徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

芳香环

指数 芳香环

芳香环是一类有机芳香化合物。 芳香环拥有共轭的平面环体系,原子间成键并不是不连续的单双键交替,而是被离域π电子云覆盖。典型的芳香环化合物是苯和吲哚。.

70 关系: 加氧酶偶氮化物反芳香性取代反应吡唑吲哚多巴胺多環芳香烴多氯聯苯两亲分子三氯氧磷亲电加成反应亲电芳香取代二碘苯丙酮酸还原酶伯奇还原反应化学反应方程式列表化学式喹啉呋喃傅-克反应儿茶素冈伯格-巴赫曼反应共轭体系噁唑噻唑硝化反应磺胺类药物科尔贝-施密特反应竹醋液简化分子线性输入规范维蒂希反应烃基發色團芳基芳基醇脱氢酶芳香烃芳香族亲核取代反应芳香性螺烯轴手性邻氨基苯甲酸脱卤反应脂肪族化合物自由基取代反應里宾斯基五规则配合物配位聚合物...酮-烯醇互变异构苯丙氨酸苯并呋喃苯并咪唑苯并环丁烯苯甲醚苯甲酸離域電子Hoesch反应极性转换杂环化合物核磁共振氢谱氢键氧化还原反应氯化锌有机场效应晶体管流化催化裂化方酸拜耳张力学说 扩展索引 (20 更多) »

加氧酶

加氧酶(Oxygenase),EC号为1.13或1.14,是使一个或多个氧分子中的氧原子与底物相结合的氧化酶的总称。反应常伴随着芳香环的开裂,大多需要消耗NADH或者NADPH。.

新!!: 芳香环和加氧酶 · 查看更多 »

偶氮化物

偶氮化合物是一类含氮有机化合物,通式为R-N.

新!!: 芳香环和偶氮化物 · 查看更多 »

反芳香性

反芳香性是一種化學性質,反芳香化合物有4n个π電子而又具近似平面结构的環狀化合物,如环丁二烯。 反芳香化合物比环状多烯不稳定。.

新!!: 芳香环和反芳香性 · 查看更多 »

取代反应

取代反應(Substitution reaction)是一種重要的有機化學反應,其定義是分子中的一個原子或原子團被其他原子或原子團取代。而取代反應主要依照反應中所使用的試劑分為親核取代反應與親電取代反應兩大類,但也有不屬於前面兩種類型的取代反應,將會在下文提及。 有機的取代反應會依以下的特點,被歸類到若干個有機取代反應類別中:.

新!!: 芳香环和取代反应 · 查看更多 »

吡唑

吡唑既可以用来指一类简单的芳香杂环有机化合物,它们都是含有五元环,包括三个碳原子和相邻的两个氮原子,也可以用来指这一类化合物的母体,即没有任何取代基。尽管在自然界中很难发现吡唑,但是因为它在制药工业上的意义重大,所以它也被归为生物碱。.

新!!: 芳香环和吡唑 · 查看更多 »

吲哚

吲哚是芳香杂环有机化合物,為双环结构,包含了一个六元苯环和一个五元含氮的吡咯环。因为氮的孤对电子参与形成芳香环,所以吲哚不是碱,性质也不同于简单的胺。 在室温,吲哚是固体。自然情况下,吲哚存在于人类的粪便之中,并且有强烈的粪臭味。然而,在很低的浓度下,吲哚具有类似于花的香味http://www.leffingwell.com/olfact5.htm,是许多花香的组成部分 ,例如橘子花,吲哚也用来制造香水,煤焦油也會有吲哚。 在很多有机化合物中能发现吲哚结构,比如色氨酸及含色氨酸的蛋白质,生物碱及色素中也包含有吲哚结构。 吲哚能发生亲电取代反应,多取代于3号位。取代吲哚是许多色胺碱的基础结构,比如神经传递素复合胺,褪黑素,迷幻药,二甲基色胺,5-甲氧基-二甲基色胺和LSD。其他的吲哚化合物包括植物生长素(吲哚-3-乙酸),抗炎药物消炎痛(茚甲新)和血管舒张药物心得乐。 吲哚的名称indole是由indigo(靛藍)和oleum(发烟硫酸)所组成,因为吲哚首次制得是通过混合靛蓝和发烟硫酸。.

新!!: 芳香环和吲哚 · 查看更多 »

多巴胺

多巴胺(英語:dopamine,擷取自3,4-dihydroxyphenethylamine);化学式:C6H3(OH)2-CH2-CH2-NH2)是一种脑内分泌物,属于神经递质,可影响一个人的情绪。 它正式的化学名称为4-(2-乙胺基)苯-1,2-二酚,简称「DA」。阿尔维德·卡尔森确定多巴胺为脑内信息传递者的角色,这使他赢得了2000年诺贝尔医学奖。 多巴胺是兒茶酚胺和苯乙胺家族中一種在腦和身體中扮演幾個重要作用的有機化學物。其名稱來自其化學結構: 它是一個胺由其前體一個分子左旋多巴除去羧基合成,其發生在人腦細胞和腎上腺細胞中。在大腦中多巴胺作為神經遞質,通過神經元釋放一種化學物將信號發送到其它神經細胞。大腦包括幾個不同的多巴胺途徑,其中一個起著獎勵–激勵行為的主要作用。大多數類型的獎勵增加多巴胺在腦中的濃度,大部分成癮藥物增加多巴胺神經元活動。其他的腦多巴胺用來參與運動控制和控制各種激素的釋放。 神經系統以外,在身體的幾個部分多巴胺作為局部化學信使的功能。在血管中它抑制去甲腎上腺素的釋放,並作為血管擴張劑(在正常濃度下);在腎臟中它增加鈉和尿的排泄;在胰臟中它減少胰島素生產;在消化系統中它減少胃腸蠕動和保護腸粘膜;並在免疫系統中它減少淋巴細胞的活性。血管除外,多巴胺在這些外圍系統局部合成,在鄰近該釋放它的細胞旁發揮其作用。 幾個重要的神經系統疾病與多巴胺系統的功能障礙有關,而使用一些改變多巴胺作用的關鍵藥物來治療他們。帕金森氏病一種退行性狀況引起身體震顫和運動障礙,是通過中腦中稱為黑質區的分泌神經元分泌多巴胺不足所引起。其代謝前體L-DOPA可以工業製造,其純銷售形式為左旋多巴是最廣泛使用的治療方法。有證據表明精神分裂症涉及多巴胺活性水平的改變,大多數經常使用的抗精神病藥物具有降低多巴胺活動的主要效果。類似多巴胺拮抗劑藥物,也有一些是最有效抗噁心藥物。不寧腿綜合徵與注意力不足過動症與多巴胺活性降低有關。高劑量多巴胺興奮劑可以上癮,但也有一些使用較低劑量治療過動症。多巴胺本身可製造成靜脈注射的藥物:雖然不能從血液到達腦部,其週邊作用使其對心臟衰竭或休克的治療是有用的,尤其是對新生嬰兒。 File:Dopamine 3D ball.png|多巴胺 File:TAAR1 Dopamine.svg| File:Synapse dopaminergique.png|多巴胺在神經突觸處.

新!!: 芳香环和多巴胺 · 查看更多 »

多環芳香烴

多環芳香烴(Polycyclic Aromatic Hydrocarbons,簡稱PAH或PAHs)又稱多環性芳香化合物或多環芳香族碳氫化合物,其化學結構式超過100多種。是芳香族碳氫化合物的一種特例。由不包含雜環或取代基的芳香環所組成。其中有很多是已知或潛在的致癌物質。最简单的这种化学品是萘,具有两个芳环,以及三环化合物蒽和菲。 多環芳香烴是中性的,在煤和焦油沉积物中发现的非极性分子。它们也通过有机物质的不完全燃烧产生(例如在发动机和焚化炉中,当森林火灾中的生物质燃烧时等)。例如,由含碳燃料例如木柴、木碳、油脂和煙草的不完全燃燒所產生。也存在於烤焦的肉類中。 三環以上的多環性芳香化合物在水中具有低溶解度和低蒸汽壓,當分子量上升,溶解度和蒸汽壓皆下降。而二環的多環性芳香化合物則具有較低的溶解度和蒸汽壓。因此多環性芳香化合物在環境中較常發現於土壤與沉澱物中而非水及空氣中。然而,多環性芳香化合物常在空氣中的懸浮微粒上發現。 不少多環性芳香化合物已被界定為致癌物。臨床實驗報告指出:若長期接觸高濃度多環性芳香化合物的混合物,會引起皮膚癌、肺癌、胃癌及肝癌等疾病。多環性芳香化合物可破壞體內的遺傳物質,引發癌細胞增長,增加癌症的發病率。 當分子量增加,多環性芳香化合物的致癌性也增加,而其急毒性則下降。一種多環性芳香化合物,苯并''a''芘(Benzopyrene)是第一個被發現的化學致癌物質。 木馏油(creosote,又名雜酚油)裡面含有這項物質。含有木馏油的著名藥品正露丸在1999年起被日本的一些醫師質疑其致癌性,主張應廢除該項藥劑。 Image:Anthracene.svg | 蒽 Image:Phenanthrene.svg | 菲 Image:Naftacene.svg | 并四苯 Image:Chrysene.svg | 䓛 Image:Triphenylene.svg | 三亚苯 Image:Pyrene.svg | 芘 Image:Pentacene.svg | 并五苯 Image:Benzo-a-pyrene.svg | 苯並[a]芘 Image:Corannulene.svg | 碗烯 Image:Benzo(ghi)perilene.png | 苯並(GHI)苝 Image:Coronene.svg | 暈苯 Image:Ovalene.svg | 卵苯.

新!!: 芳香环和多環芳香烴 · 查看更多 »

多氯聯苯

多氯聯苯(polychlorinated biphenyl,簡稱PCB,CAS號),又稱多氯聯二苯或二聯酚,是許多含氯數不同的聯苯含氯化合物的統稱。在多氯聯苯中,部份苯環上的氫原子被氯原子置換,一般式為C12H(10-n)Cln(1≦n≦10)。依氯原子的個數及位置不同,多氯聯苯共有209種異构体存在,與1,4-戴奧辛 (二噁英,Dioxin)同屬 (Polyhalogenated compounds,PHCs),或稱類戴奧辛物質 (Dioxins and dioxin-like compounds)。.

新!!: 芳香环和多氯聯苯 · 查看更多 »

夢是一種主體經驗,是人在某些阶段的睡眠時產生的想像中的影像、聲音、思考或感覺,通常是非自願的。人们尚未真正理解梦的内容、机制和作用,但是自从史前时期开始,梦就是哲学和宗教感兴趣的话题,也产生了许多有关的科学猜想。研究夢的科學學科稱作。除了人以外,很多人也相信作夢也會發生在其他動物身上。動物已經確定會有快速动眼睡眠,然而他們的主體經驗卻難以確定,但有些家畜會有夢遊的現象,因而牠們會做夢並不奇怪。 做夢主要发生在快速動眼睡眠期间,那是發生在睡眠後期的一種淺睡狀態,其特色為快速的眼球水平運動、橋腦的刺激、呼吸與心跳速度加快、以及暫時性的肢體麻痺。夢也有可能發生在其他中,不過這時的夢並不真切也難以記憶。Hobson, J.A. (2009) REM sleep and dreaming: towards a theory of protoconsciousness, Nature Reviews, 10(11) 絕大部分的科學家相信所有人類都會做夢,並且在每次睡眠中都會有相同的頻率。因此,如果一個人覺得他們沒有做夢或者一個夜晚中只做了一個夢,這是因為他們關於那些夢的記憶已經消失了。這種「記憶抹除」的情況通常發生在一個人是自然緩和地從快速动眼睡眠階段經過慢波睡眠期而進入清醒狀態。如果一個人直接從快速動眼睡眠期中被叫醒的話(比如說被鬧鐘叫醒),他們就比較可能會記得那段快速动眼期所作的夢境(不過並非所有發生在快速眼动期的夢都會被記得,因為每個快速眼动期之間會插入慢波睡眠期,而那會導致前一個夢的記憶消失)。 梦的长度长短不一,可能只有几秒钟,也可能长达20-30分钟。在REM睡眠期间被唤醒的人更容易记得他们的梦。人类平均每晚有3-5个梦,有的人会高达20个。然而,大部分的梦都会立即或者在短时间内被遗忘掉。随着睡眠进入后半夜,梦会变得更长一些。在一个夜晚8小时的完整睡眠中,大部分的夢发生在通常为2小时的REM睡眠中。 在现代,梦被认为是与潜意识沟通的管道。梦的内容可能非常普通、正常,也可能极度超现实主义风格。梦可以有各种不同的主题,包括恐惧、兴奋、魔法、抑郁、冒险,或者是性。梦中发生的事件并不受做梦者的控制,除非是处于清明梦中,做梦者会拥有自我意识。有时候,梦会让人产生创造力,或者给予人灵感。最著名的故事之一是德國化學家凱库勒宣稱夢見一條銜尾蛇,而悟出苯環的分子結構。但他的說法遭到質疑。 在不同的文化和不同的时代,人们对梦的含义有各种不同的看法。目前获得的最早关于梦的记录材料,是大约5000年前美索不达米亚的一块粘土板。在古希腊和古罗马时代,人们相信梦是来自亡者的占卜信息,可以预言未来。有一些文化会进行仪式,希望能够产生有预言能力的梦。 西格蒙德·弗洛伊德创立了精神分析学,在1900年代早期的许多著作中阐述了梦的理论和解释。他将梦解释为人们深处的欲望和焦虑的表现,通常会和被压抑的童年记忆或者欲望有关。在《梦的解析》(1899)中,弗洛伊德发展了一套解释梦的心理技术,设计了许多规则来解释梦中出现的符号和主题。.

新!!: 芳香环和夢 · 查看更多 »

两亲分子

两亲分子(amphiphile)是一个描述一类同时具有亲水性以及亲脂性这两种性质的化合物的术语。这类物质被称为是“两亲性”的。这成为了众多化学与生物化学研究领域的理论基石,尤其是脂多型性。.

新!!: 芳香环和两亲分子 · 查看更多 »

三氯氧磷

三氯氧磷(分子式:POCl3),也称作磷酰氯,室温下为无色液体。它在潮湿空气中发烟,水解为磷酸及具刺激性的盐酸液滴。工业上由三氯化磷与氧气或五氧化二磷反应制备,主要用作生产磷酸酯如磷酸三甲苯酯。.

新!!: 芳香环和三氯氧磷 · 查看更多 »

亲电加成反应

亲电加成反应(EA),简称亲电加成,是亲电试剂(带正电的基团)进攻不饱和键引起的加成反应。反应中,不饱和键(双键或三键)打开,并与另一个底物形成两个新的σ键。亲电加成中最常见的不饱和化合物是烯烃和炔烃,以最简单的烯烃——乙烯为例,它与亲电试剂发生的加成反应可以通过下式来描述: 亲电加成有多种机理,包括:碳正离子机理、离子对机理、环鎓离子机理以及三中心过渡态机理。这些机理对过渡态的处理都有不同。除最后一种外,其他机理可通过下图依此表示: 反应采取哪种机理进行与亲电试剂和不饱和化合物的性质、溶剂的极性和过渡态的稳定性等都有很大关系,一般来说,卤素加成反应中,溴与烯烃的加成反应主要按照环鎓离子中间体机理进行,而氯与烯烃的加成反应主要按照前两种机理进行。这主要是因为两种卤素原子电负性和原子半径不同,溴的孤电子对容易和碳正离子p轨道重叠,而氯则不然。 不同的机理也会产生立体选择性不同的产物。碳正离子机理得到顺式加成和反式加成产物的混合物,离子对机理得到的是顺式加成产物,而环鎓离子机理得到反式加成产物。 对于不对称的亲电加成反应来讲,反应一般符合马氏规则,产物具有区域选择性。但双键碳上连有吸电子基或以有机硼化合物作亲电试剂时,产物是反马氏规则的,例如烯烃与乙硼烷生成烷基硼的反应。 主要的亲电加成反应类型,对于烯烃,主要有:卤素加成反应、加卤化氢反应、水合反应、氢化反应、羟汞化反应、硼氢化-氧化反应、Prins反应,以及与硫酸、次卤酸、有机酸、醇和酚的加成反应;对于炔烃,主要有:卤素加成反应、加卤化氢反应和水合反应。由于sp碳原子的电负性比sp2碳原子电负性强,与电子结合得更为紧密,故炔烃的亲电加成反应一般比烯烃要慢。 亲电试剂进攻芳香环时,主要发生的不是亲电加成反应,而是亲电芳香取代反应。其他的加成反应主要机理还有亲核加成反应、自由基加成反应和环加成反应。.

新!!: 芳香环和亲电加成反应 · 查看更多 »

亲电芳香取代

亲电芳香取代反应是指芳香环系上的取代基(通常是氢原子)被亲电试剂取代的反应。该反应中最重要的类型包括芳香环系的硝化反应、卤代反应、磺化反应以及傅-克反应。.

新!!: 芳香环和亲电芳香取代 · 查看更多 »

二碘苯丙酮酸还原酶

二碘苯丙酮酸还原酶(diiodophenylpyruvate reductase,EC ),是一种以NAD+或NADP+为受体、作用于供体CH-OH基团上的氧化还原酶。这种酶能催化以下酶促反应: 二碘苯丙酮酸还原酶分子等电点为5.4,由两个相同的蛋白质亚基组成(亚基相对分子质量约为40,000D),人类二碘苯丙酮酸还原酶亚基由12号染色体上的基因编码,可能与乳酸脱氢酶B有近缘关系。这种酶的底物还可以是其他含有以丙酮酸支链作为取代基的芳环,其中卤代类衍生物作为底物具有较高活性。底物的活性从大到小按顺序排列为:草酰乙酸、3,5-二碘-4-羟苯基丙酮酸、吲哚丙酮酸、苯丙酮酸,而乙醛酸、丙酮酸、羟基丙酮酸以及在芳环3位或5位上有羟基或氨基的底物则仅具有极低活性或不具活性。.

新!!: 芳香环和二碘苯丙酮酸还原酶 · 查看更多 »

伯奇还原反应

伯奇还原反应(Birch还原)是指用钠和醇在液氨中将芳香环还原成1,4-环己二烯的有机还原反应。此反应最早由澳大利亚化学家Arthur John Birch (1915–1995)在1944年发表。 Birch还原的重要性在于:尽管剩下的双键(非芳香性)更为活泼,该反应却能停留在环己双烯上,而不继续还原。 反应中的钠也可以用锂或钾取代,使用的醇通常是甲醇或叔丁醇。 使用Birch还原的一个例子是还原萘: 其他人也发表了很多篇关于此反应的综述。.

新!!: 芳香环和伯奇还原反应 · 查看更多 »

化学反应方程式列表

化學反應方程式列表中,記錄著各種化学反應方程式。它按照元素分類,從A開頭的元素到Z開頭的元素,最後是有機物,按官能团分类。關於離子方程式请令見離子方程式列表。 本列表的收錄標準:收錄常見化學方程式(類似的將歸納進離子方程式列表)當方程式紀錄到一定數量的时候,便会建立分頁面。找不到出處的化學方程式不會被紀錄。.

新!!: 芳香环和化学反应方程式列表 · 查看更多 »

化学式

化學式(chemische Formel/chemical formula),是一種用來表示化學物質(也可能為元素或化合物)組成的式子。 一般情況下,由元素符號、數字或其他符號組成;這些符號單一行列,被限制在一個排版,並會出現上標和下標。 下為常用符號:.

新!!: 芳香环和化学式 · 查看更多 »

喹啉

喹啉,也叫做苯并吡啶、氮杂萘,是一个杂环芳香性有机化合物。喹啉是一个具有强烈臭味的无色吸湿性液体,分子式是C9H7N。 将喹啉暴露在光下,会慢慢变成淡黄色,进一步变成棕色。喹啉微溶于水,但是易溶于很多有机溶剂。 喹啉是冶金、染料、聚合物以及农用化学品工业的重要中间体。它也可以用作消毒剂、防腐剂以及溶剂。 喹啉是有毒性的,短时间暴露在喹啉蒸汽中会导致鼻子、眼睛和呼吸道被腐蚀,也可能导致头昏和恶心。长时间暴露的影响还不确定,不过喹啉与肝损伤有一定的关系。.

新!!: 芳香环和喹啉 · 查看更多 »

呋喃

呋喃(furan)是一种含有一个由四个碳原子和一个氧原子的五元芳环的杂环有机物。含有呋喃环的化合物即為呋喃的同系物。呋喃是一种无色、可燃、易挥发液体,沸点接近于室温。呋喃具有毒性且為2B類可能致癌物質。它常作为合成其他复杂有机物的起始原料。呋喃性质与苯相似,可由松木蒸馏得到,可溶於多種常見的有機溶劑,包括丙酮、醇、醚,微溶於水。為多种重要的工業化學品與藥物的前驅體,如常被作為溶劑使用的四氢呋喃。.

新!!: 芳香环和呋喃 · 查看更多 »

傅-克反应

傅里德-克拉夫茨反应,简称傅-克反应,是一类芳香族亲电取代反应,1877年由法国化学家查尔斯·弗里德爾(Charles Friedel)和美国化学家詹姆斯·克拉夫茨(James Mason Crafts)共同发现。该反应主要分为两类:烷基化反应和酰基化反应。 相关的综述文献如下:.

新!!: 芳香环和傅-克反应 · 查看更多 »

儿茶素

儿茶素(英文:Catechin),又称茶单宁,儿茶酚,是茶叶中黄烷醇类(黃烷-3-醇)物质的总称,儿茶素是茶多酚中最重要的一种,约占茶多酚含量的75%到80%,也是茶的苦涩味的来源之一。 儿茶素主要分为四种:表儿茶素(Epicatechin EC)、表没食子儿茶素(Epigallocatechin EGC)、表儿茶素没食子酸酯(Epicatechin gallate ECG)和表没食子儿茶素没食子酸酯(Epigallocatechin gallate EGCG)。 兒茶素是黃烷-3-醇,一種天然苯酚和抗氧化劑。它是一種植物次生代謝產物。它屬於基團黃烷-3-醇類(黃烷醇),黃酮類化合物化學家族的一部分。兒茶素化學家族的名字從兒茶取得,這是含羞草屬兒茶或金合歡兒茶的汁或水煮提取物。 而人體常見的激素兒茶酚胺(Catecholamines)是具有兒茶酚核的(苯乙)胺類化合物的統稱,是由腎上腺產生的一類應激擬交感「鬥或逃」(Fight or Flight)激素。最重要的兒茶酚胺是腎上腺素(Epinephrine)、去甲腎上腺素(正腎上腺素)和多巴胺(Dopamine),均是從苯丙氨酸和酪氨酸合成。不少精神興奮劑也是兒茶酚胺的類似物。.

新!!: 芳香环和儿茶素 · 查看更多 »

冈伯格-巴赫曼反应

Gomberg–Bachmann反应(又称冈伯格-巴克曼反应、冈伯格-巴赫曼反应、Gomberg芳基偶联反应等)以乌克兰裔美国化学家摩西·冈伯格(Moses Gomberg)和美国化学家沃纳·以马利·巴赫曼(Werner Emmanuel Bachmann)的名字命名,是指重氮盐的酸性溶液用氢氧化钠或乙酸钠的水溶液处理时,发生芳基的偶联反应,生成联芳烃的衍生物的反应。例如,对溴苯胺与苯偶联,得到对溴联苯。 这个反应能应用于各种类型的芳香环,包括二茂铁 和醌类。由于重氮盐能发生许多副反应,因此反应产率一般不高,通常低于 40%。 Gomberg–Bachmann 反应的分子内版本为 Pschorr反应(下图)。 其中 Z 基一般是 CH2;CH2CH2;NH;CO,产物为芴、芴酮和咔唑类化合物。.

新!!: 芳香环和冈伯格-巴赫曼反应 · 查看更多 »

共轭体系

在化學當中,共軛體系是指具有单键-双键交替结构的体系,其中双键的p軌域通过电子离域相互连接,这通常會降低分子的總能量并增加其穩定性。这里的共軛是指由一个σ鍵相隔的p軌域之间发生轨道重疊(如果是大的原子,也可能涉及d軌域) 孤對電子,自由基或碳正離子都可能是此系統的一部分。這些化合物可能是環狀,非環狀,線狀或雜和狀。 一個共軛體系會有一個p軌域重疊,連接其中間的單鍵。它可以讓π電子游離通過所有相鄰對齊的p軌域。此π電子不屬於單鍵或原子,但是屬於一組的原子。 最大的共軛體系是在石墨烯、石墨、導電聚合物和奈米碳管中被發現的。 共轭体系在单键、双键相互交替(以及其他类型)的共轭体系中,由于分子中原子间特殊的相互影响,使分子更加稳定,内能更小键长趋于平均化的效应。 如苯分子中由于相邻的π键电子轨道的交迭而形成共轭,使其六个碳-碳键的键长均为1.39埃。这是分子在没有外界影响下表现的内在性质。.

新!!: 芳香环和共轭体系 · 查看更多 »

噁唑

噁唑(Oxazole)是一大类有机杂环化合物的母体,含有一个氧杂原子和一个氮杂原子。.

新!!: 芳香环和噁唑 · 查看更多 »

噻唑

噻唑(),或1,3-噻唑(),是一个浅黄色可燃液体,气味与嘧啶类似,化学式为。它包含一个五元环,其中两个顶点分别是氮原子和硫原子,另外三个是碳原子。 噻唑被用来制备生物杀灭剂,杀真菌剂,药品和染料。.

新!!: 芳香环和噻唑 · 查看更多 »

硝化反应

硝化是向有机化合物分子中引入硝基(-NO2)的过程,硝基就是硝酸失去一个羟基形成的一价的基团。芳香族化合物硝化的反應机理為:硝酸的-OH基被質子化,接著被脫水劑脫去一分子的水形成硝酰正离子(nitronium ion,NO2+)中間體,最後和苯環行親電芳香取代反應,並脫去一分子的氫離子。 在此種的硝化反應中芳香環的電子密度會決定硝化的反應速率,當芳香環的電子密度越高,反應速率就越快。由於硝基本身為一個親電體,所以當進行一次硝化之後往往會因為芳香環電子密度下降而抑制第二次以後的硝化反應。必須要在更劇烈的反應條件(例如:高溫)或是更強的硝化劑下進行。 常用的硝化剂主要有浓硝酸、发烟硝酸、浓硝酸和浓硫酸的混酸或是脫水劑配合硝化劑。 有机化合物经硝化后颜色会加重,如果引入多个硝基,其氧化功能会非常强,因此成为爆炸性物质。如黄色炸药TNT就是甲苯经硝化生成的三硝基甲苯;苯经硝化制得产品为硝基苯,是制造染料的原料;甲烷经气相硝化得到硝基甲烷,是一种火箭燃料;纤维经硝化形成一种透明塑料-赛璐珞,最早用来制造电影胶片,后来因为极其易燃,经常引起电影院火灾,已经被淘汰。.

新!!: 芳香环和硝化反应 · 查看更多 »

磺胺类药物

胺类药(Sulfonamides)是一类具有对氨基苯磺酰胺结构药物的总称,有广谱抗菌性。对革兰阳性和革兰阴性菌均有良好的抗菌活性。.

新!!: 芳香环和磺胺类药物 · 查看更多 »

科尔贝-施密特反应

科尔贝-施密特反应(Kolbe-Schmitt反应)是干燥的酚钠或酚钾与二氧化碳在加温(125-150°C)加压(100atm)下生成羟基苯甲酸的反应。 它是向芳环上引入羧基的一种常用方法,常用的工业原料水杨酸(邻羟基苯甲酸)就是利用此法,通过苯酚盐与二氧化碳作用制得的。反应以德国化学家阿道夫·威廉·赫尔曼·科尔贝和鲁道夫·施密特命名。 羧基的位置很大程度上取决于反应温度和酚盐的种类。酚钾和温度较高时有利于对位异构体的生成,為熱力學產物;酚钠及反应温度较低时利于产生邻位产物,為動力學產物。邻位异构体加热可以异构为对位产物。 对于取代的酚,环上烷基、甲氧基、羟基和氨基使反应容易进行,产率增加;吸电子的氰基、硝基和羧基使反应速率减慢,反应条件变得苛刻,产率也较低。磺酸基的存在使反应不能发生。.

新!!: 芳香环和科尔贝-施密特反应 · 查看更多 »

竹醋液

竹醋液,也稱竹酢液,是竹炭燒製過程的副產物。將竹炭燒製過程產生的黑煙收集起來、冷凝後即得「粗竹醋液」,再經靜置、蒸餾等過程製成的竹醋液,成分中有 40-60%的有機成分。精製過後的竹醋液可用於農業用途,也可製成家用的清潔用品。在台灣農委會2007年公布的「CAS標章台灣優良林產品一般用途竹醋液認定評審標準、品質規格標準及標示規定」中,是依竹醋液的pH值、比重和醋酸含量百分比等條件進行評定,且外包裝上需標示「且不可食用」的警語。.

新!!: 芳香环和竹醋液 · 查看更多 »

简化分子线性输入规范

化分子线性输入规范(Simplified molecular input line entry specification,簡稱SMILES),是一种用ASCII字符串明确描述分子结构的规范。SMILES由Arthur Weininger和David Weininger于20世纪80年代晚期开发,并由其他人,尤其是日光化学信息系统有限公司(Daylight Chemical Information Systems Inc.),修改和扩展。 由于SMILES用一串字符来描述一个三维化学结构,它必然要将化学结构转化成一个生成树,此系统采用纵向优先遍历树算法。转化时,先要去掉氢,还要把环打开。表示时,被拆掉的键端的原子要用数字标记,支链写在小括号里。 SMILES字符串可以被大多数分子编辑软件导入并转换成二维图形或分子的三维模型。转换成二维图形可以使用Helson的“结构图生成算法”(Structure Diagram Generation algorithms)。.

新!!: 芳香环和简化分子线性输入规范 · 查看更多 »

维蒂希反应

维蒂希反应(Wittig反应)是醛或酮与三苯基磷鎓內鹽(维蒂希试剂)作用生成烯烃和三苯基氧膦的一类有机化学反应,以发明人德国化学家格奥尔格·维蒂希的姓氏命名。 格奥尔格·维蒂希在1954年发现该反应,并因此获得1979年诺贝尔化学奖。 维蒂希反应在烯烃合成中有十分重要的地位。 维蒂希反应的反应物一般是醛/酮和单取代的磷鎓內鹽。使用活泼叶立德时所得产物一般都是Z型的,或Z/E异构体比例相当;而使用比较稳定的叶立德时,或在Schlosser改进的条件下,产物则以E型为主。.

新!!: 芳香环和维蒂希反应 · 查看更多 »

烃基

基在化学中被用来指只含碳、氢两种原子的官能团,可以看作是相应的烃失去一个或多个氢原子(H)后剩下的自由基。.

新!!: 芳香环和烃基 · 查看更多 »

發色團

簡單來說發色團是分子中與顏色有關的部分。 當分子吸收某特定可见光的波長射出或反射其他波長的光時會產生顏色。而發色團是指在分子中的某個兩個分子軌域的能量差落在可見光譜的範圍上的區域。因此當可見光的能量傳遞給發色團時則其中的電子會因吸收能量而從基態躍升為激發態.

新!!: 芳香环和發色團 · 查看更多 »

芳基

在有机化学中,芳基指任何从简单芳香环衍生出的官能团或取代基。虽然更特殊的名称如苯基,被用来描述未被取代的芳基,但出于概括和简练的原因芳基仍然被使用。 最简单的芳基是苯基(Phenyl),由苯衍生而来。 Category:取代基 ru:Арил.

新!!: 芳香环和芳基 · 查看更多 »

芳基醇脱氢酶

芳基醇脱氢酶(aryl-alcohol dehydrogenase,EC ),是一种以NAD+或NADP+为受体、作用于供体CH-OH基团上的氧化还原酶。这种酶能催化以下酶促反应: 芳基醇脱氢酶是一类特异性较弱的酶,能广泛作用于含有芳环或1-环己烯环的伯醇,但对短链脂肪醇仅具有极低反应活性或不具活性。芳基醇脱氢酶以苯甲醇为底物时酶促反应的米氏常数Km为220μM。芳基醇脱氢酶芳基醇脱氢酶主要参与5种代谢途径,包括:酪氨酸的代谢过程、苯丙氨酸的代谢过程、联苯的降解过程、甲苯和二甲苯的降解过程以及己内酰胺的降解过程。.

新!!: 芳香环和芳基醇脱氢酶 · 查看更多 »

芳香烃

芳香烃(aromatic hydrocarbons,简称芳烃)為苯及其衍生物的總稱,乃指分子结构中含有一个或者多个苯环的烃类化合物。名稱來源由於有機化學發展初期,這一類化合物幾乎都在揮發性、有香味的物質中發現,例如:從安息香膠中取得安息香酸,自苦杏仁油取得苯甲醛等。但後來許多性質應屬芳香族的化合物,卻沒有擁有香味,因此現今芳香烴,意指的只是這些含有苯環的化合物。其中最简单和最重要的芳香烃是苯及其同系物甲苯、二甲苯、乙苯等。在芳香族中,一些芳香環中並不完全是苯的結構,而是其中的碳原子,會被氮、氧、硫等元素取代,我們稱之為雜環,例如:像是呋喃的五元環中,包括一個氧原子,吡咯中含有一個氮原子,噻吩含有一個硫原子等。 而芳烃可分为:.

新!!: 芳香环和芳香烃 · 查看更多 »

芳香族亲核取代反应

芳香族亲核取代反应(Nucleophilic Aromatic Substitution reaction,SNAr)是親核取代反應的一类,發生在芳香環上。當中一個親核體取代了一個好的離去基团,例如在芳香環上的鹵代烃。現有六種芳香環的親核取代反應機理。.

新!!: 芳香环和芳香族亲核取代反应 · 查看更多 »

芳香性

芳香性是一種化學性質,有芳香性的分子中,由不饱和键、孤对电子和空轨道组成的共軛系統具有特別的、仅考虑共轭时无法解释的稳定作用。可以将芳香性看作是环状离域和环共振的体现。一般认为在这些体系中的电子,可以自由在由原子组成的环形结构上运动(离域),这些环形结构含有单键和双键相间,离域的结果是环键的键级趋于均化,给予体系稳定作用。 芳香性的理論最初由凱庫勒發展出來,是以六元的苯分子为原型建立起来。理論中的苯有兩個共振形態,並有單键和双键相间,但理论上的两种苯(环己三烯)衍生物的这类异构体在实际上无法检测或分离出来,苯事实上是这两个异构体的“杂化体”,并且具有不考虑电子离域时无法解释的稳定性。.

新!!: 芳香环和芳香性 · 查看更多 »

螺烯

螺烯也称螺旋烃,是芳环(如苯环——螺苯)彼此以邻位稠合的具螺旋结构的多环芳香化合物。其最简单的代表是六螺苯,此类分子中的末端芳环不处在一个平面上,分子没有对称面、对称中心和 S4 反轴,但有扭曲面,存在一对左手和右手螺旋的光活性对映体,故具固有手性。螺烯特殊的结构造成了其的独特的光谱和光学性质。.

新!!: 芳香环和螺烯 · 查看更多 »

轴手性

轴手性是手性的一种特殊情形。一般情况下,有机分子的手性是由于手性中心而产生的,但在轴手性的情况下,分子内没有手性中心而是有一根手性轴。多个基团围绕轴排布,其排布方式使得分子无法与其镜像重合。轴手性最常见于旋转受限的不对称联芳环(如联苯)类化合物中,如 1,1'-联(2-萘酚)。 一些丙二烯类化合物也会显示出轴手性。轴手性化合物的对映异构体通常用立体化学的标记 Ra 与 Sa.

新!!: 芳香环和轴手性 · 查看更多 »

邻氨基苯甲酸

邻氨基苯甲酸又称氨茴酸、2-氨基苯甲酸,化学式:C7H7NO2,是一个氨基芳香羧酸,室温下为白色晶体粉末,用作医药、染料、香料和农药的中间体。 异构体为间氨基苯甲酸和对氨基苯甲酸。.

新!!: 芳香环和邻氨基苯甲酸 · 查看更多 »

锂(Lithium)是一种化学元素,其化学符号Li,原子序数为3,三个电子中两个分布在K层,另一个在L层。锂是碱金属中最轻的一种。锂常呈+1或0氧化态,是否有-1氧化态則尚未得到证实。但是锂和它的化合物并不像其他的碱金属那么典型,因为锂的电荷密度很大并且有稳定的氦型双电子层,使得锂容易极化其他的分子或离子,自己却不容易受到极化。这一点就影响到它和它的化合物的稳定性刘翊纶任德厚《无机化学丛书》第一卷 北京:科学出版社289-354页1984年。锂的英文名称来源于希腊文lithos,意为“石头”。其中文名则来源于“Lithos”的第一个音节发音“里”,因为是金属,在左方加上部首“钅”。.

新!!: 芳香环和锂 · 查看更多 »

脱卤反应

脱卤反应是有機反應的一種,是將卤代烷烃和鹼類一起加熱,產生對應烯類的反應。脱卤反应也稱為β-消除反應,是消除反應的一種。 在脱卤反应中,卤烷上的卤素和β-碳上的氫原子反應,形成卤化氫。而α-碳和β-碳之間的鍵結改為雙鍵,因此形成烯類。查依采夫規則可以解釋此反應的区域选择性。脱卤反应的逆反應是氫鹵化反應。.

新!!: 芳香环和脱卤反应 · 查看更多 »

脂肪族化合物

有机化学中,碳氢化合物被划分为两类:脂肪族化合物和芳香族化合物。芳香族化合物指含有苯环或其它芳香环的化合物,而脂肪族化合物则与其相对。脂肪族化合物中,碳原子以直链、支链或环状排列,分别称为直链脂肪烃、支链脂肪烃及脂环烃。脂肪族化合物可以是烷烃、烯烃或炔烃。除氢之外,其它的原子也可存在,比如氧、氮、硫和氯。 最简单的脂肪族化合物是甲烷(CH4)。 大多数脂肪族化合物都可燃,有些可作为燃料,比如本生灯中的甲烷和电焊气中的乙炔。.

新!!: 芳香环和脂肪族化合物 · 查看更多 »

自由基取代反應

自由基取代反應(Radical substitution)是有機化學中的一個取代反應類型。在這類的反應過程中,自由基扮演著反應中間體的角色。此類反應大多涉及至少兩個步驟,有些甚至可能達到三個步驟。 此類反應的第一步是藉由均裂來產生帶有未成對電子的自由基,如2式與3式般,稱為起始(initiation)。而均裂可在熱、紫外光或有机过氧化物、偶氮化合物等的幫助下發生;其中,紫外光能用於將一個雙原子分子轉為兩個自由基。在6式與7式中,自由基會在彼此重組後消失,反應也在此步驟後停止,因而稱為終止(termination)。如果自由基並未走向終止步驟,而是持續進行反應並產生新的自由基(如4或5),則這些介於起始與終止之間的步驟稱為增長(propagation)。.

新!!: 芳香环和自由基取代反應 · 查看更多 »

里宾斯基五规则

里宾斯基五规则,有时简称五规则,是辉瑞公司资深药物化学家在1997年提出的筛选类药分子的五条基本法则,符合里宾斯基五规则的化合物会有更好的药代动力学性质,在生物体内代谢过程中会有更高的生物利用度,因而也更有可能成为口服药物。在药物研发领域,里宾斯基五规则被用于对化合物库的初筛,以期摒除那些不适合成为药物的分子,缩小筛选的范围并降低药物研发成本。在长期的实践过程中,药物化学家们对里宾斯基五规则作出简化,形成“四规则”和“三规则”,但是四规则和三规则有时仍然被称作“五规则”,这里的五指的是各条规则的判别值均为5或5的整数倍。.

新!!: 芳香环和里宾斯基五规则 · 查看更多 »

在有机化学中,酚类化合物(phenol)是一类通式为ArOH,结构为芳烃环上的氢被羟基(—OH)取代的一类芳香族化合物。酚类化合物中最简单的酚为苯酚(,亦稱石炭酸)。 虽然结构与醇类似,但酚的性质相对独特而与醇不属同类化合物,这主要因为酚羟基连接于不饱和碳原子上。由于酚类的芳香环紧密的与羟基氧原子结合,而相对使羟基的氧原子与氢原子之间的化学键不是那么牢固,因此酚比起醇类化合物具有更强的酸性。酚上的羟基酸性通常间于脂肪醇与羧酸之间(它们的pKa通常在10-12之间)。 当酚类化合物的羟基失去一个质子(H+),就会形成相应的负离子形态的酚负离子或称为芳基氧负离子,而相应形成的盐称为酚盐或芳基氧盐。 酚化合物还允许一个芳香环上连接两个或数个羟基,其中最简单的是苯二酚,它的结构是两个羟基连接在一个苯环上。一些酚类化合物具有杀菌效果,可制成消毒剂。另外一些具有雌激素作用或内分泌干扰素的活性。.

新!!: 芳香环和酚 · 查看更多 »

配合物

配位化合物(coordination complex),--,包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子,通常称为「配位单元」。凡是含有配位单元的化合物都称做配位化合物。研究配合物的化学分支称为配位化学。 配合物是化合物中较大的一个子类别,广泛应用于日常生活、工业生产及生命科学中,近些年来的发展尤其迅速。它不仅与无机化合物、有机金属化合物相關聯,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。.

新!!: 芳香环和配合物 · 查看更多 »

配位聚合物

配位聚合物是無機或含有金屬陽離子中心金屬有機聚合物藉由有機配體相連的結構。更正式的配位聚合物說法是具有重複的1,2或3個維度上延伸的配位實體。 配位聚合物的重複單元是配合物。配位聚合物包含子類的配位網絡就是配位化合物的延伸,為1個維度上透過配位實體重複,與具有兩個或更多個單獨的鏈、環、螺形鏈接或透過配位實體在2或3維度上延伸在配位化合物之間的交叉連接。這些含有空洞的有機配體所產生的配位網絡有潛力應用在金屬-有機骨架材料方面。 配位聚合物與許多領域相關,例如有機和無機化學,生物化學,材料學,電化學,和藥理學,都有很大應用潛力。這個跨學科性質,使其在過去的幾十年裡一直被廣泛的研究。 配位聚合物可以根據它們的結構和組成分成許多不同的方法。一個重要的分類被稱為維度。一個結構可以被決定為一維,二維或三維是取決於在空間中其延伸方向的排列。一維結構以直線延伸(沿著x軸);二維結構在平面中延伸(兩個方向為X和Y軸);而三維結構向三個方向延伸(X,Y,和Z軸)。敘述於右圖:.

新!!: 芳香环和配位聚合物 · 查看更多 »

酮-烯醇互变异构

在有機化學中,酮-烯醇互變異構(Keto-Enol Tautomerism)是指因酮或醛和烯醇之間的化學平衡。酮或醛和烯醇稱為互變異構體。 此平衡出現的原因是,酮和醛等羰基化合物具有酸性的α-質子,在不同的pH值下進行質子的轉移,形成酮式和烯醇式。所以,烯醇式是酮和醛的一種存在形式,不同的酮在溶液中,有不同的烯醇式含量,可以經由1H核磁共振所測定。一般烯醇式的含量由5%至95%不等,視乎羰基化合物的结构、溫度、溶劑和pH值等。.

新!!: 芳香环和酮-烯醇互变异构 · 查看更多 »

4.92MPa |- | bgcolor.

新!!: 芳香环和苯 · 查看更多 »

苯丙氨酸

苯丙氨酸(Phenylalanine,簡稱Phe或F),是二十種常見胺基酸的一種,化學式為:C6H5CH2CH(NH2)COOH,在室溫下為粉末狀固體。它是一種必需胺基酸,人體無法自行合成,必須從飲食中攝取。因為分子一端的苯環具有疏水性,所以苯丙胺酸被分類為非極性分子。 L-苯丙胺酸(LPA)為一種電中性胺基酸,它的合成密碼子为"UUU"和"UUC"。苯丙氨酸作為酪氨酸,單胺類信號傳導分子的多巴胺,去甲腎上腺素,和腎上腺素,以及皮膚色素的黑色素的前體。苯丙氨酸是在哺乳動物的乳汁中天然發現。它用於食品和飲料產品的製造,並作為以其著名的止痛和抗抑鬱作用的營養補充劑出售。它是一種神經調節劑苯乙胺的直接前體,一種常用的膳食補充劑。 一般由植物生成苯丙胺酸,如下圖:.

新!!: 芳香环和苯丙氨酸 · 查看更多 »

苯并呋喃

苯并呋喃,也称为香豆酮、氧茚、β-苯并呋喃,是一个杂环芳香有机化合物。 苯并呋喃可通过氯乙酸对水杨醛发生O-烷基化,而后失水得到。.

新!!: 芳香环和苯并呋喃 · 查看更多 »

苯并咪唑

苯并咪唑是一个多环芳香杂环化合物,由苯和咪唑并合而成,分子式为C7H6N2。维生素B12分子中,5,6-二甲基苯并咪唑为碱基与钴中心相连。 苯并咪唑与咪唑类似,也是制备氮杂环卡宾的常用原料。此类卡宾由N,N'-二取代的苯并咪唑用碱在2-位去质子化制得,用于制取过渡金属卡宾配合物。.

新!!: 芳香环和苯并咪唑 · 查看更多 »

苯并环丁烯

苯并环丁烯是最简单的多环芳香烃,由一个苯环和一个环丁烷组成。 苯并环丁烯经常被用来制造感光性聚合体。以苯并环丁烯为基础的聚合体电介质能适应多种微电机系统或微电子处理中用的感光底片。应用包括片结合,光学互接,低K电介质,甚至包括脑神经植入。.

新!!: 芳香环和苯并环丁烯 · 查看更多 »

苯甲醚

苯甲醚(英语:Anisole)也称茴香醚,是芳香醚的一种,分子式为C6H5OCH3。无色液体,具有香味。溶于乙醇、乙醚,不溶于水。 苯甲醚容易发生芳香环上的亲电取代反应,与五氯化磷反应主要得对氯苯甲醚及少量邻氯产物;与硫酰氯反应得2,4,6-三氯苯甲醚。此外,苯甲醚与氢溴酸或氢碘酸一起加热,发生碳-氧键断裂,生成酚和卤代甲烷,这是测定苯环上甲氧基的重要方法。 苯甲醚最初是从蒸馏水杨酸甲酯或甲氧基苯甲酸得到,今主要用甲基化试剂硫酸二甲酯在碱性水溶液中与苯酚反应制得。可用作有机合成原料,如合成树脂、香料等。.

新!!: 芳香环和苯甲醚 · 查看更多 »

苯甲酸

苯甲酸又稱安息香酸(英語:Benzoic acid),結構簡式為C6H5COOH,是苯環上的一個氫被羧基(-COOH)取代形成的化合物。苯甲酸一般常作為藥物或防腐劑使用,有抑制真菌、細菌、黴菌生長的作用,藥用時通常塗在皮膚上,用以治療癬類的皮膚疾病。用於合成纖維、樹脂、塗料、橡膠、煙草工業。.

新!!: 芳香环和苯甲酸 · 查看更多 »

離域電子

離域電子(delocalized electron),也称游離電子,是在分子、離子或固體金屬中不止與單一原子或單一共價鍵有關係的電子。 游離電子包含在分子軌道中,延伸到幾個相鄰的原子。一般来讲,離域電子存在于共轭系統和化合物中。人們漸漸地了解到,σ鍵中的電子也會游離。例如甲烷中的成键電子是由五個原子共享的。更多细节详见分子軌道理論。.

新!!: 芳香环和離域電子 · 查看更多 »

Hoesch反应

Hoesch反应(Hoesch reaction),又称Houben–Hoesch反应(Houben–Hoesch reaction),以分别在1915年和1926年发现此反应的两位化学家 Kurt Hoesch 和 J. Houben 的名字命名。 用腈作亲电试剂对芳环的亲电芳香取代,首先产生亚胺,水解后生成芳基酮。整体结果是一种酰化反应,需要酸(如氯化锌和盐酸)催化。 例如,通过间苯三酚与乙腈的 Hoesch 反应合成2-乙酰基间苯三酚: 反应机理较复杂,现在还没有完全阐明。可能是腈先为酸质子化,产生质子化的腈(R-C+.

新!!: 芳香环和Hoesch反应 · 查看更多 »

极性转换

极性转换(英文:Umpolung),也称极性翻转、极性反转、极性颠倒,指有机化学中官能团极性的改变,是有机合成重要概念之一。此概念首先由德国化学家Dieter Seebach(迪特尔·泽巴赫)与美国化学家艾里亚斯·詹姆斯·科里提出,极性转换的英文名称Umpolung也由德语的Umpolung得来,意为极性倒转。 这里的极性,指的是官能团不同原子的亲电/亲核反应性;从逆合成分析来看,是指不同原子的供电子/受电子反应性。杂原子(如金属原子、氧、硫、硅等)的引入会改变化学键的极性,从而使某一基团的极性发生翻转,这也是极性转换的常用技巧。这样,这个基团既可作为正离子,也可作为负离子;既可作为供电子基团,也可作为受电子基团,很多看似无法获得的合成子都可以得到,官能团可以作为不同的“身份”来参与化学反应,有机合成反应的范围因此大大扩展。下面举几个例子来说明不同官能团的极性转换方法。.

新!!: 芳香环和极性转换 · 查看更多 »

杂环化合物

杂环化合物是分子中含有杂环结构的有机化合物。 杂环一概念与碳环相对,指的是成环的原子不仅包括碳,还包括氮、氧或硫等原子。简单的杂环环系从3到10員不等;可以是脂环(如四氢呋喃),也可以是芳环(如吡啶)。复杂的杂环系可以由2个或更多简单环并合而成(如吲哚)。 环中含有氮原子的化合物具有碱性。很多具有生物活性的化合物都是杂环化合物,如维生素B1、组氨酸、DNA的含氮碱基(ATCG)等。血红蛋白分子中含有复杂的卟啉环系。.

新!!: 芳香环和杂环化合物 · 查看更多 »

核磁共振氢谱

核磁共振氢谱 (也称氢谱, 或者 1H谱) 是一种将分子中氢-1的核磁共振效应体现于核磁共振波谱法中的应用。可用来确定分子结构。 当样品中含有氢,特别是同位素氢-1的时候,核磁共振氢谱可被用来确定分子的结构。氢-1原子也被称之为氕。 简单的氢谱来自于含有样本的溶液。为了避免溶剂中的质子的干扰,制备样本时通常使用氘代溶剂(氘.

新!!: 芳香环和核磁共振氢谱 · 查看更多 »

氢键

氫鍵是分子間作用力的一種,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是电负性较强的原子。氢键既可以是分子间氢键,也可以是分子内的。其键能最大约为200kJ/mol,一般为5-30kJ/mol,比一般的共价键、离子键和金属键键能要小,但强于静电引力。 氢键对于生物高分子具有尤其重要的意义,它是蛋白质和核酸的二、三和四级结构得以稳定的部分原因。.

新!!: 芳香环和氢键 · 查看更多 »

氧化还原反应

氧化还原反应(Reduction-oxidation reaction,簡稱Redox)是在反应前后元素的氧化数具有相应的升降变化的化学反应。这种反应可以理解成由两个半反应构成,即氧化反应和还原反应。此类反应都遵守电荷守恒。在氧化還原反應裡,氧化與還原必然以等量同時進行。 一般来说,同一反应中还原产物的还原性比还原剂弱,氧化产物的氧化性比氧化剂弱,这就是所谓“强还原剂制弱还原剂,强氧化剂制弱氧化剂”。換言之:.

新!!: 芳香环和氧化还原反应 · 查看更多 »

氯化锌

氯化锌(ZnCl2)是氯和锌的化合物,该名称亦用来称呼它的水合物。无色或白色,有极强的水溶性和吸湿性,甚至会潮解,应在干燥处密封储存,避免与空气中的水蒸气接触。 在纺织加工、焊接、化学合成等方面,氯化锌有着广泛应用。.

新!!: 芳香环和氯化锌 · 查看更多 »

有机场效应晶体管

有机场效晶体管(Organic field-effect transistor, OFET)是一种利用有机半导体组成信道的场效应晶体管。OFET的原料分子通常是含有芳环的π电子共轭体系。OFET的制造工艺有小分子在真空中蒸发、聚合物溶液浇注、将原料单晶剥离至基板等方法。OFET的应用目标包括低成本,大面积的电子产品和。研究上设计出了有多种构造形式的OFET,实际应用的器件中最常用的构造是底部栅极、顶部漏极和源极,因为这种构造类似于使用SiO2的热生长法作为栅极介电层的薄膜电晶体(TFT)。有机聚合物,例如聚甲基丙烯酸甲酯(PMMA)也可以被用作电介质。 2007年,索尼首次研制出全彩色,实现视频级更新频率的的柔性塑料显示屏,其薄膜晶体管与发光二极管均使用有机材料。.

新!!: 芳香环和有机场效应晶体管 · 查看更多 »

流化催化裂化

流化催化裂化(Fluid catalytic cracking,又作Fluidized-bed catalytic cracking ,或Fluidized catalytic cracking ;简称FCC),是石油精炼厂中最重要的转化工艺之一。被广泛用于将石油原油中高沸点、高分子量的烃类组分转化为更有价值的汽油、烯烃气体和其他产品。 石油烃类的裂化最初都是通过热裂化(thermal cracking)完成;如今热裂化已几乎全部被催化裂化所取代,因为催化裂化可以产生更多具有高辛烷值的汽油。此外,催化裂化也能产生更多拥有碳碳双键的副产品气体(即更多的烯烃),所以相比于热裂化具有更高的经济价值。 流化催化裂化(FCC)的原材料(进料)通常采用原油中初馏点为340 °C或更高(常压)以及平均分子量在200~600或更高的部分。这部分原油通常称为重质瓦斯油(heavy gas oil)或重质减压瓦斯油(heavy vacuum gas oil, HVGO)。在流化催化裂化(FCC)工艺中,原材料在高温和适当的压力下与流化粉末状的催化剂接触。催化剂打破了高沸点长链的烃分子,使之成为更短的分子、然后以蒸气的形态被收集。.

新!!: 芳香环和流化催化裂化 · 查看更多 »

方酸

方酸,学名3,4-二羟基-3-环丁烯-1,2-二酮,是一种环丁烯的衍生物。.

新!!: 芳香环和方酸 · 查看更多 »

拜耳张力学说

拜耳张力学说(Baeyer张力学说,或张力学说)是由阿道夫·冯·拜尔于1885年用以解释不同环烷烃的稳定性而提出的一个理论。这个学说认为,所有环状化合物都具有环平面结构,由于键角(即多边形内角)与sp3杂化轨道正常键角(109°28')有差别,因此所有环系都存在角张力。这个偏转角可以用(sp3杂化轨道正常键角 - 多边形内角)÷ 2 来计算。 各常见环烷烃的偏转角可以依此计算出来,见下表。根据这些数据,可以认定大环化合物与小环化合物一样,环系越偏出五元环,偏转角越大,张力越大。由于张力越大,分子能量越高,分子越不稳定,故小环的环丙烷环系容易开环。这便是拜耳张力学说对不同环烷烃稳定性的解释。 事实上,大环化合物是稳定的。除三元环和芳香环具有平面结构外,其他环都不是真正的平面结构,因此自然也就不存在所谓“偏转角”,拜耳张力学说是错误的。但它所提出的当分子内键角偏离正常键角时会产生张力的现象,却是存在的。这种张力称为角张力。.

新!!: 芳香环和拜耳张力学说 · 查看更多 »

重定向到这里:

单环芳烃芳环芳香環苯環

传出传入
嘿!我们在Facebook上吧! »