uhp等元素; VIA族元素又称为氧族元素,包括氧、硫、硒、碲、钋、鉝、Uhh等元素; VIIA族元素又称卤素,包括氟、氯、溴、碘、砹、Ts、Uhs等元素; VIIIA族元素或0族元素,又称为稀有气体或惰性气体,包括氖、氩、氪、氙、氡、Og、Uho等元素。(氦为s区元素).

新!!: 钋和P区元素 · 查看更多 »

PO

PO 可以是下列意思:.

新!!: 钋和PO · 查看更多 »

恩里科·费米

恩里科·费米(Enrico Fermi;),美籍意大利裔物理学家。他对量子力学、核物理、粒子物理以及统计力学都做出了杰出贡献,并参与创建了世界首个核反应堆,芝加哥1号堆。他还是原子弹的设计师和缔造者之一。 费米拥有数项核能相关专利,并在1938年因研究由中子轰击产生的感生放射以及发现超铀元素而获得了诺贝尔物理学奖。他是物理学日渐专门化后少数几位在理论方面和实验方面皆能称作佼佼者的物理学家之一。 费米在统计力学领域做出了他第一个重大理论贡献。物理学家沃尔夫冈·泡利1925年提出了泡利不相容原理。费米依据这一原理对于理想气体系统进行了分析,所得到的统计形式现在通常称作费米–狄拉克统计。现在,人们将遵守不相容原理的粒子称为“费米子”。之后,泡利又对β衰变进行了分析。为使这一衰变过程能量守恒,泡利假设在产生电子时同时会产生一种电中性的粒子。这种粒子当时尚未观测到。费米对于这一粒子的性质进行了分析,得出了它的理论模型,并将其称为“中微子”。他对β衰变进行理论分析而得到的理论模型后来被物理学家称作“”。这一理论后来发展为弱相互作用理论。弱相互作用是四种基本相互作用之一。费米还对由中子诱发的感生放射进行了实验研究。他发现慢中子要比快中子易于俘获,并推导出来描述这一放射过程。在用慢中子对钍核以及铀核进行轰击后,他认为他得到了新的元素。尽管他因为这一发现而获得了诺贝尔物理学奖,但这些元素后来被发现只是核裂变产物。 费米1938年逃离意大利,以避免他的夫人劳拉因为犹太裔出身而受到新通过的波及。他移民至美国,并在第二次世界大战期间参与曼哈顿计划。费米领导了他的团队设计并建造了芝加哥1号堆。这个反应堆1942年12月2日进行了,完成了首次人工自持续链式反应。他之后着手建造位于田纳西州橡树岭的和漢福德區的。这两个反应堆先后于1943年和1944年进行了临界试验。他还领导了洛斯阿拉莫斯国家实验室的F部,致力于实现爱德华·泰勒设计的利用热核反应的“”。1945年7月16日,费米参与了三位一体核试,并利用自己的方法估算了爆炸当量。 战后,费米参与了由罗伯特·奥本海默领导的一般顾问委员会,向美国原子能委员会提供核技术以及政策方面的建议。在得知苏联1949年8月完成了首次原子弹爆炸试验后,费米从道德以及技术层面都极力反对发展氢弹。他1954年在上为奥本海默作证。但奥本海默最终仍是被剥夺了。费米对于粒子物理,特别是π介子以及μ子的相关理论,做出了重要贡献。他推测宇宙射线产生于星际空间中受磁场作用加速的物质。在他身后,有许许多多以他的名字命名的奖项、事物以及研究机构,其中包括:恩里科·費米獎、恩里科·费米研究所、费米国立加速器实验室、费米伽玛射线空间望远镜、以及元素镄。.

新!!: 钋和恩里科·费米 · 查看更多 »

核嬗变

核嬗變是一種化學元素轉化成另外一種元素,或一種化學元素的某種同位素轉化為另一種同位素的过程。能夠引發核嬗變的核反應包括一個或多個粒子(如質子、中子以及原子核)與原子核發生碰撞后引發的反應,也包括原子核的自發衰變。 但反過來說,原子核的自發衰變或者與其他粒子的碰撞並不一定都導致核嬗變。比如,γ衰變以及同它有關的内轉換過程就不會導致核嬗變。核嬗變既可以自然發生,也可以人工引發。.

新!!: 钋和核嬗变 · 查看更多 »

核化学

核化学(Nuclear chemistry,又称为核子化學)是研究原子核(稳定性和放射性)的反应、性质、结构、分离、鉴定等的一门学科。例如,研究不同的次原子粒子怎樣共同形成一個原子核以及研究原子核之中的物質究竟是如何變化的。.

新!!: 钋和核化学 · 查看更多 »

核裂变产物

核裂变产物即指核裂变过程中生成的产物。核裂变是指由较重的(原子序数较大的)原子,主要是指铀或钚,分裂成较轻的(原子序数较小的)原子的一种核反应形式。原子弹以及核电站的能量来源都是核裂变。早期原子弹应用(以铀-238制备的)钚-239为原料制成,而铀-235裂变在核电厂最常见,由钍-232制备的铀-233也在实验堆中使用。.

新!!: 钋和核裂变产物 · 查看更多 »

核武器设计方案

核武器设计方案是指如何设计核武器,使之能够起爆引起核爆炸。设计核武器需要考虑物理上、化学上以及工程上的各种因素。核武器基本上可以分为三种类型,而这三种类型核武器爆炸时的主要能量来源在一般情况下都是核分裂,而不是核聚变。.

新!!: 钋和核武器设计方案 · 查看更多 »

毒物

毒物是对生物造成不适反应的物質的总称。 毒物对生物体造成的影响因种类不同各异,不适反应的类型以及程度也各不相同。另外对于有的生物来说具有毒性而对于别的生物来说无毒的“选择毒性”在自然界中也存在。比如,抗生素对某些微生物具有毒性,但对于其他生物基本无害。此外生物所必需的各种微量化合物,如维生素,矿物质等超过一定量后也会出现毒性。例如钙是骨骼形成所必需的,但是摄取过多钙会损伤肾脏。 日常生活中称为「毒物」的除了急性或者慢性毒性的物質以外、还有致癌或者导致畸变的物質,極端的例子有如沙利度胺是一种强力的致畸性物質但是其毒性极弱。在毒理学的基本观点上所有的物質多少都具有毒性。大量摄取砂糖、食盐也会对身体有危害、但是这一般不称作毒物。一般认为的毒物应该是具有急性毒性或者剧毒性的物质。 对生物体中毒施加以其它药物,使其影響得到抑制或化解称为解毒。 很多种生物为防止外敵或者捕获猎物都带有毒性。来自生物体的毒物称为毒素。另外人工制成的毒物也有很多。既有非本意生产出的化合物中带有毒性的例子,也有如化学武器等带有强力毒性的化合物被人为制造出来的情况。.

新!!: 钋和毒物 · 查看更多 »

氡是化學元素,符號為Rn,原子序為86,屬於稀有氣體,無色、無臭、無味,具放射性,是鐳自然衰變後的間接產物,最穩定同位素為222Rn,半衰期為3.8天。在常規條件下,氡是密度最高的氣體物質之一。它同時也是唯一一種常規條件下只含放射性同位素的氣體,其輻射可以對健康造成損害。由於其放射性很強,所以針對氡的化學研究較為困難,已知化合物也很少。 釷和鈾在地球形成時已經存在。在它們緩慢衰變為鉛的過程中,氡會作為衰變鏈的一部份自然產生。釷和鈾的自然同位素半衰期都長達數十億年,因此這兩種元素連同鐳、氡等衰變產物,在今後幾千萬年後的豐度仍將和今天的程度相近。, Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, In collaboration with U.S. Environmental Protection Agency, December 1990.

新!!: 钋和氡 · 查看更多 »

氧的同素异形体

人们对氧的同素异形体有着各种认知。其中最熟悉的是双氧(O2),大量存在于地球大气层,也被称为分子氧或三线态氧。另一个是高活性的臭氧(O3)。其他包括:.

新!!: 钋和氧的同素异形体 · 查看更多 »

氧族元素

氧族元素是元素周期表上的ⅥA族元素(IUPAC新规定:16族)。 这一族包含氧(O)、硫(S)、硒(Se)、碲(Te)、钋(Po)、鉝(Lv)六种元素,其中釙、鉝为金属,碲為類金屬,氧、硫、硒是典型的非金属元素。在标准状况下,除氧单质为气体外,其他元素的单质均为固体。 在和金属元素化合时,氧、硫、硒、碲四种元素通常显-2氧化态;但当硫、硒、碲处于它们的酸根中时,最高氧化态可达+6。 一些过渡金属常以硫化物矿的形式存在于地壳中,如FeS2、ZnS等。.

新!!: 钋和氧族元素 · 查看更多 »

汽化热

汽化热(沸腾焓)是物质的物理性质,比潛熱的一種,一般用L表示。其定义为:在标准大气压(101.325 kPa)下,使一摩尔物质在其沸点蒸发所需要的热量。常用单位为千焦/摩尔(或称千焦耳/摩尔),千焦/千克亦有使用。 其他仍在使用的单位包括 Btu/lb(英制单位,Btu为British Thermal Unit,lb为磅)。 因为汽化是液化(凝结)的相反过程,同一物质的凝结点和沸点相同,故凝结热与液化热的名称也同时被使用,定义为:在标准大气压下,使一摩尔物质在其凝结点凝结所放出的热量。 水的汽化热为40.8千焦/摩尔,相当于2266千焦/千克。一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从1℃加热到100℃所需要的热量。.

新!!: 钋和汽化热 · 查看更多 »

法国核能

核能发电是法国的主要能源来源,占2015年能源消耗占40% 。核电是法国最大的电力来源,发电量为416.8 TWh (4168 亿千瓦时),占全国总产量546 TWh的76.3%,为世界上最高的百分比。 法国电力公司(EDF) - 法国主要的发电和配电公司,负责管理该国58座核电反应堆 。法国电力公司基本上由法国政府所有,约85%的股份在政府手中.

新!!: 钋和法国核能 · 查看更多 »

未發現元素列表

未發現元素是一些在元素周期表內,未被列出的元素。目前所有已被發現的人造元素,在未發現之前也都可被稱之為未發現元素,基於目前化學理論漸趨完備,我們可以依此對未發現元素作一些基本性質上的推論。由於理論推測最大的原子質子數不得超過210,故下表所列之預測元素就僅至第九週期;而截至2015年12月為止,最新命名之元素為原子序118號的(Oganesson, Og),第七週期元素已经合成成功,并经IUPAC正式承認,下表不予以保留。 通常科學家用實驗室的所在地或名稱來命名新發現的元素,國際純粹與應用化學聯合會(IUPAC)亦會給予已發現之元素名稱正式的認可。但IUPAC為統一起見,對於所有未經核定但已發現或被預測的元素名稱一律依照IUPAC之命名法則制定暫定名稱,使用拉丁文數字頭以該元素之原子序來命名,如Biunseptium(Bus)便是由bi(二)- un(一)- sept(七)- ium(元素)四個字根組合而成,表示「元素217號」。詳細的法則請見IUPAC元素系統命名法。以下所列即為未發現元素的IUPAC暫定名稱。.

新!!: 钋和未發現元素列表 · 查看更多 »

月球

没有描述。

新!!: 钋和月球 · 查看更多 »

月球大氣層

就大部分實用的目的,月球都被認為是被真空環繞著。很嚴肅的與鄰近存在的原子和分子比較 (相較於行星際介質),相較於圍繞在地球和太陽系內其它的行星的大氣層,在科學目標的大氣層,月球的大氣層是可以忽略不計的-遠低於地球海平面大氣層密度的百兆分之一。 月球大氣的一個來源是釋氣:來自地殼和地函中的氡和氦的放射性衰變所釋放出的氣體。另一個重要來源是撞擊到月球表面的微隕石、太陽風和陽光,進行已知的濺射過程。濺射釋放出的氣體不是被月球的重力吸引重新回到風化層;就是因為輻射壓而失落至太空中,或如果氣體是被電離的,就會被太陽風的磁場掃掠進太空。.

新!!: 钋和月球大氣層 · 查看更多 »

月球車

月球车,又称月面车,中国航天工程全称为月面巡视探测器,是在月球表面行驶并对月球考察和收集分析样品的专用车辆。可分为无人驾驶月球车和有人驾驶月球车。无人驾驶月球车由轮式底盘和仪器舱组成,用太阳能电池和蓄电池联合供电。无人驾驶月球车其实并不是一辆车,而是小型化、低功耗、高集成的部分或者全部自主的机器人。世界上第一台无人驾驶的月球车是苏联的月球车1号,于1970年11月17日由月球17号探测器送上月球。 有人驾驶月球车主要由月球车的每个轮子的各一台电动机驱动,靠蓄电池提供动力。主要作用于扩大宇航员的活动范围和的减少体力消耗,它可随时存放宇航员采集的岩石和土壤标本。 目前共有三个国家成功完成月球车在月球表面的降落和行走,分别是前苏联,美国和中国。.

新!!: 钋和月球車 · 查看更多 »

月球车2号

月球车2号()是苏联研制的第二个无人月球车,高1.35米,长1.7米,宽1.6米。主要任务同月球车1号相同,也是收集月球表面照片,全车拥有3个摄像头。除摄像头外,月球车2号还拥有激光测距、X射线探测仪、磁场探测仪等装置。它以八个相互独立的电动车轮驱动,车体能源来自于太阳能电池,车上携带的钋210放射性元素用来在夜晚为车体供热,保证仪器不因低温而损坏。月球车2号总共工作了4个月,拍摄了86张全景照片和80000张照片。 在1973年1月,月球21号飞船登陆月球,并部署了苏联的第二个月球车(月球车2号)。.

新!!: 钋和月球车2号 · 查看更多 »

月球探勘者

月球探勘者號(或月球勘探者號;Lunar Prospector)是NASA探索計畫中第三個行星探測任務。本計畫花費總共6280萬美金,任務時間19個月。月球探勘者是以低高度極軌道環繞月球的探測器。月球探勘者的主要任務是對月球表面物質組成、南北極可能的水冰沉積、月球磁場與重力場進行研究。1999年7月31日該衛星撞擊靠近月球南極點的撞擊坑結束任務;原本預期撞擊時揚起的表土可以檢測到水的存在,但並未成功。 月球探勘者號的資料讓科學家可以以此繪製月球表面組成礦物分布圖,並讓我們進一步了解月球的形成和演化。 月球探勘者號是由NASA的(Ames Research Center)主持;衛星承包商是洛克希德·馬丁。 月球探勘者也搭載了舒梅克-李維九號彗星發現人尤金·舒梅克博士(1928年4月28日-1997年7月18日)的部分骨灰。他是至今唯一葬在月球的人。.

新!!: 钋和月球探勘者 · 查看更多 »

月球步行者

月面步行者(Луноход,"Moonwalker") 是前蘇聯在1969年至1977年間所進行的機器人登陸月球漫遊計畫。1969年的月面步行者1A 在發射中被毀,1970年的月面步行者1號和1973年的月面步行者2號登陸月球,而1977年的月面步行者未發射。成功的任務包括Zond和月球系列計劃的飛越、軌道飛行器和登陸。月面步行者的設計主要是支援蘇聯載人月球任務和使用自動的遠端遙控機器人探測表面和傳回圖片。月面步行者是使用質子火箭發射,由月球太空船運送到月球的表面。月球步行者的登陸部分和從月球帶回標本任務的登月部分類似。月面步行者是由NPO Lavochkin的Alexander Kemurdjian 設計的。直到1997年才有火星探路者成為另一艘在其它星球上的遙控車。.

新!!: 钋和月球步行者 · 查看更多 »

有色金属

有色金属(或称非鐵金屬)是工業上對金屬的一種分類,指除铁、铬、锰外,存在自然界中的金属(不包括人工合成元素)。有色金属相对的是黑色金属。(半金屬有時會列在有色金属中,而锕系元素有時不列在有色金属中) 常用的有色金属包括铜、铝、铅、锌、镍、锡、锑、汞、镁及钛,这十种金属在中國固定地称为“十种有--色金属”或“十种常用有--色金属”。.

新!!: 钋和有色金属 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

新!!: 钋和放射性 · 查看更多 »

扩展元素周期表

前的元素周期表中有七個周期,並以118號元素Og終結。如果有更高原子序數的元素被發現,則它將會被置於第八周期,甚至第九周期。這額外的周期預期將會比第七周期容納更多的元素,因為經過計算新的g區將會出現。g區將容納18個元素,各周期中均存在部分填滿的g原子軌域。這種擁有八個周期的元素表最初由格倫·西奧多·西博格于1969年提出。 第八或以上周期的元素未曾被合成或于自然發現。(2008年4月,有人宣稱發現122號元素Ubb存在于自然界中,但此被廣泛認為是錯誤的。)g區内第一個元素的原子序數應該為121。根據IUPAC元素系統命名法命名為unbiunium,符號Ubu。此區域内的元素很可能高度不穩定,並具有放射性,且半衰期極短。然而稳定岛理论預測126號元素Ubh會在穩定島内,不會有核裂變,但會有α衰變。而穩定島以外還能存在多少物理上可能的元素至今仍沒有結論。 根據量子力學對於原子結構解釋的軌域近似法,g區會對應不完全填滿的g軌域。不過,自旋-軌道作用會削弱軌域近似法所得結果的正確性,這可能會發生在較大原子序的元素上。.

新!!: 钋和扩展元素周期表 · 查看更多 »

時事通識

《時事通識》(Behind The Headlines)是由無綫新聞部製作的時事資訊節目,常規於無綫新聞台、TVB新聞台及翡翠台播放及間場於無綫財經·資訊台播放。 此節目及其前身《時事百科》於2013年及之前由新鴻基財務特約。.

新!!: 钋和時事通識 · 查看更多 »

1898年

没有描述。

新!!: 钋和1898年 · 查看更多 »

2006年11月

没有描述。

新!!: 钋和2006年11月 · 查看更多 »

2006年12月

没有描述。

新!!: 钋和2006年12月 · 查看更多 »

2007年5月

没有描述。

新!!: 钋和2007年5月 · 查看更多 »

2013年11月

; 武裝衝突.

新!!: 钋和2013年11月 · 查看更多 »

4400

《4400》(The 4400),是一部科幻电视剧,和英国天空电视台、 Renegade 83、USA Network旗下的美国西洋镜(American Zoetrope)共同制作。本片由Scott Peters和René Echevarria创作,Joel Gretsch和Jacqueline McKenzie主演。全剧从2004年到2007年停播共有4季。 在美国USA Network播放。它是由一个5集的迷你剧集开始的(第一季);第二季有12集在2005年6月5日开播,至8月28日结束。第三季在2006年6月11日首映。该剧有Scott Peters和René Echevarria创造并编写成本,由Joel Gretsch(饰演Tom Baldwin)和Jacqueline McKenzie(饰演Diana Skouris)主演。该剧的主题歌是由Robert Phillips和Tim Paruskewitz创作,Amanda Abizaid演唱的"A Place in Time"。该剧由CBS Paramount Network Television(第一季由Viacom Productions制作,后并入Paramount Network Television)联合Sky Television的Sky One,Renegade 83 和 American Zoetrope(为USA Network服务)。 该剧集在加拿大温哥华取景。 在试播集(第一季第1集)中,一个本被认为是彗星的东西在美国华盛顿州Mount Rainier附近的Cascade Range丘陵放下了整整4400个人。所有这4400个人都是从1946年开始不同时间不同地点在一束光中消失的。在他们返回以后,没有人年龄增长,都感到很疑惑,而且对失踪以后发生的事毫无记忆。.

新!!: 钋和4400 · 查看更多 »

7440-08-6

#重定向 钋.

新!!: 钋和7440-08-6 · 查看更多 »

7月18日

7月18日是阳历年的第199天(闰年是200天),离一年的结束还有166天。.

新!!: 钋和7月18日 · 查看更多 »

84

84是83与85之间的自然数。.

新!!: 钋和84 · 查看更多 »

重定向到这里:

84號元素PoPolonium元素84第84號元素

传出传入
嘿!我们在Facebook上吧! »