徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

萊昂哈德·歐拉

指数 萊昂哈德·歐拉

莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.

223 关系: AMS Euler加布里尔·克拉默加里寧格勒加斯帕尔·蒙日埃尔德什·帕尔千禧年大獎難題反三角函数反餘切叶卡捷琳娜二世变分法发散级数含圆周率的公式列表复数 (数学)夏爾·埃爾米特天文學奥卡姆剃刀威尔金森微波各向异性探测器季赫温公墓定向 (幾何)完全数宗教安德烈-馬里·安培安德斯·埃格斯特朗實際數导数小行星2002射影平面工作狂巴塞尔大学巴塞尔问题丹尼尔·伯努利主曲率三尖瓣线三角函数一个数学家的辩白一笔画问题一般化的士數九点圆平面图 (图论)乔治·阿特伍德亞瑟·韋伊費列治于靖亞歷山大·李亞普諾夫二次互反律二次剩余五角数五邊形數定理以人名命名的常數弦理論伯努利...伯努利家族伯努利数影响人类历史进程的100名人排行榜作用量微分几何微积分学微积分学主题列表圣彼得堡国立大学地球空洞说北极点圓周率國立政治大學附屬高級中學傅里叶级数哥德巴赫猜想哈雷-维滕贝格大学内能几何学几何学家列表几何中心函数克里斯蒂安·哥德巴赫勒让德符号图论四平方和定理皮埃爾·布蓋皮埃爾·莫佩爾蒂球 (数学)理论物理学理论物理学家列表神童离散化科学等時降線算术研究素数素数公式素数的倒数之和約翰·白努利綜藝大熱門约翰·海因里希·朗伯约瑟夫·刘维尔约瑟夫·拉格朗日级数线性微分方程美国文理科学院群论瑞士人無窮小量物理学史物理学家列表牛顿运动定律相亲数E (数学常数)階乘芝诺悖论螺旋曲面華林問題萊昂哈德·歐拉萊昂哈德·歐拉望遠鏡餘弦騎士巡邏證明黎曼ζ函數的歐拉乘積公式變數谷山-志村定理调和级数调性网络鲍耶·亚诺什費馬數費迪南·艾森斯坦贝塞尔函数费马大定理费马小定理费马平方和定理超越三角函數黎曼ζ函數连分数迭代冪次迷路園錢德勒擺動關係子句错排问题自然對數雅各布·赫爾曼虚数Google涂鸦Γ函数N体问题Q-模拟Veneziano 模型抽象代数柯尼斯堡柯尼斯堡七桥问题柯西-黎曼方程极坐标系李俨 (现代学者)格奥尔格·欧姆格蘭迪級數梅森素数椭圆积分欧几里得定理欧拉-丸山法欧拉-麦克劳林求和公式欧拉力欧拉定理 (数论)欧拉乘积欧拉函数欧拉公式欧拉图欧拉四平方和恒等式欧拉示性数欧拉积分欧拉角欧拉陨石坑欧拉-特里科米方程欧拉方程 (流体动力学)欧拉方法歐幾里得-歐拉定理歐依勒歐拉-馬斯刻若尼常數歐拉函數 (複變函數)歐拉獎歐拉線歐拉運動定律歐拉﹣伯努力棟樑方程歐拉恆等式歐拉旋轉定理正弦母函数求和符号波动方程漸伸線潮汐挫曲本傑明·富蘭克林月球環形山列表 (C-F)月球運動論指数函数最小作用量原理戈特弗里德·莱布尼茨流体力学斯里尼瓦瑟·拉马努金文氏图无穷小分析引论懸鏈曲面数学史数学家数学家列表数学著作列表数论數學符號數獨拓扑学拉丁语拉格朗日点拉格朗日插值法0.999…1 + 2 + 4 + 8 + …1 − 1 + 2 − 6 + 24 − 120 + ⋯1 − 2 + 3 − 4 + …1 − 2 + 4 − 8 + …101707年1736年1783年18世纪2010–11年歐霸盃外圍賽及附加賽圈21474836474月15日655379月18日 扩展索引 (173 更多) »

AMS Euler

AMS Euler 是一款直立意大利体,由美国数学学会(AMS)委托字体设计师赫尔曼·察普夫设计,高德纳与他在斯坦福大学的研究生提供技术上的帮助。字体的版权归属于美国数学学会。AMS Euler模仿数学家在黑板上演算数学公式的字迹,Euler直立的风格即是由于黑板字迹通常并不呈现斜体样式。这款字与赫尔曼·察普夫设计的其他字体(如帕拉提诺体、Aldus以及Melior)搭配起来十分协调,但是和TeX系统的默认字体Computer Modern混排效果很差。 数字化的Euler字形是由高德纳开发的计算机辅助字体设计系统Metafont制作完成的。察普夫在1980年至1981年的两年的时间内设计完成了整套Euler字体的字形,于1983年后又为数字版做了质量监督与指导工作。斯坦福大学的计算机科学系与数字文字设计专业的学生完成了Euler的Metafont开发工作。这项工作由John Hobby指导,Scott Kim、Carol Twombly、Daniel Mills、David Siegel等人先后加入其中。其中Siegel在1985年完成了整个项目的数字化工作,并以此作为自己硕士论文的题目。 AMS Euler字体的得名是为了纪念伟大的数学家欧拉。 AMS Euler字体的数字化最初是用METAFONT实现的,它的首次排印出现在了《具体数学》一书。在这本高德纳的著作中,Euler字体被大量使用。同样在这本书中被首次使用的也有高德纳本人的Concrete Roman字体,用以与AMS Euler搭配。Metafont格式的Euler字体后来被Berthold Horn、Barry Smith、Henry Pinkham和Ian Morrison等人转为PostScript Type 1格式。现在这款字体同样有TrueType格式。 Euler 字体家族包括七套字母表:拉丁字母、希腊字母、哥特体拉丁字母、粗拉丁字母、粗希腊字母、粗手写体以及粗哥特体。.

新!!: 萊昂哈德·歐拉和AMS Euler · 查看更多 »

加布里尔·克拉默

加百列·克萊姆(Gabriel Cramer,台灣教科書多譯作克拉瑪。1704年7月31日於日內瓦出生,1752年1月4日於法國塞兹河畔巴尼奥勒逝世),瑞士數學家, 克萊姆早年在日内瓦读书,1724年起在日内瓦加尔文学院任教,1734年成为几何学教授,1750年任哲学教授。他自1727年进行为期两年的旅行访学。在巴塞尔与约翰·伯努利、欧拉等人学习交流,结为挚友。後又到英国、荷兰、法国等地拜见许多数学名家,回国後在与他们的长期通信 中,加强了数学家之间的联系,为数学宝库也留下大量有价值的文献。他一生未婚,专心治学,平易近人且德高望重,先後当选为伦敦皇家学会、柏林研究院和法国、意大利等学会的成员。首先定义了正则、非正则、超越曲线和无理曲线等概念,第一 次正式引入坐标系的纵轴(Y轴),然後讨论曲线变换,并依据曲线方程的阶数将曲线进行分类。为了确定经过5个点的一般二次曲线的系数,应用了著名的「克莱姆法则」,即由缐性方程组的系数确定方程组解的表达式。该法则於1729年由英国数学家马克劳林得到,1748年发表,但克莱姆的优越符号使之流传。其最著名的工作是他1750年發表在代數曲線方面的權威之作;它最早證明一個第n度的曲線是由:n(n + 3)/2點來決定。.

新!!: 萊昂哈德·歐拉和加布里尔·克拉默 · 查看更多 »

加里寧格勒

加里宁格勒(Калининград,拉丁字母轉寫:Kaliningrad),舊名哥尼斯堡(Königsberg,在德文中意指「國王之山」;Кёнигсберг;古普魯士語:Twangste, Kunnegsgarbs, Knigsberg;Królewiec;Karaliaučius),是俄罗斯加里宁格勒州的首府,為濒临波羅的海的海港城市,市区面积215.7平方千米,2010年人口为431,402人。 此地最早是古普鲁士人的定居点,1255年条顿骑士团于北方十字军入侵期间在此建立据点,并出于对普热米斯尔·奥托卡二世国王的敬意取名“哥尼斯堡”。之後,该城一直是条顿骑士团国、普鲁士和德国東普魯士的一部分,直到二戰末期的1945年,苏联紅軍占领整个东普鲁士為止。二戰結束後,根据《波茨坦协定》,东普鲁士约三分之一的面積划归给苏联,其余部分划归给波兰。1946年7月4日,苏联把劃归给其的东普鲁士部分领土,取名为加里宁格勒州,以紀念當時剛逝世的最高蘇維埃主席團主席米哈伊·加里寧,哥尼斯堡也同步更改為現名,並成為該州之首府至今。.

新!!: 萊昂哈德·歐拉和加里寧格勒 · 查看更多 »

加斯帕尔·蒙日

加斯帕·蒙日,佩吕斯伯爵(Gaspard Monge,),法国数学家,画法几何创始人,(画法几何被广泛应用于工程制图当中),微分几何之父。在法国大革命期间,他曾担当海军部长一职,同时他也积极参与法国的教育系统变革(曾参与École Polytechnique的创办)。.

新!!: 萊昂哈德·歐拉和加斯帕尔·蒙日 · 查看更多 »

埃尔德什·帕尔

埃尔德什·帕尔(Erdős Pál,),其音讀作air-dish,匈牙利語中的意思是來自山林,英语中作保罗·埃尔德什(Paul Erdős)。匈牙利籍猶太人,發表論文高達1525篇(包括与人合寫的),為現時發表論文數最多的數學家(其次是歐拉);曾和511人合寫論文。埃尔德什遺傳了來自數學教師父母優異的數學天賦,三歲時就能輕鬆心算一個人一生所活的秒數,並每日在客人面前表演四位數的乘法心算。他年僅二十一歲即被厄特沃什·羅蘭大學(即布達佩斯大學)授予數學博士學位,師從數學家(他也是冯·诺伊曼的導師)。之後埃尔德什為了逃離納粹的追捕,歷任曼徹斯特大學教授、普林斯頓大學、普度大学和圣母大学之研究人員。 埃尔德什熱愛自由,十分討厭權威,尤其是法西斯。他四處遊歷,探訪當地的數學家,與他們一起工作,合寫論文。他很重視數學家的培訓,遇到有天份的孩子,會鼓勵他們繼續研究,其中最为著名的为华裔澳大利亚数学家陶哲轩。埃尔德什經常沉思于數學問題,視數學為生命。。他經常長時間工作,老年仍每日工作19小時。.

新!!: 萊昂哈德·歐拉和埃尔德什·帕尔 · 查看更多 »

千禧年大獎難題

千禧年大獎難題(Millennium Prize Problems)是七個由美國克雷數學研究所(Clay Mathematics Institute,CMI)於2000年5月24日公佈的數學難題,解题总奖金700万美元。根據克雷數學研究所制定的規則,這一系列挑戰不限時間,題解必須發表在國際知名的出版物上,並經過各方驗證,只要通過兩年驗證期和专家小组审核,每解破一題可獲獎金100万美元deadurl。 這些難題旨在呼應1900年德國數學家大衛·希爾伯特在巴黎提出的23個歷史性數學難題,經過一百年,约17个難題至少已被部分解答。而千禧年大獎難題的破解,極有可能為密碼學、航天、通訊等領域帶來突破性進展。 迄今为止,在七个问题中,庞加莱猜想是唯一被解决的,2003年,俄罗斯数学家格里戈里·佩雷尔曼证明了它的正确性。而其它六道难题仍有待研究者探索。.

新!!: 萊昂哈德·歐拉和千禧年大獎難題 · 查看更多 »

反三角函数

在数学中,反三角函数是三角函数的反函数。.

新!!: 萊昂哈德·歐拉和反三角函数 · 查看更多 »

反餘切

反餘切(arccotangent,記為:arccotAbramowitz, M. and Stegun, I. A. (Eds.). "Inverse Circular Functions." §4.4 in. New York: Dover, pp. 79-83, 1972.Harris, J. W. and Stocker, H.. New York: Springer-Verlag, p. 311, 1998.Jeffrey, A. "Inverse Trigonometric and Hyperbolic Functions." §2.7 in. Orlando, FL: Academic Press, pp. 124-128, 2000.、arcctg、ACOT或cot-1)又稱為逆餘切,是一種反三角函數,對應的三角函數為餘切函數,是利用已知直角三角形的鄰邊和對邊這兩條直角邊長度的比值求出其夾角大小的函數,但其輸入值和反正切的輸入值互為倒數,是高等數學中的一種基本特殊函數。 反餘切可以視為餘切的反函數,但餘切函數是周期函數且在實數上不具有一一對應的關係,所以不存在反函數,但也可以視為多值函数Zwillinger, D. (Ed.). "Inverse Circular Functions." §6.3 in. Boca Raton, FL: CRC Press, pp. 465-467, 1995. ,因此我們必須限制餘切函數的定義域使其成為單射和滿射也是可逆的。 一般最常見的方式是限制餘切函數的定義域在0到π之間,如下圖所示(以紅色曲線表示),此時反餘切函數不是奇函数也不是偶函数,而是一個單調遞減的有界函數,最大值為π、最小值為0且函數連續,但有兩條漸近線。 另外一種定義方式是限制餘切函數的定義域在\pm\frac之間,如下圖所示(以紅色曲線表示),這種限制方式與反正切相同,此時反餘切函數是奇函數,值域與其他相關性質皆與反正切類似,但函數並不連續。 由於餘切是周期函數,而上述二種定義方式皆是取餘切的一個週期,因此其定義域皆為實數集。但當將反餘切函數擴展至複數時,會採用後者的定義方式。 但由於複變分析的定義方式會造成函數不連續,在x.

新!!: 萊昂哈德·歐拉和反餘切 · 查看更多 »

叶卡捷琳娜二世

叶卡捷琳娜二世·阿列克谢耶芙娜(Екатерина Алексеевна,),亦称叶卡捷琳娜大帝(Екатерина II Великая),有些中文依照英文(Catherine II)而稱呼她為凱薩琳二世,俄罗斯帝国史上在位时间最长(1762年至1796年在位),也可能是最知名的女皇。叶卡捷琳娜生于普鲁士波美拉尼亚斯德丁,出生名为索非亚·弗雷德里卡·奥古斯塔·冯·安哈尔特-采尔布斯特-多恩堡(Sophie Friederike Auguste von Anhalt-Zerbst-Dornburg),通过政变废黜并刺杀其夫彼得三世,即位为俄罗斯女皇。在其治下俄罗斯经历复兴,达到其历史顶峰并成为欧洲列强之一。 叶卡捷琳娜即位和在位时均时常依靠其宠幸贵族的协助,如和波将金。在苏沃洛夫、鲁缅采夫和乌沙科夫等将领支持之下,叶卡捷琳娜治下的俄罗斯帝国通过军事及外交迅速扩张。在南方,俄罗斯通过俄土战争击败奥斯曼帝国并击溃克里米亚汗国,对黑海及亚速海的广阔区域进行了殖民(即新俄罗斯);在西方,叶卡捷琳娜前情人斯坦尼斯瓦夫·奥古斯特统治的波兰-立陶宛联邦被瓜分,俄罗斯获得了最大面积的领土;在东部,俄罗斯开始对阿拉斯加进行殖民,俄属北美由此建立。 叶卡捷琳娜改革行政区划,诸多新城镇在其令下建立起来。她跟随其所景仰的彼得大帝的步伐,继续根据西欧模式对俄罗斯进行现代化革新,但征兵制及经济仍旧以为基础,国家及地主的需求越来越依赖于农奴,由此导致了多次叛乱,农民及哥萨克的普加乔夫起义即为一例。 叶卡捷琳娜统治时期被称为“叶卡捷琳娜时代”,通常被认为是俄罗斯帝国及俄罗斯贵族的黄金时代。彼得三世在位时颁布,由叶卡捷琳娜确认延续的《贵族自由宣言》将贵族由强制兵役和国家公务中解放出来。叶卡捷琳娜推动诸多古典主义贵族建筑的建设,改变了俄国的面貌。她热心支持启蒙时代理念,由此获得开明专制君主一称。叶卡捷琳娜亦支持艺术事业,推动了的发展。这一时期所建立斯莫尔尼宫是欧洲首家由国家资助的女性高等教育机构。.

新!!: 萊昂哈德·歐拉和叶卡捷琳娜二世 · 查看更多 »

变分法

变分法是处理泛函的数学领域,和处理函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。 变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。 变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄利克雷原理。 同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,莫尔斯理论,或者辛几何。变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工作,称为普拉托问题。.

新!!: 萊昂哈德·歐拉和变分法 · 查看更多 »

发散级数

发散级数(Divergent Series)指(按柯西意义下)不收敛的级数。如级数1 + 2 + 3 + 4 + \cdots和1 - 1 + 1 - 1 + \cdots ,也就是说该级数的部分和序列没有一个有穷极限。 如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数 调和级数的发散性被中世纪数学家奥里斯姆所证明。.

新!!: 萊昂哈德·歐拉和发散级数 · 查看更多 »

含圆周率的公式列表

下面是一个涉及数学常数π的公式列表。.

新!!: 萊昂哈德·歐拉和含圆周率的公式列表 · 查看更多 »

复数 (数学)

複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.

新!!: 萊昂哈德·歐拉和复数 (数学) · 查看更多 »

夏爾·埃爾米特

夏尔·埃尔米特或译作夏勒·厄密(Charles Hermite,,)是一位杰出的法国数学家,因证明e是超越数而闻名。他的研究领域还涉及数论、线性泛函分析(一种无穷维线性代数)、不变量理论、正交多项式、椭圆函数和代数学。埃尔米特多项式、埃尔米特规范形式、埃尔米特算子(自伴算子)、埃尔米特矩阵(自伴矩阵)和立方埃尔米特样条插值法都以他命名。其中有关内积空间中自伴算子(厄密算符)的趣味理论意外地成为了半个世纪后兴起的量子力学研究的基础代数工具。 “自伴算子(埃尔米特算子)可与实数类比,其特征值一定是实数”这个不太起眼的基础性质却是量子力学必须引用自伴算子来表达可观测物理量的最大原因,而量子力学中的算子运算也为线性代数学中的对偶空间理论提供了一个重要而奇妙的应用实例。.

新!!: 萊昂哈德·歐拉和夏爾·埃爾米特 · 查看更多 »

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

新!!: 萊昂哈德·歐拉和天文學 · 查看更多 »

奥卡姆剃刀

奥卡姆剃刀(Occam's Razor, Ockham's Razor),又称“奥坎的剃刀”,拉丁文为lex parsimoniae,意思是简约之法则,是由14世纪逻辑学家、圣方济各会修士奥卡姆的威廉(William of Occam,约1287年至1347年,奥卡姆(Ockham)位于英格兰的萨里郡)提出的一个解决问题的法则,他在《箴言书注》2卷15题说“切勿浪费较多东西,去做‘用较少的东西,同样可以做好的事情’。”换一种说法,如果关于同一个问题有许多种理论,每一种都能作出同样准确的预言,那么应该挑选其中使用假定最少的。尽管越复杂的方法通常能做出越好的预言,但是在不考虑预言能力(即結果大致相同)的情况下,假设越少越好。 所罗门诺夫的归纳推理理论是奥卡姆剃刀的数学公式化:Induction: From Kolmogorov and Solomonoff to De Finetti and Back to Kolmogorov JJ McCall - Metroeconomica, 2004 - Wiley Online Library.

新!!: 萊昂哈德·歐拉和奥卡姆剃刀 · 查看更多 »

威尔金森微波各向异性探测器

威爾金森微波各向異性探測器(Wilkinson Microwave Anisotropy Probe,簡稱WMAP)是美國國家航空暨太空總署的人造衛星,目的是探測宇宙中大爆炸後殘留的輻射熱,2001年6月30日,WMAP搭载德尔塔II型火箭在佛羅里達州卡纳维拉尔角的肯尼迪航天中心發射升空。 由於宇宙間殘存著大霹靂的熱輻射(即為宇宙微波背景輻射),而WMAP的目的就是測量這些熱輻射的極小差異。這計畫由查爾斯·本內特教授及約翰·霍普金斯大學所領導,與美國太空總署戈達德太空飛行中心及普林斯頓大學合作。WMAP太空船在2001六月30日七點46分46秒於佛羅里達升空,是COBE太空任務的繼承者之一,也是中級探索者系列衛星的一員。2003年,為了紀念曾為研究計畫一員的宇宙學家大衛·威爾金森,MAP更名為WMAP。WMAP在圍繞日-地系統的L2點運行,離地球1.5×106公里。2012年十二月20日,研究團隊發佈了WMAP九年數據及相關影像。 WMAP的測量在建立最近的宇宙標準模型(宇宙常數-冷暗物質模型,或稱ΛCDM模型)中扮演了關鍵的角色。宇宙常數-冷暗物質模型是是一種以宇宙常數型態表示的暗能量為主導的宇宙模型,這模型與WMAP數據及其他宇宙學數據吻合,並且緊密的相互趨近。在宇宙常數-冷暗物質模型中,宇宙年齡為137.72 ± 0.059億年。由金氏世界記錄鑑定,WMAP的任務使宇宙的年齡精確度優於1%。現在的宇宙膨脹速率(見哈伯常數)為69.32 ± 0.80 (公里/秒)/百萬秒差距。宇宙的組成中有 4.628 ± 0.093%的一般重子物質,有24.02+0.88−0.87%既不吸收也不放射光的的冷暗物質(CDM),有71.35+0.95−0.96% 使宇宙加速膨脹的的暗能量。而微中子在宇宙含量中佔不到1%,但WMAP的測量發現其存在。該團隊於2008年首次發現,證實了宇宙微中子背景輻射的存在,微中子的有效種類為3.26 ± 0.35。尤拉平面幾何的曲率(Ωk)為-0.0027+0.0039−0.0038。WMAP的測量在很多方面也支持宇宙是平坦的,包括平坦測量。 根據「科學」雜誌,WMAP在2003年有重大突破。這任務的成果論文榮登2003年後超熱門科學文章排行榜的第一及第二名。在 INSPIRE-HEP數據庫中,物理與天文學引用最多次的論文只有三篇是在2000年以後發表的,而這三篇皆由WMAP發佈。在2010年三月27日,貝內特、來曼、大衛榮獲2010年的邵逸夫獎,以褒揚他們WMAP對天文界的貢獻。 2010年十月,WMAP太空船經過九年的運作,終於功成身退,安息在日心軌道上。天文學及物理高級審查小組在2010年九月於美國太空總署核准了總共九年的WMAP作業,所有WMAP的數據都會仔細檢查並公諸於世。 有些宇宙標準模型的數據型態不同於一般的統計。例如極大角度的測量中,四極矩的數據可能小於模型所預測的,但此不一致性並不顯著。比較小的角度,如大的冷班點及其他數據特徵等,在統計數據上反而較為明顯,而研究將會繼續往這些方面進行。.

新!!: 萊昂哈德·歐拉和威尔金森微波各向异性探测器 · 查看更多 »

季赫温公墓

季赫温公墓 (Tikhvin Cemetery, Тихвинское кладбище) 是一座位于俄罗斯圣彼得堡亚历山大·涅夫斯基修道院的名人墓葬。.

新!!: 萊昂哈德·歐拉和季赫温公墓 · 查看更多 »

定向 (幾何)

在三維空間裏,直軸(直線)、直軸段、有向軸、有向軸段(向量)的定向是由它們與參考系的參考軸之夾角設定的。也可以用別的方法,例如方向餘弦方法。 在三維空間裏,一個平面的定向是垂直於此平面的一個向量的定向。 在三維空間裏,剛體的定向涉及整個剛體的定位。假若一個剛體內中一點已被固定,剛體仍舊能夠繞著固定點旋轉。單獨固定點的位置並不能完全地描述剛體的位置。一個剛體的位置有兩個部分:平移位置與角位置。平移位置可以用設定於剛體的一個參考點來表示。這參考點時常會是剛體的質心或剛體與地面的接觸點。角位置,或定向,通常由剛體的體軸與空間坐標軸的夾角來設定;或者,定義固定於剛體的坐標軸為體坐標軸,由空間坐標軸轉動至體坐標軸所需的轉動角參數設定。在經典力學裏,有幾個工具可以用來描述三維空間的剛體轉動。有些可以延伸至四維或多維空間。.

新!!: 萊昂哈德·歐拉和定向 (幾何) · 查看更多 »

完全数

完全数,又稱完美數或完備數,是一些特殊的自然数:它所有的真因子(即除了自身以外的约数)的和,恰好等於它本身,完全数不可能是楔形數。 例如:第一个完全数是6,它有约数1、2、3、6,除去它本身6外,其余3个数相加,1+2+3=6,恰好等於本身。第二个完全数是28,它有约数1、2、4、7、14、28,除去它本身28外,其余5个数相加,1+2+4+7+14=28,也恰好等於本身。后面的数是496、8128。.

新!!: 萊昂哈德·歐拉和完全数 · 查看更多 »

宗教

宗教(英语:Religion)是联系人与超自然神明或超验主义的文化体系,可分为多神论、泛神论、一神论和无神论等多种体系,包括个人行为、传统仪式、价值观念、世界观念、经典作品、朝拜圣地、道德规范或社会团体等形式。宗教信仰是人们对其中某个体系的共识和崇敬。人类学家克利福德·格尔茨(Clifford Geertz)声称与神话和哲学相辅相成,宗教相当于人文社科中的一门包罗万象的“生存之道”。 不同宗教可能包含不同元素,包括但不限于神性,圣物,信仰,超自然存在(一个或多个),给予信徒规范或力量的终极性或超验性生命体验。宗教的表现形式包括仪式,讲道,纪念或崇拜神明,牺牲,节日,节庆,殡葬服务,婚姻服务,祷告,音乐,艺术,舞蹈,公共服务或其他文化形式。宗教可能通过神圣历史、叙述(可能通过神圣经文保存)、符号意义和圣地,来记录生命、宇宙或其他事物的起源、并以此表达生命的意义。传统意义上,信仰被认为是宗教信念的来源。全世界大约有10000个不同宗教 ,大约84%的人口附属于5个最大宗教之一,基督教、伊斯兰教、印度教、佛教或不同形式的民俗宗教。.

新!!: 萊昂哈德·歐拉和宗教 · 查看更多 »

安德烈-馬里·安培

安德烈-馬里·安培(André-Marie Ampère,FRS,)是法国物理学家、数学家,经典电磁学的创始人之一。为了纪念他的贡献,国际单位制中电流的单位“安培”以他的姓氏命名。.

新!!: 萊昂哈德·歐拉和安德烈-馬里·安培 · 查看更多 »

安德斯·埃格斯特朗

安德斯·約納斯·埃格斯特朗(Anders Jonas Ångström,發音:,),瑞典物理学家,光谱学的奠基人。.

新!!: 萊昂哈德·歐拉和安德斯·埃格斯特朗 · 查看更多 »

實際數

實際數(practical number) cites and for the name "panarithmic numbers".

新!!: 萊昂哈德·歐拉和實際數 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

新!!: 萊昂哈德·歐拉和导数 · 查看更多 »

小行星2002

小行星2002(2002 Euler,2002 歐拉)是一個在小行星帶的小天體,1973年8月29日由蘇聯天文學家塔瑪拉·米哈伊洛夫那·斯米爾諾娃(Тамара Михайловна Смирнова)發現。以瑞士知名數學家和物理學家萊昂哈德·歐拉命名。.

新!!: 萊昂哈德·歐拉和小行星2002 · 查看更多 »

射影平面

在數學裡,投影平面(projective plane)是一個延伸平面概念的幾何結構。在普通的歐氏平面裡,兩條線通常會相交於一點,但有些線(即平行線)不會相交。投影平面可被認為是個具有額外的「無窮遠點」之一般平面,平行線會於該點相交。因此,在投影平面上的兩條線會相交於一個且僅一個點。 文藝復興時期的藝術家在發展透視投影的技術中,為此一數學課題奠定了基礎。投影平面的典型範例為實投影平面,亦稱為「擴展歐氏平面」。此一範例在代數幾何、拓撲學及投影幾何內都很重要,在各領域內的形式均略有不同,可標計為 、RP2 或 P2(R) 等符號。還有許多其他的投影平面,包括無限(如複投影平面)與有限(如法諾平面)之類型。 投影平面是二維投影空間,但並不是所有投影平面都可以嵌入三維投影空間內。投影平面是否能嵌入三維投影空間取決於該平面是否為笛沙格平面。.

新!!: 萊昂哈德·歐拉和射影平面 · 查看更多 »

工作狂

工作狂(Workaholic)指過度投入甚至沉迷于工作的人。工作狂不一定喜欢工作,可能只是强迫性地感到需要工作。虽然这个称呼通常带有贬义色彩,但有時也被用来形容某人对工作高度投入,而且这里的。 在日本,以成語「滅私奉公」來描述工作狂現象。泛指徹底犧牲私人的時間,全心全力為職場上的工作奉獻一生。對於已婚者,可能與家人的疏遠,而導致離婚。對於健康可能會有負面的影響,甚至發生過勞死。.

新!!: 萊昂哈德·歐拉和工作狂 · 查看更多 »

巴塞尔大学

巴塞爾大學(Universität Basel)位於瑞士巴塞爾,是瑞士最古老的大學。2012年QS世界大學排名將其列在全球第121位。.

新!!: 萊昂哈德·歐拉和巴塞尔大学 · 查看更多 »

巴塞尔问题

巴塞尔问题是一个著名的数论问题,这个问题首先由在1644年提出,由莱昂哈德·欧拉在1735年解决。由于这个问题难倒了以前许多的数学家,欧拉一解出这个问题马上就出名了,当时他二十八岁。欧拉把这个问题作了一番推广,他的想法后来被黎曼在1859年的论文《论小于给定大数的质数个数》(On the Number of Primes Less Than a Given Magnitude)中所采用,论文中定义了黎曼ζ函数,并证明了它的一些基本的性质。这个问题是以瑞士的第三大城市巴塞尔命名的,它是欧拉和伯努利家族的家乡。 这个问题是精确计算所有平方数的倒数的和,也就是以下级数的和: \sum_^\infin \frac.

新!!: 萊昂哈德·歐拉和巴塞尔问题 · 查看更多 »

丹尼尔·伯努利

丹尼尔·伯努利(Daniel Bernoulli,),生於荷兰格罗宁根,著名數學家,约翰·伯努利之子,為伯努利家族代表人物之一。其伯努利定律适用于沿着一条流线的稳定、非粘滞、不可压缩流,在流体力学和空气动力学中有关键性的作用。.

新!!: 萊昂哈德·歐拉和丹尼尔·伯努利 · 查看更多 »

主曲率

在微分几何中,在曲面给定点的两个主曲率(principal curvatures)衡量了在给定点一个曲面在这一点的不同方向怎样不同弯曲的程度。 在曲面上取一点E,曲面在E点的法线为z轴,过z轴可以有无限多个剖切平面,每个剖切平面与曲面相交,其交线为一条平面曲线,每条平面曲线在E点有一个曲率半径。不同的剖切平面上的平面曲线在E点的曲率半径一般是不相等的。这些曲率半径中,有一个最大和最小的曲率半径,称之为主曲率半径,记作 k1 与 k2,这两个曲率半径所在的方向,数学上可以证明是相互垂直的。 这里一条曲线的曲率由定义是密切圆半径的倒数。当曲线转向与平面给定法向量相同方向时,曲率取正值,否则取负值。当曲率取最大与最小值的两个法平面方向总是垂直的,这是欧拉在1760年的一个结论,称之为主方向。从现代的观点来看,这个定理来自谱定理因为它们可以作为对应于高斯映射微分的一个对称矩阵的本征向量。对主曲率和主方向的系统研究由达布使用达布标架完成。 两个主曲率的乘积 k1k2 是高斯曲率 K,而平均值 (k1+k2)/2 是平均曲率 H。 如果在每一点至少有一个主曲率是零,则高斯曲率是零,这种曲面是可展曲面。对极小曲面,平均曲率在每一点是零。.

新!!: 萊昂哈德·歐拉和主曲率 · 查看更多 »

三尖瓣线

三尖瓣线(tricuspoid)也稱為Steiner曲線(Steiner curve),是有三個尖點的圆内螺线,是一個圓繞著直徑為其三倍的圓內側無滑動滾動時,圓上一點產生的一般旋轮线 三尖瓣线也可以指有三個頂點,之間用向內彎曲的曲線相連的封閉空間,因此三尖瓣线內的空間是非凸集合。.

新!!: 萊昂哈德·歐拉和三尖瓣线 · 查看更多 »

三角函数

三角函数(Trigonometric functions)是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数(\sin)、余弦函数(\cos)和正切函数(\tan或者\operatorname);在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。.

新!!: 萊昂哈德·歐拉和三角函数 · 查看更多 »

一个数学家的辩白

《一个数学家的辩白》(A Mathematician's Apology)是一篇由英国数学家G·H·哈代在1940年写成的文章,在当年11月首次出版。这篇文章可以说是哈代本人的自传。哈代从自己的角度,谈论了数学中的美学,给了门外汉一个机会以洞察工作中的数学家的内心。話雖如此,哈代在本书中阐述的观点却只是个人的,他的观点也许不被所有的数学家認同。 这本书1967年的版本由哈代的好友,科学家与文学家C·P·斯诺作序。值得一提的是,斯诺的序几乎比哈代的正文还要长,而且斯诺作序时,哈代已经逝世。 在本书题首,哈代将这本书献给约翰·洛马斯(John Lomas),因为是他要哈代写这本书的。.

新!!: 萊昂哈德·歐拉和一个数学家的辩白 · 查看更多 »

一笔画问题

一笔画问题是图论中一个著名的问题。一笔画问题起源于柯尼斯堡七桥问题。数学家欧拉在他1736年发表的论文《柯尼斯堡的七桥》中不仅解决了七桥问题,也提出了一笔画定理,顺带解决了一笔画问题Janet Heine Barnett, 。一般认为,欧拉的研究是图论的开端。 与一笔画问题相对应的一个图论问题是哈密顿问题。.

新!!: 萊昂哈德·歐拉和一笔画问题 · 查看更多 »

一般化的士數

在數學中,一般化的士數Taxicab(k, j, n) 定義為一最小的數,能夠用n種方法表示成j個自然數的k次方之和。 若 k.

新!!: 萊昂哈德·歐拉和一般化的士數 · 查看更多 »

九点圆

九點圓(又稱歐拉圓、費爾巴哈圓),在平面幾何中,對任何三角形,九點圓通過三角形三邊的中點、三高的垂足、和頂點到垂心的三條線段的中點。九點圓定理指出對任何三角形,這九點必定共圓。而九點圓還具有以下性質:.

新!!: 萊昂哈德·歐拉和九点圆 · 查看更多 »

平面图 (图论)

在圖論中,平面圖是可以画在平面上并且使得不同的邊可以互不交疊的圖。而如果一个图无论怎样都无法画在平面上,并使得不同的边互不交叠,那么这样的图不是平面图,或者称为非平面图。完全图K5和完全二分图K3,3是最“小”的非平面图。.

新!!: 萊昂哈德·歐拉和平面图 (图论) · 查看更多 »

乔治·阿特伍德

乔治·阿特伍德(George Atwood ,),英格兰数学家、国际象棋棋手。他曾发明了一种装置来展现恒定的加速度与牛顿第二定律的影响,后世称为阿特伍德机,他曾与当时多名国际象棋高手对局,并违反当时习惯地将对局记载下来,称为重要的研究资料。.

新!!: 萊昂哈德·歐拉和乔治·阿特伍德 · 查看更多 »

亞瑟·韋伊費列治

亞瑟·韋伊費列治(),德国数学家、教师,以其在数论领域的工作闻名。 他出生于明斯特,1903年至1909年间加入明斯特大学,直到1949年退休以前,他一直以教师的身份在广泛的领域内工作。.

新!!: 萊昂哈德·歐拉和亞瑟·韋伊費列治 · 查看更多 »

于靖

于靖(),耶魯大學數學博士,国家理论科学研究中心主任,中央研究院院士。.

新!!: 萊昂哈德·歐拉和于靖 · 查看更多 »

亞歷山大·李亞普諾夫

亞歷山大·李亞普諾夫(Александр Михайлович Ляпунов,Aleksandr Mikhailovich Lyapunov,)是俄羅斯應用數學家和物理学家。他的名字罗马字化后或被写作Ljapunov、Liapunov和Ljapunow。他的研究方向包括微分方程、力學、數學物理和概率論。李亞普諾夫以他在动态系统的稳定性方面做出的贡献而闻名这一,稳定性被命名为李雅普诺夫稳定性,另外他在数学物理和概率理论方面也作出了一定贡献。.

新!!: 萊昂哈德·歐拉和亞歷山大·李亞普諾夫 · 查看更多 »

二次互反律

在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程x^2 \equiv p \pmod q 之整数解的存在性的定律。二次互反律揭示了方程x^2 \equiv p \pmod q 可解和 x^2 \equiv q \pmod p 可解的简单关系。运用二次互反律可以将模数较大的二次剩余判别问题转为模数较小的判别问题,并最后归结为较少的几个情况,从而在实际上解决了二次剩余的判别问题。然而,二次互反律只能提供二次剩余的存在性,对于二次同余方程的具体求解并没有实际帮助。 二次互反律常用勒让德符号表述:对于两个奇素数 p 和 q, 其中\left(\tfrac \right) 是勒让德符号。但是对于更一般的雅可比符号和希尔伯特符号也有对应的二次互反律。 欧拉和勒让德都曾经提出过二次互反律的猜想。但第一个严格的证明是由高斯在1796年作出的,随后他又发现了另外七个不同的证明。在《算数研究》一书和相关论文中,高斯将其称为“基石”: 此基石應當被視為此類型的定理中最為典雅的其中之一。(Art. 151) 私下里高斯把二次互反律誉为算术理论中的宝石,是一个黄金定律。 高斯之后雅可比、柯西、刘维尔、克罗内克、弗洛贝尼乌斯等也相继给出了新的证明。至今,二次互反律已有超过200个不同的的证明。二次互反律可以推广到更高次的情况,如三次互反律等等。.

新!!: 萊昂哈德·歐拉和二次互反律 · 查看更多 »

二次剩余

在数论中,特别在同余理论裏,一个整数X对另一个整数p的二次剩餘(Quadratic residue)指X的平方X^2除以p得到的余数。 當存在某個X,式子X^2 \equiv d \pmod成立時,稱「d是模p的二次剩餘」 當对任意X,X^2 \equiv d \pmod不成立時,稱「d是模p的二次非剩餘」 研究二次剩余的理论称为二次剩余理论。二次剩余理论在实际上有广泛的应用,包括从噪音工程学到密码学以及大数分解。.

新!!: 萊昂哈德·歐拉和二次剩余 · 查看更多 »

五角数

五邊形數是能排成五邊形的多邊形數。其概念類似三角形數及平方數,不過五邊形數和三角形數及平方數不同,所對應的形狀沒有旋轉對稱(Rotational symmetry)的特性。 第n個五邊形數可用以下公式求得 且n>0。 首幾個五邊形數為1, 5, 12, 22, 35, 51, 70, 92, 117...

新!!: 萊昂哈德·歐拉和五角数 · 查看更多 »

五邊形數定理

五邊形數定理是一個由歐拉發現的數學定理,描述歐拉函數\phi(q)展開式的特性 。歐拉函數的展開式如下: 亦即 歐拉函數展開後,有些次方項被消去,只留下次方項為1, 2, 5, 7, 12,...的項次,留下來的次方恰為廣義五邊形數。 若將上式視為幂級數,其收斂半徑為1,不過若只是當作形式冪級數來考慮,就不會考慮其收斂半徑。.

新!!: 萊昂哈德·歐拉和五邊形數定理 · 查看更多 »

以人名命名的常數

以人名命名的常數指以对该常数相关领域有突出贡献的数学家、科学家或其他人,或该常数发现者的名字命名的常数。例如:毕达哥拉斯常数、普朗克常数、阿伏伽德罗常数等。 有些常数由两位科学家共同命名,这种情况通常是共同发现或前者发现,后者改进。.

新!!: 萊昂哈德·歐拉和以人名命名的常數 · 查看更多 »

弦理論

弦理論,又稱弦論,是发展中理論物理學的一支,结合量子力学和广义相对论为万有理论。弦理論用一段段“能量弦線”作最基本單位以说明宇宙里所有微观粒子如電子、夸克、微中子都由這一維的“能量線”所組成;換而言之,弦論主張「弦」以不同的振動模式對應到自然界的各種基本粒子。 較早時期所建立的粒子學說則是認為所有物質是由零維的點粒子所組成,也是目前廣為接受的物理模型,也很成功的解釋和預測相當多的物理現象和問題,但是此理論所根據的粒子模型卻遇到一些無法解釋的問題。比較起來,弦理論的基礎是波動模型,因此能夠避開前一種理論所遇到的問題。更深的弦理論學說不只是描述弦狀物體,還包含了點狀、薄膜狀物體,更高維度的空間,甚至平行宇宙。弦理論目前尚未能做出可以實驗驗證的準確預測。.

新!!: 萊昂哈德·歐拉和弦理論 · 查看更多 »

伯努利

伯努利(Bernoulli)这个名字可能是瑞士伯努利家族中的一员,可以指:.

新!!: 萊昂哈德·歐拉和伯努利 · 查看更多 »

伯努利家族

伯努利(Bernoulli)家族是一个商人和学者家族,来自瑞士巴塞尔。家族的建立人,莱昂·伯努利,于16世纪从比利时安特卫普移民到巴塞尔。很多艺术家和科学家出自伯努利家族,特别是18世纪:.

新!!: 萊昂哈德·歐拉和伯努利家族 · 查看更多 »

伯努利数

數學上,白努利數 是一個與數論有密切關聯的有理數序列。前幾項被發現的白努利數分別為: 上標 ± 在本文中用來區別兩種不同的白努利數定義,而這兩種定義只有在 時有所不同:.

新!!: 萊昂哈德·歐拉和伯努利数 · 查看更多 »

影响人类历史进程的100名人排行榜

《影響世界歷史100位名人》(The 100: A Ranking of the Most Influential Persons in History)为美国应用物理学家、普林斯顿天文学博士麦可·哈特所著。英文初版发行于1978年,中国中文版书名为《影响人类历史进程的100名人排行榜》,台湾中文版书名为《影響世界歷史100位名人》。1991年有修訂版。.

新!!: 萊昂哈德·歐拉和影响人类历史进程的100名人排行榜 · 查看更多 »

作用量

在物理學裏,作用量(英语:action)是一個很特別、很抽象的物理量。它表示著一個動力物理系統內在的演化趨向。雖然與微分方程式方法大不相同,作用量也可以被用來分析物理系統的運動,所得到的答案是相同的。只需要設定系統在兩個點的狀態,初始狀態與最終狀態,然後,經過求解作用量的平穩值,就可以得到系統在兩個點之間每個點的狀態。.

新!!: 萊昂哈德·歐拉和作用量 · 查看更多 »

微分几何

微分幾何研究微分流形的幾何性質,是現代數學中一主流;是廣義相對論的基礎,與拓撲學、代數幾何及理論物理關係密切。 古典微分几何起源于微积分,主要内容为曲线论和曲面论。歐拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。.

新!!: 萊昂哈德·歐拉和微分几何 · 查看更多 »

微积分学

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.

新!!: 萊昂哈德·歐拉和微积分学 · 查看更多 »

微积分学主题列表

以下是一份微积分学主题列表:.

新!!: 萊昂哈德·歐拉和微积分学主题列表 · 查看更多 »

圣彼得堡国立大学

圣彼得堡国立大学(俄语:Санкт-Петербургский государственный университет)位于俄罗斯圣彼得堡,是该国最古老的教育机构之一,至今培育出九位諾貝爾獎得主。 圣彼得堡国立大学在1924年至1948年和1989年至1991年间称为列宁格勒国立大学,1948年至1989年间称为A·A·日丹诺夫列宁格勒国立大学。.

新!!: 萊昂哈德·歐拉和圣彼得堡国立大学 · 查看更多 »

地球空洞说

地球空洞说是一种认为地球是一颗中空的星球的假說,该假說还经常认为地球有一个适宜人类居住的内表面。虽然在历史上的一段时期,有关冒险的文学作品使这一假說变得流行和平常,但现在这一想法只得到了很少的支持,大多数科学家认同地球是一个实心的天体,并认为地心空洞说是伪科学。.

新!!: 萊昂哈德·歐拉和地球空洞说 · 查看更多 »

北极点

北极点,又叫北極(North Pole),用於稱呼地球上的地理北極,即在地球表面上最北的點,也就是地球的自轉軸在北半球與表面相交會的點。北极点周围的地区称为北极地区。 地理上的北極(通常就簡稱為北極)以下面的解釋為準:地球的自轉軸與地球表面的兩個交點之一(另一個點是南極,就在相對的另一面),地理上的北極是緯度為北緯90°的點,在方向上是真北,在這一點所指向的任何方向都是南方。 南極位於南極洲的大陸上,北極位於北冰洋內。在北極沒有土地,只有常年冰封的冰冷海水在冰層之下流動著,因此不可能像南極一樣,建立一個永久的北極駐地。不過蘇聯以及後來的俄羅斯自1937年起建立許多,其中有些很靠近北極。自2002年起俄羅斯在靠近北極的地方建立一個基地站Barne,是用每年春天施工一段時間的方式進行。2000年的有一些有關北極的研究,研究認為因為,北極的冰最終會溶化,預計時間從2016年到21世紀後期甚至更晚。 俄羅斯2007年的Arktika 2007行動中曾用和平號潛水艇量測北極海域的深度,為,1958年時美國的鸚鵡螺號核動力潛艇也量測過,深度為4,087 m(13,410 ft)。離北極最近的陸地是在格陵蘭北邊的卡菲克盧本島,距北極約。離北極最近,且有人居住的地方是加拿大努納武特中基吉柯塔鲁克地区的阿勒特,距北極 。.

新!!: 萊昂哈德·歐拉和北极点 · 查看更多 »

圓周率

圓周率是一个数学常数,为一个圆的周长和其直径的比率,约等於3.14159。它在18世纪中期之后一般用希腊字母π指代,有时也拼写为“pi”()。 因为π是一个无理数,所以它不能用分数完全表示出来(即它的小数部分是一个无限不循环小数)。当然,它可以用像\frac般的有理数的近似值表示。π的数字序列被認為是随机分布的,有一种统计上特别的随机性,但至今未能证明。此外,π还是一个超越数——它不是任何有理数系数多项式的根。由於π的超越性质,因此不可能用尺规作图解化圆为方的问题。 几个文明古国在很早就需要计算出π的较精确的值以便于生产中的计算。公元5世纪时,南朝宋数学家祖冲之用几何方法将圆周率计算到小数点后7位数字。大约同一时间,印度的数学家也将圆周率计算到小数点后5位。历史上首个π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。在20和21世纪,由于计算机技术的快速发展,借助计算机的计算使得π的精度急速提高。截至2015年,π的十进制精度已高达1013位。当前人类计算π的值的主要原因为打破记录、测试超级计算机的计算能力和高精度乘法算法,因为几乎所有的科学研究对π的精度要求都不会超过几百位。 因为π的定义中涉及圆,所以π在三角学和几何学的许多公式,特别是在圆形、椭球形或球形相關公式中广泛应用。由于用於特征值这一特殊作用,它也在一些数学和科学领域(例如数论和统计中计算数据的几何形状)中出现,也在宇宙学,热力学,力学和电磁学中有所出现。π的广泛应用使它成为科学界内外最广为人知的常数之一。人们已经出版了几本专门介绍π的书籍,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。此外,背诵π值的世界记录已经达到70,000位的精度。.

新!!: 萊昂哈德·歐拉和圓周率 · 查看更多 »

國立政治大學附屬高級中學

國立政治大學附屬高級中學,簡稱為平地附中、政附、附中,The Affiliated High School of National Chengchi University為國立政治大學所設立的附屬高級中學,位於臺北市文山區,校園鄰近貓空纜車、臺北市立動物園、國立政治大學。設有國中部,為一國立完全中學。設有高中部18班,國中部15班。學校成立於2005年,創立之初乃歸功於創校校長湯志民。較知名的校友有吳崢等人。.

新!!: 萊昂哈德·歐拉和國立政治大學附屬高級中學 · 查看更多 »

傅里叶级数

在数学中,傅里叶级数(Fourier series, )是把类似波的函数表示成简单正弦波的方式。更正式地说,它能将任何周期函数或周期信号分解成一个(可能由无穷个元素组成的)简单振荡函数的集合,即正弦函数和余弦函数(或者,等价地使用复指数)。离散时间傅里叶变换是一个周期函数,通常用定义傅里叶级数的项进行定义。另一个应用的例子是Z变换,将傅里叶级数简化为特殊情形 |z|.

新!!: 萊昂哈德·歐拉和傅里叶级数 · 查看更多 »

哥德巴赫猜想

哥德巴赫猜想(Goldbach's conjecture)是數論中存在最久的未解問題之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。用现代的数学语言,哥德巴赫猜想可以陳述為: 这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和等。而將一个給定的偶數分拆成兩個質數之和,则被稱之為此數的哥德巴赫分拆。例如, 換句話說,哥德巴赫猜想主張每個大於等於4的偶數都是哥德巴赫數——可表示成兩個質數之和的數。哥德巴赫猜想也是二十世纪初希爾伯特第八問題中的一個子問題。 其實,也有一部分奇數可以用兩個質數的和表示,大多數的奇數無法用兩個質數的和表示,例如:15.

新!!: 萊昂哈德·歐拉和哥德巴赫猜想 · 查看更多 »

哈雷-维滕贝格大学

哈雷-維騰貝格馬丁路德大學(德文:Martin-Luther-Universität Halle-Wittenberg,MLU)是德国一所国立的研究型大学,位于哈雷和维滕贝格。它是一所於1817年由兩所大學合併的德國大學。其中較舊的一所Leucorea大學在1502年於維滕貝格建立,較新的一所則於1694年於哈雷建立。 哈勒大学、哈雷大学、哈雷-维腾贝格大学、马丁路德大学均是Martin-Luther-Universität Halle-Wittenberg的中文译名。 今日的名字“馬丁路德·哈雷威騰貝格大學”,則於1933年11月10日訂立。.

新!!: 萊昂哈德·歐拉和哈雷-维滕贝格大学 · 查看更多 »

内能

在熱力學裡,內能(internal energy)是熱力學系統內兩個具狀態變數之基本狀態函數的其中一個函數。內能是指系統所含有的能量,但不包含因外部力場而產生的系統整體之動能與位能。內能會因系統能量的增損而隨之改變。 系統的內能可能因(1)對系統加熱、(2)對系統作,或(3)添加或移除物質而改變。當系統內有不可穿透的牆阻止物質傳遞時,該系統稱之為「封閉系統」。如此一來,熱力學第一定律描述,內能的增加會等於增加的熱量加上環境對該系統所作的功。若該系統周圍的牆不能傳遞物質與能量,則該系統稱之為「孤立系統」,且其內能會維持定值。 一系統內給定狀態下的內能不能被直接量測。給定狀態下的內能可由一已給定其內能參考值之參考狀態開始,經過一連串及熱力學過程,以達到該給定狀態來決定其值。這一連串的操作及過程,理論上可使用該系統的某些外延狀態變數來描述,亦即該系統的熵 S、容量 V 及莫耳數 。內能 是這些變數的函數。有時,該函數還能再附加上其他的外延狀態變數,如電偶極矩。就熱力學及工程學上的實際用途來看,一般很少需要考慮一個系統的所有內含能量,如質量所含有的等價能量。一般而言,只有與研究的系統及程序有關的部分才會被包含進來。熱力學一般只在意內能的「變化量」。 內能是一系統內的狀態函數,因為其值僅取決於該系統的目前狀態,而與達到此一狀態所採之途徑或過程無關。內能是個外延物理量。內能是個基本熱動力位能。使用勒壤得轉換,可從內能開始,在數學上建構出其他的熱動力位能。這些函數的狀態變數,部分外延變數會被其共軛內含變數所取代。因為僅是將外延變數由內含變數所取代並無法得出其他熱動力位能,所以勒壤得轉換是必要的。熱力學系統的另一個基本狀態函數為該系統的熵 ,是個除熵 S 這個狀態變數被內能 U 所取代外,具有相同狀態變數之狀態函數。 雖然內能是個宏觀物理量,內能也可在微觀層面上由兩個假設的量來解釋。一個是系統內粒子的微觀運動(平移、旋轉、振動)所產生的微觀動能。另一個是與粒子間的化學鍵及組成物質的靜止質量能量等微觀力有關之位能。在微觀的量與系統因作功、加熱或物質轉移而產生之能量增損的量之間,並不存在一個簡單的普遍關係。 能量的國際單位為焦耳(J)。有時使用單位質量(公斤)的內能(稱之為「比內能」)會比較方便。比內能的國際單位為 J/kg。若比內能以物質數量(莫耳)的單位來表示,則稱之為「莫耳內能」,且該單位為 J/mol。 從統計力學的觀點來看,內能等於系統總能量的。.

新!!: 萊昂哈德·歐拉和内能 · 查看更多 »

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

新!!: 萊昂哈德·歐拉和几何学 · 查看更多 »

几何学家列表

几何学家是研究几何学的数学家。 下表列出了一些重要几何学家和他们的主要研究领域,按出生时间顺序排列如下:.

新!!: 萊昂哈德·歐拉和几何学家列表 · 查看更多 »

几何中心

n 维空间中一个对象X的几何中心或形心是将X分成矩相等的两部分的所有超平面的交点。非正式地说,它是X中所有点的平均。如果一個物件質量分佈平均,形心便是重心。 如果一个对象具有一致的密度,或者其形状和密度具有某种对称性足以确定几何中心,那么它的几何中心和质量中心重合,该条件是充分但不是必要的。 有限个点总存在几何中心,可以通过计算这些点的每个坐标分量的算术平均值得到。这个中心是空间中一点到这有限个点距离的平方和的惟一最小值点。点集的几何中心在仿射变换下保持不变。.

新!!: 萊昂哈德·歐拉和几何中心 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 萊昂哈德·歐拉和函数 · 查看更多 »

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。.

新!!: 萊昂哈德·歐拉和光 · 查看更多 »

克里斯蒂安·哥德巴赫

克里斯蒂安·哥德巴赫(Christian Goldbach, ),又译歌德巴赫,普魯士数学家,他在數學上的研究以數論為主,作为哥德巴赫猜想的提出者而闻名。 哥德巴赫出生于哥尼斯堡,本学法学,由于在访问欧洲各国期间结识了伯努利家族而对数学研究有了兴趣。1725年到俄国,被选为彼得堡科学院院士,1728年起擔任俄国沙皇彼得二世的教師,1742年移居莫斯科,进入俄国外交部供职。哥德巴赫同欧洲许多著名的数学家有来往,他长期保持与莱布尼茨、欧拉和尼古拉斯·伯努利等人的通信,为后人留下了大量宝贵的数学资料。.

新!!: 萊昂哈德·歐拉和克里斯蒂安·哥德巴赫 · 查看更多 »

勒让德符号

勒让德符号,或二次特征,是一个由阿德里安-马里·勒让德在1798年尝试证明二次互反律时引入的函数。这个符号是许多高次剩余符号的原型;其它延伸和推广包括雅可比符号、克罗内克符号、希尔伯特符号,以及阿廷符号。.

新!!: 萊昂哈德·歐拉和勒让德符号 · 查看更多 »

图论

图论(Graph theory)是组合数学的一个分支,和其他数学分支,如群论、矩阵论、拓扑学有着密切关系。图是图论的主要研究对象。图是由若干给定的顶点及连接两顶点的边所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系。顶点用于代表事物,连接两顶点的边则用于表示两个事物间具有这种关系。 图论起源于著名的柯尼斯堡七桥问题。该问题于1736年被欧拉解决,因此普遍认为欧拉是图论的创始人。 图论的研究对象相当于一维的单纯复形。.

新!!: 萊昂哈德·歐拉和图论 · 查看更多 »

四平方和定理

四平方和定理 (Lagrange's four-square theorem) 說明每个正整数均可表示为4个整数的平方和。它是費馬多邊形數定理和華林問題的特例。 注意有些整數不可表示為3個整數的平方和,例如7。.

新!!: 萊昂哈德·歐拉和四平方和定理 · 查看更多 »

皮埃爾·布蓋

埃爾·布蓋(Pierre Bouguer,),法國數學家、地球物理學家、大地測量學家和天文學家。他也以「之父」之名為人所知。.

新!!: 萊昂哈德·歐拉和皮埃爾·布蓋 · 查看更多 »

皮埃爾·莫佩爾蒂

埃爾·路易·莫佩爾蒂(Pierre Louis Moreau de Maupertuis,)是一位法國數學家、物理學家、哲學家。他是最先确定地球形狀為近扁球形的科學家。他也擁有首先提出最小作用量原理之榮譽。.

新!!: 萊昂哈德·歐拉和皮埃爾·莫佩爾蒂 · 查看更多 »

球 (数学)

在數學裡,球是指球面內部的空間。球可以是封閉的(包含球面的邊界點,稱為閉球),也可以是開放的(不包含邊界點,稱為開球)。 球的概念不只存在於三維歐氏空間裡,亦存在於較低或較高維度,以及一般度量空間裡。n\,\!維空間裡的球稱為n\,\!維球,且包含於n-1\,\!維球面內。因此,在歐氏平面裡,球為一圓盤,包含在圓內。在三維空間裡,球則是指在二維球面邊界內的空間。.

新!!: 萊昂哈德·歐拉和球 (数学) · 查看更多 »

理论物理学

论物理学(Theoretical physics)通过为现实世界建立数学模型来试图理解所有物理现象的运行机制。通过“物理理论”来条理化、解释、预言物理现象。 豐富的想像力、精湛的數學造詣、嚴謹的治學態度,這些都是成為理論物理學家需要培養的優良素質。例如,在十九世紀中期,物理大師詹姆斯·麥克斯韋覺得電磁學的理論雜亂無章、急需整合。尤其是其中許多理論都涉及超距作用(action at a distance)的概念。麥克斯韋對於這概念極為反對,他主張用場論來解釋。例如,磁鐵會在四周產生磁場,而磁場會施加磁場力於鐵粉,使得這些鐵粉依著磁場力的方向排列,形成一條條的磁場線;磁鐵並不是直接施加力量於鐵粉,而是經過磁場施加力量於鐵粉;麥克斯韋嘗試朝著這方向開闢一條思路。他想出的「分子渦流模型」,借用流體力學的一些數學框架,能夠解釋所有那時已知的電磁現象。更進一步,這模型還展示出一個嶄新的概念——電位移。由於這概念,他推理電磁場能夠以波動形式傳播於空間,他又計算出其波速恰巧等於光速。麥克斯韋斷定光波就是一種電磁波。從此,電學、磁學、光學被整合為一統的電磁學。.

新!!: 萊昂哈德·歐拉和理论物理学 · 查看更多 »

理论物理学家列表

以下是对理论物理学做出贡献的科学家列表。以其去世时间作为分类,然后以出生时间再为细分:.

新!!: 萊昂哈德·歐拉和理论物理学家列表 · 查看更多 »

神童

童,又稱聖童、奇童、天童、或資優兒童,是對才賦優異的兒童的一種稱呼,所謂“有特稟異質,迥越倫萃,岐嶷兆於襁褓,穎悟發於齠齡”“識洞於未萌,智表於先見,心計足以成務,口辨足以解紛”。戰國時期秦國大臣甘茂之孫甘羅,十二歲時為秦相呂不韋的賓客。漢朝已有對神童的選拔制度,汉朝的选举法中规定:“孝廉试经者拜为郎,年幼才俊者拜童子郎。”。“任延年十二,为诸生,显名太学中,号为任圣童。张堪年十六,受业长安,志美行厉,诸儒号曰圣童。杜安年十三入太学,号奇童。黄香年十二,博学经典,京师号曰:‘天下无双,江夏黄童。’”南北朝有一位神仙童子元嘉,可以「一心六用」:左手画圆,右手画方,口诵经史,目数羊群,兼成四十字诗,足书五言一绝。唐高宗顯慶六年(661年),年僅11歲的楊炯被舉為神童。王勃從小就能寫詩作賦,人目為神童,《舊唐書》載:「六歲解屬文,構思無滯,詞情英邁」。劉晏年幼時號為神童,形狀獰劣,宰相張說稱他為「國瑞」。《兒世說》、《幼童傳》、《世說新語》、《太平廣記》都記載有大量的神童。王安石的《傷仲永》是一篇探討神童問題並警世的散文,他強調:“彼(仲永)其受之天也,如此其賢也,不受之人,且為眾人矣。今夫不受之天,固眾人;又不受之人,得為眾人而已邪?”意即強調後天的教育比天賦更為重要。.

新!!: 萊昂哈德·歐拉和神童 · 查看更多 »

离散化

在数学中,离散化关注连续模型和等式转化为离散形式的过程。离散化通常是处理对象使其易于数值计算机进行数值评估和处理的第一步。为适合计算机处理,额外还需要名为量化的过程。.

新!!: 萊昂哈德·歐拉和离散化 · 查看更多 »

科学

科學(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.

新!!: 萊昂哈德·歐拉和科学 · 查看更多 »

等時降線

等時降線(tautochrone curve或isochrone curve)是一種曲線,將一質點放置在此曲線上任一點使其自由下滑(不計阻力)至最低點所需的時間皆相等。此曲線的解是擺線,而下滑所需的時間與擺線繞轉圓的半徑平方根成正比,與重力場強度的平方根成反比。.

新!!: 萊昂哈德·歐拉和等時降線 · 查看更多 »

算术研究

《算术研究》(Disquisitiones Arithmeticae)是德国数学家卡尔·弗里德里希·高斯於1798年写成的一本数论教材,在1801年他24岁时首次出版。全书用拉丁文写成。在这本书中高斯整理汇集了费马、欧拉、拉格朗日和勒让德等数学家在数论方面的研究结果,并加入了许多他自己的重要成果。.

新!!: 萊昂哈德·歐拉和算术研究 · 查看更多 »

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

新!!: 萊昂哈德·歐拉和素数 · 查看更多 »

素数公式

--,又称--,在数学领域中,表示一种能够僅产生质数(素数)的公式。即是说,这个公式能够一个不漏地产生所有的质数,并且对每个输入的值,此公式产生的结果都是质数。由于质数的个数是可数的,因此一般假设输入的值是自然数集(或整数集及其它可数集)。迄今为止,人们尚未找到易于计算且符合上述條件的质数公式,但对于质数公式应该具备的性质已经有了大量的了解。.

新!!: 萊昂哈德·歐拉和素数公式 · 查看更多 »

素数的倒数之和

公元前3世纪,欧几里得证明了素数有无穷多个。公元十八世纪,欧拉证明了所有素数的倒数之和发散。这里我们给出一些证明。.

新!!: 萊昂哈德·歐拉和素数的倒数之和 · 查看更多 »

約翰·白努利

約翰·伯努利(Johann Bernoulli,)出生於瑞士巴塞爾,是一位傑出的數學家。他是雅各布·伯努利的弟弟,丹尼爾·伯努利(伯努利定律發明者)與尼古拉二世·伯努利的父親。數學大師萊昂哈德·歐拉是他的學生。.

新!!: 萊昂哈德·歐拉和約翰·白努利 · 查看更多 »

綜藝大熱門

《綜藝大熱門》(Hot Door Night)為三立電視綜藝節目,由吳宗憲、陳漢典、LuLu主持。2013年7月1日起於三立都會台21:00首播。東森綜合台於當天23:00播出。2015年5月21日起,三立電視從監製改為與好看娛樂共同製作。 《綜藝大熱門》曾入圍2015年第50屆金鐘獎「綜藝節目主持人獎」、2017年第52屆金鐘獎「綜藝節目獎」及「綜藝節目主持人獎」等重要獎項。 2016年1月1日起《綜藝大熱門》全新改版。可於行動影音串流平臺LINE TV線上看。.

新!!: 萊昂哈德·歐拉和綜藝大熱門 · 查看更多 »

约翰·海因里希·朗伯

约翰·海因里希·朗伯(Johann Heinrich Lambert),瑞士數學家、物理學家、天文學家和哲學家。.

新!!: 萊昂哈德·歐拉和约翰·海因里希·朗伯 · 查看更多 »

约瑟夫·刘维尔

约瑟夫·刘维尔(Joseph Liouville,)是19世纪的法国数学家,生于加来海峡省的圣奥梅尔。刘维尔一生从事数学、力学和天文学的研究,涉足广泛,成果丰富,尤其对双周期椭圆函数、微分方程边值问题、数论中代数数的丢番图逼近问题和超越数有深入研究。刘维尔构造了所谓的“刘维尔数”并证明了其超越性,是第一个证实超越数的存在的人。.

新!!: 萊昂哈德·歐拉和约瑟夫·刘维尔 · 查看更多 »

约瑟夫·拉格朗日

约瑟夫·拉格朗日伯爵(Joseph Lagrange,),法国籍意大利裔数学家和天文学家。拉格朗日曾为普鲁士的腓特烈大帝在柏林工作了20年,被腓特烈大帝称做「欧洲最伟大的数学家」,后受法国国王路易十六的邀请定居巴黎直至去世。拉格朗日一生才华横溢,在数学、物理和天文等领域做出了很多重大的贡献。他的成就包括著名的拉格朗日中值定理,创立了拉格朗日力学等等。 拉格朗日是18世纪一位十分重要的科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献,但他主要是数学家。他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用,使数学的独立性更为清楚,而不仅是其他学科的工具。同时在使天文学力学化、力学分析化上也起了历史性作用,促使力学和天文学(天体力学)更深入发展。在他的时代,分析学等分支刚刚起步,欠缺严密性和标准形式,但这不足以妨碍他取得大量的成果。.

新!!: 萊昂哈德·歐拉和约瑟夫·拉格朗日 · 查看更多 »

级数

在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.

新!!: 萊昂哈德·歐拉和级数 · 查看更多 »

线性微分方程

线性微分方程是数学中常见的一类微分方程。指以下形式的微分方程: 其中方程左侧的微分算子\mathcal是线性算子,是要解的未知函数,方程的右侧是一个已知函数。如果() 0,那么方程(*)的解的线性组合仍然是解,所有的解构成一个向量空间,称为解空间。这样的方程称为齐次线性微分方程。当不是零函数时,所有的解构成一个仿射空间,由对应的齐次方程的解空间加上一个特解得到。这样的方程称为非齐次线性微分方程。线性微分方程可以是常微分方程,也可以是偏微分方程。.

新!!: 萊昂哈德·歐拉和线性微分方程 · 查看更多 »

美国文理科学院

美国人文与科学院(又译为美国艺术与科学院、美国文理科学院,英语:American Academy of Arts and Sciences,简称 American Academy 或 AAAS )是美国历史最悠久的院士机构及地位最为崇高的荣誉团体之一,也是进行独立政策研究的学术中心。自从约翰·亚当斯、约翰·汉考克、詹姆斯·鲍登、罗伯特·崔特·潘恩及其他的建国先贤于独立战争期间创立人文与科学院以来,当选为其院士一直被认为是美国的最高荣誉之一。 人文与科学院负有双重职能:从科学、人文、商业、政治、艺术等领域选举每个世代最优秀的学者及最具影响力的领袖成为其院士,以及针对社会的需要进行政策研究。 目前人文与科学院的主要研究计划聚焦于高等教育与科研、人文与文化研究、科学与技术进展、美国政治、人口与环境、儿童福利等。其主办的季刊《代达罗斯》被广泛的认为是国际最重要的学术刊物之一。 人文与科学院的总部位于马萨诸塞州的剑桥市。.

新!!: 萊昂哈德·歐拉和美国文理科学院 · 查看更多 »

群论

在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.

新!!: 萊昂哈德·歐拉和群论 · 查看更多 »

瑞士人

士人(die Schweizer, les Suisses, gli Svizzeri, ils Svizzers)指瑞士公民或於瑞士出生的居民。這一名稱來自於施維茨,並自16世紀起泛指舊瑞士邦聯。 雖然現代意義上的瑞士聯邦起源於1848年的浪漫民族主義時期,但瑞士並不是一個民族國家,“瑞士人”也不只是指一個由單一民族組成的群體,另一方面,聯邦(建立在“協商民主”的共同民族思想之上),這一詞也與傳統語言學上的含義或用於民族意識下的術語截然不同。 瑞士人自1815年約170萬人,至2009年已達676萬人,其中90%居住於瑞士境內,居於國外者約有60%居住於歐盟境內,最大的海外社群則位於加拿大。.

新!!: 萊昂哈德·歐拉和瑞士人 · 查看更多 »

無窮小量

無窮小量是數學分析中的一個概念,用以嚴格地定義諸如「最終會消失的量」、「絕對值比任何正數都要小的量」等非正式描述。在經典的微積分或數學分析中,無窮小量通常它以函數、序列等形式出現,例如,一個序列a.

新!!: 萊昂哈德·歐拉和無窮小量 · 查看更多 »

物理学史

物理学主要是研究物质、能量及它們彼此之間的關係。它是最早形成的自然科学学科之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理學》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比伦和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德的学说以及其后的经院哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自於这些哲学传统,并在中世纪时由当时的哲学家、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。.

新!!: 萊昂哈德·歐拉和物理学史 · 查看更多 »

物理学家列表

诺贝尔物理学奖获得者名单包含更多的20世纪以及21世纪著名物理学家。.

新!!: 萊昂哈德·歐拉和物理学家列表 · 查看更多 »

牛顿运动定律

牛頓運動定律(Newton's laws of motion)描述物體與力之間的關係,被譽為是經典力學的基礎。這定律是英國物理泰斗艾薩克·牛頓所提出的三條運動定律的總稱,其現代版本通常這樣表述:.

新!!: 萊昂哈德·歐拉和牛顿运动定律 · 查看更多 »

相亲数

亲数(Amicable Pair),又称亲和数、友愛數、友好數,指兩個正整數中,彼此的全部约数之和(本身除外)与另一方相等。毕达哥拉斯曾說:“朋友是你灵魂的倩影,要像220与284一样亲密。” 每一對親和數都是過剩數配虧數,較小的是過剩數,較大的是虧數。 例如220与284:.

新!!: 萊昂哈德·歐拉和相亲数 · 查看更多 »

E (数学常数)

-- e,作为數學常數,是自然對數函數的底數。有時被稱為歐拉數(Euler's number),以瑞士數學家歐拉命名;還有個較少見的名字納皮爾常數,用來紀念蘇格蘭數學家約翰·納皮爾引進對數。它是一个无限不循环小数,數值約是(小數點後20位,):.

新!!: 萊昂哈德·歐拉和E (数学常数) · 查看更多 »

階乘

一个正整数的階乘(factorial)是所有小於及等於該數的正整數的積,并且有0的阶乘为1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。 亦即n!.

新!!: 萊昂哈德·歐拉和階乘 · 查看更多 »

芝诺悖论

芝诺悖论是古希腊哲學家(Philosopher/Philosophen/философ/φιλόσοφος) 芝诺(Zeno of Elea)(盛年约在公元前464-前461年)提出的一系列关于运动的不可分性的哲学悖论。这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。这些悖论是芝诺反对存在运动的论证其中最著名的两个是:“阿基里斯追乌龟”和“飞矢不动”。這些方法現在可以用微積分(無限)的概念解釋。.

新!!: 萊昂哈德·歐拉和芝诺悖论 · 查看更多 »

螺旋曲面

螺旋曲面可視為一個線段沿著垂直於其中點的直線,勻速螺旋上升時掃過的曲面,可視為是螺旋線的立體版本,是在平面及懸鏈曲面後,第三個已知的极小曲面。.

新!!: 萊昂哈德·歐拉和螺旋曲面 · 查看更多 »

華林問題

华林问题是数论中的问题之一。1770年,爱德华·华林猜想,对于每个非1的正整数k,皆存在正整数g(k),使得每个正整数都可以表示为至多g(k)个k次方数(即正整數的k次方)之和。.

新!!: 萊昂哈德·歐拉和華林問題 · 查看更多 »

萊昂哈德·歐拉

莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.

新!!: 萊昂哈德·歐拉和萊昂哈德·歐拉 · 查看更多 »

萊昂哈德·歐拉望遠鏡

士1.2米萊昂哈德·歐拉望遠鏡(Swiss 1.2-m Leonhard Euler Telescope)是由瑞士日內瓦天文台裝設於智利拉西拉天文台的口徑1.2米反射望遠鏡。.

新!!: 萊昂哈德·歐拉和萊昂哈德·歐拉望遠鏡 · 查看更多 »

餘弦

余弦是三角函数的一种。它的定义域是整个实数集,值域是。它是周期函数,其最小正周期为2π。在自变量为2nπ(n为整数)时,该函数有极大值1;在自变量为(2n+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。.

新!!: 萊昂哈德·歐拉和餘弦 · 查看更多 »

騎士巡邏

騎士巡邏(Knight's tour)是指在按照国际象棋中骑士的规定走法走遍整个棋盘的每一个方格,而且每个网格只能夠经过一次。假若騎士能夠從走回到最初位置,則稱此巡邏為「封閉巡邏」,否則,稱為「開巡邏」。對於8*8棋盤,一共有26,534,728,821,064種封閉巡邏,但是到底有多少種開巡邏仍然未知。 由骑士巡逻引申出了一个著名的数学问题 :骑士巡逻问题--找出所有的骑士巡逻路径。编写一个程序来找出骑士巡逻路径经常在计算机系的学生的练习中出现。骑士巡逻问题的变种包括各种尺寸的棋盘甚至非正方形的棋盘。.

新!!: 萊昂哈德·歐拉和騎士巡邏 · 查看更多 »

證明黎曼ζ函數的歐拉乘積公式

歐拉在他的論文《無窮級數的一些檢視》(Various Observations about Infinite Series)中證明黎曼ζ函數的歐拉乘積公式,並於1737年由當時的科學院出版。.

新!!: 萊昂哈德·歐拉和證明黎曼ζ函數的歐拉乘積公式 · 查看更多 »

變數

在初等數學裡,變數或變元、元是一個用來表示值的符號,該值可以是隨意的,也可能是未指定或未定的。在代數運算時,將變數當作明確的數值代入運算中,可以於單次運算時解出多個問題。一個典型的例子為一元二次公式,該公式可以解出每個一元二次方程的值,只需要將方程的系數代入公式中的變數即可。 變數這個概念在微積分中非常重要。一般,一個函數y.

新!!: 萊昂哈德·歐拉和變數 · 查看更多 »

谷山-志村定理

谷山-志村定理(Taniyama-Shimura theorem)建立了椭圆曲线(代数几何的对象)和模形式(数论中用到的某种周期性全纯函数)之间的重要联系。定理的证明由英國數學家安德鲁·怀尔斯(Andrew John Wiles)、理查·泰勒(Richard Taylor)、法國數學家克里斯多福·布勒伊(Christophe Breuil)、美國數學家布萊恩·康萊德(Brian Conrad)和佛瑞德·戴蒙德(Fred Diamond)所完成。 若p是一个质数而E是一个Q(有理数域)上的一个椭圆曲线,我们可以简化定义E的方程模p;除了有限个p值,我们会得到有np个元素的有限域Fp上的一个椭圆曲线。然后考虑如下序列 这是椭圆曲线E的重要的不变量。从傅里叶变换,每个模形式也会产生一个数列。一个其序列和从模形式得到的序列相同的椭圆曲线叫做模的。谷山-志村定理说:.

新!!: 萊昂哈德·歐拉和谷山-志村定理 · 查看更多 »

调和级数

调和级数(英语:Harmonic series)是一个发散的无穷级数,表达式为: 这个级数名字源于泛音及泛音列(泛音列与调和级数英文同为harmonic series):一条振动的弦的泛音的波长依次是基本波长的1/2、1/3、1/4……等等。调和序列中,第一项之后的每一项都是相邻两项的调和平均数;而“调和平均数”一词同样地也是源自音乐。.

新!!: 萊昂哈德·歐拉和调和级数 · 查看更多 »

调性网络

在律学与和声学中,调性网络,或托内斯(来自于德语“Tonnetz”,“tone-network”的意思)是一种用于表示调性空间的、概念性的,由莱昂哈德·欧拉于1739年提出。调性网络的各种可视化形式可被用于表示欧洲古典音乐的传统和声关系。.

新!!: 萊昂哈德·歐拉和调性网络 · 查看更多 »

鲍耶·亚诺什

鲍耶·亚诺什(匈牙利语:Bolyai János,),匈牙利数学家,和罗巴切夫斯基同为非欧几何中双曲几何的创始人。.

新!!: 萊昂哈德·歐拉和鲍耶·亚诺什 · 查看更多 »

費馬數

費馬數是以数学家费马命名一组自然数,具有形式: 其中n为非负整数。 若2n + 1是素数,可以得到n必须是2的幂。(若n.

新!!: 萊昂哈德·歐拉和費馬數 · 查看更多 »

費迪南·艾森斯坦

費迪南·哥德霍爾特·馬克斯·艾森斯坦(Ferdinand Gotthold Max Eisenstein,),德國數學家。.

新!!: 萊昂哈德·歐拉和費迪南·艾森斯坦 · 查看更多 »

贝塞尔函数

貝索函数(Bessel functions),是数学上的一类特殊函数的总称。通常单说的貝索函数指第一类貝索函数(Bessel function of the first kind)。一般貝索函数是下列常微分方程(一般称为貝索方程)的标准解函数y(x): 这类方程的解是无法用初等函数系统地表示。 由於貝索微分方程是二階常微分方程,需要由兩個獨立的函數來表示其标准解函数。典型的是使用第一类貝索函数和第二类貝索函数來表示标准解函数: 注意,由於 Y_\alpha(x) 在 x.

新!!: 萊昂哈德·歐拉和贝塞尔函数 · 查看更多 »

费马大定理

费马大定理,也称費馬最後定理(Le dernier théorème de Fermat);(Fermat's Last Theorem),其概要為: 以上陳述由17世纪法国数学家费马提出,一直被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬大定理」。這個猜想最初出現費馬的《頁邊筆記》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成了定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生了,包括代數幾何中的橢圓曲線和模形式,以及伽羅瓦理論和赫克代數等。這也令人懷疑當初費馬是否真的找到了正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得了包括邵逸夫獎在内的数十个奖项。.

新!!: 萊昂哈德·歐拉和费马大定理 · 查看更多 »

费马小定理

费马小定理是数论中的一个定理:假如a是一个整数,p是一个質数,那么a^p - a 是p的倍数,可以表示为 如果a不是p的倍数,这个定理也可以写成 这个书写方式更加常用。(符号的应用请参见同餘。).

新!!: 萊昂哈德·歐拉和费马小定理 · 查看更多 »

费马平方和定理

費馬平方和定理是由法国数学家費馬在1640年提出的一个猜想,但他没有提出有力的数学证明,1747年,瑞士数学家萊昂哈德·歐拉提出证明后成为定理。.

新!!: 萊昂哈德·歐拉和费马平方和定理 · 查看更多 »

超越三角函數

超越三角函數是自然對數的一種延伸,也是歐拉公式的擴充,其中每個超越三角函數都違反原來對三角函數的定義。.

新!!: 萊昂哈德·歐拉和超越三角函數 · 查看更多 »

黎曼ζ函數

黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.

新!!: 萊昂哈德·歐拉和黎曼ζ函數 · 查看更多 »

连分数

在数学中,连分数或繁分数即如下表达式: 这里的a_0是某个整数,而所有其他的数a_n都是正整数,可依樣定义出更长的表达式。如果部分分子(partial numerator)和部分分母(partial denominator)允许假定任意的值,在某些上下文中可以包含函数,则最終的表达式是广义连分数。在需要把上述标准形式與广义连分数相區別的时候,可稱它為简单或正规连分数,或称为是规范形式的。.

新!!: 萊昂哈德·歐拉和连分数 · 查看更多 »

迭代冪次

在數學裡面,迭代冪次(亦作超-4運算),或可理解為迭代乘方、冪塔運算和超冪運算等等,是專指冪的下一個超運算級別,用以表示極大的數字。以下列舉了首四個超運算級別,其中迭代冪次為第四級,(后继函数,例如a'.

新!!: 萊昂哈德·歐拉和迭代冪次 · 查看更多 »

迷路園

迷路園又稱迷宮,是一個設計來讓人們作消閒用的遊戲,人們通過尋找出路而獲得樂趣。 迷路園的路徑是固定的,有一種迷路園會使用多個門戶連結多個房間,讓人們需要在多個門戶裡作出選擇。 公園的迷路園通常由多幅牆與房間組成,配以樹籬、草地與各種顏色的石頭,有時甚至配以漫山遍野的玉米,景色優美,這是為了吸引遊客到來。 迷路園亦可以紙與筆畫成,人們通由鉛筆畫出路徑。.

新!!: 萊昂哈德·歐拉和迷路園 · 查看更多 »

錢德勒擺動

錢德勒擺動(Chandler wobble)是地球自轉軸相對於地球表面的小幅度運動,由美國天文學家賽斯·卡羅·錢德勒發現於1891年。該運動以433日週期在地球表面擺動。錢德勒擺動和另一個週期一年的運動結合,使地球的極移週期為7年。.

新!!: 萊昂哈德·歐拉和錢德勒擺動 · 查看更多 »

關係子句

係子句(relative clause),又叫关系从句、关系分句或定语从句,是关系词(relative word)引导的子句,其句法功能主要是做名词的定语,但也可以起其他作用,如相当于状语从句等。 在不同的語言中,關係子句可透過不同的方式來構造,像在英語等許多歐洲語言中,關係子句是透過關係代詞(relative pronoun)這一類特殊的代詞來構造的;在日語、滿語等一些東北亞語言中,關係子句可透過主動詞的詞形變化來構造;像希伯來語等一些語言則可透過所謂的關係詞(relativizer)來構造關係子句;此外,有些語言則可直接藉由語序來構造關係子句。另像英語等一些語言則可透過不只一種方法來構造關係子句。.

新!!: 萊昂哈德·歐拉和關係子句 · 查看更多 »

错排问题

错排问题是组合数学中的问题之一。考虑一个有个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排。 个元素的错排数记为。 研究一个排列错排个数的问题,叫做错排问题或称为更列问题。 最早研究错排问题的是尼古拉·伯努利和欧拉,因此历史上也称为伯努利-欧拉的装错信封的问题。这个问题有许多具体的版本,如在写信时将n封信装到个不同的信封里,有多少种全部装错信封的情况?又比如四人各写一张贺年卡互相赠送,有多少种赠送方法?自己写的贺年卡不能送给自己,所以也是典型的错排问题。.

新!!: 萊昂哈德·歐拉和错排问题 · 查看更多 »

自然對數

自然对数(Natural logarithm)是以e為底數的对数函数,標記作ln(x)或loge(x),其反函数是指數函數ex。.

新!!: 萊昂哈德·歐拉和自然對數 · 查看更多 »

雅各布·赫爾曼

雅各布·赫爾曼(Jakob Hermann, ),生於瑞士巴塞爾,是一位傑出的數學家。有關於經典力學的問題是他的專門研究之一。他可能是最先表明拉普拉斯-龍格-冷次向量守恆的科學家:在反平方連心力作用下,拉普拉斯-龍格-冷次向量是一個運動常數。 赫爾曼的啟蒙老師是雅各布·白努利。1695 年,他畢業於巴塞爾大學。1701 年,普魯士王國立國那年,赫爾曼被遴選為柏林科學院 (Academy of Berlin) 的院士。1707 年,因為數學大師萊布尼茨的推薦,他任職於義大利的帕多瓦大學 (University of Padua) ,專門教授數學。1713 年,他又搬到德國奧德河畔法蘭克福居住。1724 年,他被聘請為聖彼得堡科學院的高等數學教授;成為彼得二世·阿列克謝耶維奇(彼得大帝的孫子)的數學老師。1730 年1月30日,彼得二世在大喜之日,因痪天花駕崩。隔年,赫爾曼告老還鄉,返回巴塞爾大學當倫理學與自然定律學教授。 赫爾曼逝世於 1733 年.那年,他當選為法國科學院 (French Academy of Sciences) 的院士。 赫爾曼是萊昂哈德·歐拉的遠親。.

新!!: 萊昂哈德·歐拉和雅各布·赫爾曼 · 查看更多 »

虚数

虛數是一种複數,可以写作实数与虚数单位 i 的乘积在電子學及相關領域內,i 通常表達電流,故改為以 j 表示虛數單位。,其中 i 由 i^2.

新!!: 萊昂哈德·歐拉和虚数 · 查看更多 »

Google涂鸦

Google涂鸦(Google Doodle)是为庆祝节日、纪念日、成就以及纪念杰出人物等而对Google首页商标的一种特殊的临时变更。Google的第一个涂鸦是在1998年为火人祭活動设计的。这个徽标由拉里·佩奇和谢尔盖·布林亲自设计。此后Google的节日涂鸦都采用设计外包模式。2000年佩奇和布林让实习生黄正穆设计巴士底日的涂鸦。从这时开始,涂鸦开始由“Doodlers”团队的员工管理和发布。 Google涂鸦最初不是动画和超链接,而是与主题相关的静态图片。但自2010年代开始,涂鸦出现的频率及其复杂程度都有所增加。2010年1月,第一个动画涂鸦推出,这个涂鸦是纪念艾萨克·牛顿的。不久后,第一个交互式涂鸦推出,以纪念吃豆人诞生30周年。涂鸦中也开始加入超链接,里面的超链接通常链接到涂鸦主题的搜索结果页。截至2014年,Google已经在其网页上发表2000个区域和国际涂鸦。.

新!!: 萊昂哈德·歐拉和Google涂鸦 · 查看更多 »

Γ函数

\Gamma \,函数,也叫做伽瑪函數(Gamma函数),是階乘函數在實數與複數上的擴展。對於實數部份為正的複數z,伽瑪函數定義為: 此定義可以用解析開拓原理拓展到整個複數域上,非正整數外。 如果z為正整數,則伽瑪函數定義為: 這顯示了它與階乘函數的聯繫。可見,伽瑪函數將n!拓展到了實數與複數域上。 在概率論中常見此函數,在組合數學中也常見。.

新!!: 萊昂哈德·歐拉和Γ函数 · 查看更多 »

N体问题

N体问题是指找出已知初始位置、速度和质量的多个物体在经典力学情况下的后续运动。.

新!!: 萊昂哈德·歐拉和N体问题 · 查看更多 »

Q-模拟

在数学里,尤其是组合数学和特殊函数领域,一个定理、等式或者表达式的q-模拟是指在引入一个新的参数q后当q→1时原定理、等式或表达式的极限。最早地研究得较为深入的q-模拟是 19世纪被引入的基本超几何级数。 q-模拟在包括分形、多重分形, 混沌动力系统的熵表达在内的多个研究领域都有应用。另外,在量子群 和 q-变形 代数的研究中也有应用。 "经典" q-模拟开始于莱昂哈德·欧拉的研究工作,后来由F. H. Jackson 以及其他人所扩展。.

新!!: 萊昂哈德·歐拉和Q-模拟 · 查看更多 »

Veneziano 模型

粒子物理学中,韦内齐亚诺模型(Veneziano model)是一个簡單的4粒子散射模型,特徵是它明顯有s-channel和t-channel的交叉對稱性。它由加布里埃莱·韦内齐亚诺在1968年提出。經過很多人的努力後,引出了對偶共振態模型,後來改名为弦論。 韦内齐亚诺假設的散射波幅 (Veneziano amplitude)是:.

新!!: 萊昂哈德·歐拉和Veneziano 模型 · 查看更多 »

抽象代数

抽象代数作为数学的一门学科,主要研究对象是代数结构,比如群、环、-zh-hans:域;zh-hant:體-、模、向量空间、格與域代数。「抽象代數」一詞出現於20世紀初,作為與其他代數領域相區別之學科。 代數結構與其相關之同態,構成數學範疇。範疇論是用來分析與比較不同代數結構的強大形式工具。 泛代數是一門與抽象代數有關之學科,研究將各類代數視為整體所會有的性質與理論。例如,泛代數研究群的整體理論,而不會研究特定的群。.

新!!: 萊昂哈德·歐拉和抽象代数 · 查看更多 »

柯尼斯堡

柯尼斯堡(又譯:哥尼斯堡,德语:Königsberg、立陶宛语:Karaliaučius、低地德语:Königsbarg、波兰语:Królewiec)即如今俄罗斯加里宁格勒州首府加里宁格勒,位于桑比亚半岛南部,由条顿骑士团北方十字军于1255年建立,先后被条顿骑士团国、普鲁士公国和东普鲁士定为首都或首府。柯尼斯堡曾是德国文化中心之一,伊曼努尔·康德、E·T·A·霍夫曼和达维德·希耳伯特都曾在此居住过。 第二次世界大战期间,柯尼斯堡在1944年遭受盟军轰炸而损失惨重。1945年柯尼斯堡战役后,苏联红军占领城市。战后,根据《波茨坦协定》,柯尼斯堡成为苏联领土。1946年,为纪念刚逝世的苏联共产党和苏维埃国家领导人米哈伊尔·加里宁,柯尼斯堡更名为加里宁格勒。.

新!!: 萊昂哈德·歐拉和柯尼斯堡 · 查看更多 »

柯尼斯堡七桥问题

柯尼斯堡七桥问题(Seven Bridges of Königsberg)是图论中的著名问题。这个问题是基於一個現實生活中的事例:當時東普魯士柯尼斯堡(今日俄羅斯加里寧格勒)市区跨普列戈利亚河两岸,河中心有兩個小島。小島與河的兩岸有七條橋連接。在所有橋都只能走一遍的前提下,如何才能把这个地方所有的橋都走遍?.

新!!: 萊昂哈德·歐拉和柯尼斯堡七桥问题 · 查看更多 »

柯西-黎曼方程

复分析中的柯西-黎曼微分方程是提供了可微函数在开集中為全纯函数的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。 在一对实值函数u(x,y)和v(x,y)上的柯西-黎曼方程组包括两个方程: 和 通常,u和v取为一个复函数的实部和虚部:f(x + iy).

新!!: 萊昂哈德·歐拉和柯西-黎曼方程 · 查看更多 »

极坐标系

在数学中,极坐标系(Polar coordinate system)是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。.

新!!: 萊昂哈德·歐拉和极坐标系 · 查看更多 »

李俨 (现代学者)

李儼(),原名祿驥,字樂知,福建閩縣人。他和錢寶琮同是中國數學史研究的先驅。.

新!!: 萊昂哈德·歐拉和李俨 (现代学者) · 查看更多 »

格奥尔格·欧姆

格奥尔格·西蒙·欧姆(Georg Simon Ohm,),德国物理学家。欧姆发现了电阻中电流与电压的正比关系,即著名的欧姆定律;他还证明了导体的电阻与其长度成正比,与其横截面积和传导系数成反比;以及在稳定电流的情况下,电荷不仅在导体的表面上,而且在导体的整个截面上运动。电阻的国际单位制“欧姆”以他的名字命名。.

新!!: 萊昂哈德·歐拉和格奥尔格·欧姆 · 查看更多 »

格蘭迪級數

格蘭迪級數(Grandi's series),即1 − 1 + 1 − 1 + …,是在1703年由意大利數學家發表的,後來荷蘭數學家丹尼爾·伯努利和瑞士數學家萊昂哈德·歐拉等人也都曾研究過它。格蘭迪級數寫作 \sum_^ (-1)^n 它是一個發散級數,也因此在一般情況下,這個無窮級數是沒有和的。但若對该發散級數進行一些特別的求和處理時,就會有特定的“和”出現。格蘭迪級數的歐拉和和切薩羅和均為 \frac。 格蘭迪級數与级数1 − 2 + 3 − 4 + …有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了,他在巴塞尔问题上所做的工作,同时也引出了现在所知的狄利克雷η函数和黎曼ζ函数。.

新!!: 萊昂哈德·歐拉和格蘭迪級數 · 查看更多 »

梅森素数

梅森数是指形如2^n - 1的数,记为M_n;如果一个梅森数是素数那么它称为梅森素数(Mersenne prime)。 梅森数是根据17世纪法国数学家马兰·梅森(Marin Mersenne)的名字命名的,他列出了n ≤ 257的梅森素数,不过他错误地包括了不是梅森素数的M67和M257,而遗漏了M61、M89和M107。 当n为合数时,M_n一定为合数。但当n为素数时,M_n不一定皆為素数,比如M_2.

新!!: 萊昂哈德·歐拉和梅森素数 · 查看更多 »

椭圆积分

在积分学中,椭圆积分最初出现于椭圆的弧长有关的问题中。Guilio Fagnano和欧拉是最早的研究者。现代数学将椭圆积分定义为可以表达为如下形式的任何函数 f \,的积分 其中R \,是其两个参数的有理函数,P \,是一个无重根的3 \,或4 \,阶多项式,而c \,是一个常数。 通常,椭圆积分不能用基本函数表达。这个一般规则的例外出现在P \,有重根的时候,或者是R \,,\left(x,y \right) \,没有y \,的奇数幂时。但是,通过适当的简化公式,每个椭圆积分可以变为只涉及有理函数和三个经典形式的积分。(也即,第一,第二,和第三类的椭圆积分)。 除下面给出的形式之外,椭圆积分也可以表达为勒让德形式和Carlson对称形式。通过对施瓦茨-克里斯托费尔映射的研究可以加深对椭圆积分理论的理解。历史上,椭圆函数是作为椭圆积分的逆函数被发现的,特别是这一个:F.

新!!: 萊昂哈德·歐拉和椭圆积分 · 查看更多 »

欧几里得定理

欧几里得定理是数论中的基本定理,定理指出素数的个數是无限的。该定理有许多著名的证明。.

新!!: 萊昂哈德·歐拉和欧几里得定理 · 查看更多 »

欧拉-丸山法

欧拉-丸山法是用数值求解随机微分方程(SDE)的方法,是欧拉法求解常微分方程(ODE)在随机微分方程上的推广。此方法以欧拉和日本数学家丸山仪四郎命名。 考虑如下随机微分方程(见伊藤积分) 以及给定的初始条件X_0.

新!!: 萊昂哈德·歐拉和欧拉-丸山法 · 查看更多 »

欧拉-麦克劳林求和公式

欧拉-麦克劳林求和公式在1735年由莱昂哈德·欧拉与科林·麦克劳林分别独立发现,该公式提供了一个联系积分与求和的方法,由此可以导出一些渐进展开式。.

新!!: 萊昂哈德·歐拉和欧拉-麦克劳林求和公式 · 查看更多 »

欧拉力

在经典力学,欧拉加速度(以莱昂哈德·欧拉的名字命名)是在非均匀旋转的参照系中分析运动时出现的加速度。本文仅限于旋转轴固定的参考系。 欧拉力是一个物体受的假想力,与欧拉加速度有着F.

新!!: 萊昂哈德·歐拉和欧拉力 · 查看更多 »

欧拉定理 (数论)

在数论中,欧拉定理(也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a-zh-hans:互素; zh-hant: 互質-(即\gcd(a,n).

新!!: 萊昂哈德·歐拉和欧拉定理 (数论) · 查看更多 »

欧拉乘积

数论中,欧拉乘积(Euler product)是指狄利克雷级数可表示为一指标为素数的无穷乘积。这一乘积以瑞士数学家莱昂哈德·欧拉的名字命名,他证明了黎曼ζ函数可表示为此无穷乘积的形式。.

新!!: 萊昂哈德·歐拉和欧拉乘积 · 查看更多 »

欧拉函数

在數論中,對正整數n,歐拉函數\varphi(n)是小於或等於n的正整數中與n互質的數的數目。此函數以其首名研究者歐拉命名,它又稱為φ函數(由高斯所命名)或是歐拉總計函數(totient function,由西爾維斯特所命名)。 例如\varphi(8).

新!!: 萊昂哈德·歐拉和欧拉函数 · 查看更多 »

欧拉公式

欧拉公式(Euler's formula,又稱尤拉公式)是在複分析领域的公式,将三角函数與複數指数函数相关联,因其提出者莱昂哈德·欧拉而得名。尤拉公式提出,對任意實数x,都存在 其中e是自然對数的底數,i是虛數單位,而\cos和\sin則是餘弦、正弦對應的三角函数,参数x則以弧度为单位。這一複數指數函數有時還寫作\operatorname(x)(cosine plus i sine,余弦加i正弦)。由於該公式在x為複數時仍然成立,所以也有人將這一更通用的版本稱為尤拉公式。 当 x.

新!!: 萊昂哈德·歐拉和欧拉公式 · 查看更多 »

欧拉图

欧拉图,部分文稿也称欧氏图,是类似文氏图的一种图,但是不必须包含所有的区(这里的区定义为两个或更多轮廓线的交集区域)。所以欧拉图可以定义论域,就是说它可以定义一个系统,其中有特定交集是不可能的或不考虑的。 所以,包含“动物”、“矿石”和“四足”这些性质的文氏图,必须包含在其中有同时是动物、矿石和四足的某种东西的那个交集。因此文氏图展示了所有可能的合取组合。 可以构造出欧拉图,使得在其中这些无意义的交集不存在,以此为这个主题定义了论域。换句话说,欧拉图可以表示简并之后的那些合取。 对欧拉图的一个现代扩展是蜘蛛图,它向欧拉图增加了可以连接的存在点。这给予欧拉图析取特征。欧拉图原先已有合取特征(就是说区定义了,在該区中存在的对象,都有着合取起来的那些性质)。所以蜘蛛图允许使用欧拉图配備逻辑或的条件。.

新!!: 萊昂哈德·歐拉和欧拉图 · 查看更多 »

欧拉四平方和恒等式

欧拉四平方和恒等式说明,如果两个数都能表示为四个平方数的和,则这两个数的积也能表示为四个平方数的和。等式为: 欧拉在1748年5月4日寄给哥德巴赫的一封信中提到了这个恒等式。它可以用基本的代数来证明,在任何交换环中都成立。如果as和bs是实数,有一个更加简洁的证明:这个等式表达了两个四元数的积的绝对值就是它们绝对值的积的事实,就像婆罗摩笈多-斐波那契恒等式与复数的关系一样。 拉格朗日用这个恒等式来证明四平方和定理。.

新!!: 萊昂哈德·歐拉和欧拉四平方和恒等式 · 查看更多 »

欧拉示性数

在代数拓扑中,欧拉示性数(Euler characteristic)是一个拓扑不变量(事实上,是同伦不变量),对于一大类拓扑空间有定义。它通常记作\chi。 二维拓扑多面体的欧拉示性数可以用以下公式计算: 其中V,E和F分别是点,边和面的个数。特别的有,对于所有和一个球面同胚的多面体,我们有 例如,对于立方体,我们有6 − 12 + 8.

新!!: 萊昂哈德·歐拉和欧拉示性数 · 查看更多 »

欧拉积分

在数学中,有两种类型的欧拉积分(Euler integral): 对于正整数m和n:.

新!!: 萊昂哈德·歐拉和欧拉积分 · 查看更多 »

欧拉角

萊昂哈德·歐拉用歐拉角來描述剛體在三維歐幾里得空間的取向。對於任何參考系,一個剛體的取向,是依照順序,從這參考系,做三個歐拉角的旋轉而設定的。所以,剛體的取向可以用三個基本旋轉矩陣來決定。換句話說,任何關於剛體旋轉的旋轉矩陣是由三個基本旋轉矩陣複合而成的。.

新!!: 萊昂哈德·歐拉和欧拉角 · 查看更多 »

欧拉陨石坑

欧拉陨石坑(Euler)是位于雨海南半部的一座月球撞击坑。其附近最醒目的特征是西南偏西方的维诺格拉多夫山,而西南面则是一些嵌入了娜塔莎陨石坑及更小的洁罕陨石坑的低矮山脊;往东北约200公里处是坐落了大小类似的朗伯陨石坑。 欧拉陨坑带有一圈低矮的坑壁,不规则的内侧坡上分布有一些纤细的阶地结构和坍塌地貌。坑底中心直立着一座撞击反弹形成的中央峰。该陨石坑还有一个延伸200公里的小射纹系统。.

新!!: 萊昂哈德·歐拉和欧拉陨石坑 · 查看更多 »

欧拉-特里科米方程

欧拉-特里科米方程(Euler–Tricomi equation)是一个用于研究跨音速流动的线性偏微分方程。其名称源于莱昂哈德·欧拉与弗朗切斯科·特里科米。 欧拉-特里科米方程的表达式为 u_+xu_.

新!!: 萊昂哈德·歐拉和欧拉-特里科米方程 · 查看更多 »

欧拉方程 (流体动力学)

在流體動力學中,歐拉方程是一組支配無黏性流體運動的方程,以萊昂哈德·歐拉命名。方程組各方程分別代表質量守恆(連續性)、動量守恆及能量守恆,對應零黏性及無熱傳導項的納維-斯托克斯方程。歷史上,只有連續性及動量方程是由歐拉所推導的。然而,流體動力學的文獻常把全組方程——包括能量方程——稱為“歐拉方程”。 跟納維-斯托克斯方程一樣,歐拉方程一般有兩種寫法:“守恆形式”及“非守恆形式”。守恆形式強調物理解釋,即方程是通過一空間中某固定體積的守恆定律;而非守恆形式則強調該體積跟流體運動時的變化狀態。 歐拉方程可被用於可壓縮性流體,同時也可被用於非壓縮性流體——這時應使用適當的狀態方程,或假設流速的散度為零。 本條目假設經典力學適用;當可壓縮流的速度接近光速時,詳見相對論性歐拉方程。.

新!!: 萊昂哈德·歐拉和欧拉方程 (流体动力学) · 查看更多 »

欧拉方法

在数学和计算机科学中,欧拉方法,命名自它的发明者萊昂哈德·歐拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值問題)求解。它是一种解决数值常微分方程的最基本的一类显型方法(Explicit method)。.

新!!: 萊昂哈德·歐拉和欧拉方法 · 查看更多 »

歐幾里得-歐拉定理

數學上,歐幾里得-歐拉定理(Euclid–Euler theorem)是一條聯繫偶完全數與梅森質數的定理。這定理指出每個偶完全數都可以寫成2n − 1(2n − 1),其中2n − 1是質數。形如2n − 1的質數稱為梅森質數,因此其中的n必需是質數。.

新!!: 萊昂哈德·歐拉和歐幾里得-歐拉定理 · 查看更多 »

歐依勒

#重定向 萊昂哈德·歐拉.

新!!: 萊昂哈德·歐拉和歐依勒 · 查看更多 »

歐拉-馬斯刻若尼常數

歐拉-馬斯刻若尼常數是一个数学常数,定义为调和级数与自然对数的差值: \sum_^n \frac \right) - \ln(n) \right.

新!!: 萊昂哈德·歐拉和歐拉-馬斯刻若尼常數 · 查看更多 »

歐拉函數 (複變函數)

在數學上,歐拉函數的定義如下 此函數得名由萊昂哈德·歐拉。歐拉函數是典型的q級數及模形式函數,也是描述组合数学及複分析之間關係的典型範例。.

新!!: 萊昂哈德·歐拉和歐拉函數 (複變函數) · 查看更多 »

歐拉獎

歐拉獎(Euler Medal)以十八世紀的瑞士數學家歐拉命名,自1993年開始在每年國際組合數學與應用年會上頒發的終生成就獎,是組合數學領域的最高榮譽。2004年由華人朱烈教獲此殊榮。.

新!!: 萊昂哈德·歐拉和歐拉獎 · 查看更多 »

歐拉線

在平面几何中,欧拉线,或稱尤拉線(图中的红线)是指过三角形的垂心(蓝)、外心(绿)、重心(黄)和九点圆圆心(红点)的一条直线。莱昂哈德·欧拉也稱尤拉证明了在任意三角形中,以上四点共线。欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。注意內心一般不在歐拉線上,除了等腰三角形外。.

新!!: 萊昂哈德·歐拉和歐拉線 · 查看更多 »

歐拉運動定律

歐拉運動定律(Euler's laws of motion)是牛頓運動定律的延伸,可以應用於多粒子系統運動或剛體運動,描述多粒子系統運動或剛體的平移運動、旋轉運動分別與其感受的力、力矩之間的關係。在艾薩克·牛頓發表牛頓運動定律之後超過半個世紀,於1750年,萊昂哈德·歐拉才成功地表述了這定律。 剛體也是一種多粒子系統,但理想剛體是一種有限尺寸,可以忽略形變的固體。不論是否感受到作用力,在剛體內部,點與點之間的距離都不會改變。 歐拉運動定律也可以加以延伸,應用於可變形體(deformable body)內任意部分的平移運動與旋轉運動。.

新!!: 萊昂哈德·歐拉和歐拉運動定律 · 查看更多 »

歐拉﹣伯努力棟樑方程

欧拉-伯努利梁方程(Euler–Bernoulli beam theory),是一个关于工程力学、古典梁力学的重要方程;是一个简化线性弹性理论用于用于计算梁受力和变形特征。欧拉-伯努利梁方程约形成于1750年,但这条方程却没有在后期建筑之中得到广泛的应用。直到十九世纪,这条方程才成为第二次工业革命的基石。.

新!!: 萊昂哈德·歐拉和歐拉﹣伯努力棟樑方程 · 查看更多 »

歐拉恆等式

歐拉恆等式是指下列的關係式: 其中e\,是自然對數的底,i \,是虛數單位,\pi \,是圓周率。 這條恆等式第一次出現於1748年瑞士數學、物理學家萊昂哈德·歐拉(Leonhard Euler)在洛桑出版的書Introductio \,。這是複分析的歐拉公式的特殊情況。 美國物理學家理查德·費曼(Richard Phillips Feynman)稱這恆等式為「數學最奇妙的公式」,因為它把5個最基本的數學常數簡潔地連繫起來。.

新!!: 萊昂哈德·歐拉和歐拉恆等式 · 查看更多 »

歐拉旋轉定理

在運動學裏,歐拉旋轉定理(Euler's rotation theorem)表明,在三維空間裏,假設一個剛體在做一個位移的時候,剛體內部至少有一點固定不動,則此位移等價於一個繞著包含那固定點的固定軸的旋轉。這定理是以瑞士數學家萊昂哈德·歐拉命名。於1775年,歐拉使用簡單的幾何論述證明了這定理。 用數學術語,在三維空間內,任何共原點的兩個座標系之間的關係,是一個繞著包含原點的固定軸的旋轉。這也意味著,兩個旋轉矩陣的乘積還是旋轉矩陣。一個不是單位矩陣的旋轉矩陣必有一個實值的本徵值,而這本徵值是 1 。 對應於這本徵值的本徵向量就是旋轉所環繞的固定軸。.

新!!: 萊昂哈德·歐拉和歐拉旋轉定理 · 查看更多 »

正弦

在數學中,正弦(英語:sine、縮寫sin)是一種週期函數,是三角函数的一種。它的定义域是整个实数集,值域是。它是周期函数,其最小正周期为2π。在自变量为(4n+1)π/2(n为整数)时,该函数有极大值1;在自变量为(4n+3)π/2时,该函数有极小值-1。正弦函数是奇函数,其图像关于原点对称。.

新!!: 萊昂哈德·歐拉和正弦 · 查看更多 »

母函数

在数学中,某个序列(a_n)_ 的母函数(又称生成函数,Generating function)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。使用母函数解决问题的方法称为母函数方法。 母函数可分为很多种,包括普通母函数、指数母函数、L级数、贝尔级数和狄利克雷级数。对每个序列都可以写出以上每个类型的一个母函数。构造母函数的目的一般是为了解决某个特定的问题,因此选用何种母函数视乎序列本身的特性和问题的类型。 母函数的表示一般使用解析形式,即写成关于某个形式变量x的形式幂级数。对幂级数的收敛半径中的某一点,可以求母函数在这一点的级数和。但无论如何,由于母函数是形式幂级数的一种,其级数和不一定对每个x的值都存在。 母函数方法不仅在概率论的计算中有重要地位,而且已成为组合数学中一种重要方法。此外,母函数在有限差分计算、特殊函数论等数学领域中都有着广泛的应用。 注意母函数本身并不是一个从某个定义域射到某个上域的函数,名字中的“函数”只是出于历史原因而保留。.

新!!: 萊昂哈德·歐拉和母函数 · 查看更多 »

求和符号

求和符号(Σ,sigma),是欧拉于1755年首先使用的。这个符号是源于希腊文σογμαρω(增加)的字头,Σ正是σ的大写。求和的结果是給定的數值相加後的總值,又稱加總。 舉例而言,若有4個數值:1、3、5、7,則這4個數值的總和為: 擴展為數學的一般式:若有n個數值x_1, x_2, \cdots, x_n,則此n個數值的總和為: 上式的等號右段在數學上常簡潔地寫為:.

新!!: 萊昂哈德·歐拉和求和符号 · 查看更多 »

波动方程

波动方程或稱波方程(wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 1746年,达朗贝尔发现了一维波动方程,欧拉在其后10年之内发现了三维波动方程。Speiser, David.

新!!: 萊昂哈德·歐拉和波动方程 · 查看更多 »

--,一種用以增加液體或氣體的壓力,使加壓過的氣體或液體產生比平常狀況下更巨大的推進力量,用於推進某些機械裝置或是氣體或液體產生巨大的力量作為多項用途,與「蹦」同音,為英語pump的音譯,日語也藉此為發音。中文直譯稱幫--浦,是一種用來移動液體、氣體或特殊流体介质的裝置,即是對流體作功的機械。 人類及動物的心臟可說是天然的泵,它把血液输送到身體各個部分。.

新!!: 萊昂哈德·歐拉和泵 · 查看更多 »

漸伸線

漸伸線(involute)(或稱漸開線(evolvent))和漸屈線(evolute)是曲線的微分幾何上互為表裡的概念。若曲線A是曲線B的漸伸線,曲線B是曲線A的漸屈線。 在曲線上選一定點S。有一動點P由S出發沿曲線移動,選在P的切線上的Q,使得曲線長SP 和直線段長PQ 相同。漸伸線就是Q的軌跡。 若曲線B有參數方程r:\mathbb R\to\mathbb R^n,其中|r^\prime(s)|.

新!!: 萊昂哈德·歐拉和漸伸線 · 查看更多 »

潮汐

漲潮是地球上的海洋表面受到太陽和月球的万有引力(潮汐力)作用引起的漲落現象。潮汐的變化與地球、太陽和月球的相對位置有關,並且會與地球自轉的效應耦合和海洋的海水深度、大湖及河口。在其它引力場的時間和空間系統內也会發生类似潮汐的現象。 在淺海和港灣實際發生的海平面變化,不僅受到天文的潮汐力影響,還會受到氣象(風和氣壓)的強烈影響,例如風暴潮。潮汐造成海洋和港灣口積水深度的改變,並且形成震盪的潮汐流,因此製作沿海地區潮汐流的預測在航海上是很重要的。在漲潮時會埋在海水中,而在退潮時會裸露出來的潮間帶,是潮汐造成的重要海洋生態。.

新!!: 萊昂哈德·歐拉和潮汐 · 查看更多 »

挫曲

挫曲(buckling)也稱為屈曲,是一種不穩定的現象,是指細長件在受到壓縮力時,因細長件彎曲變形而造成的。 理論上,挫曲是因為力学平衡方程式的解出現分岔(解的本質發生改變)所造成的。在受力增加到一定程度之後,物體會出現二種平衡狀態,一種是純壓縮力,另一個是有側向偏移變形的平衡狀態。 挫曲的特點是在結構件中,邊緣承受壓縮應力的元件突然斷裂,而元件失效時的壓應力小於材料可以承受的終極抗壓應力。挫曲的數學分析一般會設法加入方向也是軸向,但和軸有一段位移(偏心)的壓應力,以產生原來理想施力時不會受現的二次。 當在一元件(例如杆件)上的壓縮負荷增加,多半最後負荷會大到使元件變形不穩定。若負荷繼續加大,會造成明顯,甚至無法預測的變形,可能讓元件完全無法承受負荷。若變形還不是災難性的,元件仍會繼續承受負載。若挫曲的元件是結構件(例如大樓)中的一部份,會由其他的元件來分擔已挫曲元件原來要承受的負載。.

新!!: 萊昂哈德·歐拉和挫曲 · 查看更多 »

本傑明·富蘭克林

班傑明·富蘭克林 FRS FRSE(Benjamin Franklin,),出生於美國麻省波士頓,美國博學家、開國元勛之一。他是傑出的政治家、外交家、科學家、發明家,同時亦是出版商、印刷商、記者、作家、慈善家、共濟會的成員。作為科學家,他因電學發現和理論成為美國啟蒙時代和物理學史上重要人物。作為發明家,他因避雷針、雙目眼鏡、富蘭克林壁爐等聞名。他創立了許多民間組織,包括費城消防站和賓夕法尼亞大學。 富蘭克林很早就不懈倡導殖民地團結,最初以作者和發言人身份在倫敦呼籲,被譽為“美國第一人”。作為美國駐法國第一任大使,他成為新生國家榜樣。富蘭克林在美國民族精神上起奠基作用,倡導實用節儉、艱苦奮鬥、教育明哲、團體精神、自治政府,反對政治和宗教威權主義,富有啟蒙運動的科學和包容精神。歷史學家亨利·斯蒂爾·康馬格稱:“富蘭克林出清教徒精神而不染,濯啟蒙運動光芒而不妖。”沃爾特·艾薩克森認為這讓富蘭克林:“成為當時美國成就之最,在創立美國社會形式上影響最深。” 費城是殖民地大都,富蘭克林是該城成功的報紙編輯和出版人,在23歲時出版《賓夕法尼亞報》。富蘭克林用筆名“理查德·桑德斯”出版《窮理查年鑒》,由此致富。在1767年後,他參與《賓夕法尼亞紀事》報,該報主張革命,批評英國政策。 1751年,富蘭克林協助創辦費城學院,擔任首位校長,學院後為賓州大學。他組織創辦美國哲學會,任首位秘書,在1769年擔任主席。富蘭克林代表眾殖民地前往倫敦,力勸議會撤銷不得人心的印花稅法案,成為美國民族英雄。作為傑出外交家,他在法國巴黎大受歡迎,在建立積極的美法同盟上貢獻巨大,這些努力在美國獨立戰爭期間起關鍵作用,確保革命能從法國獲得補給。 在費城做郵政多年後,富蘭克林於1753年成為殖民地郵政代理總長,建立首個全國通訊系統。在革命期間,他成為美國首任郵政總長。富蘭克林積極參與社區、殖民地、州際、全國、國際各項事務。1785至1788年,他擔任賓夕法尼亞州長。最初,富蘭克林擁有並販售奴隸,但到1750年他釋放仆人,從經濟角度表示反對,成為廢奴主義者中傑出代表。 富蘭克林人生傳奇多彩,科學與政治上遺產豐富,在眾開國元勛中雄踞鰲頭,之後兩個世紀紀念不斷,多次在硬幣百元鈔票、艦船、城郡、學院、公司及各類文化活動再現。.

新!!: 萊昂哈德·歐拉和本傑明·富蘭克林 · 查看更多 »

月球環形山列表 (C-F)

这是月球环形山列表的一部份,此表列举出英文名称以字母C、D、E及F开头的环形山。.

新!!: 萊昂哈德·歐拉和月球環形山列表 (C-F) · 查看更多 »

月球運動論

月球運動論的目的是計算月球的運動。月球有許多不規律(或是攝動)的運動,歷史上科學家曾多次嘗試去了解並計算它們,經歷屢次失敗下這一課題曾經是歷史上的世紀難題,但月球運動已是當今 (參見近代的發展) 的模型中精確度最高的,它所達到的精確度水準,也成為測試新物理理論的靈敏儀器。 月球運動論包括:.

新!!: 萊昂哈德·歐拉和月球運動論 · 查看更多 »

指数函数

指数函数(Exponential function)是形式為b^x的數學函数,其中b是底數(或稱基數,base),而x是指數(index / exponent)。 現今指數函數通常特指以\mbox為底數的指數函數(即\mbox^x),為数学中重要的函数,也可寫作\exp(x)。这里的\mbox是数学常数,也就是自然对数函数的底数,近似值为2.718281828,又称为欧拉数。 作为实数变量x的函数,y.

新!!: 萊昂哈德·歐拉和指数函数 · 查看更多 »

最小作用量原理

物理學中 最小作用量原理(least action principle),或更精確地,平穩作用量原理(stationary action principle),是一種變分原理,當應用於一個機械系統的作用量時,可以得到此機械系統的運動方程式。這原理的研究引導出經典力學的拉格朗日表述和哈密頓表述的發展。卡爾·雅可比特稱最小作用量原理為分析力學之母。 在現代物理學裏,這原理非常重要,在相對論、量子力學、量子場論裏,都有廣泛的用途。在現代數學裏,這原理是莫爾斯理論的研究焦點。本篇文章主要是在闡述最小作用量原理的歷史發展。關於數學描述、推導和實用方法,請參閱條目作用量。最小作用量原理有很多種例子,主要的例子是莫佩爾蒂原理(Maupertuis' principle)和哈密頓原理。 在最小作用量原理之前,有很多類似的點子出現於測量學和光學。古埃及的拉繩測量者(rope stretcher)在測量兩點之間的距離時,會將固定於這兩點的繩索拉緊,這樣,可以使間隔距離減少至最低值。托勒密在他的著作《地理學指南》(Geographia)第一册第二章裏強調,測量者必須對於直線路線的誤差做出適當的修正。古希臘數學家歐幾里得在《反射光學》(Catoptrica)裏表明,將光線照射於鏡子,則光線的反射路徑的入射角等於反射角。稍後,亞歷山卓的希羅證明這路徑的長度是最短的。.

新!!: 萊昂哈德·歐拉和最小作用量原理 · 查看更多 »

戈特弗里德·莱布尼茨

戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz, 或 ;Godefroi Guillaume Leibnitz,,),德意志哲学家、数学家,歷史上少見的通才,獲誉为十七世纪的亚里士多德。他本人是律師,經常往返於各大城鎮;他許多的公式都是在顛簸的馬車上完成的,他也自稱具有男爵的貴族身份。 莱布尼茨在数学史和哲学史上都占有重要地位。在数学上,他和牛顿先后独立发明了微积分,而且他所使用的微積分的数学符号被更廣泛的使用,萊布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。莱布尼茨还对二进制的发展做出了贡献。 在哲学上,莱布尼茨的乐观主义最为著名;他认为,“我们的宇宙,在某种意义上是上帝所创造的最好的一个”。他和笛卡尔、巴鲁赫·斯宾诺莎被认为是十七世纪三位最伟大的理性主义哲学家。莱布尼茨在哲学方面的工作在预见了现代逻辑学和分析哲学诞生的同时,也显然深受经院哲学传统的影响,更多地应用第一性原理或先验定义,而不是实验证据来推导以得到结论。 莱布尼茨对物理学和技术的发展也做出了重大贡献,并且提出了一些后来涉及广泛——包括生物学、医学、地质学、概率论、心理学、语言学和信息科学——的概念。莱布尼茨在政治学、法学、伦理学、神学、哲学、历史学、语言学诸多方向都留下了著作。 莱布尼茨对如此繁多的学科方向的贡献分散在各种学术期刊、成千上万封信件、和未发表的手稿中,其中約四成為拉丁文、約三成為法文、約一成五為德文。截至2010年,莱布尼茨的所有作品还没有收集完全。 2007年,戈特弗里德·威廉·莱布尼茨图书馆暨下薩克森州州立圖書舘的莱布尼茨手稿藏品被收入联合国教科文组织编写的世界记忆项目。 由於莱布尼茨曾在汉诺威生活和工作了近四十年,并且在汉诺威去世,为了纪念他和他的学术成就,2006年7月1日,也就是萊布尼茨360周年诞辰之际,汉诺威大学正式改名为汉诺威莱布尼茨大学。.

新!!: 萊昂哈德·歐拉和戈特弗里德·莱布尼茨 · 查看更多 »

流体力学

流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.

新!!: 萊昂哈德·歐拉和流体力学 · 查看更多 »

斯里尼瓦瑟·拉马努金

斯里尼瓦瑟·拉马努金(ஸ்ரீனிவாஸ ராமானுஜன் ஐயங்கார்,ISO 15919轉寫:Srīṉivāsa Rāmāṉujan Aiyaṅkār,又译拉马努詹、羅摩奴詹,),泰米爾人,亞洲史上最著名数学家。沒受過正規的高等數學教育,沉迷数论,尤愛牽涉π、质数等数学常数的求和公式,以及整數分拆。慣以直覺(或跳步或稱之為數感)導出公式,不喜作证明,而在他的理論在事後往往被证明是對的。他所留下的尚未被証明之公式,引发了後來的大量研究。1997年,《拉马努金期刊》(Ramanujan Journal)创刊,用以发表有關「受到拉马努金影响的数学领域」的研究論文。 他自學成才並負笈劍橋的傳奇故事曾數次被拍成電影,包括了2015年的《-zh-cn:知无涯者; zh-tw:天才無限家; zh-hk:數造傳奇;-》。.

新!!: 萊昂哈德·歐拉和斯里尼瓦瑟·拉马努金 · 查看更多 »

文氏图

文氏图(Venn diagram),或译Venn圖、--、维恩圖、范氏圖,是在所谓的集合论(或者类的理论)数学分支中,在不太严格的意义下用以表示集合(或类)的一种草图。它们用于展示在不同的事物群组(集合)之间的数学或逻辑联系,尤其适合用来表示集合(或)类之间的“大致关系”,它也常常被用来帮助推导(或理解推导过程)关于集合运算(或类运算)的一些规律。.

新!!: 萊昂哈德·歐拉和文氏图 · 查看更多 »

无穷小分析引论

《无穷小分析引论》(Introductio in analysin infinitorum)是数学家萊昂哈德·歐拉的一部共两卷的著作。出版于1748年,第一部包含18个章节,第二部包含22个章节。这本书是第一本现代数学分析学著作。.

新!!: 萊昂哈德·歐拉和无穷小分析引论 · 查看更多 »

懸鏈曲面

懸鏈曲面(又名懸垂曲面)是一个曲面,是將懸鏈線繞其準線旋轉而得(見右側動畫),故為一旋轉曲面。除了平面以外,懸鏈曲面也是第一個被发现的最小曲面,在1744年被萊昂哈德·歐拉发现且證明。Jean Baptiste Meusnier也做了些早期的研究。只有兩個曲面既為旋轉曲面又是最小曲面,即為平面與懸鏈曲面。 懸鏈曲面可被以下參數式所定義: 其中u \in \times (-\infty, \infty),且變換參數\theta滿足-\pi , 其中 \theta.

新!!: 萊昂哈德·歐拉和懸鏈曲面 · 查看更多 »

數是一個用作計數、標記或用作量度的抽象概念,是比同质或同属性事物的等级的简单符号记录形式(或称度量)。代表數的一系列符號,包括數字、運算符號等統稱為記數系統。在日常生活中,數通常出現在在標記(如公路、電話和門牌號碼)、序列的指標(序列號)和代碼(ISBN)上。在數學裡,數的定義延伸至包含如如分數、負數、無理數、超越數及複數等抽象化的概念。 起初人們只覺得某部分的數是數,後來隨著需要,逐步將數的概念擴大;例如畢達哥拉斯認為,數必須能用整數和整數的比表達的,後來發現无理数無法這樣表達,引起第一次數學危機,但人們漸漸接受無理數的存在,令數的概念得到擴展。 數的算術運算(如加減乘除)在抽象代數這一數學分支內被廣義化成抽象數字系統,如群、環和體等。.

新!!: 萊昂哈德·歐拉和数 · 查看更多 »

数学史

数学史的主要研究对象是历史上的数学发现,以及调查它们的起源,或更广义地说,数学史就是对过去的数学方法与数学符号的探究。 数学起源于人类早期的生产活动,为古中国六艺之一,亦被古希腊学者视为哲学之起点。數學最早用於人們計數、天文、度量甚至是貿易的需要。這些需要可以簡單地被概括為數學對結構、空間以及時間的研究;對結構的研究是從數字開始的,首先是從我們稱之為初等代數的——自然數和整數以及它們的算術關係式開始的。更深層次的研究是數論;對空間的研究則是從幾何學開始的,首先是歐幾里得幾何和類似於三維空間(也適用於多或少維)的三角學。後來產生了非歐幾里得幾何,在相對論中扮演著重要角色。 在进入知识可以向全世界传播的现代社会以前,有记录的新数学发现仅仅在很少几个地区重见天日。目前最古老的数学文本是《普林顿 322》(古巴比伦,约公元前1900年),《莱因德数学纸草书》(古埃及,约公元前2000年-1800年),以及《莫斯科数学纸草书》(古埃及,约公元前1890年)。以上这些文本都涉及到了如今被称为毕达哥拉斯定理的概念,后者可能是继简单算术和几何后,最古老和最广泛传播的数学发现。 在公元前6世纪后,毕达哥拉斯将数学作为一门实证的学科进行研究,他创造了古希腊语单词μάθημα(mathema),意为“(被人们学习的)知识学问”。希腊数学家在相当大的程度上改进了这些数学方法(特别引入了演绎推理和严谨的数学证明),并扩大了数学的主题。中国数学做了早期贡献,包括引入了位值制系统。如今大行于世的印度-阿拉伯数字系统和运算方法,很可能是在公元后1000年的印度逐渐演化,并被伊斯兰数学家通过花拉子米的著作将其传到了西方。伊斯兰数学则将以上这些文明的数学做了进一步的发展贡献。许多古希腊和伊斯兰数学著作随后被翻译成了拉丁文,引领了中世纪欧洲更深入的数学发展。 从16世纪文艺复兴时期的意大利开始,算术、初等代数及三角学等初等数学已大体完备。17世纪变数概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 从古代到中世纪,数学发展的历史时期都伴随着数个世纪的停滞,但从16世纪以来,新的数学发展伴随新的科学发展,让数学不断加速大步前进,直至今日。.

新!!: 萊昂哈德·歐拉和数学史 · 查看更多 »

数学家

数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.

新!!: 萊昂哈德·歐拉和数学家 · 查看更多 »

数学家列表

以下按国籍排列方法列出的数学家列表。 中国、法国、德国、意大利、古希腊、英国、美国、俄罗斯、挪威、瑞典、荷兰、瑞士、比利时、匈牙利、丹麦、印度。.

新!!: 萊昂哈德·歐拉和数学家列表 · 查看更多 »

数学著作列表

没有描述。

新!!: 萊昂哈德·歐拉和数学著作列表 · 查看更多 »

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

新!!: 萊昂哈德·歐拉和数论 · 查看更多 »

數學符號

數學符號不只被使用於數學裡,更包含於物理科學、工程及經濟學等領域內。有些數學符號在生活中很常見,例如數字1及2、二元運算+等,儘管它們的實際定義可能並不顯淺;隨著數學觀念的發展,我們需要更多的符號以避免冗長的定義陳述,或是簡潔地表示某些概念。一些可能出現在教科書上的符號有正弦函數\sin、極限\lim和微分\frac;也有更為基本、然而抽象的符號,比如函數f(x)、等式.

新!!: 萊昂哈德·歐拉和數學符號 · 查看更多 »

數獨

數獨 ()是一種邏輯性的數字填充遊戲,玩家須以數字填進每一格,而每行、每列和每個宮(即3x3的大格)有齊1至9所有數字。遊戲設計者會提供一部分的數字,使謎題只有一個答案。 一個已解答的數獨其實是一種多了宮的限制的拉丁方陣,因為同一個數字不可能在同一行、列或宮中出現多於一次-->。 这种游戏只需要逻辑思维能力,与数字运算无关。虽然玩法简单,但数字排列方式却千变万化,所以不少教育者认为数独是锻炼脑筋的好方法。 因为数独上的数字没有运算价值,仅仅代表相互区分的不同个体,因此可以使用其他的符号比如拉丁字母、罗马字母甚至是不同形状的图案代替。 數獨遊戲由日本遊戲公司 Nikoli 於 1986年 發明,意思為「獨身最適數字」。 2005年,數獨遊戲發揚到全世界。.

新!!: 萊昂哈德·歐拉和數獨 · 查看更多 »

拓扑学

在數學裡,拓撲學(topology),或意譯為位相幾何學,是一門研究拓撲空間的學科,主要研究空間內,在連續變化(如拉伸或彎曲,但不包括撕開或黏合)下維持不變的性質。在拓撲學裡,重要的拓撲性質包括連通性與緊緻性。 拓撲學是由幾何學與集合論裡發展出來的學科,研究空間、維度與變換等概念。這些詞彙的來源可追溯至哥特佛萊德·萊布尼茲,他在17世紀提出「位置的幾何學」(geometria situs)和「位相分析」(analysis situs)的說法。莱昂哈德·歐拉的柯尼斯堡七橋問題與歐拉示性數被認為是該領域最初的定理。「拓撲學」一詞由利斯廷於19世紀提出,雖然直到20世紀初,拓撲空間的概念才開始發展起來。到了20世紀中葉,拓撲學已成為數學的一大分支。 拓撲學有許多子領域:.

新!!: 萊昂哈德·歐拉和拓扑学 · 查看更多 »

拉丁语

拉丁语(lingua latīna,),羅馬帝國的奧古斯都皇帝時期使用的書面語稱為「古典拉丁語」,屬於印欧语系意大利語族。是最早在拉提姆地区(今意大利的拉齐奥区)和罗马帝国使用。虽然现在拉丁语通常被认为是一种死语言,但仍有少数基督宗教神职人员及学者可以流利使用拉丁语。罗马天主教传统上用拉丁语作为正式會議的语言和礼拜仪式用的语言。此外,许多西方国家的大学仍然提供有关拉丁语的课程。 在英语和其他西方语言创造新词的过程中,拉丁语一直得以使用。拉丁语及其后代罗曼诸语是意大利语族中仅存的一支。通过对早期意大利遗留文献的研究,可以证实其他意大利语族分支的存在,之后这些分支在罗马共和国时期逐步被拉丁语同化。拉丁语的亲属语言包括法利斯克语、奥斯坎语和翁布里亚语。但是,威尼托语可能是一个例外。在罗马时代,作为威尼斯居民的语言,威尼托语得以和拉丁语并列使用。 拉丁语是一种高度屈折的语言。它有三种不同的性,名词有七格,动词有四种词性变化、六种时态、六种人称、三种语气、三种语态、两种体、两个数。七格当中有一格是方位格,通常只和方位名词一起使用。呼格与主格高度相似,因此拉丁语一般只有五个不同的格。不同的作者在行文中可能使用五到七种格。形容词与副词类似,按照格、性、数曲折变化。虽然拉丁语中有指示代词指代远近,它却没有冠词。后来拉丁语通过不同的方式简化词尾的曲折变化,形成了罗曼语族。 拉丁语與希腊语同為影響歐美學術與宗教最深的语言。在中世纪,拉丁语是当时欧洲不同国家交流的媒介语,也是研究科学、哲学和神學所必须的语言。直到近代,通晓拉丁语曾是研究任何人文学科教育的前提条件;直到20世纪,拉丁语的研究才逐渐衰落,重点转移到对當代语言的研究。.

新!!: 萊昂哈德·歐拉和拉丁语 · 查看更多 »

拉格朗日点

拉格朗日点(Lagrangian point)又称平动点(libration points)在天体力学中是限制性三体问题的五个特殊解(particular solution)。就平面圆型三体问题,1767年数学家欧拉根据旋转的二体引力场推算出其中三个点(特解)為L1、L2、L3,1772年数学家拉格朗日推算出另外两个点(特解)為L4、L5。例如,两个天体环绕运行,在空间中有五个位置可以放入第三个物体(质量忽略不计),并使其保持在两个天体的相应位置上。理想状态下,两个同轨道物体以相同的周期旋转,两个天体的万有引力与离心力在拉格朗日点平衡,使得第三个物体与前两个物体相对静止。.

新!!: 萊昂哈德·歐拉和拉格朗日点 · 查看更多 »

拉格朗日插值法

在数值分析中,拉格朗日插值法是以法国18世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。许多实际问题中都用函数来表示各結果之間某种内在联系或规律,而不少函数都只能通过繁複实验和多次观测来了解。而,如果对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。上面这样的多项式就称为拉格朗日(插值)多项式。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后(1783年)由莱昂哈德·欧拉再次发现。1795年,拉格朗日在其著作《师范学校数学基础教程》中发表这个插值方法,从此他的名字就和这个方法联系在一起。 对于给定的若n+1个点(x_0, y_0),(x_1, y_1),\ldots,(x_n, y_n),对应于它们的次数不超过n的拉格朗日多项式\scriptstyle L只有一个。如果计入次数更高的多项式,则有无穷个,因为所有与\scriptstyle L相差\lambda (x-x_0)(x-x_1)\ldots(x-x_n)的多项式都满足条件。.

新!!: 萊昂哈德·歐拉和拉格朗日插值法 · 查看更多 »

0.999…

在數學的完备实数系中,循环小数0.999…,也可写成0.\overline、0.\dot或0.(9),表示一个等於1的实数,即「0.999…」所表示的数与「1」相同。目前該等式已经有各式各样的證明式;它们各有不同的嚴謹性、背景假设,且都蕴含实数的实质条件,即阿基米德公理、历史文脉、以及目标受众。 这类展开式的非唯一性不仅限於十进制系统,相同的现象也出现在其它的整数进位制中,数学家们也列举出了一些1在非整数进位制中的写法,这种现象也不是仅仅限於1的:对於每一个非零的有限小数,都存在另一种含有无穷多个9的写法,由於简便的原因,我们几乎肯定使用有限小數的写法,这样就更加使人们误以为没有其它写法了,实际上,一旦我们允许使用无限小数,那么在所有的进位制中都有无穷多种替代的写法,例如,18.3287与18.3286999…、18.3287000…,以及许多其它的写法,都表示相同的数,这些各种各样的等式被用来更好地理解分數的小数展开式的规律,以及一个简单-zh:分形; zh-hans:分形; zh-hant:碎形-图形──康托尔集合的结构,它们也出现在一个对整个实数的无穷集合的--研究之中。 在过去數十年裡,許多数学教育的研究人员研究了大眾及学生们对该等式的接受程度,许多学生在學習开始時怀疑或拒絕该等式,而後許多学生被老師、教科书和如下章節的算術推論說服接受两者是相等的,儘管如此,許多人們仍常感到懷疑,而提出进一步的辯解,這經常是由於存在不少對數學实数錯誤的觀念等的背後因素(參見以下教育中遇到的懷疑一章節),例如認為每一个实数都有唯一的一个小数展开式,以及認為無限小(无穷小)不等於0,並且將0.999…视为一个不定值,即該值只是一直不斷無限的微微擴張變大,因此与1的差永遠是無限小而不是零,因此「永遠都差一點」。我们可以构造出符合這些直觀的數系,但是只能在用於初等数学或多數更高等數學中的标准实数系统之外进行,的確,某些設計含有「恰恰小於1」的数,不過,这些数一般与0.999…无关(因为与之相关的理论上和实践上都皆無實質用途),但在数学分析中引起了相当大的關注。.

新!!: 萊昂哈德·歐拉和0.999… · 查看更多 »

1 + 2 + 4 + 8 + …

在数学领域,1 + 2 + 4 + 8 + … 是一个无穷级数,它的每一项都是2的幂。作为几何级数,它以 1 为首项,2 为公比。 作为实数级数,他发散到无穷,所以在一般意义下它的和不存在。 如果以代數運算的方式來計算這個數列的和,雖然可以得到∞以及-1這兩個值,但這必須在更廣泛的意義中才能成立。 在历史和数学教育,是正项发散几何级数的一个基本例子。许多结果和争论引出了许多类似级数,其他的例子如。.

新!!: 萊昂哈德·歐拉和1 + 2 + 4 + 8 + … · 查看更多 »

1 − 1 + 2 − 6 + 24 − 120 + ⋯

數學上,發散級數: 是被歐拉首次研究,他應用重求和方法給級數賦予一個有限的值。此級數是被交替加減的階乘之總和。要給發散級數賦值,其中一個方法是用博雷爾和,其型式上寫成: 若我們對總和和積分進行轉乘(忽略兩者其實都是不收斂的),將得到: 在中括號中的總和收斂,並等於1/(1 + x),若x \sum_^\infty (-1)^ k!.

新!!: 萊昂哈德·歐拉和1 − 1 + 2 − 6 + 24 − 120 + ⋯ · 查看更多 »

1 − 2 + 3 − 4 + …

在数学中,1 − 2 + 3 − 4 + …表示以由小到大的接续正整數,依次加後又減、減後又加,如此反复所構成的無窮級數。它是交錯級數,若以Σ符号表示前m项之和,可写作: 此无穷级数发散,即其部分和的序列不会趋近于任一有穷极限。也就是說,單從極限的角度看的話,不存在和。不过,在18世纪中期,莱昂哈德·欧拉写出了一个他承认为悖论的等式: 该等式的严谨解释在很久以后才出现。自1890年起,恩纳斯托·切萨罗、埃米尔·博雷尔与其他一些数学家就在研究有哪些定义良好的方法,可以给发散级数賦予广义和「广义和」是指利用一些特殊的方式,計算--发散级数的「和」,由於发散级数不會有一般定義下的和,因此稱為广义和。——其中包含了对欧拉结果的新解释。这些求和法大部分可简单地指定的“和”為1⁄4。切萨罗求和是少数几种不能计算出之和的方法,因为此级数求和需要某个略强的方法——譬如阿贝耳求和。 级数与格蘭迪級數有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了他在巴塞尔问题上所做的工作,同时也引出了我们现在所知的狄利克雷η函数和黎曼ζ函数。.

新!!: 萊昂哈德·歐拉和1 − 2 + 3 − 4 + … · 查看更多 »

1 − 2 + 4 − 8 + …

在數學中,1 − 2 + 4 − 8 + …是一個无穷级数,它的每一项都是2的幂而加減號則是交錯地排列。作为几何级数, 它以 1 为首项,-2为公比。 作为实数级数,它发散到无穷,所以在一般意义下它的和不存在。在更广泛的意义下,这一级数有一個廣義的和為⅓。.

新!!: 萊昂哈德·歐拉和1 − 2 + 4 − 8 + … · 查看更多 »

10

10(十)是9与11之间的自然数。.

新!!: 萊昂哈德·歐拉和10 · 查看更多 »

1707年

没有描述。

新!!: 萊昂哈德·歐拉和1707年 · 查看更多 »

1736年

没有描述。

新!!: 萊昂哈德·歐拉和1736年 · 查看更多 »

1783年

没有描述。

新!!: 萊昂哈德·歐拉和1783年 · 查看更多 »

18世纪

1701年1月1日至1800年12月31日的这一段期间被称为18世纪。這個世紀注重的是“穩定”與“和諧”,卻也是人們對自然探索的萌芽期。民主思潮逐渐燃起,美国独立战争和法国大革命影响深远。 政治上,歐洲各國開始與中國、印度和土耳其進行小規模的通商貿易,並持續在東南亞與大洋州建立殖民據點。此時多數的君主制國家(如大清帝国、蒙兀兒帝國、法蘭西帝國、奥斯曼帝国、奧地利帝國、俄羅斯帝國)正處於全盛時期,但民主思潮卻逐漸燃起,並以美國獨立戰爭和法國大革命影響最深。 學術上,在西歐興起的啟蒙運動開始挑戰基督教教會的思想體系,使科學的成果感染到社會的各個層面,而歐洲以外的地區也透過傳教與貿易的方式接觸這思潮,進而產生小規模的學術復興運動。 另外,由於商業上的需要,部分技術孕育而生,成為工業革命之濫觴。而在技術外,生產與管理方式在西歐逐漸發生改變:傳統世襲的學徒制逐漸被破壞,分工與工廠生產方式開始抬頭。 藝術與文化上,追尋希臘與古羅馬風格的新古典主義盛行西方世界,並影響印度與中國的宮廷藝術。但同樣的,中國和大洋洲的文化物品流入歐洲,使西方世界的上流社會吹起十分表面的異國風。.

新!!: 萊昂哈德·歐拉和18世纪 · 查看更多 »

2010–11年歐霸盃外圍賽及附加賽圈

2010–11年歐霸盃外圍賽及附加賽圈包括三圈賽事。外圍賽第一圈在2010年7月1日進行首回合比賽,次回合比賽於7月8日進行;外圍賽第二圈在2010年7月15日進行首回合比賽,次回合比賽於7月22日進行;外圍賽第三圈在2010年7月29日進行首回合比賽,次回合比賽於8月5日進行。.

新!!: 萊昂哈德·歐拉和2010–11年歐霸盃外圍賽及附加賽圈 · 查看更多 »

2147483647

2,147,483,647(二十一亿四千七百四十八万三千六百四十七)是2147483646與2147483648之間的自然數。它等于2^ - 1。它是第8个梅森素数,也是4個已知的双重梅森素数的其中一個。 欧拉在1772年用试除法判定这个数是梅森素数。从1772年至1867年期间这个数是已知的最大素数。 这个数表示为二进制为1111111111111111111111111111111(即31個1),是32位元操作系统中最大的符号型整型常量。在32位Windows和其它系统中,最大的十进制数就是为2147483647;Pascal語言中长整型的範圍是-2147483648~2147483647。.

新!!: 萊昂哈德·歐拉和2147483647 · 查看更多 »

4月15日

4月15日是阳历年的第105天(闰年是106天),离一年的结束还有260天。.

新!!: 萊昂哈德·歐拉和4月15日 · 查看更多 »

65537

65537是一個在65536和65538之間的自然數。.

新!!: 萊昂哈德·歐拉和65537 · 查看更多 »

9月18日

9月18日是阳历年的第261天(闰年是262天),离一年的结束还有104天。.

新!!: 萊昂哈德·歐拉和9月18日 · 查看更多 »

重定向到这里:

Leonhard Euler伦哈德·欧拉尤拉李安納·歐拉李昂哈德·尤拉李昂哈德·歐拉欧拉欧拉,L.歐拉萊昂哈德·尤拉莱奥哈尔德·欧拉莱昂哈德·欧拉

传出传入
嘿!我们在Facebook上吧! »