目录
80 关系: 加布里埃尔·李普曼,十二平均律,协和与不协和,双电层,含七小三度,同构键盘,吉布斯能,吉布斯-亥姆霍茲方程,太阳,太陽天文學年表,太陽系形成與演化假說的歷史,威廉·奥斯特瓦尔德,威廉·屈内,威廉·冯特,威廉·维恩,威廉·韦伯,三稜鏡,亚瑟·爱丁顿,亥姆霍兹定理 (流体力学),亥姆霍兹分解,亥姆霍兹共振,亥姆霍兹环形山,亥姆霍兹联合会,亥姆霍兹方程,亥姆霍茲線圈,亨德里克·洛伦兹,亨利·奥古斯塔斯·罗兰,伊万·米哈伊洛维奇·谢切诺夫,伪科学,开尔文-亥姆霍兹不稳定性,开尔文方程,彩色视觉,关于多相物质平衡,克赫歷程,理论物理学家列表,科普利獎章,約翰內斯·彼得·繆勒,约西亚·威拉德·吉布斯,眼科学,热力学自由能,热寂,爱德华·策勒,电子,物理学史,物理学家列表,特征值和特征向量,狄拉克δ函数,音分,菲利普·莱纳德,表面电荷,... 扩展索引 (30 更多) »
加布里埃尔·李普曼
加布里埃尔·李普曼(法语:Gabriel Lippmann,),法國知名物理學家,他因為發明製作彩色玻璃照相技術,於1908年獲得諾貝爾物理學獎。除此之外,他亦對物理波長的干涉現象有其深研,亦有李普曼干涉定律發表。.
十二平均律
十二平均律,又稱十二等程律,是一種音樂的定律方法,將一個八度平均分成十二等份,每等分稱為半音,是最主要的調音法。音高八度音指的是頻率加倍(即二倍頻率)。八度音的頻率分為十二等分,即是分為十二個等比級數,也就是每個音的頻率為前一個音的2的12次方根:.
协和与不协和
在音乐的范畴里,协和和不协和指的是将同时或相继响起的乐音进行分类的一种方式。通常意义上来讲,协和的声音常与甜美、放松、愉悦、可接受等情感相联系;而不协和则常与刺耳、紧张、不愉快、不可接受等情感相联系。 协和与不协和只在多个乐音之间才有可能存在,所以它们是对音程或和弦进行描述的一个必要因素。例如纯一度和纯八度往往被认为是协和的;而小二度则往往被认为是不协和的。.
双电层
双电层(double layer,缩写DL)模型是胶体化学中有关胶体结构的一个模型。该物体可能是固体颗粒,气泡,液滴或一个多孔物体。.
含七小三度
在音樂中,含七小三度(septimal minor third),亦稱下小三度(這是赫爾曼·馮·亥姆霍茲的叫法),是比例為7:6的音程。這音程折合267音分,比純律的小三度(6:5)小一個。二十四平均律中的五個四分一音()折合250音分,和這音程相近。 含七小三度是泛音列中從第六個泛音到第七個的音程。十二平均律的音中,除了基音和第二泛音外,與其他音都不和諧。這音程比6:5的三度更黑暗但亦討人喜歡。用這個三度而成的三和弦稱為含七小三和弦或下小三和弦。 在中庸全音律中,含七小三度以增二度的形式出現。Tunings of the meantone fifth in the neighborhood of quarter-comma meantone will give three septimal minor thirds among the twelve minor thirds of the tuning; since the wolf fifth appears with an ordinary minor third, this entails there are three septimal minor triads, eight ordinary minor triads and one triad containing the wolf fifth arising from an ordinary minor third followed by a septimal major third.
同构键盘
同构键盘是一种音乐输入设备。它有一个控制音符(如按钮或键)的二维网格,其中,在一个调内,或不同调之间、不同八度位置、不同律制上,任何音程的顺序或组合在键盘上的“形状都相同”。.
吉布斯能
約西亞·吉布斯 在热力学裏,吉布斯能(Gibbs能),又称吉布斯自由能、吉布斯函数、自由焓,常用英文字母「G」標記。吉布斯能是國際化學聯會建議採用的名稱。吉布斯能是描述系統的熱力性質的一種熱力勢,定義為 其中,U是系统的内能,T是絕對温度,S是熵,p是压强,V是体积,H是焓。 假設在等温等压狀況下,一個熱力系統從良好定義初態變換到良好定義終態,則其吉布斯能減少量必定大於或等於其所做的非體積功;假若這變換是可逆過程,則其吉布斯能減少量等於其所做的非體積功。所以,這熱力系統所能做的最大非體積功是其吉布斯減少量。 在等溫等壓狀況下,一個熱力過程具有的必需條件為,吉布斯能隨著過程的演化而減小。這意味著,平衡系統的吉布斯能是最小值;在平衡點,吉布斯能對於其它自變量的導數為零。 吉布斯能可以用來評估一個反應是否具有自發性,它可以用來估算一個熱力系統可以做出多少非體積功。當應用熱力學於化學領域時,吉布斯能是最常用到與最有用的物理量之一。吉布斯能是為紀念美國物理學者約西亞·吉布斯而命名。J.W.
吉布斯-亥姆霍茲方程
約西亞·吉布斯 赫尔曼·冯·亥姆霍兹 吉布斯─亥姆霍茲方程,是對計算系統的吉布斯自由能變化的有用熱力學公式。為一溫度函數。此方程式以约西亚·吉布斯與赫尔曼·冯·亥姆霍兹來命名: 其中: 在定壓P\,下,達成平衡的關鍵為:在微小變化中 G/T 與 T 的比值.
太阳
太陽或日是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000(1.392)公里,相當於地球直徑的109倍;質量大約是2千克(地球的333,000倍),約佔太陽系總質量的99.86% ,同時也是27,173,913.04347826(約2697.3萬)倍的月球質量。 从化學組成来看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2% 。 太陽的恆星光譜分類為G型主序星(G2V)。雖然它以肉眼來看是白色的,但因為在可见光的頻譜中以黃綠色的部分最為強烈,從地球表面觀看時,大氣層的散射使天空成為藍色,所以它呈現黃色,因而被非正式地稱為“黃矮星” 。 光譜分類標示中的G2表示其表面溫度大約是5778K(5505°C),V则表示太陽像其他大多數的恆星一樣,是一顆主序星,它的能量來自於氫融合成氦的核融合反應。太陽的核心每秒鐘聚变6.2億噸的氫。太陽一度被天文學家認為是一顆微小平凡的恆星,但因為銀河系內大部分的恆星都是紅矮星,現在認為太陽比85%的恆星都要明亮。太陽的絕對星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天體,視星等達到−26.74。太陽高溫的日冕持續的向太空中拓展,創造的太陽風延伸到100天文單位遠的日球層頂。這個太陽風形成的“氣泡”稱為太陽圈,是太陽系中最大的連續結構。 太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(最接近的一顆是紅矮星,被稱為比鄰星,距太阳大約4.2光年),太陽的質量在這些恆星中排在第四。 太陽在距離銀河中心24,000至26,000光年的距離上繞著銀河公轉,從銀河北極鳥瞰,太陽沿順時針軌道運行,大約2.25億至2.5億年遶行一周。由於銀河系在宇宙微波背景輻射(CMB)中以550公里/秒的速度朝向長蛇座的方向運動,这两个速度合成之后,太陽相對於CMB的速度是370公里/秒,朝向巨爵座或獅子座的方向運動。 地球圍繞太陽公轉的軌道是橢圓形的,每年1月離太陽最近(稱為近日點),7月最遠(稱為遠日點),平均距離是1.496億公里(天文学上稱這個距離為1天文單位) 。以平均距離算,光從太陽到地球大約需要经过8分19秒。太陽光中的能量通过光合作用等方式支持着地球上所有生物的生长 ,也支配了地球的氣候和天氣。人类從史前時代就一直認為太陽對地球有巨大影響,有許多文化將太陽當成神来崇拜。人类對太陽的正確科學認識進展得很慢,直到19世紀初期,傑出的科學家才對太陽的物質組成和能量來源有了一點認識。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太陽活动机制方面的未解之謎等待着人们来破解。 現今,太陽自恆星育嬰室誕生以來已經45億歲了,而現有的燃料預計還可以燃燒50億年之久。.
太陽天文學年表
這是太陽的天文學年表,記錄人類有關太陽的發現。.
太陽系形成與演化假說的歷史
有關世界起源和命運的可以追溯至已知最早的文字記載;然而,幾乎在所有的時代裡都沒有人嘗試將之與"太陽系"的起源理論聯繫在一起,原因只是單純的因為幾乎沒有人知道或是相信太陽系的存在,如同我們現在所理解與認知的太陽系。太陽系形成理論的第一步是一般所接受的日心說,這種模型將太陽放在系統的中心,和將地球放在軌道上繞著太陽轉。這個理論在數千年前就已經醞釀了(阿里斯塔克斯在西元前250年就已經提出),但到了17世紀末期才被廣泛地接受。"太陽系"這個術語在1704年才正式有使用的紀錄。.
威廉·奥斯特瓦尔德
弗里德里希·威廉·奥斯特瓦尔德(德语:Friedrich Wilhelm Ostwald,拉脱维亚语:Vilhelms Ostvalds;),出生于拉脱维亚的德国籍物理化学家。他提出了稀释定律,对电离理论和质量作用定律进行了验证。他将热力学原理引入结晶学和催化现象的研究中,解释了自然和生产中的许多现象,并成功地完成了催化剂的工业应用,提出了奥斯特瓦尔德过程。 他也是出色的教材作者和卓越的学术组织者,创立过多种期刊,培养了大量的年青研究者,使得物理化学得以成为一门独立的科学和其他化学的理论基础,因此被认为是物理化学的创立者之一。另外他在颜色学、科学史和哲学方面也有独到的贡献。1909年因其在催化剂的作用、化学平衡、化学反应速率方面的研究的突出贡献,被授予诺贝尔化学奖 。.
威廉·屈内
威廉·弗里德里希·屈内(德语:Wilhelm Friedrich Kühne,),德国生理学家,酶的命名者。 库内出生于汉堡市,在就读于哥廷根大学期间,跟随弗里德里希·维勒学习化学,跟随鲁道夫·瓦格纳学习生理学。1856年毕业后,他又先后跟从许多著名学者学习。1863年,屈内成为鲁道夫·菲尔绍掌管下柏林一家实验室的生理学部负责人。1868年,屈内成为阿姆斯特丹大学教授。1871年,他又继任赫尔曼·冯·亥姆霍兹,成为海德堡大学教授直到去世。.
威廉·冯特
威廉·冯特《世界人名翻譯大辭典》,2988頁,「Wundt, Wilhelm」條。(Wilhelm Maximilian Wundt,)是德国著名心理学家、生理學家兼哲學家,心理学发展史上的开创性人物。他被普遍公认为是实验心理学和认知心理学的创建人,构造主义的奠基人。 威廉·冯特认为,心理学可以通过实验的方法进行研究,并将内省实验法引入了心理学研究,并据此提出了情感三维说。冯特内省实验法是哲学内省法和赫尔曼·冯·亥姆霍兹实验室仪器的结合。他请对方向内反省自己,然后描写他们自己对自己的心理工作方法的看法。他创造了特殊的方法来训练对方,让他们更仔细和完善地来看待自己,但不过分地解释自己的心理。这个工作方式与当时的心理学非常不同。当时的心理学更多的是哲学的一个分枝。 威廉·冯特认为,心理与生理是互相关连的。他的认识论结合了斯宾诺莎、莱布尼茨、康德和黑格尔的哲學理论。.
威廉·维恩
威廉·卡尔·维尔纳·奥托·弗里茨·弗兰茨·维恩(Wilhelm Carl Werner Otto Fritz Franz Wien,),德國物理學家,研究領域為熱輻射與電磁學等。1893年,維恩經由熱力學、光譜學、電磁學和光學等理論支援,發現了維恩位移定律,並應用於黑體等學術理論,揭開量子力學新領域。1911年,他因對於熱輻射等物理法則貢獻,而獲得諾貝爾物理學獎。.
威廉·韦伯
威廉·爱德华·韦伯(Wilhelm Eduard Weber,),德国物理学家,19世纪最重要的物理学家之一。国际单位制中磁通量的单位“韦伯”(缩写:Wb)是以威廉·韦伯的名字命名的。.
三稜鏡
三稜鏡是光學稜鏡中的一種形式,在外觀上呈現幾何的三角形,是光學稜鏡中最常見,也是一般人所熟知的,但並不是最常用到的稜鏡。三稜鏡最常用於光線的色散,這是將光線分解成為不同的光譜成分。利用不同波長的光線因為折射率不同,在折射時會偏轉不同的角度,便會造成色散的現象。這種效應也被用來對稜鏡物質進行高精密度的折射系數測量。 物質的折射系數固然在不同的波長會有所不同,但有些物質的折射系數對波長的變化比其他物質強烈(色散非常明顯)。稜鏡的頂角(在上圖中,上面的角)能夠影響到稜鏡色散時的特性。通常,要適當的選擇光線射入的角度和射出的角度,當角度接近布儒斯特角(Brewster angle)時,在折射時造成的損耗最小。 一束白光會分出不同顏色,一般就分為七種顏色,即紅、橙、黃、綠、藍、靛和紫。.
亚瑟·爱丁顿
亚瑟·斯坦利·爱丁顿爵士,OM,FRS(Sir Arthur Stanley Eddington,英語發音,),英国天體物理學家、数学家,是第一个用英语宣讲相对论的科学家,自然界密实(非中空)物体的发光强度极限被命名为“爱丁顿极限”。 在第一次世界大战期间,英国人并不太清楚德国的科学进展,爱丁顿在1919年写了“重力的相对理论报导”,第一次向英语世界介绍了爱因斯坦的广义相对论理论。.
亥姆霍兹定理 (流体力学)
亥姆霍兹定理(Helmholtz's theorems)是流体力学中关于涡旋动力学性质的三条定理,以德国物理学家赫尔曼·冯·亥姆霍兹的名字命名。 亥姆霍兹定理适用于有势体积力作用下的无粘性、正压流体,其表述分别为:.
亥姆霍兹分解
在物理学和数学中的向量分析中,亥姆霍兹定理, 或称向量分析基本定理, 指出对于任意足够光滑、快速衰减的三维向量场可分解为一个无旋向量场和一个螺线向量场的和,这个过程被称作亥姆霍兹分解。此定理以物理學家赫爾曼·馮·亥姆霍茲為名。 这意味着任何矢量场 ,都可以视为两个势场(純量勢 和向量勢 )之和。.
亥姆霍兹共振
亥姆霍兹共振(Helmholtz resonance)指的是空气在一个腔中的共振现象,例如在一个空瓶子的瓶口吹气引起的共振。 在1850年代由赫尔曼·冯·亥姆霍兹设计并命名,亥姆霍兹共振器一开始的目的是为了分辨复杂声音环境下的不同频率,比如音乐的乐调, Second English Edition, translated by Alexander J.
亥姆霍兹环形山
亥姆霍兹环形山(Helmholtz)是位于月球正面东南边沿一座古老的大撞击坑,约形成于45.5-39.2亿年前的前酒海纪Lunar Impact Crater Database,其名称取自十九世纪德国物理学家暨医师、生理学家和心理学家赫尔曼·路德维希·费迪南德·冯·亥姆霍兹(1821年-1894年),1935年被国际天文学联合会批准接受。.
亥姆霍兹联合会
亥姆霍兹联合会(Helmholtz-Gemeinschaft),全称“德国亥姆霍兹国家研究中心联合会”(Helmholtz-Gemeinschaft Deutscher Forschungszentren)是德国最大的科学研究机构,由17个各自独立的自然科学、工程学、生物学和医学研究中心组成,员工总数有约31,000人,年经费超过30亿欧元。该机构着眼于德国中长期国家科技任务,在能源、地球与环境、生命科学、关键技术、物质结构以及航空航天与交通6大领域从事以未来应用为目的的前瞻性研究,以解决社会政治、科技和经济的重大挑战为己任,运行大型科研装备,力图解决人类社会的可持续发展难题,为保障德国经济的竞争力提供技术支持。它以德国生物学家和物理学家赫尔曼·冯·亥姆霍兹的名字命名。.
亥姆霍兹方程
亥姆霍兹方程(Helmholtz equation)是一個描述电磁波的椭圆偏微分方程,以德国物理学家亥姆霍兹的名字命名。其基本形式如下: 其中 ∇2 是拉普拉斯算子,k 是波數,A 是振幅。.
亥姆霍茲線圈
亥姆霍茲線圈(Helmholtz coil)是一種製造小範圍區域均勻磁場的器件。由於亥姆霍茲線圈具有開敞性質,很容易地可以將其它儀器置入或移出,也可以直接做視覺觀察,所以,是物理實驗常使用的器件。因德國物理學者赫爾曼·馮·亥姆霍茲而命名。.
亨德里克·洛伦兹
亨德里克·安东·洛伦兹(Hendrik Antoon Lorentz,),荷兰物理学家,曾与彼得·塞曼共同获得1902年诺贝尔物理学奖,并於1881年当选荷蘭皇家藝術與科學學院院士,同时还曾担任多国科学院外籍院士。 洛伦兹以其在电磁学与光学领域的研究工作闻名于世。他通过连续电磁场以及物质中离散电子等概念得到了经典电子理论。这一理论可以在许多问题中派上用场:比如电磁场对运动的带电粒子的作用力(洛伦兹力)、介质的折射率与其密度的关系(洛伦兹-洛伦茨方程)、光色散理论、对于一些磁学现象的解释(比如塞曼效应)以及金属的部分性质。在电子理论的基础上,他还发展了运动介质中的电动力学,其中包括提出了物体在其运动方向上会发生长度收缩的假说(洛伦兹-斐兹杰惹收缩)、引入了“局部时”的概念、获得了质量与速度之间的关系并构造了表述不同惯性系间坐标和时间关系的方程组(洛伦兹变换)。洛伦兹的研究工作后来成为狭义相对论与量子物理的基础。此外,洛伦兹在热力学、分子运动论、广义相对论以及热辐射理论等方面也有建树。.
亨利·奥古斯塔斯·罗兰
亨利·奥古斯塔斯·罗兰(Henry Augustus Rowland,)是一位美国物理学家。.
伊万·米哈伊洛维奇·谢切诺夫
伊万·米哈伊洛维奇·谢切诺夫(Ivan Mikhaylovich Sechenov;Ива́н Миха́йлович Се́ченов;),1829年出生于俄罗斯辛比尔斯克附近的特普利斯坦(“Tyoply Stan”,现谢切诺沃),1905年11月15日在莫斯科去世,是一位俄国生理学家,巴甫洛夫称其为俄罗斯生理学之父。谢切诺夫的经典著作《大脑的反射》将电生理学和神经生理学引入到了实验室和医疗教学中。.
伪科学
伪科学(pseudoscience),又称假科學、壞科學、疑似科学,是指任何经宣称为科学,或描述方式看起来像科学,但实际上并不符合科学方法基本要求的知识、缺乏支持证据,禁不起可信性测试,或缺乏科学形式,For example, Hewitt et al.
开尔文-亥姆霍兹不稳定性
開爾文-亥姆霍茲不穩定性(Kelvin–Helmholtz instability,名稱來自開爾文男爵和赫尔曼·冯·亥姆霍兹)是在有的連續流體內部或有速度差的兩個不同流體的介面之間發生的不穩定現象。一個例子是風吹過水面時,在水面上表面的波的不穩定。而這種不穩定狀況更常見於雲、海洋、土星的雲帶、木星的大紅斑、太陽的日冕中。.
开尔文方程
开尔文方程(Kelvin equation)描述了由于弯曲的液-气界面(例如液滴的表面)引起的蒸气压的变化。凸曲面的蒸气压高于平坦表面的蒸气压。开尔文方程基于热力学原理,而且并没有考虑材料的特殊性质。它也可用于通过吸附法来测定孔隙率多孔介质的孔隙尺寸分布。这个方程是为纪念威廉·汤姆逊(William Thomson)而命名的,威廉·汤姆逊也被称为开尔文爵士(Lord Kelvin)。 开尔文方程可以写成下面这种形式: 其中p是实际的蒸气压,p_0是饱和蒸气压,\gamma是表面张力,V_\text是液体的摩尔体积,R是通用气体常数,r是液滴的半径,T是温度。 平衡蒸气压力取决于液滴的大小。.
彩色视觉
彩色视觉(color vision)是一个生物体或机器基于物体所反射,发出或透过的光的波长(或频率) 以区分物体的能力。颜色可以以不同的方式被测量和量化;事实上,人对颜色的感知是一个主观的过程,即,脑响应当进入的光与眼中的若干种视锥细胞作用时所产生的刺激。在本质上,不同的人也许会以不同的方式看同一个物体。.
关于多相物质平衡
在上,《关于多相物质平衡》(On the Equilibrium of Heterogeneous Substances)是美国数学工程师约西亚·吉布斯所写的一篇300页的论文。它与赫尔曼·冯·亥姆霍兹1882年的论文《热力学化学过程》(Thermodynamik chemischer Vorgänge)一起被认为热力学领域开创性的论文。他们同时也创立了物理化学的重要分支——化学热力学。 吉布斯的此论文将化学、物理、电气、电磁现象整合成一个连贯的体系,标志着化学热力学的开端。此文引入的化学势、相律等概念奠定了现代物理化学的基础。美国作家比爾·布萊森将其称作“热力学原理”。 《关于多相物质平衡》最早分几部分在1875年到1878年间发表在一本相对晦涩的美国期刊《康涅狄格学院学报》(Transactions of the Connecticut Academy)上,而大部分引用此文的文章中所写的1876年是最关键的一年。该文一直没有较大的影响,直到威廉·奥斯特瓦尔德和亨利·路易斯·勒夏特列分别将其翻译为德文和法文。.
克赫歷程
克赫歷程是天文學事件,發生在恆星或行星表面冷卻時。冷卻的結果,造成恆星與行星的降壓,並且以收縮來補償。這種壓縮,相對的加熱了恆星/行星的核心。這種歷程在木星和土星,還有核心溫度不夠高,不足以引發核融合的棕矮星上非常明顯。估計木星就是通過這個機制才使他能釋放出比從太陽吸收到更多的能量,但是土星可能沒有。 這個機制最初是由开尔文和亥姆霍兹在1800年代晚期提出,用來解釋太陽的能量來源。我們現在知道,克赫歷程所能產生的總能量遠低於太陽所釋放出來的能量。.
理论物理学家列表
以下是对理论物理学做出贡献的科学家列表。以其去世时间作为分类,然后以出生时间再为细分:.
科普利獎章
科普利獎章(Copley Medal)是英國皇家學会每年頒發的科學獎章,以奖励“在任何科学分支上的杰出成就”。始于1731年授予的科普利獎章是皇家學会仍在颁发的最古老的科学奖章,也可能是世界上最早的科学奖章。.
約翰內斯·彼得·繆勒
約翰內斯·彼得·繆勒(Johannes Peter Müller,),德國生理學家、海洋生物学家和解剖学家,生理心理學的創始人,實驗生理學之父。其提出過脊髓反射理論、神經特殊能量論。.
约西亚·威拉德·吉布斯
约西亚·威拉德·吉布斯(Josiah Willard Gibbs,),美国科学家。他在物理学、化学以及数学领域都做出了重大的理论贡献。他有关热力学的实际应用的研究奠定了物理化學的基础。吉布斯还通过系综理论给出了热力学定律的一种微观解释,由此成为统计力学的创建者之一。“统计力学”这个术语也是由他引入的。同时,吉布斯还将麦克斯韦方程组引入物理光学的研究,并与英国科学家奥利弗·亥维赛各自独立发展了现代向量分析理论。 1863年,吉布斯获得耶鲁学院所授予的美国国内首个工程学博士学位。1871年,他在旅居欧洲三年后被聘任为耶鲁学院的数学物理学教授,并一直担任这一职位直到去世。吉布斯尽管相对孤立於当时科学蓬勃发展的欧洲,但还是成为了美国首位获得国际声誉的理论科学家,并被阿尔伯特·爱因斯坦誉为“美国史上最为杰出的英才”。1901年,他因在数学物理学领域的贡献而獲授当时国际科学界的最高奖项,英国皇家学会颁发的科普利奖章。 吉布斯一生的事迹受到众多作家以及评论家的传颂。他所做的研究尽管大多都是纯理论性的,但其实际应用价值在20世纪上半叶化工领域的蓬勃发展中得到了充分的體現。諾貝爾物理學獎得主罗伯特·密立根曾这样评价吉布斯:“(他)對于统计力学和热力学来说,就如同拉普拉斯之于天体力学,麦克斯韦之于电动力学。他为自己所研究的领域构造了几近完整的理论体系。”.
眼科学
科学是醫學上研究眼部疾患一個分支,研究发生在视觉系统,包括可侵犯眼部的病理及眼內科和外科處理,眼球及与其相关联的组织有关疾病皆含括在內。 1851年,德国的赫爾曼·馮·亥姆霍茲发明了检眼镜,眼科学才真正独立成为一门学科。.
热力学自由能
热力学自由能(英语:Thermodynamic free energy)是指一个热力学系统的能量中可以用来对外做功的部分,是热力学态函数。自由能可以作为一个热力学过程能否自发进行的判据。 对限定条件不同的热力学过程,热力学自由能有不同表达形式。最常见的有吉布斯自由能G和亥姆霍兹自由能A(或F)。等温等容过程用亥姆霍兹自由能 A.
热寂
熱寂(英语:Heat death of the universe)是猜想宇宙終極命運的一種假說。根據熱力學第二定律,作為一個「孤立」的系統,宇宙的熵會隨著時間的流異而增加,由有序向無序,當宇宙的熵達到最大值時,宇宙中的其他有效能量已經全數轉化為熱能,所有物質溫度達到熱平衡。這種狀態稱為熱寂。這樣的宇宙中再也沒有任何可以維持運動或是生命的能量存在。熱寂理論最早由威廉·湯姆森(英语:William Thomson)於1850年根據自然界中機械能損失的熱力學原理推導出的。.
爱德华·策勒
爱德华·戈特洛布·策勒(Eduard Gottlob Zeller,1814年1月22日生于Kleinbottwar ,1908年3月19日逝于斯图加特),德国哲学家、图宾根神学院新教神学家。策勒以古希腊哲学,尤其是前苏格拉底哲学见长 ,并写了多卷本历史著作《古希腊发展史中的哲学》(1844-1852)。策勒同时也是新康德主义复兴运动的关键人物。.
电子
电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.
物理学史
物理学主要是研究物质、能量及它們彼此之間的關係。它是最早形成的自然科学学科之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理學》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比伦和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德的学说以及其后的经院哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自於这些哲学传统,并在中世纪时由当时的哲学家、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。.
物理学家列表
诺贝尔物理学奖获得者名单包含更多的20世纪以及21世纪著名物理学家。.
特征值和特征向量
在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.
狄拉克δ函数
在科學和數學中,狄拉克函數或簡稱函數(譯名德爾塔函數、得耳他函數)是在實數線上定義的一個廣義函數或分佈。它在除零以外的點上都等於零,且其在整個定義域上的積分等於1。函數有時可看作是在原點處无限高、无限细,但是总面积为1的一個尖峰,在物理上代表了理想化的質點或点电荷的密度。 從純數學的觀點來看,狄拉克函數並非嚴格意義上的函數,因為任何在擴展實數線上定義的函數,如果在一個點以外的地方都等於零,其總積分必須為零。函數只有在出現在積分以內的時候才有實質的意義。根據這一點,函數一般可以當做普通函數一樣使用。它形式上所遵守的規則屬於的一部分,是物理學和工程學的標準工具。包括函數在內的運算微積分方法,在20世紀初受到數學家的質疑,直到1950年代洛朗·施瓦茨才發展出一套令人滿意的嚴謹理論。嚴謹地來說,函數必須定義為一個分佈,對應於支撐集為原點的概率測度。在許多應用中,均將視為由在原點處有尖峰的函數所組成的序列的極限(),而序列中的函數則可作為對函數的近似。 在訊號處理上,函數常稱為單位脈衝符號或單位脈衝函數。δ函數是對應於狄拉克函數的離散函數,其定義域為離散集,值域可以是0或者1。.
音分
音分(英语:cent)是一个用于度量音程的对数标度单位。在十二平均律中,將一個八度音程分為12個半音。每一个半音的音程(相当于相邻钢琴键间的音程)等于100音分。音分通常用於度量极小的音程,或是用于对比不同调律系统中可比音程的大小差异。然而事實上,若是兩個相鄰音符間的音程只有相差1音分時,由於差距极为微小,人耳很难辨別。.
菲利普·莱纳德
菲利普·冯·莱纳德(Philipp von Lenard,),德国物理学家,1905年诺贝尔物理学奖获得者。 莱纳德在研究阴极射线时曾获得卓越成果,为此获得诺贝尔奖;他用实验发现了光电效应的重要规律;他也提出过一种原子结构设想。.
表面电荷
表面电荷即在界面处存在的电荷。有很多过程可以使表面带电,比如离子吸附、质子化或去质子化、表面的化学基团发生电离、外加电场。表面电荷会产生电场,使粒子之间有排斥或吸引的相互作用,这是很多胶体性质的成因。 物体处于流体中一般都會带上电荷。几乎所有的流体都会含有离子,包括正离子(阳离子)和负离子(阴离子),离子与表面會有相互作用,导致有离子吸附到物体表面。 另外一个表面电荷的机制是,表面的化学基团发生电离。.
颜色
色或色彩是通过眼、脑和我们的生活经验所产生的一种对光的视觉效应。人对颜色的感觉不仅仅由光的物理性质所决定,還包含心理等許多因素,比如人类对颜色的感觉往往受到周围颜色的影响。有时人们也将物质产生不同颜色的物理特性直接称为颜色。.
颜色差异
色差异(Color difference),亦称距离,是色彩学上的一个关注点。它量化了一个概念。在未量化之前,人们只能用形容词来大概描述这个概念,这使得对颜色要求严格的工作者们很不方便。颜色差异可以通过色彩空间内的欧氏距离简单计算得出,也可以使用CIE较为复杂、均匀的人类知觉公式计算。.
马克斯·普朗克
克斯·卡尔·恩斯特·路德维希·普朗克(Max Karl Ernst Ludwig Planck,),德国物理学家,量子力学的创始人,20世纪最重要的物理学家之一,因发现能量量子而对物理学的发展做出了重要贡献,並在1918年獲得诺贝尔物理学奖。 作为一个理论物理学家,普朗克最大的贡献是首先提出了(舊)量子论。这个理论彻底改变人类对原子與次原子的认识,正如爱因斯坦的相对论改变人类对时间和空间的认识,这两个理论一起构成了20世纪物理学的基础。 波耳、愛因斯坦與普朗克被稱為舊量子論的奠基者。.
马泰乌奇奖章
泰乌奇奖章(Medaglia Matteucci,Matteucci Medal)是意大利的物理学奖(以意大利物理学家Carlo Matteucci命名)。本奖项为做出基本贡献的物理学家公开颁奖。按照意大利皇家法令,本奖项在1870年7月10日意大利科学院接受Carlo Matteucci的捐赠建立。.
詹姆斯·普雷斯科特·焦耳
詹姆斯·普雷斯科特·焦耳,FRS(James Prescott Joule,),英國物理學家。焦耳在研究热的本质时,发现了热和功之间的转换关系,并由此得到了能量守恒定律,最终发展出热力学第一定律。国际单位制导出单位中,能量的单位——焦耳,就是以他的名字命名。他和开尔文合作发展了温度的绝对尺度。他还观测过磁致伸缩效应,发现了導體电阻、通過導體电流及其產生熱能之间的关系,也就是常称的焦耳定律。.
路德维希·玻尔兹曼
路德维希·爱德华·玻尔兹曼(Ludwig Eduard Boltzmann ,)是一位奥地利物理学家和哲学家。作为一名物理学家,他最伟大的功绩是发展了通过原子的性质(例如,原子量,电荷量,结构等等)来解释和预测物质的物理性质(例如,粘性,热传导,扩散等等)的统计力学,并且从统计概念出發,完美地阐释了热力学第二定律。.
辐照错觉
辐照错觉(irradiation illusion)是一种视错觉。如右图所示,较亮的色块(左边的白色正方形)看起来比较暗的色块(右边的黑色正方形)来得大,而两个正方形的实际大小却是一样的。赫尔曼·冯·亥姆霍兹在1867年正式命名了此现象,但在其之前也有不少科学家发现这一视错觉,例如伽利略在《关于托勒密和哥白尼两大世界体系的对话》中就已提及。辐照错觉形成的部分原因是光在眼睛中的散射扩大了明亮区域在视网膜上的成像面积。.
能量守恒定律
能量守恒定律(law of conservation of energy)闡明,孤立系统的总能量 E 保持不变。如果一个系统处于孤立环境,即不能有任何能量或質量从该系统输入或输出。能量不能无故生成,也不能无故摧毁,但它能够改变形式,例如,在炸弹爆炸的过程中,化学能可以转化为动能。 从能量守恒定律可以推导出第一類永动机永远無法實現。没有任何孤立系统能够持續對外提供能量。.
阿尔伯特·爱因斯坦科学出版物列表
阿尔伯特·爱因斯坦(1879年-1955年)是二十世纪著名理论物理学家,以狭义相对论和广义相对论的建立闻名于世。他在统计力学领域也做出了重要的贡献,特别是他对布朗运动的研究,解决了关于比热容的佯谬,以及建立了涨落与耗散之间的联系。尽管他在对量子力学的诠释上有保留意见,爱因斯坦对量子力学的诞生仍然做出了开创性的贡献,并且他对光子的理论研究也间接导致了量子场论的诞生。 爱因斯坦的科学出版物在下面的四个列表中列出:期刊论文、书籍章节、书籍和授权译作。在列表的第一列中,每一篇出版物的索引号都采用了保罗·席尔普(Paul Arthur Schilpp)的参考书目(参见席尔普所著《阿尔伯特·爱因斯坦:哲人-科学家》(Albert Einstein: Philosopher-Scientist)第694-730页)中的编号以及《爱因斯坦全集》中的编号。这两个参考书目的完整信息可以从后面的参考书目章节中找到。席尔普编号用于注解中的交叉参考(每一个列表的最后一列),因为它们涵括了爱因斯坦人生的大部分时期。中文翻译的标题大部分来自于出版的中文版《爱因斯坦全集》和《爱因斯坦文集》(商务印书馆1976年第一版)。然而一些出版物并没有官方的翻译,非官方的翻译以§记号标明。虽然列表是按时间顺序排列,然而点击每一列顶部的箭头,每一个列表的任意栏可以重新按照字母顺序排列。举例说明,按照主题重新排序一个表,以便将“广义相对论”和“比热容”相关的文章分组,只需按一下“分类注释”一栏的箭头即可。打印重新排列的列表,页面可能会直接使用浏览器默认的打印选项打印,左侧的“打印版本”的链接只提供了缺省排序的版本。爱因斯坦与他人合作作品用淡紫色标识,合作者的名字列在表格的最后一栏中。 为了限制本文的重点和长度,爱因斯坦的许多非科学作品没有列在这裡。区分科学和非科学作品标准是根据席尔普参考书目,书中列出了130多个非科学作品,大部分是关于人道主义或政治主题(第730-746页)。《爱因斯坦全集》中的5卷(第1、5、8-10卷)是关于他的信件,其中大部分与科学问题相关。由于这些信件原来并不准备出版,因此同样也没有列在这裡。.
查看 赫尔曼·冯·亥姆霍兹和阿尔伯特·爱因斯坦科学出版物列表
阿尔伯特·迈克耳孙
阿尔伯特·亚伯拉罕·迈克耳孙(Albert Abraham Michelson,),又譯「邁克生」、「迈克耳逊」,波蘭裔美国藉物理学家,以测量光速而闻名,尤其是迈克耳孙-莫雷实验。1907年诺贝尔物理学奖获得者。.
赫尔曼·闵可夫斯基
赫尔曼·闵可夫斯基(Hermann Minkowski,),德国数学家,犹太人,四维时空理论的创立者,曾经是著名物理学家爱因斯坦的老师。.
赫爾曼·格拉斯曼
赫尔曼·京特·格拉斯曼(Hermann Günther Graßmann,),出生於什切青,是一个德国博学者,在他生活的时代以语言学家身份闻名,今天以数学家身份而著称。他也是一位物理学家,新人道主义者,博学的学者,和出版家.
電容
在電路學裡,給定電壓,電容器儲存電荷的能力,稱為電容(capacitance),標記為C。採用國際單位制,電容的單位是法拉(farad),標記為F。電路圖中多半以C開頭標示電容,例:C01、C02、C03、C100等。 平行板電容器是一種簡單的電容器,是由互相平行、以空間或介電質隔離的兩片薄板導體構成。假設這兩片導板分別載有負電荷與正電荷,所載有的電荷量分別為-Q\,\!、+Q\,\!,兩片導板之間的電位差為V,則這電容器的電容C為 1法拉等於1庫侖每伏特,即電容為1法拉的電容器,在正常操作範圍內,每增加1伏特的電位差可以多儲存1庫侖的電荷。 電容器所儲存的能量等於充電所做的功。思考前述平行板電容器,搬移微小電荷元素\mathrmq從帶負電薄板到帶正電薄板,每對抗1伏特的電位差,需要做功\mathrmW: 將這方程式積分,可以得到儲存於電容器的能量。從尚未充電的電容器(q.
X射线
--(X-ray),又被称为爱克斯射线、艾克斯射线、伦琴射线或--,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学成像诊断和X射线结晶学。X射线也是游離輻射等这一类对人体有危害的射线。 X射線波長範圍在較短處與伽馬射線較長處重疊。.
柏林洪堡大學
柏林洪堡大學(德語:Humboldt-Universität zu Berlin,HU Berlin),是德國首都柏林最古老的大學,於1809年由普魯士教育改革者及語言學家威廉·馮·洪堡及弟弟亚历山大·冯·洪堡所創立,是第一所新制的大學,拥有十分辉煌的历史,對於歐洲乃至於全世界的影響都相當深遠,該校後因二戰緣故,而與柏林自由大學誕生關聯密切。柏林洪堡大学2012年6月入选为11所德国“精英大学”之一。.
核天体物理学
核天体物理学(nuclear astrophysics)是天體物理學和核物理學的交叉學科,主要研究的領域有恆星結構,天體質量與其壽命的關係等,並從中了解恆星如何產生能量,認識化學元素的起源和演变與,分析驱动天体物理现象的机制。.
波茨坦
波茨坦(Potsdam、Poczdam、Postupim)是德国勃兰登堡州的州府和不隶属于县的城市,其北部与柏林相邻(到柏林市中心约26公里)。波茨坦坐落于哈韦尔河边,是柏林/勃兰登堡都市地区的一部分,它是勃兰登堡州人口最多的城市,也是该州的一个中心。 波茨坦曾经是许多重要事件的发生地点。波茨坦之于德国正如温莎之于英国:其为普鲁士国王和德国皇帝的夏宫所在,直到1918年。城市内有众多湖泊和独特的文化历史建筑,特别是德国境内最大的世界遗产,無憂宮以及周边的公园。而波茨坦会议,二战同盟国之间在二战后期召开的重要会议,则是在市内的另一座宫殿,塞琪琳霍夫宫召开的。.
法蘭西斯庫斯·唐德斯
法蘭西斯庫斯·科內利烏斯·唐德斯 FRS(Franciscus Cornelius Donders,),荷蘭眼科醫師與心理學家,的發明者,也是心理測時法的創始人之一。縱觀唐德斯的職業生涯,他曾任烏特勒支大學的生理學教授,並被國際視為眼疾的權威。除此之外,唐德斯、和赫爾曼·馮·亥姆霍茲亦是眼科學的主要創始人之一。.
法蘭茲·鮑亞士
弗朗茨·博厄斯(Franz Boas,),或译法蘭茲·鮑亞士,是德國裔美國人類學家,現代人類學的先驅之一,享有“美國人類學之父”的名號。他也是语言学家,美国语言学研究的先驱。他开创了人类学的四大分支:体质人类学、语言学、考古学以及文化人类学。http://article.yeeyan.org/view/339265/346507如同許多當年的先驅者,他的學科訓練來自其他學科;他获得物理學博士,並從事地理學的博士后研究。他將科學研究方法運用於人類文化與社會的研究,這個領域先前植基於圍繞著奇聞軼事的巨型理論論述。.
朱載堉
朱載堉(1536年-1610年),字伯勤,號句曲山人。明宗室鄭恭王朱厚烷嫡子,出生於懷慶(今河南沁陽)。為明仁宗第二子鄭靖王朱瞻埈之後,明太祖朱元璋的九世孫。明代樂律學家、音乐家、數學家、舞学家、樂器制造家、物理学家、天文学家、散曲作家,首創著名的十二平均律。西方人稱讚他為『東方百科藝術全書式的人物』。.
月球環形山列表 (G-K)
这是月球环形山列表的一部份,此表列举出英文名称以字母G,H,I,J 及 K 开头的环形山。.
戴维南定理
戴维南定理(Thevenin's theorem)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。由於早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。其内容是:一个含有独立電壓源、獨立電流源及電阻的线性网络的兩端,就其外部型態而言,在電学上可以用一个独立电压源V和一个松弛二端网络的串联電阻组合来等效。在單頻交流系統中,此定理不仅適用於電阻,也適用於廣義的阻抗。 此定理陳述出一個具有電壓源及電阻的電路可以被轉換成戴維南等效電路,這是用於電路分析的簡化技巧。戴維南等效電路對於電源供應器及電池(裡面包含一個代表內阻抗的電阻及一個代表電動勢的電壓源)來說是一個很好的等效模型,此電路包含了一個理想的電壓源串聯一個理想的電阻。.
流体动力稳定性
流體動力學中,流体动力稳定性是一個研究流體流動的穩定性及不穩定性的領域,流體的不穩定進一步可能會產生紊流See Drazin (2002), Introduction to hydrodynamic stability, p. 1.
海德堡大学
海德堡大学,全名鲁普莱希特-卡尔斯-海德堡大学(Ruprecht-Karls-Universität Heidelberg),位於德国巴登-符腾堡州的海德堡市。 1385年10月23日海德堡获得教宗伍朋六世建立大学的特许,1386年由普法爾茨選帝侯魯普萊希特一世創建,為德国最古老的大学,也是繼布拉格大學與維也納大學之後,於神聖羅馬帝國創設的第三所大學。 建校之初即设有神学、法学、医学、哲学四大经典科系。直至1890年,自然科学系才成为第五个独立的科系。現今海德堡大学下发展为12个學院,超過100個學門,分為大學部、研究所與博士後研究。於2014/2015年冬季班註冊學生人數達30,898人,516位講座教授,教職與研究人員5,603人。海德堡大學向來為德國浪漫主義與人文主義之象徵,每年吸引大批外國學生或學者前來求學或研究,來自130個國家之外國學生約佔學生總數之五分之一,每年約有1,000名博士生獲頒博士學位,其中超過三分之一來自國外。海德堡大學校舍大致分布於老城區、Bergheim城區與Neuenheimer Field城區。 海德堡大學為歐洲研究型大學聯盟及科英布拉集團、歐洲大學協會之創始會員,2007年10月19日,德国“精英大学”评选,海德堡大学名列德国九所精英大学之一。在2012年6月揭晓的又一轮卓越计划评选中,依旧被评为精英大学。至2015年為止,計有27位諾貝爾獎得主及至少18位萊布尼茲獎得主曾於此求學、任教或研究,為德國乃至於歐洲頂尖之研究型大學。 在2016年“《美国新闻和世界报导》的全球大学排名”U.S.
海因里希·赫兹
海因里希·赫兹(Heinrich Hertz,),德国物理学家,于1887年首先用实验证实了电磁波的存在,并于1888年发表了论文。他对电磁学有很大的贡献,故频率的国际单位制单位赫兹以他的名字命名。.
海因里希·楞次
海因里希·楞次(Эмилий Христианович Ленц,转写:Heinrich Lenz,),波羅的海德國人裔的俄国物理学家、地球物理学家。 楞次1804年出生于被俄国占領的爱沙尼亚德尔帕特市(今爱沙尼亚共和国的塔尔图),16岁时以优异的成绩考入德尔帕特大学。1828年,楞次当选俄国圣彼得堡科学院的初级科学助理,1830年当选为圣彼得堡科学院通讯院士,1834年成为院士。1836年到1865年任圣彼得堡大学教授,1840年担任圣彼得堡大学数学物理系系主任,1863年当选为第一任校长。楞次1865年在意大利罗马因中风逝世。 楞次总结了安培的电动力学与法拉第的电磁感应现象后,于1833年在圣彼得堡科学院宣读了题为“关于用电动力学方法决定感生电流方向”的论文,提出了感生电动势阻止产生电磁感应的磁铁或线圈的运动,后来这条定律被称为楞次定律,在1834年的《物理学和化学年鉴》上发表。随后德国物理学家亥姆霍兹证明楞次定律实际上是电磁现象的能量守恒定律。 1842年,楞次独立于英国物理学家焦耳确定了电流与其所产生的热量的关系,也就是焦耳定律,因此焦耳定律也被称为焦耳-楞次定律。楞次还研究了不同金属的电阻率,以及电阻率与温度的关系。 除此之外,在楞次的倡导与协助下,1845年成立了俄国地理学会。.
新康德主义
新康德主义(Neo-Kantianism;Neukantianismus)是伊曼努尔·康德的哲学思想在18世纪的复兴。新康德主义受到阿瑟·叔本华《作为意志和表象的世界》(1818)以及其他后康德哲学家,如雅各布·弗里德里克·弗里斯和约翰·弗里德里希·赫尔巴特等人对康德哲学批评的影响。在这之后的德国哲学一定程度上都关涉到新康德主义。.
托马斯·杨
湯瑪士‧楊格(Thomas Young,),亦称“杨氏”,是一位英国科学家、医生、通才,曾被譽為「世界上最後一個什麼都知道的人」。.
8月31日
8月31日是阳历年的第243天(闰年是244天),离一年的结束还有122天。.
9月8日
9月8日是阳历年的第251天(闰年是252天),离一年的结束还有114天。 在英国和北美十三州,因1752年將曆法從儒略曆轉換至格里曆,故該年沒有9月8日。.
亦称为 亥姆霍兹,亥姆霍兹,H.von,亥尔姆霍尔兹。