徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

离子

指数 离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

622 关系: AdS/CFT对偶ATP酶基因治療原子原子发射光谱法原子理論原生質絲厭氧甲烷氧化去极化十一面體十八面體卡西尼-惠更斯号卡拜卡普斯钦斯基方程卤素单分子亲核取代反应反应离子刻蚀古菌史普尼克1號叶绿素双极性扩散双氢配合物双氧配合物双水解反应变性 (生物化学)受体 (生物化学)吞噬細胞吡硫鎓锌吉布斯-唐南效应場線多元酸多碘化物多胺多酚抗氧化劑夏普大型強子對撞機天王星天王星大氣層天文學太阳太陽圈孔蝕定量分析定量构效关系定性分析定性无机分析宇宙線富勒烯尼古拉斯反应尖端放電...尖晶石不相容成分两亲分子中子帶電粒子主動運輸七角柱布拉德福蛋白質定量法三价铁离子三氟乙酸盐三氢阳离子一方通行丙酮酸乙二胺四乙酸乙硼烷乙烯二酮乙炔银乙酰乙酸铝乙酸乙酸盐乙酸铀酰锌亚硝胺亚硫酸盐亚硫酸氢根亚碳酸根亚瑟·爱丁顿亚胺离子庚搭烯亞硝醯基亞硝酸甲酯亲电芳香取代二乙二醇二甲醚二元化合物二噁英二茂铁二次電子二氟化氙二氧化锰云室互变异构体五氟合氙酸四甲基铵五氟化锑代謝疾病价层电子对互斥理论介電質仙茅甜蛋白伊翁伪科学強力黴素弗伦克尔缺陷弗朗西斯·阿斯顿开尔文滴水起电机低价镁化合物低電離星系核低蛋白飲食彭宁离子阱彗尾彗星体内酒精测定仪微电子学微通道板俞汝勤信雜比 (磁振造影)土卫二土壤结构土壤酸化土壤pH值土星土星環化合价化学反应化学物理学化学物质化学键化學化學滲透分子内作用力分子轨道对称守恒原理分子量分子雲單原子離子味觉咪唑傅里叶变换离子回旋共振质谱法冠醚冷阴极计数管冕 (大氣層)兩性 (化學)八隅體規則六氟化鈾六氟砷酸五氮六氰合钴(III)酸六氨合钴(III)共質體途徑共振 (化学)共晶体先驱者11号光合作用光分解離子成像光離子化檢測儀固体国际单位制四苯甲烷四氟化汞四氟硼酸二茂铁四氟铵四氧化钌四氮化四硫噻蒽Be星短波石墨层间化合物石榴石环己六酮环磷酰胺环戊五酮环戊[c,d]戊搭烯火星96現代物理學砷酸鹽砹化氫硝鎓离子硝酸鈰銨硝酸钙硝酸铍硫化硫化物硫酸鹽硫酸钾硫酸根硫氰酸汞硒化物碰撞碱式乙酸铁碱式硫酸铬碱土金属碱金属碳酸碳氧化物碘化物磁場磷化物磷酸鹽磷酸酶磺胺嘧啶银神秘果蛋白神經膠質細胞离子离子半径离子反应离子强度离子化合物离子列表离子积离子阱离子键离子通道离子源离子方程式离子晶体离解稀土金属穴状配体等离子体等离子体物理学等电子体等離子體參數简并态物质粘土矿物糙皮病細胞質細野秀雄維多利亞多管發光水母經典物理術語線粒體緊湊緲子線圈總無機碳约翰逊-奈奎斯特噪声纯净水线粒体内膜线粒体膜转运蛋白维生素B12缺乏症络合滴定结合能结晶水合物细胞核置换反应羟基羟基乙叉二膦酸羥磷灰石羧酸羧酸盐热发射烯烃爆速結晶紫絕緣體瑟倫·索倫森瑞岩溫泉瑞穆尔-悌曼反应炔烃生命元素生物膜甲基甲基叔丁基醚甲基紫甲基汞甲磺酸酯甲酸盐甘油磷酸电子电子亲合能电子俘获电子盐电子陶瓷电化学电化学梯度电现象电离电离平衡电离能电离氢区电突触电解质电解池电阻电泳电渗析电流电流密度熱絲極離子真空計異丙托溴銨界達電位物质状态盐 (化学)盐酸盐酸胍相转移催化剂相态列表D-苏醛糖1-脱氢酶D2sp3杂化Dsp2杂化Duga远程警戒雷达芦丁芳香环鎂營養聚电解质聖石小子荷包蛋星系荷電粒子炮華特·蕭特基萊曼極限萤光素酶鐵氧體非中性電漿非电解质非金属性非配位阴离子非苯芳烃非整比化合物靜電透鏡靈異教師神眉角色列表蝕刻静电除尘静息电位類氫原子表面科学表面电荷表面物理学表面活性剂表面改性技术血浆蛋白風化作用被动运输食物食物中毒飘升机褐色钻石西莫尼尼反应馬德隆常數解离常数高分子高分子支载催化剂高鎝酸鈉高铁酸盐高铼酸盐高氯酸氧锆高效液相色谱法豆汁鲁米诺貓眼星雲質量數贝里斯-希尔曼反应质子化质子溶剂质谱法足細胞超精细结构超環面儀器超金属跨灣隧道跨膜运输麥可·法拉第黑寡婦蜘蛛輻射壓輻射下的材料科學齐格勒-纳塔催化剂软硬酸碱理论载体蛋白载流子辣椒素辅因子辉石连接蛋白过二硫酸过氧化氢过渡金属茂金属胞外能量均分定理背散射分析鈣礦鈣質鈉鉀氯共轉運蛋白鈉離子電池鈉氯同向轉運體阿尔伯特·爱因斯坦科学出版物列表阿特贝限阿茲海默症阿梅代奥·阿伏伽德罗薛定谔猫闊邊帽星系藍血人 (衛斯理系列)藤田誠闪烁体探测器钝化钠硫电池钙合蛋白钙粘蛋白邊收縮二十面體肥皂邻二氮菲肽类激素肖特基缺陷铪酸钡铬酸盐银镜反应银氨溶液铋化物锌指锗酸铋锂离子电池脱氧核糖核酸脉冲激光沉积膜间隙醛固酮醛糖1-脱氢酶 (NAD+)重離子重氮盐量子生物学臨界膠束濃度自然臭氧金印草金属金属离子金属键金属蛋白金属活动性金属性金星10號金星1號金星9號镍氰酸盐镀层腎生理學配合物配位异构配位聚合物配體配體 (生物化學)腐殖质酸度系数酸式盐酸碱电子理论酸碱电离理论酸碱质子理论酸根离子酒石酸脱氢酶色谱法鉀離子苯扎氯铵苹果猪笼草鋅銅電池離域電子離子導入法離子交換雷酸盐電子倍增管電化電池電傳導電動勢電磁波譜電荷密度電解水電解水機蛋白質一級結構逆滲透选矿工程耀斑陰離子加成聚合反應FusorG-四聯體Α-酮戊二酸Γ-氨基丁酸A型受体KSTARM94 (螺旋星系)MAVENMIKIKOMPTPNGC 1275NGC 1672NGC 6240NoctisNVIDIA IONPH值SalenSMART-1Sp2d杂化Sp3d2杂化TBE緩衝液UbhUstUueWDMZ-DNA抗静电剂查爾斯·湯姆森·里斯·威爾遜极紫外辐射恆星天文學年表李方訓核医学放射性药物列表核爆末世錄标准电极电势表标准氢电极标准摩尔熵楊桃構造原理次氯酸鈉欧姆定律欧内斯特·卢瑟福欧洲散裂中子源氟化物氟化銫氟化氢氟化氢根氟硼酸铜氢化物氢负离子氢键氢正离子氢氟酸氢氧化钡氢氧化铝氢氧根氦合氢离子氧化铁氧化态氧族元素氨络物氨甲酰磷酸氨氯地平氨水氯化物氯化钠氯的氧化物氯氧化鉲水垢水合焓水合氢离子水中毒水的性質水解水電解水耕栽培水楊酸水母永不妥協沃斯托克站波形蛋白泰坦降臨2法拉第杯活性聚合反應洗脱曲线洛伦兹力溴化物溶解平衡溶解性全表溶液溅射濃差電池激发态激酶木卫三木卫一木质部木星木星的磁層未發現元素列表朱诺号月球10号惠蓀溫泉惯性静电约束戊搭烯戴利偵測器戴维·瓦恩兰星尘号星际物质明矾海砂屋海爾-博普彗星斐林试剂新视野号方铁矿无机化合物无机化合物列表无机化学无机化学命名法摩尔 (单位)散射长度拜耳-维立格氧化反应晶体晶体学晶体场理论晶体结构晶体生长晶格空位晶格能𨥙𨦡鹽𨧀0號元素18-冠-6 扩展索引 (572 更多) »

AdS/CFT对偶

在理論物理學中,AdS/CFT對偶(AdS/CFT correspondence)又稱馬爾達西那對偶(Maldacena duality)和規範/重力對偶(gauge/gravity duality),全稱為反德西特/共形場論對偶(Anti-de Sitter/Conformal Field Theory correspondence),是兩種物理理論間的假想聯繫。對偶的一邊是共形場論,是量子場論的一種,量子場論中還包括與描述基本粒子的楊-米爾斯理論相近的其他理論。而對偶的另一邊則是反德西特空間(AdS),是用於量子重力理論的空間。 此對偶代表着人類理解弦理論和量子重力的重大躍進。這是因為它為某些邊界條件的弦理論表述提供了非微擾表述。同時也因為它是全息原理最成功的展演,全息原理是量子重力的概念,最初由傑拉德·特·胡夫特提出,之後由李奧納特·蘇士侃改良及提倡。 它亦為強耦合量子場論提供了強大的研究工具。此對偶的有用之處主要是在於它是一種强弱對偶;量子場論中的場有着很強的相互作用,而重力場的相互作用則很弱,因此在數學上也比較容易對付。所以在核物理與凝聚態物理學的研究中可以利用這對偶,將該領域的難題轉譯成數學上較易於對付的弦理論難題。 AdS/CFT對偶最早由胡安·馬爾達西那於1997年末提出。而對偶的重要方面則由另外兩篇論文詳述,一篇是由、和亞歷山大·泊里雅科夫合著的,另一篇則是愛德華·威滕所撰寫。截至2015年,馬爾達西那的論文被超過10,000篇其他論文引用,名列高能物理領域引用次數的首位。.

新!!: 离子和AdS/CFT对偶 · 查看更多 »

ATP酶

ATP酶,又称为三磷酸腺苷酶,是一类能将三磷酸腺苷(ATP)催化水解为二磷酸腺苷(ADP)和磷酸根离子的酶,这是一个释放能量的反应。在大多数情况下,能量可以通过传递而被用于驱动另一个需要能量的化学反应。这一过程被所有已知的生命形式广泛利用。 部分ATP酶是内在膜蛋白(Integral membrane protein),可以锚定在生物膜上,并可以在膜上移动;这些ATP酶又被称为跨膜ATP酶。.

新!!: 离子和ATP酶 · 查看更多 »

基因治療

基因治療或基因療法(gene therapy)是利用分子生物學方法將目的基因導入患者體內,使之達成目的基因產物,從而使疾病得到治療,為現代醫學和分子生物學相結合而誕生的新技術。基因治療作為疾病治療的新手段,它已有一些成功的應用,並且科學突破將繼續推動基因治療向主流醫療發展。 科學家們由逻辑推理出合理步骤,尝试將基因直接植入人體細胞中,其中,重点關注一些由單基因缺陷引起的疾病,如囊腫性纖維化,血友病,肌肉萎縮症和鐮狀細胞性貧血。不過,由于攜帶大段DNA并將其置入基因組的正確的位置非常困难,这种技术没有得到普及。今天,大多數的基因治療研究的目的都是弥补癌症和遺傳疾病的基因缺陷或丢失。 科学家曾尝试用此方法去治疗一种叫严重免疫缺陷综合征(Severe Combined Immunodeficiency, SCID)的疾病,并得到一定的成果。基本原理是用已经被驯化了的病毒携带健康的基因,植入病人的细胞里,以此去修补本身有缺陷的基因。 应用肿瘤抑制基因(抑癌基因),对癌症进行靶向治疗,是基因治療领域里重要的研究项目。目前应用较多的是p53抑瘤蛋白基因。.

新!!: 离子和基因治療 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 离子和原子 · 查看更多 »

原子发射光谱法

原子发射光谱法(Atomic Emission Spectroscopy,缩写AES),是一种利用受激发气态原子或离子所发射的特征光谱来测定待测物质中元素组成和含量的方法。为光学分析中较早诞生的分析方法之一,其雏形在1860年代即已形成。.

新!!: 离子和原子发射光谱法 · 查看更多 »

原子理論

原子理论(Atomic theory)是物理学与化学中有关物质本质的科学理论。与物质无限可分的概念相反,依据原子理论,物质是由一个个离散单元原子所构成。 原子起初是自然哲学中的概念。西方对于原子的称呼来自于古希腊语的ατομος(意为“不可分割的”)。而中文中,原子早前的译名“莫破”也来源于此 。原子这一概念由于与基督教教义抵触一度被弃置,直到近代才被重拾。 18世纪末,在化学领域里,人們发现物质在化学变化过程中一系列可確切描述的规律。這为原子理论成为一个科学理论提供了实验依据。19世纪初,道尔顿提出了他的原子理论来解释化学中的现象。而有关原子是否真实存在的争论,直到20世纪初爱因斯坦从分子运动论角度解释布朗运动,并得到实验验证后,才真正得到肯定答案。 19世纪末至20世纪初,物理学家通过一系列与电磁学和放射性有关的实验发现,原本认为“不可分割”的原子实际上是由一系列的亚原子粒子(主要有电子、质子和中子)构成的,而这些粒子可以各自独立存在。由于原子被发现是可分的,物理学家随即引入了一个新术语“基本粒子”以描述原子各个组分。20世纪上半叶,伴随着对于原子结构认识的深入以及物理学界的量子革命,现代原子理论模型被逐步建立起来。.

新!!: 离子和原子理論 · 查看更多 »

原生質絲

原生質絲(Plasmodesmata)為植物細胞和部分藻類細胞壁間貫穿細胞壁的特有孔道,可以讓相鄰細胞的細胞質相互流通。Oparka, K. J. (2005) Plasmodesmata. Blackwell Pub Professional.

新!!: 离子和原生質絲 · 查看更多 »

厭氧甲烷氧化

厭氧甲烷氧化是一種微生物代謝作用,不管是在海洋環境还是在陸域環境,當沉積物呈現缺氧狀態的時候,微生物會利用不同的電子接收者進行氧化還原作用,例如硝酸根、亞硝酸根、硫酸根、金屬離子、腐植酸等等,在厭氧甲烷氧化的過程中,微生物會將有機碳分解所產生的甲烷氧化變成二氧化碳,而電子接收者則進行還原作用,藉此過程產生能量,以維持自身生命所需。.

新!!: 离子和厭氧甲烷氧化 · 查看更多 »

去极化

在生物学中,去极化(英文)指的是细胞的膜电位向膜内负值减小的变化。在神经元和其他的细胞中,一个足够大的去极化作用将会导致动作电位。過極化与之相反并抑制动作电位的发生。.

新!!: 离子和去极化 · 查看更多 »

十一面體

在幾何學中,十一面體(Hendecahedron)是指具有十一個面的多面體。沒有任何十一面體是正十一面體,也就是說找不到面由正多邊形組成且每個面全等、每個角相等的十一面體。.

新!!: 离子和十一面體 · 查看更多 »

十八面體

在幾何學中,十八面體(octadecahedron)是指具有十八個面的多面體。正十八面體不存在,因為沒有一個十八面體是正多面體,因此,名稱不明確。然而,在化學中,十八面體主要指的是十八面體硼烷結構。 在十八面體中,有些屬於半正多面體但非阿基米德立體,例如:正八角反稜柱、正十六角柱。 十八面體可以是十七角錐、十六角柱、八角反稜柱、雙九角錐、九方偏方面體、正四角帳塔柱、同相和異相雙四角帳塔等多面體,也可以是十八面體硼烷的骨架結構(见下文)。.

新!!: 离子和十八面體 · 查看更多 »

卡西尼-惠更斯号

卡西尼-惠更斯號()是前往行星土星的一艘無人太空船。它是NASA-ESA-ASI的旗艦級機器人太空船。卡西尼號雖然是第四艘前往土星的太空探測器,但卻是第一艘環繞土星,它於2004年抵達後,就開始研究土星和它的許多衛星,已於2017年9月15日销毀於土星大氣層。 该計劃於1980年代開始。它的設計包括繞行土星的人造衛星(卡西尼號)和登陸泰坦(惠更斯號)。這兩艘太空船是以天文學家喬凡尼·多美尼科·卡西尼和克里斯蒂安·惠更斯的名字命名。太空船於1997年10月15日使用泰坦VB/半人馬發射升空,在2004年7月1日進入環繞土星的軌道。在前往的星際航行途中,曾兩度飛越金星,一次飛越地球與木星。在2004年12月25日,惠更斯號與卡西尼號分離,並在2005年1月14日降落在泰坦。它利用卡西尼號中繼,成功的將資料傳送回地球。這是有史以來第一次在外太陽系的天體上著陸。 卡西尼號在抵達後就持續的研究土星系統,並兩度延展計畫直至2017年4月。 然而,因為太空船用於調整與校正軌道的燃料因消耗而不斷減少,在2016年11月30日決定進入專案的最後階段。卡西尼號將駛入土星環的內圈,每7天繞行土星一次。太空船將一點一點地深入這過去從未觸及的區域,以得到最接近土星環的外觀。在2016年12月4日,太空船首度通過土星環。 卡西尼號已在2017年9月15日潛入土星大氣層中銷毀,並在結束前傳送回最後的圖像。選擇這樣的處置方法,為的是避免污染可能有生物存在的土衛。.

新!!: 离子和卡西尼-惠更斯号 · 查看更多 »

卡拜

卡拜(Carbyne)是拥有三个自由电子的电中性单价碳活性中间体HC及其衍生物(如EtO2C-C)的统称。卡拜可通过很多方法获得。它可以短寿命的活性中间体存在于气相中。 卡拜可以与金属离子结合形成金属卡拜配合物 (如和)。这类化合物的一种合成方法是让W(CO)6与二异丙基氨基锂(LDA)反应产生,然后再让其与草酰溴或Br2-PPh3和三苯基膦反应。另一种合成方法是用路易斯酸处理甲氧基金属卡宾配合物。.

新!!: 离子和卡拜 · 查看更多 »

卡普斯钦斯基方程

卡普斯钦斯基方程(Kapustinskii equation)可以计算离子晶体的晶格能 UL,而这是实验难以确定的。这是以卡普斯钦斯基的名字命名的,他在1956年提出了这个方程。 |- |其中 ||K.

新!!: 离子和卡普斯钦斯基方程 · 查看更多 »

卤素

卤素是元素周期表上的第ⅦA族元素(IUPAC新规定:17族),包括氟(F)、氯(Cl)、溴(Br)、碘(I)、-zh-hans:砹; zh-hant:砈;-(At)和(Ts)。.

新!!: 离子和卤素 · 查看更多 »

单分子亲核取代反应

SN1反应(单分子亲核取代反应)是有机化学中亲核取代反应的一类,其中S代表取代(Substitution),N代表亲核(Nucleophilic),1代表反应的速控步只涉及一种分子。 J. March, Advanced Organic Chemistry, 4th ed., Wiley, New York, 1992.

新!!: 离子和单分子亲核取代反应 · 查看更多 »

反应离子刻蚀

反应离子刻蚀(英文:Reactive-Ion Etching,或简写为RIE)是一种半导体生产加工工艺,它利用由等离子体强化后的反应离子气体轰击目标材料,来达到刻蚀的目的。气体在低压(真空)环境下由电磁场产生,等离子体中的高能离子轰击晶片表面并与之反应。.

新!!: 离子和反应离子刻蚀 · 查看更多 »

古菌

古菌(Archaea,来自,意为“古代的东西”)又稱古細菌、古生菌或太古生物、古核生物,是单细胞微生物,构成生物分类的一个域,或一个界。这些微生物属于原核生物,它們與细菌有很多相似之處,即它们没有细胞核与任何其他膜结合细胞器,同時另一些特徵相似於真核生物,比如存在重复序列与核小体。 过去曾经将古菌和细菌一同归为原核生物,并将其命名为“古细菌”,但这种分类方式已过时。事实上古菌有其独特的进化历程,并与其它生命形式有显著的生化差异,所以现在将其列为三域系统中的一个域。在这个系统中,古菌、细菌与真核生物各为一个域,并进一步划分为界与门。到目前为止,古菌已被划分为公认的四个门,随着进一步研究,还可能建立更多的门类。在这些类群中,研究最深入的是泉古菌门与广古菌门。但对古菌进行分类仍然是困难的,因为绝大多数的古菌都无法在实验室中纯化培养,只能通过环境宏基因组检测来分析。 古菌和细菌的大小和形状非常相似,但少数古菌有不寻常的形状,如嗜鹽古菌拥有平面正方形的细胞。尽管看起来与细菌更相似,但古菌与真核生物的亲缘关系更为密切,特别是在一些代谢途径(如转录和转译)有关酶的相似性上。古菌还有一些性状是独一无二的,比如由依赖醚键构成的细胞膜。与真核生物相比,古菌有更多的能量来源,从熟悉的有机物糖类到氨到金属离子直到氢气。(如)可以以太阳光为能源,其它一些种类的古菌能进行;但不像蓝藻与植物,没有一种古菌能同时做到这两者而进行光合作用。古菌通过分裂、出芽、断裂来进行无性生殖,但没有发现能产生孢子的种类。 一开始,古菌被认为都是一些生活在温泉、盐湖之类极端环境的嗜极生物,但近来发现它们的栖息地其实十分广泛,从土壤、海洋、到河流湿地。它们也被发现在人类的大肠、口腔、与皮肤。尤其是在海洋中古菌特别多,一些浮游生物中的古菌可能是这个星球上数量最大的生物群体。现在,古菌被认为是地球生命的一个重要组成部分,在碳循环和氮循环中可能扮演重要的角色。目前没有已知的作为病原体或寄生虫的古菌,他们往往是偏利共生或互利共生。一个例子是,生活在人和反刍动物的肠道中帮助消化,还被用于沼气生产和污水处理。嗜极生物古菌中的酶能承受高温和有机溶剂,在被生物技术所利用。.

新!!: 离子和古菌 · 查看更多 »

史普尼克1號

史普尼克1號,又譯史波尼克1號(Спутник,),是第一顆進入行星軌道的人造衛星。在蘇聯於1957年10月4日於拜科努爾航天中心發射升空。由於這時正值冷戰,史普尼克1號毫無先兆而成功的發射,震撼了整個西方,在美國國內引發了一連串事件,如史普尼克危机、華爾街發生小股災。同時亦激起美蘇兩國之後持續20多年的太空競賽,成為冷戰的一個兩強主要競爭點。 史普尼克1號升空的意義,在於通過量度其軌道變化,有助研究高空地球大氣層的密度,並為於電離層作无线电波傳遞提供原始的資料。由於衛星填充了壓縮氮,史普尼克1號亦因此作了第一次人造物體作隕石探測的嘗試,由於高溫的隕石穿透了史潑尼克1號的表面,導致其內壓泄漏,此亦為隕石之極端高溫提供證據。 當史潑尼克1號於哈萨克拜科努爾太空中心發射之時,正值是聯合國所公佈的國際地球觀測年(又譯作國際地球物理年),它以每小時29,000公里的速度脫離地球引力,成為第一個進入外太空的人造物體,在外太空它以20.005至40.002兆赫的頻率向地球發送無線電波信號,並可由業餘無線電用戶所接收。其發送一直持續至1957年10月26日,才因為電池用盡而中斷。 1958年初,史普尼克1號失去動力,脫離其工作軌道並墜入大氣層,其工作壽命中,共圍繞地球運轉了六千萬公里。.

新!!: 离子和史普尼克1號 · 查看更多 »

叶绿素

叶绿素是存在于植物、藻类和蓝藻中的光合色素。 光合作用的第一步是光能被叶绿素吸收并将叶绿素离子化。产生的化学能被暂时储存在三磷酸腺苷(ATP)中,并最终将二氧化碳和水转化为氧氣和碳水化合物。叶绿素a和叶绿素b的吸收光谱较为接近,两者在蓝紫光(430~480nm)和红光区(640~660nm)都有一吸收高峰,叶绿素ab对绿光的吸收很少,所以呈绿色。 并非只有叶子才有叶绿素,叶柄的薄壁细胞都有叶绿素的存在。就是在一片叶子之中,也并非只有叶肉细胞有叶绿素,维管束鞘和保衛細胞都有叶绿素。当秋天渐渐来临,日照时间和空气适度都逐渐变少时, 一层在叶柄和树的木质部的细胞就慢慢形成了。这层细胞妨碍了水和养料的输送,因此光合作用减产了,没有了叶绿素的叶子在短时间内就变成其他颜色了。.

新!!: 离子和叶绿素 · 查看更多 »

双极性扩散

双极性扩散(Ambipolar diffusion)是等离子体的正负粒子在电场中由于相互作用等速远离的扩散方式。等离子体的正负粒子浓度由于扩散作用而减小至原来的\mathrm\mathsfe的所经过的距离称作双极性扩散长度(Ambipolar diffusion length)。理论上,它可以用公式表达为L_d.

新!!: 离子和双极性扩散 · 查看更多 »

双氢配合物

双氢配合物是包含完整氢分子作为配体的配位化合物。最典型的这类化合物是W(CO)3(PCy3)2(H2)。这类化合物的发现解释了金属元素催化的氢分子参与的化学反应。文献已经报道了数百个双氢配合物,大多数都是过渡金属的离子形成的八面体配合物。 络合以后,通过中子衍射发现H-H键的键长增加到81-82pm,相比自由的氢分子增加了约10%。一些有多个氢配体的配合物,也就是聚合型氢化物 (例如氢化铝),也展现出更弱的H-H作用。科学家建议键长小于100pm意味着明显的双氢特征,而距离大于100pm更应该被认为是氢负离子配合物。.

新!!: 离子和双氢配合物 · 查看更多 »

双氧配合物

双氧配合物(Dioxygen complex)是包含O2作为配体的一类配位化合物。携氧蛋白例如肌红蛋白、血红蛋白、血紫蛋白和血青蛋白引起了人们对这类化合物的研究兴趣。一些过渡金属能与O2形成配合物,其中许多配合物的形成都是可逆的。 O2的固定是许多重要现象中的第一步,例如细胞呼吸作用、腐蚀以及化学工业的生产。人工合成的双氧配合物最早在1938年制得,Co(II)的配合物可逆地结合了氧分子O2。.

新!!: 离子和双氧配合物 · 查看更多 »

双水解反应

双水解反应是指弱酸根和弱碱阳离子相互促进水解,直至完全的反应。双水解反应发生的条件之一是水解产物是容易脱离反应体系的溶解度非常小物质,如Al(OH)3、Fe(OH)3或H2、O2等极难溶的气体。当然,若互相促进水解程度非常大水解反应也可以认为完全进行。.

新!!: 离子和双水解反应 · 查看更多 »

变性 (生物化学)

变性(Denaturation)在生物化学中是指蛋白质或核酸受到某些理化因素的作用,其高级结构发生破坏从而丧失生物活性的现象。.

新!!: 离子和变性 (生物化学) · 查看更多 »

受体 (生物化学)

受體(Receptor),又称受器、接收器,是一個生物化學上的概念,指一類能傳導細胞外信號,並在細胞內產生特定效應的分子。產生的效應可能僅在短時間內持續,比如改變細胞的代謝或者細胞的運動。也可能是長效的效應,比如上調或下調某個或某些基因的表達。 受體通過與特定的配體結合而感知到細胞外的信號。隨後,受體的結構發生變化,並誘導細胞內產生相應的效應。受體通過信号级联效應,逐步以指數級擴大細胞內產生的效應的強度。信號級聯的第一步可能是產生cAMP等第二信使分子,誘導下一級反應。根據受體所在的位置,可以分爲細胞表面受體和細胞內受體兩類。其中細胞表面受體位於細胞表面,處於內環境中的配體可以直接與之結合。大部分的細胞內受體都屬於核受體。在未與配體結合時,這些受體位於細胞質中,配體需要穿過細胞膜進入細胞內,才能與該受體結合結合。在與配體結合後,核受體會轉入細胞核中發揮效應。另一類細胞內受體是細胞內的酶、RNA、核糖體等,配體通過與這些受體結合發揮效應。.

新!!: 离子和受体 (生物化学) · 查看更多 »

吞噬細胞

吞噬細胞为一类防衛细胞,它們透過吞噬细菌、坏死細胞和凋亡细胞等有害物質来保衛有機體。其原文「Phagocytes」的前半部来自希腊语「phagein」(意为「食用、吞食」),后半部「-cyte」为细胞(cell)的词缀,来自希腊语「kutos」(意为「中空容器」)。吞噬细胞在对抗感染以及後續的免疫过程中不可或缺,它在整个动物界中都相当重要,在脊椎动物体内特別发达。一公升的人类血液约含六十亿个吞噬细胞。1882年,埃黎耶·埃黎赫·梅契尼可夫在研究海星幼虫时发现了吞噬细胞, retrieved on 2008-11-28.

新!!: 离子和吞噬細胞 · 查看更多 »

吡硫鎓锌

吡硫鎓锌亦称吡啶硫酮锌或奥麦丁锌,是一种无色固体,在常温中性条件下几乎不溶于水。这种锌的配合物早在20世纪30年代就被合成 并用作外用抗真菌剂或抗菌剂。 吡硫鎓锌被大量应用于海倫仙度絲等去头皮屑洗髮精之中, 因此也被称为去屑因子。.

新!!: 离子和吡硫鎓锌 · 查看更多 »

吉布斯-唐南效应

吉布斯-唐南效应(Gibbs–Donnan effect),又称膜平衡、唐南平衡、唐南效应,是指因部分带电粒子不通过半透膜而产生的不均匀电荷,使膜两侧粒子浓度不同的现象,以美国物理学家约西亚·威拉德·吉布斯和英国化学家命名。凝胶、胶体、电解质溶液均能产生唐南效应,因此凝胶或凝胶和电解质溶液之间的相界面也可以用作半透膜。两种溶液间的电位称为。 例如,血浆中的大阴离子蛋白质不能渗透毛细管壁,是因为小阳离子被吸引而且不与蛋白质结合,所以小阴离子将比小阳离子更容易地跨过毛细管壁离开阴离子蛋白质。.

新!!: 离子和吉布斯-唐南效应 · 查看更多 »

場線

場線是由向量場和初始點設定的軌跡。在空間裏,向量場在每一個位置,都設定了一個方向。只要按照向量場在每一個位置所指的方向來追蹤路徑,就可以素描出正確的場線。更精確地說,場線在每一個位置的切線必須平行於向量場在那一個位置的方向。 在空間內,由於,伴隨著每一個點的向量,組合起來,構成了向量場,場線可以說是一個專為向量場精心打造的顯像工具,能夠清楚地顯示出向量場在每一個位置的方向。假若向量場描述的是一個速度場,則場線跟隨的是流體的流線。在磁鐵的四周灑散鐵粉,可以清楚地顯示出磁場的磁場線。靜電荷的場線稱為電場線,從正電荷往外擴散,朝著負電荷聚集。 對於一個向量場,假若能夠完整地描述其所有的場線,那麼,這向量場在每一個位置的方向已完全地被設定了。為了同時表示出向量場的大小值,必須變化場線的數量,使得場線在任意位置的密度等於向量場在那位置的大小值,也就是說單位面積所含的場線越多,則向量場越強,反之則向量場越弱。 場線的圖案能夠用來表達某些重要的向量微積分概念。場線從某一個區域的往外擴散或往內聚斂可以表達散度。場線的螺旋圖案可以表達旋度。 雖然大多數時候,場線只是一個數學建構,在某些狀況,場線具有實際的物理意義。例如,在電漿物理學裏,處於同一條場線的電子或離子會強烈地相互作用;而處於不同場線的粒子,通常不會相互作用。 1851年,法拉第提出了場線的概念。.

新!!: 离子和場線 · 查看更多 »

多元酸

多元酸,通常指在一個分子中可能放出多個質子(H+)的酸。 如無機酸中的硫酸(H2SO4)、磷酸(H3PO4)等。 在有機化合物中主要指每一個分子含多個羧基的羧酸,如草酸(HOOCCOOH)、蘋果酸(HOOCCH2CHOHCOOH)、順丁烯二酸(HOOCCH.

新!!: 离子和多元酸 · 查看更多 »

多碘化物

多碘离子(英文:Polyiodide)指的是由多个碘原子组成的多原子阴离子,是多聚卤素阴离子的一类。多碘化物指含有多碘离子的化合物。.

新!!: 离子和多碘化物 · 查看更多 »

多胺

多胺(英語:polyamines),又稱多元胺,是一種具有兩個或多個主要胺基(-NH2)的有機化合物。 這類的化合物包含一些合成物質,可以做為化學工業中重要的原料,像是乙二胺()、1,3-二氨基丙烷()、六亞甲基二胺()。它還包括許多物質可以在真核生物、原核生物中發揮重要的作用,例如腐胺()、屍胺()、亞精胺()、精胺()。 截至2004年,沒有發現任何的偕二胺在同一個碳原子上具有兩個或多個取代基團,但是取代的衍生物則是已知的,例如四甲基乙二胺()。 哌嗪是環狀多胺的其中一個例子,聚乙烯亞胺則是基於氮丙環單體的聚合物。.

新!!: 离子和多胺 · 查看更多 »

多酚抗氧化劑

多酚抗氧化劑是一種抗氧化劑,特徵是擁有多種苯酚的功效。超過4000種不同的多酚抗氧化劑可以抵抗導致神經退化性疾病及一些心血管疾病的氧化應激。 多酚抗氧化劑的主要來源是可供攝取的,多在植物營養素食物中可以找到。例如大部份的莢果、果實如蘋果、黑莓、香瓜、櫻桃、蔓越莓、葡萄、梨、布冧、覆盆子及草莓、及蔬菜如綠色花椰菜、捲心菜、芹菜、洋蔥及香芹等都有豐富的多酚抗氧化劑。紅酒、巧克力、綠茶、橄欖油、蜂花粉及多種穀物都是其他的來源。攝取多酚抗氧化劑的主要好處是等同於攝取了多種不同的植物營養素。.

新!!: 离子和多酚抗氧化劑 · 查看更多 »

夏普

夏普(,商標:SHARP)是來自日本的跨國電子產品公司,為日本8大電機製造商之一,由早川德次在1912年9月5日於東京創立,1924年將總部移至大阪至今。在《财富》杂志於2015年评选的「全球500大企業」排行榜中,夏普名列第470名。 由於自2008年陷入長期虧損,因而尋求外部金援以擺脫經營困境。在2016年8月13日由鴻海科技集團以3,888億日圓取得66%的股權,納為鴻海旗下子公司,成為日本第一家被外資收購的大型電子製造商。.

新!!: 离子和夏普 · 查看更多 »

大型強子對撞機

大型強子對撞機(Large Hadron Collider,縮寫:LHC)是一座位於瑞士日內瓦近郊歐洲核子研究組織的對撞型粒子加速器,作為國際高能物理學研究之用。LHC已經建造完成,2008年9月10日開始試運轉,並且成功地維持了兩質子束在軌道中運行,成為世界上最大的粒子加速器設施。大型強子對撞機是一個國際合作計劃,由全球85國中的多個大學與研究機構,逾8,000位物理學家合作興建,經費一部份來自歐洲核子研究組織會員國提供的年度預算,以及參與實驗的研究機構所提撥的資金。 大型強子對撞機本預計於2008年10月21日開始進行低能量對撞實驗。但2008年9月19日,大型強子對撞機第三與第四段之間用來冷卻超導磁鐵的液態氦發生了嚴重的洩漏,據推測是由於聯接兩個超導磁鐵的接點接觸不良,在超導高電流的情況下融毀所造成的。依據歐洲核子研究組織的安全條例,必需將磁鐵升回到室溫後詳細檢查才能繼續運轉,這將需要三到四週的時間。要再冷卻回運作溫度,也是得經過三四週的時間,如此正好遇上預定的年度檢修時程,因此必須延遲開始運作的時間。 2009年11月23日,大型強子對撞機進行了在修復完成後的第一次試撞。 2015年4月5日,經過兩年的精心維護與升級,大型強子對撞機再度啟動,預計今年夏天將會進行13TeV質子質子碰撞實驗,探索未知領域,例如,尋找暗物質、分析希格斯機制、研究夸克-膠子等離子體等等。.

新!!: 离子和大型強子對撞機 · 查看更多 »

天王星

天王星是從太陽系由内向外的第七顆行星,其體積在太陽系排名第三(比海王星大),質量排名第四(比海王星輕)。其英文名稱Uranus來自古希臘神話的天空之神烏拉諾斯(),是克洛諾斯的父親,宙斯的祖父。与在古代就为人们所知的五顆行星(水星、金星、火星、木星、土星)相比,天王星的亮度也是肉眼可見的,但由於較為黯淡以及緩慢的繞行速度而未被古代的觀測者认定为一颗行星。直到1781年3月13日,威廉·赫歇耳爵士宣布發現天王星,从而在太陽系的現代史上首度擴展了已知的界限。這也是第一顆使用望遠鏡發現的行星。天文學符號為、♅(♅,Unicode編碼U+2645) 天王星和海王星的內部和大氣構成不同於更巨大的氣體巨星,木星和土星。同樣的,天文學家設立了不同的「冰巨行星」分類來安置她們。天王星大氣的主要成分是氫和氦,還包含較高比例的由水、氨、甲烷等結成的「冰」,與可以探测到的碳氫化合物。天王星是太陽系內大气层最冷的行星,最低溫度只有49K(−224℃)。其外部的大气层具有複杂的雲層結構,水在最低的雲層內,而甲烷組成最高處的雲層。相比较而言,天王星的内部则是由冰和岩石所构成。 如同其他的巨行星,天王星也有環系統、磁層和許多衛星。天王星的環系統在行星中非常獨特,因為它的自轉軸斜向一邊,幾乎就躺在公轉太陽的軌道平面上,因而南極和北極也躺在其他行星的赤道位置上。從地球看,天王星的環像是環繞著標靶的圓環,它的衛星則像環繞著鐘的指針(雖然在2007年與2008年該環看來近乎水平)。在1986年,來自太空探测器航海家2號的影像资料顯示天王星實際上是一顆平平無奇的行星,在其可見光的影像中沒有出现像在其他巨行星所擁有的雲彩或風暴。然而,近年內,隨著天王星接近晝夜平分點,地球上的觀測者发现天王星有季節變化的迹象和漸增的天氣活動。天王星上的風速可以達到每秒250公尺。 在西方文化中,天王星是太陽系中唯一以希臘神祇命名的行星,其他行星都依照羅馬神祇命名。.

新!!: 离子和天王星 · 查看更多 »

天王星大氣層

天王星的大氣層雖然還是以氫和氦為主要的成分,但與海王星相似,而不同於較大的氣體巨星木星和土星,它擁有的揮發性物質(類似於"冰"),像是水、氨和甲烷的比例較高。不同於木星和土星,天王星上層的大氣層之下被認為沒有金屬氫。取而代之的是,在內部應該是由氨、水和甲烷組成的"海洋",逐漸的轉換成以氫和氦為主的大氣層並混合在一起,而沒有很清楚的界線。由於這樣的差異,許多天文學家認為天王星和海王星應該自成一族,稱為冰巨星,以與木星和土星有所區別。 雖然沒有明確的定義天王星內部是否有固體的表面,天王星最外層被稱為大氣層的氣體部分,是很容易使用遙感設備偵測的。遙感設備能偵測到一帕氣壓之下300公里左右的深度,該處的氣壓大約是100 帕,溫度約為320K。纖細的行星環從大氣層延伸至2倍行星半徑之處,此處的行星半徑是以一大氣壓之處做為行星有名無實的表面。天王星的大氣可以區分為三層:高度從−300至 50 公里,氣壓從100至0.1帕的對流層;高度從50至4000 公里,氣壓在的平流層;以及從4000公里以上至距離表面高達50,000公里的增溫層;沒有散逸層。.

新!!: 离子和天王星大氣層 · 查看更多 »

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

新!!: 离子和天文學 · 查看更多 »

太阳

太陽或日是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000(1.392)公里,相當於地球直徑的109倍;質量大約是2千克(地球的333,000倍),約佔太陽系總質量的99.86% ,同時也是27,173,913.04347826(約2697.3萬)倍的月球質量。 从化學組成来看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2% 。 太陽的恆星光譜分類為G型主序星(G2V)。雖然它以肉眼來看是白色的,但因為在可见光的頻譜中以黃綠色的部分最為強烈,從地球表面觀看時,大氣層的散射使天空成為藍色,所以它呈現黃色,因而被非正式地稱為“黃矮星” 。 光譜分類標示中的G2表示其表面溫度大約是5778K(5505°C),V则表示太陽像其他大多數的恆星一樣,是一顆主序星,它的能量來自於氫融合成氦的核融合反應。太陽的核心每秒鐘聚变6.2億噸的氫。太陽一度被天文學家認為是一顆微小平凡的恆星,但因為銀河系內大部分的恆星都是紅矮星,現在認為太陽比85%的恆星都要明亮。太陽的絕對星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天體,視星等達到−26.74。太陽高溫的日冕持續的向太空中拓展,創造的太陽風延伸到100天文單位遠的日球層頂。這個太陽風形成的“氣泡”稱為太陽圈,是太陽系中最大的連續結構。 太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(最接近的一顆是紅矮星,被稱為比鄰星,距太阳大約4.2光年),太陽的質量在這些恆星中排在第四。 太陽在距離銀河中心24,000至26,000光年的距離上繞著銀河公轉,從銀河北極鳥瞰,太陽沿順時針軌道運行,大約2.25億至2.5億年遶行一周。由於銀河系在宇宙微波背景輻射(CMB)中以550公里/秒的速度朝向長蛇座的方向運動,这两个速度合成之后,太陽相對於CMB的速度是370公里/秒,朝向巨爵座或獅子座的方向運動。 地球圍繞太陽公轉的軌道是橢圓形的,每年1月離太陽最近(稱為近日點),7月最遠(稱為遠日點),平均距離是1.496億公里(天文学上稱這個距離為1天文單位) 。以平均距離算,光從太陽到地球大約需要经过8分19秒。太陽光中的能量通过光合作用等方式支持着地球上所有生物的生长 ,也支配了地球的氣候和天氣。人类從史前時代就一直認為太陽對地球有巨大影響,有許多文化將太陽當成神来崇拜。人类對太陽的正確科學認識進展得很慢,直到19世紀初期,傑出的科學家才對太陽的物質組成和能量來源有了一點認識。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太陽活动机制方面的未解之謎等待着人们来破解。 現今,太陽自恆星育嬰室誕生以來已經45億歲了,而現有的燃料預計還可以燃燒50億年之久。.

新!!: 离子和太阳 · 查看更多 »

太陽圈

太陽圈(heliosphere)是太陽所能支配或控制的太空區域。太陽圈的邊緣是一個磁性氣狀泡,並且遠遠的超出冥王星之外。從太陽"吹"出的電漿,也就是所謂的太陽風,創建和維護著這個鼓起的泡沫,並且抵抗來自銀河系的氫氣和氦氣,也就是外面的星際物質,滲入的壓力。太陽風從太陽向外流動,直到遭遇到終端震波,然後在那兒突然的減速。航海家太空船積極的探測太陽圈的邊界,穿越過震波和進入日鞘,這是要到達太陽圈最外層的邊緣,稱為日球層頂的過渡區。當太陽在空間中移動時,太陽圈的整體形狀是由星際物質控制的,它似乎不是一個完美的球形。以有限的資料用於未探勘過的自然界,已經推導出許多理論的架結構。 在2013年9月12日,NASA宣布航海家一號已經在2012年8月25日穿過太陽圈,當時它測量到的電漿密度突然增加了40倍。因為日鞘標誌著太陽風和其餘銀河系的一種邊界,可以說航海家一號已經離開太陽系,抵達星際空間。.

新!!: 离子和太陽圈 · 查看更多 »

孔蝕

孔蝕,或稱為斑蝕、麻點腐蝕,是金屬浸置在溶液時,發生的一種局部的腐蝕,會在金屬形成小孔洞。孔蝕的原動力為: 小區域成為陽極;其他表面區域成為陰極,形成局部的电化学反應。孔蝕不易偵測,且孔蝕可穿透至金屬內部,短時間卻減少質量甚微,危害不容忽視。.

新!!: 离子和孔蝕 · 查看更多 »

定量分析

需要测定物质(化合物)中各组分的相对含量的分析方法为定量分析。 一般需要先进行定性分析,确定物质组分后,再选择合适的分析方法进行定量分析,因为对不同的组分元素或离子,有不同的有效的分析方法,样品中是否含有干扰离子或元素,也是选择分析方法需要考虑的因素。由于定量分析可以确定组分的含量,所以有非常大的实际应用意义。 Category:分析化学.

新!!: 离子和定量分析 · 查看更多 »

定量构效关系

定量构效关系(QSAR)是一种借助分子的理化性质参数或结构参数,以数学和统计学手段定量研究有机小分子与生物大分子相互作用、有机小分子在生物体内吸收、分布、代谢、排泄等生理相关性质的方法。这种方法广泛应用于药物、农药、化学毒剂等生物活性分子的合理设计,在早期的药物设计中,定量构效关系方法占据主导地位,1990年代以来随着计算机计算能力的提高和众多生物大分子三维结构的准确测定,基于结构的药物设计逐渐取代了定量构效关系在药物设计领域的主导地位,但是QSAR在药学研究中仍然发挥着非常重要的作用。.

新!!: 离子和定量构效关系 · 查看更多 »

定性分析

定性分析的主要任务是确定物质(化合物)的组分,只有确定物质的组成后,才能选择适当的分析方法进行定量分析,如果只是为了检测某种离子或元素是否存在,为分别分析;如果需要经过一系列反应去除其他干扰离子、元素或要求了解有哪些其他离子、元素存在,为系统分析。 定性分析包括色谱法。 按照物质种类来分,定性分析分为定性无机分析和定性有机分析。 Category:分析化学.

新!!: 离子和定性分析 · 查看更多 »

定性无机分析

定性无机分析是分析化学中的一种用来寻找无机化合物中元素组成的分析方法。它主要来鉴定水溶液中的离子,因此,一些其他形式的物质在用标准方法分析之前,先要转化为水溶液中的离子形式。之后,溶液会加入多种试剂,通过化学反应来检测针对特定离子的可能出现的颜色变化、沉淀或其他可观现象。E.

新!!: 离子和定性无机分析 · 查看更多 »

宇宙線

宇宙線亦稱為宇宙射线,是來自外太空的帶電高能次原子粒子。它們可能會產生二次粒子穿透地球的大氣層和表面。射線這個名詞源自於曾被認為是電磁輻射的歷史。主要的初級宇宙射線(來自深太空與大氣層撞擊的粒子)成分在地球上一般都是穩定的粒子,像是質子、原子核、或電子。但是,有非常少的比例是穩定的反物質粒子,像是正電子或反質子,這剩餘的小部分是研究的活躍領域。 大約89%的宇宙線是單純的質子,10%是氦原子核(即α粒子),還有1%是重元素。這些原子核構成宇宙線的99%。孤獨的電子(像是β粒子,雖然來源仍不清楚),構成其餘1%的絕大部分;γ射線和超高能微中子只佔極小的一部分。 粒子能量的多樣化顯示宇宙線有著廣泛的來源。這些粒子的來源可能是太陽(或其它恆星)或來自遙遠的可見宇宙,由一些還未知的物理機制產生的。宇宙線的能量可以超過1020 eV,遠超過地球上的粒子加速器可以達到的1012至1013 eV,使許多人對有更大能量的宇宙線感興趣而投入研究。 經由宇宙線核合成的過程,宇宙線對宇宙中鋰、鈹、和硼的產生,扮演著主要的角色。它們也在地球上產生了一些放射性同位素,像是碳-14。在粒子物理的歷史上,從宇宙线中發現了正電子、緲子和π介子。宇宙線也造成地球上很大部份的背景輻射,由於在地球大氣層外和磁場中的宇宙線是非常強的,因此對維護航行在行星際空間的太空船上太空人的安全,在設計有重大的影響。.

新!!: 离子和宇宙線 · 查看更多 »

富勒烯

富勒烯(Fullerene)是一種完全由碳组成的中空分子,形狀呈球型、椭球型、柱型或管状。富勒烯在结构上与石墨很相似,石墨是由六元环组成的石墨烯层堆积而成,而富勒烯不仅含有六元环还有五元环,偶尔还有七元环。 1985年英国化学家哈罗德·沃特尔·克罗托博士和美国科学家理查德·斯莫利在萊斯大學制备出了第一种富勒烯,即「C60分子」或「富勒烯」,因为这个分子与建筑学家巴克明斯特·富勒的建筑作品很相似,为了表达对他的敬意,将其命名为「巴克明斯特·富勒烯」(巴克球)。饭岛澄男早在1980年之前就在透射电子显微镜下观察到这样洋葱状的结构。自然界也是存在富勒烯分子的,2010年科学家们通过史匹哲太空望远镜发现在外太空中也存在富勒烯。 “也许外太空的富勒烯为地球提供了生命的种子”。 在富勒烯发现之前,碳的同素异形体的只有石墨、钻石、无定形碳(如炭黑和炭),它的发现极大地拓展了碳的同素异形体的数目。富勒烯和碳纳米管独特的化学和物理性质以及在技术方面潜在的应用,引起了科学家们强烈的兴趣,尤其是在材料科学、电子学和纳米技术方面。 Biosphère Montréal.jpg|建筑学家理查德·巴克明斯特·富勒设计的加拿大1967年世界博覽會球形圆顶薄壳建筑 Buckminsterfullerene-perspective-3D-balls.png|拥有60个碳原子的巴克明斯特·富勒烯C60 Football (soccer ball).svg|现代足球与C60有着非常类似结构.

新!!: 离子和富勒烯 · 查看更多 »

尼古拉斯反应

尼古拉斯反应(Nicholas reaction),是指八羰基二钴配体稳定的炔丙基位碳正离子与一系列亲核试剂进行的亲核取代反应。.

新!!: 离子和尼古拉斯反应 · 查看更多 »

尖端放電

尖端放電為電暈放電(corona discharge)的其中一種,造成此現象的原因主要為導體尖端周圍的空氣被導體產生的電場電離。當導體周圍電場的值(Potential gradient)夠高來形成一個可作為導體的區域時,將會發生放電現象,但其電場值並不足以引起電壓崩潰(Electrical breakdown)或對附近的物件造成電弧現象。在空氣中,我們通常會在擁有高電壓的導體尖端附近看到。在高壓系統中,自發性的尖端放電會消耗功率,而在尖端放電下的高化學活性反應中,會產生有害的物質,例如臭氧。可控制的尖端放電現象常被用在過濾及印刷等等製程中。.

新!!: 离子和尖端放電 · 查看更多 »

尖晶石

尖晶石是一类矿物的总称,具有通式XY2O4,为等轴晶系,氧原子为立方紧密堆积,X与Y占晶格中的部分八面体和四面体空隙。X、Y可以是二价、三价或四价的阳离子,通常为镁、锌、铁、锰、铝、铬、钛和硅。尖晶石中的氧也可为其他氧族元素所替代。 尖晶石也可指这一类化合物中的一种,镁铝尖晶石,成分为MgAl2O4。.

新!!: 离子和尖晶石 · 查看更多 »

不相容成分

不相容成分是一个于岩石学和地球化学中使用的术语。 在对部分熔融的地幔和地壳以及岩浆和岩浆衍生物的分析结晶过程中,一些难以进入矿物中阳离子聚集区域的元素集中在液态的熔浆里。不相容成分是指因大小或者电荷而不能进入矿物中阳离子聚集区域的元素,它是由介于造岩矿物和岩浆之间小于1的分配系数确定的。 有两组很难转为固体阶段的元素以其简称而广为人知。一组元素含有较大的离子半径,这组包括钾,铷,铯,锶,钡(这组元素又称为LILE,或者大型亲岩元素离子),另一组元素含有较高的离子化合价,这组包括锆,铌,铪,稀土元素,钍,铀和钽(这组元素又称为HFSE,或者高场强元素)。 Category:地球化学 Category:矿物学.

新!!: 离子和不相容成分 · 查看更多 »

两亲分子

两亲分子(amphiphile)是一个描述一类同时具有亲水性以及亲脂性这两种性质的化合物的术语。这类物质被称为是“两亲性”的。这成为了众多化学与生物化学研究领域的理论基石,尤其是脂多型性。.

新!!: 离子和两亲分子 · 查看更多 »

中子

| magnetic_moment.

新!!: 离子和中子 · 查看更多 »

帶電粒子

帶電粒子在物理學是指帶有電荷的粒子。它可以是離子,像是有多餘或欠缺電子的分子,或原子與質子的聯繫。它也可以是電子或質子本身,或是其它的基本粒子,像是正電子。它也可能是沒有電子的原子核,像是α粒子、氦核。中子沒有電荷,所以除非它們是帶正電的原子核的一部分,否則他們不是帶電粒子。電漿是原子核和電子分開的帶電粒子的集合體,但也可以是含有大量帶電粒子的氣體。電漿因為性質和固體、液體和氣體都不同,所以被稱為物質的第四態。 在極區常見的極光也是一種電漿,詳見極光。.

新!!: 离子和帶電粒子 · 查看更多 »

主動運輸

主动运输(active transport )是一种物质逆电化学梯度的跨细胞膜的运动。在细胞中,这一过程通常伴随着高浓度的分子积累,如金属离子、葡萄糖和氨基酸。相對於被動運輸,主动运输的进行需消耗能量。.

新!!: 离子和主動運輸 · 查看更多 »

七角柱

在幾何學中,七角柱是一種多面體,是柱體的一種,是指底面是七邊形的柱體。所有七角柱都有9個面,21個邊和14個頂點。所有七角柱都是九面體 如果七角柱每個面都是正多邊形,則它是半正多面體。 正七角柱可以視為一種半正多面體,底面為正七邊形,其施萊夫利符號可以用t或x表示,t是指正七角柱可以藉由七面形透過截角變換構造而來,其在中用2 7 | 2表示。 正七角柱是一種比較特殊的多面體,由於他具有一個非整數的有理數角度,且與正六角柱接近,因此在工程學上有些應用,例如正七角柱可以用在特殊汽缸的設計、正七角柱的稜鏡可以用在干涉濾光器的光信號多路復用器中。除此之外,正七角柱也出現在自然界中,例如碘合氮化硼化鎂(Mg825I)的碘離子為正七角柱的晶體結構,例如伊樂藻,有91%的親本細胞為正七角柱。 此外,也有人設計七角柱形的魔術方塊,或是經過截角變換的七角柱。 七角柱有二種兩面角,其中一個為90度,即頂面(或底面)與側面的夾角,另一個是128\frac度,即兩側面的夾角。.

新!!: 离子和七角柱 · 查看更多 »

布拉德福蛋白質定量法

布拉德福蛋白質定量法(Bradford protein assay)為一種利用光譜學技術分析溶液中蛋白質濃度的技術。本定量法會受待測胺基酸序列影響,此方法為醫生所開發。.

新!!: 离子和布拉德福蛋白質定量法 · 查看更多 »

三价铁离子

三价铁离子(Fe3+)是一种常见的铁的离子,主要存在于铁盐及其溶液中,如氯化铁。Fe3+具有较强的氧化性(EΘ.

新!!: 离子和三价铁离子 · 查看更多 »

三氟乙酸盐

三氟乙酸盐是三氟乙酸和阳离子形成的盐,这些盐有较好的水溶性。.

新!!: 离子和三氟乙酸盐 · 查看更多 »

三氢阳离子

氢分子合质子、三氢阳离子或H3+,是一种由三个氢原子构成的阳离子。它是宇宙中最丰富的离子之一,因为星际空间温度和密度均很低,所以它在星际介质中能稳定存在。尽管星际介质中压强低至10-15大气压,平均自由程很大,但依然有機率发生碰撞而产生其他离子或分子。因此H3+在星际介质气相化学中所起的作用是其他任何离子无法替代的。这种离子也是最简单的三原子离子,因为其中只有两个价电子。这也是形成三中心二电子键最简单的例子。.

新!!: 离子和三氢阳离子 · 查看更多 »

一方通行

一方通行(,)是《魔法禁書目錄》的第二主角,科學側男主角之一,也是其外传《科学一方通行》及《偶像一方通行》的主角。 「一方通行」並非其本名,其本名不詳,唯從他口中得知,其姓氏有兩個字,名字有三個字,於作者草稿設定中曾以「鈴科百合子」作為女性登場,上条當麻也在原作第6集中猜想這名字是不是一方通行真正的名字。由於極少數人知道他的真實姓名,因此大部分的人都稱他為「一方通行」。 一方通行為「這本輕小說真厲害!2011年」人氣男性角色排名第二位。.

新!!: 离子和一方通行 · 查看更多 »

丙酮酸

丙酮酸(pyruvic acid,化學式:CH3COCOOH)是一種α-酮酸,其燃点为82 °C,在生物化學代謝途徑中扮演重要角色。丙酮酸的羧酸鹽陰離子(carboxylate anion)被稱之為丙酮酸鹽(pyruvate,這個字在中文裡也經常簡單地稱作丙酮酸)。.

新!!: 离子和丙酮酸 · 查看更多 »

乳或稱乳汁,俗作奶,是一種哺乳類(包括單孔目)雌性動物(有時為雄性)乳腺的分泌物,也是哺乳類特有的能力之一。它營養豐富,色白、不透光,主要功能是在幼兒能夠自行消化其他食物(即斷奶)之前提供哺育。透過調節能量產生的代謝過程,尤其是葡萄糖和胰島素的代謝,乳汁能夠保護幼兒的消化道,不受病原體、毒素和發炎症狀的侵害,有益幼兒健康。在現今絕大多數人類文明,家畜的乳汁也供人類食用,其中以牛乳為大宗,但也有綿羊、山羊、馬和駱駝等乳源。 动物刚生产后所分泌的乳汁称为初乳,是用于哺育刚出生的幼儿的,含有多种抗体,可以降低幼儿生病的可能性。人类乳汁一般用于母乳喂养。乳汁的成分依动物种类不同而有所差异,但主要成分相同,包括水、離子(食鹽、礦物質和鈣質)、醣類(乳糖)、脂肪和蛋白質。海洋哺乳動物,例如鯨魚,其乳汁比陸生哺乳動物含有更高的脂肪和營養物質。 乳汁是許多乳製品的原料,例如奶油、-zh-tw:起司;zh-cn:奶酪;zh-hk:芝士;-和酸奶。它也常用於乳製品加工產業,或製造化工和醫藥產品,如煉乳、奶粉、酪蛋白和乳糖等。常温下的牛乳的pH值介于6.5到6.7之间,因此会稍稍带酸。.

新!!: 离子和乳 · 查看更多 »

乙二胺四乙酸

乙二胺四乙酸(Ethylenediaminetetraacetic acid),常缩写为EDTA,是一种有机化合物。它是一個六齿配體,可以螯著多種金屬離子。它的4個酸和2個胺的部分都可作為配體的齿,與錳(II)、銅(II)、鐵(III)及鈷(II)等金屬離子組成螯合物。.

新!!: 离子和乙二胺四乙酸 · 查看更多 »

乙硼烷

乙硼烷是化学式为B2H6的无机化合物,是目前能分离出的最简单的硼烷。乙硼烷室温下为无色气体,可以与空气形成爆炸性混合物,并且在潮湿空气中自燃。有剧毒。 乙硼烷具有较高的化学活性,容易与各种无机分子和有机分子起反应。这不仅是因为乙硼烷生成热为正值(即所谓吸热化合物),还由于硼对氟、氧、氮、磷等电负性强的元素有很大的亲合力张青莲等。《无机化学丛书》第二卷。北京:科学出版社。。.

新!!: 离子和乙硼烷 · 查看更多 »

乙烯二酮

乙烯二酮也称为“二氧化二碳”,是一种暂时未被发现的假想碳氧化物。该化合物的分子式为C2O2, 结构式为O.

新!!: 离子和乙烯二酮 · 查看更多 »

乙炔银

乙炔银是一种无机化合物,化学式为Ag2C2,是一种金属乙炔化合物。该化合物可被视为弱酸(乙炔)的盐。盐的阴离子是两个三键相连的碳原子。.

新!!: 离子和乙炔银 · 查看更多 »

乙酰乙酸铝

乙酰乙酸铝是一个铝离子与三个乙酰乙酸阴离子形成的配合物,化学式C18H27AlO9,它在医学上用作抗酸药。 Category:抗酸药 Category:乙酰乙酸盐.

新!!: 离子和乙酰乙酸铝 · 查看更多 »

乙酸

乙酸,也叫醋酸、冰醋酸,化学式CH3COOH,是一种有机一元酸和短链饱和脂肪酸,为食醋内酸味及刺激性气味的来源。纯正而且无水的乙酸(冰醋酸)是无色的吸湿性固体,凝固点为16.7℃(62℉),凝固后为无色晶体。尽管乙酸是一种弱酸,但是它具有腐蚀性,其蒸汽对眼和鼻有刺激性作用,聞起來有一股刺鼻的酸臭味。 乙酸是一种简单的羧酸,由一個甲基一個羧基組成,是一种重要的化学试剂。在化学工业中,它被用来制造聚对苯二甲酸乙二酯,后者即饮料瓶的主要部分。乙酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维和织物。家庭中,乙酸稀溶液常被用作除垢剂。食品工业方面,在食品添加剂列表E260中,乙酸是规定的一种酸度调节剂。 每年世界范围内的乙酸需求量在650万吨左右。其中大约150万吨是循环再利用的,剩下的500万吨是通过石化原料直接制取或通过生物发酵制取。.

新!!: 离子和乙酸 · 查看更多 »

乙酸盐

乙酸盐俗称醋酸盐,是乙酸所成的盐,含有乙酸根离子CH3COO−,即乙酸去掉羧基质子后形成的阴离子。.

新!!: 离子和乙酸盐 · 查看更多 »

乙酸铀酰锌

乙酸铀酰锌(化学式:ZnUO2(CH3COO)4),俗称醋酸铀酰锌,是乙酸铀酰与锌生成的复盐。有放射性。用作钠离子的鉴定试剂。.

新!!: 离子和乙酸铀酰锌 · 查看更多 »

亚硝胺

亞硝胺、亞硝酸胺(Nitrosamine)是一類通式為R1N(–R2)–N.

新!!: 离子和亚硝胺 · 查看更多 »

亚硫酸盐

亚硫酸盐是亚硫酸所成的盐,含有亚硫酸根离子SO32−。.

新!!: 离子和亚硫酸盐 · 查看更多 »

亚硫酸氢根

亞硫酸氢根离子(英語:Bisulfite,IUPAC建議命名:hydrogen sulfite)是一種无机離子,化學式為HSO3−。.

新!!: 离子和亚硫酸氢根 · 查看更多 »

亚碳酸根

亚碳酸根(Carbonite,化学式:,系統命名法:λ2-methanebis(olate)及dioxidocarbonate(2-))是一种双自由基無機阳离子,IUPAC名为二氧化亚甲基卡宾。它是假設性的亚碳酸()的共轭碱。因为它是双自由基,所以不可能存在于溶液中,而是被水氧化成碳酸。该反应放热并使碳酸分解为二氧化碳和水。这中假想的离子可用于解释二氧化铈吸收一氧化碳的机理。.

新!!: 离子和亚碳酸根 · 查看更多 »

亚瑟·爱丁顿

亚瑟·斯坦利·爱丁顿爵士,OM,FRS(Sir Arthur Stanley Eddington,英語發音,),英国天體物理學家、数学家,是第一个用英语宣讲相对论的科学家,自然界密实(非中空)物体的发光强度极限被命名为“爱丁顿极限”。 在第一次世界大战期间,英国人并不太清楚德国的科学进展,爱丁顿在1919年写了“重力的相对理论报导”,第一次向英语世界介绍了爱因斯坦的广义相对论理论。.

新!!: 离子和亚瑟·爱丁顿 · 查看更多 »

亚胺离子

亚胺离子(Iminium ion)是一类具有 + 通式的正离子,可看作是亚胺的质子化或烷基化产物。 亚胺离子很容易由胺与羰基化合物缩合生成,它实际上是一种掩蔽了的α-氨基碳正离子,即氨基烷基化试剂。 涉及亚胺离子中间体的有机反应有:.

新!!: 离子和亚胺离子 · 查看更多 »

庚搭烯

庚搭烯化学式为C12H10,是一种二环反芳香性有机化合物,其分子式为C12H10,由二个七元环两两相并而成。 庚搭烯的阴离子可以与两个锂离子作用而使其稳定性增强。.

新!!: 离子和庚搭烯 · 查看更多 »

亞硝醯基

亞硝醯基離子是NO + 。.

新!!: 离子和亞硝醯基 · 查看更多 »

亞硝酸甲酯

亞硝酸甲酯(methyl nitrite)是化学式為CH3ONO的有机化合物,標準狀態下為氣體,是最簡單的亚硝酸酯。.

新!!: 离子和亞硝酸甲酯 · 查看更多 »

亲电芳香取代

亲电芳香取代反应是指芳香环系上的取代基(通常是氢原子)被亲电试剂取代的反应。该反应中最重要的类型包括芳香环系的硝化反应、卤代反应、磺化反应以及傅-克反应。.

新!!: 离子和亲电芳香取代 · 查看更多 »

二乙二醇二甲醚

二乙二醇二甲醚,或双(2-甲氧基乙基)醚,是一种高沸点的非质子极性溶剂。它是一种无色透明液体,具有微弱醚类气味,可与水、醇类、二甲醚以及烃类溶剂混溶。 它可由二乙二醇一甲醚在氢氧化钠存在下,与硫酸二甲酯或氯甲烷反应制得;也可由一缩二醇与甲醇反应制得。 二乙二醇二甲醚主要作为有机化学反应中的溶剂。它能够螯合小的阳离子基团,使阴离子更易于反应。所以在使用金属有机试剂的反应,如格氏反应或使用金属氢化物进行的还原反应(如硼氢化反应)中使用本化合物可能能够显著的提高反应速率。 它在高pH下的稳定性和高沸点使其非常适合作为有强碱参与的反应的溶剂或需要较高温度的反应的溶剂。 Category:乙二醇醚 Category:螯合配体.

新!!: 离子和二乙二醇二甲醚 · 查看更多 »

二元化合物

二元化合物指包含兩种不同元素的化合物,如NaCl(氯化钠)和NaF(氟化鈉)。.

新!!: 离子和二元化合物 · 查看更多 »

二噁英

--(),即1,4-二氧杂环己二烯,為一種单环有機化合物,是一種在工業上無實際用途的副產物。二噁英與其衍生化合物的毒性各有不同,另外此類化合物因具脂溶性(liposolubility)之故,會積聚在動物脂肪組織及植物的某些部位。 --的化學結構與屬於(,-,PCDDs)類化合物的(,PCDF)相似,常写成「PCDD/Fs」或俗称为「戴奧辛」(dioxins),包含與多氯聯苯(,PCBs)化學組成、毒性相近的碳、氯、苯有機物,屬(,PHCs)。,一般來說廣義的「二噁英」一詞泛指含有前述結構的衍生化合物,例如橙劑中的雜質,常被使用於動物實驗的「四氯雙苯環二噁英」(,TCDD)。.

新!!: 离子和二噁英 · 查看更多 »

二茂铁

二茂铁(英文:Ferrocene),或称环戊二烯基铁,是分子式为Fe(C5H5)2的有机金属化合物,室溫下會微量昇華因而帶有似樟腦的特殊氣味 。二茂铁是最重要的金属茂基配合物,也是最早被发现的夹心配合物,包含两个环戊二烯负离子以π电子与铁原子成键。.

新!!: 离子和二茂铁 · 查看更多 »

二次電子

二次電子(Secondary electrons),又称次级电子,是描述物體表面被一主要輻射照射後,發射出的低能量產物電子。该主要輻射可以是具有足夠能量的離子、電子或是光子。二次電子屬於二次發射(:en:Secondary emission)的一種。.

新!!: 离子和二次電子 · 查看更多 »

二氟化氙

二氟化氙(化学式:XeF2)是一种稳定的氙化合物,可长期处放在镍制容器中或干燥的石英和玻璃器皿中而不发生变化。同其他氟化氙相比较,二氟化氙是一种温和的氧化剂和氟化剂,可生成多种氙化合物。.

新!!: 离子和二氟化氙 · 查看更多 »

二氧化锰

二氧化锰(化学式:MnO2)为黑色或棕色的固体,是锰最稳定的氧化物,经常出现于软锰矿及锰结核中。軟錳礦是含錳的主礦物;錳結核(海底岩石凝固物)也含有錳的成分。二氧化锰主要用途为制造干电池,如碳锌电池和碱性电池;也常在化学反应中作为催化剂,如製造氧氣;或作为酸性溶液中的强氧化剂。也可以作為有機合成中的試劑(氧化劑),例如用於烯丙醇的氧化。二氧化錳也用作顏料,並作為其它錳化合物如高锰酸钾(KMnO4)的前體。在1967年共使用了500000吨的软锰矿。α多晶型物中的二氧化锰可以在氧化錳八面體(多個八面體)之間的“隧道”或“通道”中併入多種原子(以及水分子)。人們對於α-MnO2作為鋰離子電池陰極的可能性有相當大的興趣。.

新!!: 离子和二氧化锰 · 查看更多 »

云室

雲室是個用來偵測游離輻射的粒子偵測器。由英國物理學家查爾斯·威耳遜發明,因此又稱為威爾遜雲室。最簡單的雲室,只是一個密封的環境,裡面充滿過飽和的水蒸氣或酒精。當一束帶電粒子(α粒子或β粒子)與雲室內的混合物相互作用時,會將混合物離子化,造成的離子會扮演雲凝結核的角色,使離子的周圍產生霧氣(因為這些混合物剛好正處於凝結點)。帶電荷粒子走過的時候,會產生很多離子,所以就留下了它們走過的軌跡。這些軌跡的形狀獨特(如α粒子的軌跡較闊,顯示出碰撞造成的彎轉痕跡,β粒子較細與直)。當施加垂直的均勻磁場於雲室時,這些帶電粒子會偏轉,帶正電的偏轉向一邊,帶負電的會偏轉向另一邊,遵守洛侖茲力定律。 雲室對早期次原子研究是非常重要的,但目前已被其他粒子檢測器所取代,例如氣泡室。.

新!!: 离子和云室 · 查看更多 »

互变异构体

互变异构是某些有机化合物的结构在两种官能团异构体间产生平衡互相转换的现象,相应的异构体则称为互变异构体。大多数互变异构都涉及氢原子或质子的转移,以及单键向双键的转变。互变异构体在平衡中的分布与具体的因素有关,包括温度、溶剂和pH值等。 互变异构可被以下因素催化:.

新!!: 离子和互变异构体 · 查看更多 »

五氟合氙酸四甲基铵

五氟合氙酸四甲基铵(化学式:N(CH3)4XeF5)是一个氙化合物,由N(CH3)4+阳离子和XeF5−阴离子组成。它由四甲基氟化铵和四氟化氙反应制得。其中XeF5−離子为平面五邊形(AX5E2)结构,是首次报导具有该结构的粒子。The pentafluoroxenate(IV) anion, XeF5−: the first example of a pentagonal planar AX5 species, Christe K. O., Curtis E. C., Dixon D. A., Mercier H. P.,. Sanders J. C. P, Schrobilgen G. J.,J.

新!!: 离子和五氟合氙酸四甲基铵 · 查看更多 »

五氟化锑

五氟化銻是化學式為 SbF5 的无机化合物。它是無色黏稠液體,是很强的路易斯酸,而且是超強酸氟銻酸(目前所知最強的酸)的组分。這個化合物的一些有趣的特徵為它的路易斯酸性,它幾乎與目前已知的所有化合物產生反應。.

新!!: 离子和五氟化锑 · 查看更多 »

代謝疾病

代謝疾病(代謝病)是一種影響人類(或動物)細胞生產能量的障礙,又稱為新陳代謝失調症。大部份代謝疾病都是遺傳性疾病,而有部份是從飲食、毒素、感染等而有。遺傳性的代謝疾病一般稱為先天性代謝缺陷。一般來說,遺傳性的代謝疾病都是先天性缺少或不正常構成在細胞代謝過程中重要的酶。.

新!!: 离子和代謝疾病 · 查看更多 »

价层电子对互斥理论

价层电子对互斥理论(英文:Valence Shell Electron Pair Repulsion,簡稱為VSEPR),是一个用来预测单个共价分子形态的化学模型。理论通过计算中心原子的价层电子数和配位数来预测分子的几何构型,并构建一个合理的路易斯结构式来表示分子中所有键和孤对电子的位置。.

新!!: 离子和价层电子对互斥理论 · 查看更多 »

介電質

介電質(dielectric)是一種可被電極化的絕緣體。假設將介電質置入外電場,則束縛於其原子或分子的束縛電荷不會流過介電質,只會從原本位置移動微小距離,即正電荷朝著電場方向稍微遷移位置,而負電荷朝著反方向稍微遷移位置。這會造成介電質電極化,從而在介電質內部產生反抗電場,減弱整個介電質內部的電場。假若介電質是由弱鍵結的分子構成,則這些分子不但會被電極化,也會改變取向,試著將自己的對稱軸與電場對齊。 介電質通常指的是可被高度電極化的物質。在原子與分子層次,極化性可以用來衡量微觀的電極化性質,從極化性可以理論計算出介電質的電極化率和電容率,兩個巨觀的電極化性質。或者,可以直接從實驗測量出介電質的電極化率和電容率。假若置入了具有高電容率的介電質,則平行板電容器的電容會大幅增加,儲存於兩塊金屬平行板的正負電荷也會增加 。 介電質的用途相當廣泛。介電質的電傳導能力很低,再加上具備有很好的(dielectric strength)性質,就可以用來製造電絕緣體。另外介電質可被高度電極化,是優良的電容器材料。對於介電性質的研究,涉及了物質內部電能和磁能的儲存與耗散。用於解釋電子學、光學和固態物理的各種各樣現象,這研究極端重要。 回應麥可·法拉第的請求,英國科學家威廉·暉巍(William Whewell)命名所有可被電極化的絕緣體為介電質。.

新!!: 离子和介電質 · 查看更多 »

仙茅甜蛋白

仙茅甜蛋白(Curculin)是一种能引起甜味的蛋白质,该蛋白在1990年首次被发现并分离出来。该蛋白存在于仙茅科植物宽叶仙茅(Curculigo latifolia)的果实中,该植物原产地是马来西亚,有时候也简称仙茅。和神秘果蛋白一样,仙茅甜蛋白也能引起味觉改变。然而不一样的是,它本身是甜的。在舌头接触该蛋白之后,水以及酸性溶液都能够引起甜味。近年来在西方,人们越来越多的用Curculigo来指代这种植物。.

新!!: 离子和仙茅甜蛋白 · 查看更多 »

伊翁

#重定向 离子.

新!!: 离子和伊翁 · 查看更多 »

伪科学

伪科学(pseudoscience),又称假科學、壞科學、疑似科学,是指任何经宣称为科学,或描述方式看起来像科学,但实际上并不符合科学方法基本要求的知识、缺乏支持证据,禁不起可信性测试,或缺乏科学形式,For example, Hewitt et al.

新!!: 离子和伪科学 · 查看更多 »

強力黴素

強力黴素(Doxycycline,又稱多西环素、去氧羥四黴素)是一種抗生素,藉由進入細菌體內,與細菌筴膜上之運輸蛋白結合完成阻斷菌體生理功能,並阻斷核糖體合成蛋白質,達到抗菌效果。主要用於治療細菌感染(如黴漿菌、披衣菌等)及幫助控制青春痘,亦可做瘧疾預防藥物,取代已出現抗藥性的氯喹(Chloroquine)與甲氟喹(Mefloquine);口服強力黴素可能發生之副作用包括噁心、腹瀉、對陽光產生敏感,因強力黴素會吸收人體內的鈣離子與鐵離子的緣故,會使成長孩童牙齒變黃及延緩骨骼生長,及影響肝功能等。 強力黴素不建議使用於懷孕及成長孩童,以避免孩童牙齒變黃及骨骼生長遲緩。嚴重肝功能不良者應小心使用強力黴素,而曾對強力黴素過敏者不可使用。強力黴素的服藥需知,包括強力黴素在空腹時服用吸收最好,但若發生噁心及腸胃不適,則可與食物併服(進食後立即服藥),以減少副作用;服用強力黴素前後兩小時內,勿服用含二價或三價陽離子藥物或食物(如:胃藥、鈣片、鐵劑、牛奶等);使用強力黴素可能會對陽光產生過敏,因此服藥後應避免直接日曬,外出時應做好防曬措施。.

新!!: 离子和強力黴素 · 查看更多 »

弗伦克尔缺陷

弗伦克尔缺陷(英文 Frenkel defect 或 Frenkel disorder )是指晶体结构中由于原先占据一个格点的原子(或离子)离开格点位置,成为間隙原子(或离子),并在其原先占据的格点处留下一个空位(晶格空位),这样的晶格空位-間隙缺陷对就称为弗伦克尔缺陷。此种點缺陷因苏联物理学家雅科夫·弗伦克尔得名。 譬如,一个由X和M两种元素组成的离子晶体,倘若M离子受到某种外界激发离开了它所在的M离子亚点阵格点,但X离子亚点阵未发生改变,此时引起的离子晶格空位数和間隙缺陷数应相等。 下图是氯化钠(NaCl)晶体结构中的弗伦克尔缺陷示意图,图中示出的是二维情况。.

新!!: 离子和弗伦克尔缺陷 · 查看更多 »

弗朗西斯·阿斯顿

弗朗西斯·威廉·阿斯顿(Francis William Aston,),英国化学家、物理学家,英国皇家学会院士,俄罗斯科学院荣誉院士。由于“借助自己发明的质谱仪发现了大量非放射性元素的同位素,以及阐明了整数法则”,他被授予1922年诺贝尔化学奖。.

新!!: 离子和弗朗西斯·阿斯顿 · 查看更多 »

开尔文滴水起电机

开尔文滴水起电机是一种静电起电机,於1867年由英国科学家开尔文爵士威廉·汤姆森发明。开尔文将这种装置用于他的滴水冷凝器。该装置有时也被称为开尔文水力发电机、开尔文静电发生器或开尔文爵士的雷电。这个装置通过静电感应,用滴落的水滴,在一个互相关联的、带相反电荷的系统中产生电压差。它唯一的用途就是在物理教学中演示静电的原理。.

新!!: 离子和开尔文滴水起电机 · 查看更多 »

低价镁化合物

低价镁化合物,指镁元素在其中的氧化态为+1的化合物,近年来已制得稳定的Mg(I)化合物,也是首次发现碱土金属能表现出稳定的+1氧化态 。.

新!!: 离子和低价镁化合物 · 查看更多 »

低電離星系核

低電離星系核(LINER,low-ionization nuclear emission-line region)是依據星系核心排放的譜線定義的一種星系。這種類型譜線包括來自低電離或中性原子的發射譜線,像是O、O+、N+和S+。相反的,來自強電離原子的發射線,像是O++、Ne++和He++,是相對的較弱 。這種星系核最早是迪莫西·赫克曼在一系列發表於1980年的星系核譜線論文中的第三篇中首度確認的。.

新!!: 离子和低電離星系核 · 查看更多 »

低蛋白飲食

低蛋白飲食(英語:Low-protein diet),是指當身體不能有效排除代謝廢物時,透過調整飲食當中蛋白質的攝取,達到減少代謝廢物累積、延緩疾病惡化的作用。主要用於先天代謝疾病,如苯丙酮尿症與高胱胺酸尿症;同時也適用於肝腎功能差的病患。在降低蛋白質攝取時,同時也必須維持身體必須營養素:因為攝取過少蛋白質可能會影響鈣離子的恆定,進而增加骨折的風險;在肝臟疾患當中也會影響氮離子的平衡。 隨著每種疾病的症狀與嚴重程度不同,目前對於低蛋白飲食沒有統一的標準。若攝取過多蛋白質,由於體內無法儲存,必須要透過脫胺作用(去除胺基)代謝掉胺基酸,亦即蛋白質的組成成分。因為脫胺作用是由肝與腎進行,所以會建議肝腎受損的病患減少蛋白質的攝取。另外,胺基酸當中的甲硫胺酸和半胱胺酸含有硫的成分,因此若累積這兩種氨基酸,過多的硫離子則會在體內產生酸性的硫化物,並由骨頭分泌的鈣離子中和,使體內淨鈣離子含量降低。久而久之,就造成骨質密度下降。 苯丙酮尿症的病患體內缺乏能將苯丙胺酸轉為酪胺酸的酶,因此從必須減少飲食當中的氨基酸含量。高胱胺酸尿症則是涉及甲硫胺酸代謝的遺傳性疾病,導致半胱胺酸在體內累積,因此治療上會減少飲食當中的甲硫胺酸,並增加維他命B6的攝取。.

新!!: 离子和低蛋白飲食 · 查看更多 »

彭宁离子阱

彭宁离子阱是一个可以储存带电粒子的装置,它使用均匀轴向磁场和不均匀四极电场束缚离子。特别适合于精确测量离子和稳定的亚原子粒子的特性。为了测量电子磁矩,人们利用这种装置制造并研究了Geonium原子。根据最新进展,通过捕获量子比特,彭宁离子阱有希望实现量子计算和量子信息处理。彭宁离子阱被全球各大实验室广泛采用。比如在欧洲核子研究中心(CERN)反质子的储存就是使用的这种方法。.

新!!: 离子和彭宁离子阱 · 查看更多 »

彗尾

彗尾和彗髮是彗星在內太陽系受到太陽照射,從地球可以看見的結構,是由直接反射陽光的灰塵和從發射出光輝的離子化氣體兩種形成來源結合成的。多數的彗星都很暗淡,必須用望遠鏡才能看見,但是每十年左右,都會有幾顆亮到可以用裸眼直接看見的彗星。 每顆彗星的氣體和塵埃噴流形成的彗尾都是獨特的,指向的方向也都略有不同。塵埃尾會被拖曳在彗星軌道的後方,他經常會因為曲線的形狀而形成反尾。同時,由氣體構成的離子尾永遠都指向背向太陽的方向,因為這些氣體受到太陽風的影響遠比塵埃來得強烈,跟隨的是磁力線,而不是軌道的路徑。從地球觀測的視差有時會使彗尾看似指向相反的方向。 彗星固體的核心大小一般不會超過50公里的直徑,但是彗髮可以比太陽還要大,並且彗尾的長度可已超過1天文單位(1億5千萬公里)或是更長 。 對反尾的觀測在太陽風的發現上有著重大的貢獻。古中国在对彗星的长期观察中,注意到彗尾总是背向太阳,西元653年正史描述当彗星早上出现时,它的尾指向西,而当它晚上出现时,它的尾巴指向东,古書推斷是太阳的气将彗尾吹向背离太阳的方向。 離子尾的形成是太陽的紫外線輻射對彗髮產生光電效應的結果。一旦質點被游離,它們會獲得淨值為正的電荷,並且產生"誘導磁層"包圍著彗星。彗星和誘導磁場對向外流動的太陽風粒子形成一個障礙,彗星在軌道上相對於太陽風的速度是超音速的,因此在太陽風流動方向的彗星前端形成弓形震波。在這個弓形震波,彗星高濃度的離子(稱為"吸合離子")聚集並"載入"活動中的電漿與太陽磁場,而這些場線披覆在彗星的周圍形成了離子尾 。.

新!!: 离子和彗尾 · 查看更多 »

彗星

彗星(Comet,有時也被誤記為慧星)是由冰構成的太陽系小天體(SSSB),當他朝向太陽接近時,會被加熱並且開始釋氣,展示出可見的大氣層,也就是彗髮,有時也會有彗尾。這些現象是由太陽輻射和太陽風共同對彗核作用造成的。彗核是由鬆散的冰、塵埃、和小岩石構成的,大小從P/2007 R5的數百米至海爾博普彗星的數十公里不等,但大部分都不會超過16公里。 彗星的軌道週期範圍也很大,可以從幾年到幾百萬年。短週期彗星來自超越至海王星軌道之外的柯伊伯帶,或是與離散盤有所關聯 。長週期彗星被認為起源於歐特雲,這是在古柏帶外面,伸展至最近恆星一半距離上,由冰凍天體構成的球殼。長週期彗星受到路過恆星和銀河潮汐的引力攝動而直接朝向太陽前進。雙曲線軌道的彗星可能在進入內太陽系之前曾經被沿著雙曲線軌跡被拋射至星際空間,則只會穿越太陽系一次。來自太陽系外,在銀河系內可能是常見的系外彗星也曾經被檢測到。 彗星與小行星的區別只在於存在著包圍彗核的大氣層,未受到引力的拘束而擴散著。這些大氣層有一部分被稱為彗髮(在中央包圍著彗核的大氣層),其它的則是彗尾(受到來自太陽的太陽風電漿和光壓作用,從彗髮被剝離的氣體、塵埃、和帶電粒子,通常呈線性延展的部分)。然而,熄火彗星因為已經接近太陽許多次,幾乎已經失去了所有可揮發的氣體和塵埃,所以就顯得類似於小的小行星。小行星被認為與彗星有著不同的起源,是在木星軌道內側形成的,而不是在太陽系的外側。主帶彗星和活躍的半人馬小行星的發現,已經使得小行星和彗星之間的差異變得模糊不清。 ,已經知道的彗星有4,894顆,其中大約有1,500顆是克魯茲族彗星和大約484顆短週期彗星,而且這個數量還在穩定的增加中。然而,這只是潛在彗星族群中微不足道的數量:估計在外太陽系的儲藏所內類似的彗星體數量可能達到一兆顆。儘管大多數的彗星都是暗淡和不夠引人注目的,但平均大概每年會有一顆裸眼可見的彗星,其中特別明亮的就會被稱為"大彗星"。 在2014年1月22日,ESA科學家的報告首次明確的指出在矮行星穀神星,也是小行星帶中最大的天體,有水氣存在。這項檢測是通過赫歇爾太空望遠鏡使用遠紅外線技術完成的。此一發現是出人意料之外的,因為彗星,不是小行星,才會有這種典型的"噴流萌芽和羽流"。根據其中一位科學家的說法:"彗星和小行星之間的區隔是越來越模糊了"。 古代也有彗星出现的记录,古人一般認為彗星是凶兆。.

新!!: 离子和彗星 · 查看更多 »

体内酒精测定仪

体内酒精测定仪(breathalyzer)或呼气式酒精检测仪(breathalyser,breath和analyzer/analyser的混成詞)是一种根据呼气样本测定血液酒精濃度的设备。Breathalyzer是一个品牌名称(一个通用商標),属于发明家开发的酒精浓度测试仪。其在1954年5月13日被注册为商标,但许多人使用该术语指代测量血液酒精濃度的任何通用设备。.

新!!: 离子和体内酒精测定仪 · 查看更多 »

微电子学

微电子学(Microelectronics)是研究在固体(主要是半导体)材料上构成的微小化电路,子系统及系统的电子学分支。微电子学作为电子学的一门分支学科,主要是研究电子或离子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的学科。微电子学是以实现电路和系统的集成为目的的。微电子学中实现的电路和系统又成为集成电路和集成系统,是微小化的;在微电子学中的空间尺寸通常是以微米(μm,1μm.

新!!: 离子和微电子学 · 查看更多 »

微通道板

微通道板 (Microchannel plate, MCP) 是一種二維平面的真空偵測器,通常被用來偵測帶電粒子,如電子或離子,也可以測得高速的中性粒子,以及在紫外光和X光範圍的光子。.

新!!: 离子和微通道板 · 查看更多 »

俞汝勤

俞汝勤,湖南长沙人,1935年出生,1959年毕业于苏联列宁格勒大学化学系,中国科学院院士,曾任湖南大学校长。.

新!!: 离子和俞汝勤 · 查看更多 »

信雜比 (磁振造影)

本條目主要介紹磁振造影方面的信雜比問題,欲瞭解原始信號處理方面的信雜比概念,請參見信雜比。 信雜比或稱訊雜比、信噪比(signal-to-noise ratio, SNR)出自於信號處理方面的概念,應用在磁振造影(MRI)領域,涉及到影像品質以及微小生理訊號的偵測、鑑別力。.

新!!: 离子和信雜比 (磁振造影) · 查看更多 »

土卫二

土卫二又稱為「恩賽勒達斯」(Enceladus),是土星的第六大卫星,于1789年为威廉·赫歇尔所发现。在旅行者號於1980年代探測土星之前,人們只知道土衛二是一個被冰覆蓋的衛星。旅行者號顯示土衛二直徑約为500公里(相当于土星最大的衛星土卫六直径的十分之一),而且其表面幾乎能反射百分之百的陽光。旅行者1号发现土卫二的轨道位于土星E环最稠密的部分,表明两者之间可能存在某种联系;而旅行者2号则发现:尽管该卫星体积不大,但是在其表面既存在古老的撞击坑构造,又存在较为年轻的、地质活动所造成的扭曲地形构造——其中一些地区的地质年代甚至只有1亿年。 二十世纪末发射,并于二十一世紀初抵達土星附近的卡西尼号太空船则提供了大量的数据,解开了旅行者探访之后留下的诸多疑团。在2005年,卡西尼飞船数次近距离掠过土卫二,获得了该卫星表面及其环境的大量数据,特别是发现了从该卫星南极地区喷射出的富含水分的羽状物。该发现,以及可探测到的逃逸内能的存在、南极地区极少存在撞击坑的情况,共同证明了土卫二至今仍然存在地质活动。在巨行星的卫星系统中,许多卫星都会成为轨道共振的牺牲品,这会导致星体震动和轨道的扰动,而对于更加靠近行星的卫星,潮汐效应则会加热行星的内部,这或许可以解释土卫二的地质活动。 2014年,美國太空總署宣佈,卡西尼號發現了土衛二南極地底存在液態水海洋的證據,海洋厚度約為10公里。南極附近的冰火山向太空噴出大量水氣和其他揮發物,夾雜類似氯化鈉晶體、水冰等固態粒子,噴射量約為每秒200公斤。噴出的水有一部份以「雪」的形態落回土衛二表面,一部份融入土星環中,另一部份甚至可到達土星。這些羽狀噴射物也為土星E環物質來源於土衛二的觀點提供了重要的證據。2015年9月16日,美國太空總署确认,根据卡西尼號的探测数据,其表面冰层下面拥有全球性海洋,而且海洋的底部有水热活动,即存在海底热泉。 由於接近地表處有水的存在,所以土衛二是尋找地外生物的最佳地點之一。分析指出,土衛二的噴射現象源自地表下的液態水海洋。噴射物的化學成份以及引力場模型表明地下液態水源體是在與岩石接觸的,所以可能是天體生物學中極為重要的研究對象。.

新!!: 离子和土卫二 · 查看更多 »

土壤结构

土壤结构是指不同大小的土壤颗粒、团聚体和孔隙在空间上的有机组合形式。土壤结构决定了水、气、热和养分在土壤中的蓄存能力和传输能力,是土壤肥力的物质基础。但是土壤结构定量化一直是我们科学家面临的一个难题。至今,还常用形态特征定性地描述土壤结构,或者简化地用团聚体稳定性指标来表征土壤结构稳定性等。.

新!!: 离子和土壤结构 · 查看更多 »

土壤酸化

土壤酸化 ,是氫 陽離子的積累,也稱為質子,減少土壤pH。當質子供體加入土壤時,就會發生這種情況。給體可以是酸,例如硝酸和硫酸(這些酸是酸雨的常見組分)。它也可以是諸如硫酸鋁的化合物,其在土壤中反應以釋放質子。作為肥料添加的許多氮化合物也長期酸化土壤,因為它們在該過程中被氧化時產生亞硝酸和硝酸。 當鈣,鎂,鉀和鈉的鹼性陽離子從土壤中浸出時,也會發生酸化。這種浸出隨著降雨增加,酸雨也會加速鹼性陽離子浸出。當植物生長時,植物從土壤中取出鹼,為每個鹼基陽離子交換質子。當除去植物材料時,例如當森林被砍伐或作物收穫時,它們所佔據的基質永久地從土壤中喪失。.

新!!: 离子和土壤酸化 · 查看更多 »

土壤pH值

土壤pH值是衡量土壤中酸度或鹼度所代表的意義。是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。土壤pH被認為是土壤中的主要變量,因為它控制發生的許多化學過程。 它通過控制營養物的化學形式特異性地影響植物營養物的可用性。 大多數植物的最佳pH範圍在5.5和7.0之間,然而許多植物已經適應在該範圍之外的pH值下生長。.

新!!: 离子和土壤pH值 · 查看更多 »

土星

土星,為太陽系八大行星之一,至太阳距离(由近到远)位於第六、体积則僅次於木星。並與木星、天王星及海王星同属氣體(類木)巨星。古代中国亦称之填星或鎮星。 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自希臘/羅馬神話传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于羅馬神話中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希臘神話中的克洛諾斯(泰坦族,宙斯的父親,一说其在罗马神话中即萨图尔努斯)、巴比倫神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符號是代表农神萨图尔努斯的鐮刀(Unicode: )。 土星主要由氫組成,還有少量的氦與微痕元素,內部的核心包括岩石和冰,外圍由數層金屬氫和氣體包覆著。最外層的大氣層在外观上通常情况下都是平淡的,雖然有时会有長时间存在的特徵出現。土星的風速高達1,800公里/時,明顯的比木星上的風快速。土星的行星磁場強度介於地球和更強的木星之間。 土星有一個顯著的環系統,主要的成分是冰的微粒和較少數的岩石殘骸以及塵土。已經確認的土星的衛星有62顆。其中,土卫六是土星系統中最大和太陽系中第二大的衛星(半徑2575KM,太陽系最大的衞星是木星的木衛三,半徑2634KM),比行星中的水星還要大;並且土卫六是唯一擁有明顯大氣層的衛星。.

新!!: 离子和土星 · 查看更多 »

土星環

土星環是太陽系行星的行星環中最突出與明顯的一個,環中有不計其數的小顆粒,其大小從微米到米都有,軌道成叢集的繞著土星運轉。環中的顆粒主要成分都是水冰,還有一些塵埃和其它的化學物質。 雖然環的反射能夠增加土星的視星等(亮度),但從地球僅憑肉眼還是看不見環。在1610年,當望遠鏡第一次指向天空之際,伽利略雖然未能清楚的看出環的本質,但他還是成為觀察土星環的第一個人。在1655年,惠更斯成為第一個描述環是環繞土星的盤狀物的人。 雖然許多人都認為土星環是由許多微細的小環累積而成的(這個觀念可以回溯至拉普拉斯),並有少數真實的空隙。更正確的想法是這些環是有著同心但是在密度和亮度上有著極值的圓環盤。在叢集的尺度上,圓環之間有許多空洞的空間。 在環的中間有一些空隙:有兩條已經知道是與被埋藏在環中的衛星產生軌道共振引起的波動造成的,其它的空隙還不知道成因。穩定的共振,另一方面,也維繫了一些環長期的存在,像是泰坦環。.

新!!: 离子和土星環 · 查看更多 »

化合价

化合價(Valence)是由一定元素的原子構成的化學鍵的數量。一個原子是由原子核和外圍的電子构成的,電子在原子核外圍是分層運動的,化合物的各個原子是以和化合價同樣多的化合鍵互相連接在一起的IUPAC Gold Book definition: 。 元素周圍的價電子形成價鍵,單價原子可以形成一個共價鍵,雙價原子可形成兩個σ键或一個σ键加一個π键The Free Dictionary: 。 共價,在1919年,Irving Langmuir利用這個詞解釋Gilbert N. Lewis的立方體原子模型,任一原子和周圍原子之間成對電子的分享叫做原子的共價,例如,如果有+1價,代表需要丢掉一個電子才能變成完整的價電子數;反之,如果是-1價時,則需要得到一個電子才會變成完整的價電子數,因此在這兩個原子之間的鍵結電子能互相的補充或分享他們的電子以至形成穩定的價電子數。在這之後,“共價”的詞比“價”更能被敘述、討論。.

新!!: 离子和化合价 · 查看更多 »

化学反应

化學反應是一個或一個以上的物質(又稱作反應物)經由化學變化转化為不同於反應物的产物的過程。 化學變化定義為當一個接觸另一個分子合成大分子;或者分子經斷裂分開形成兩個以上的小分子;又或者是分子內部的原子重組。為了形成變化,化學反應通常和化學鍵的形成與斷裂有關。特別注意化學反應不會以任何方式改變原子核,而仅限於在原子外的電子雲交互作用。雖然核變形後可能會引發化學反應,但是核反應與化學反應無關。 化學性質是物質只能在化學變化中表現出來的性質,例如有酸鹼性、氧化还原性质、熱穩定性、反应性等等。.

新!!: 离子和化学反应 · 查看更多 »

化学物理学

化学物理学是化学和物理学的交叉学科,借助原子与分子物理学和凝聚态物理学中的理论方法和实验技术,研究物理化学现象的学科,是从物理学观点研究化学过程的物理学分支学科。化学物理学和物理化学都是化学和物理学的交叉学科,但二者是有细微区别的。化学物理学主要是研究化学过程的特征现象和物理理论,而物理化学主要研究化学的物理本质。.

新!!: 离子和化学物理学 · 查看更多 »

化学物质

化學物質,又稱化学物种,是有着固定化学成分和特定性质的一类物质。它们不能通过物理手段分成更小的组分。化学物质可以是以元素形态组成的单质,也可以是化合物、离子或者合金。 化学物质通常被认为是纯净的,以和混合物区分开来。一个常见的例子就是纯水,无论是从河流中分离出来的,还是在实验室制备出来的,都有着一致的化学组成,每个分子都是由两个氢原子和一个氧原子构成。在生活中,我们也能见到一些纯净的化学物质,如钻石(由碳元素构成)、黄金、食盐(氯化钠)和蔗糖,当然,这些物质并不是完全纯净的,其纯净的程度取决于它的用途。 化学物质可以以固体、液体、气体或者等离子体的形式存在,并且随着温度或压力的变化进行物态变化。通过化学反应,化学物质可以转化为新的化学物质。 以能量为形式存在的光或热等,不属于化学物质。.

新!!: 离子和化学物质 · 查看更多 »

化学键

化學鍵(Chemical Bond)是一種粒子間的吸引力,其中粒子可以是原子或分子。透過化學鍵,粒子可組成多原子的化學物質。鍵由兩相反電荷間的電磁力引起,電荷可能來自電子和原子核,或由偶極子造成。化學鍵種類繁多,其能量大小、鍵長亦有所不同。 在原子中,帶負電、繞原子核運行的電子與核內帶正電的質子互相吸引,而位於兩原子核之間的電子則皆受兩方吸引。因此,原子核和電子間最穩定的組態,是當電子位處兩原子核間之時。這些電子使原子核能夠彼此相吸,形成所謂的化學鍵。然而,化學鍵並不能減少個別粒子所構成的體積。由於電子的質量較小且具有物質波性質,它們相較於原子核而言佔據了極大部分的體積,使原子核之間距離較遠。 一般而言,強化學鍵的形成伴隨著原子間電子的共用或轉移。分子、晶體、金屬和雙原子氣體,事實上幾乎生活中所有外在環境,都是由化學鍵所維繫而來;它決定了物質的結構。.

新!!: 离子和化学键 · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

新!!: 离子和化學 · 查看更多 »

化學滲透

化學滲透(Chemiosmosis,或稱化學滲透偶聯)是離子經過半透膜擴散的現象,这种现象与滲透类似。化學滲透是離子的運動,离子穿過選擇性滲透膜,沿電化學梯度移动。更具體地的說,在細胞的呼吸或光合作用過程中,通過氫離子穿過細胞膜的移動產生了ATP。氫離子(質子)將從高的質子濃度的區域擴散到低質子濃度的區域,以產生ATP。氢离子由較多離子的區域滲入較少離子區域,直到內外濃度平衡為止。化學滲透通常發生在細胞的呼吸作用中的ATP合酶(三磷酸腺苷合酶)裡,细胞利用該特性來製造ATP(三磷酸腺苷)。.

新!!: 离子和化學滲透 · 查看更多 »

分子内作用力

分子内作用力是分子和化合物中原子互相吸引的力。 它包括所有种类共价键。 分子内作用力比分子间作用力要强,实际上分子间作用力是只是存在于分子间的力而并不属于化学键。.

新!!: 离子和分子内作用力 · 查看更多 »

分子轨道对称守恒原理

分子轨道对称守恒原理(伍德沃德-霍夫曼规则),是凭借轨道对称性来判断周环反应产物立体化学性质的一套规则,由罗伯特·伯恩斯·伍德沃德和罗德·霍夫曼于1965年提出。它主要用于分析电环化反应、环加成反应和σ迁移反应,运用前线轨道理论和能级相关理论来分析周环反应,总结出其立体选择性规则,并根据这些规则判断周环反应是否可以进行,以及反应的立体化学特征。 分子轨道对称守恒原理认为:化学反应是分子轨道进行重组的过程。在协同反应中,由原料到产物,分子轨道的对称性始终不变,是守恒的,因为只有这样,才能用最低的能量形成反应中的过渡态。符合分子轨道对称守恒原理的反应途径被称为是“对称性允许”的,不符合该原理的反应途径则被称为是“对称性禁阻”的。用扩展休克尔方法进行的理论计算支持了该原理所进行的预测,但在某些特殊情况(如施加应力)下,得到的产物不符合分子轨道对称守恒原理。.

新!!: 离子和分子轨道对称守恒原理 · 查看更多 »

分子量

分子量,又称“相对分子质量”,指组成分子的所有原子的原子量的总和,分子量的符号为Mr。定义为物质分子或特定单元的平均质量与12C质量的1/12之比值。由于是相对值,所以为无量纲量,单位为1。.

新!!: 离子和分子量 · 查看更多 »

分子雲

分子雲(Molecular cloud 或 Stellar nursery)是星際雲的一種,主要是由氣體和固態微塵所組成。其規模沒有一定的範圍,直徑最大可超過100光年,總質量可達太陽的 106 倍。 氫分子(H2)是分子雲中最普遍的組成物質之一。根據估計,每 1cm3 的分子雲內大約有 104 個氫分子;而在物質較密集的區域(如分子雲的核心),1cm3 內的氫分子則約有 105 個。除了氫以外,分子雲內亦有不少經由核融合合成出的元素。這些元素是多數恆星的主要組成物質,因此分子雲同時也是恆星——甚至是行星系的誕生場所,如太陽系就是其一。 氫分子很難被直接偵測到。通常是利用一氧化碳(CO)偵測氫分子。一氧化碳輻射的光度與分子氫質量的比例幾乎是常數。不過在對其他星系的觀測中有理由懷疑這樣的假設。.

新!!: 离子和分子雲 · 查看更多 »

單原子離子

單原子離子是指只由一個原子組成的離子。如果一隻離子含有多於一個原子,即使它們為同一種元素,它就會被稱作多原子離子。例如,碳酸鈣含有一種單原子離子(Ca2+),亦含有一種多原子離子(CO32−)。 I類二元化合物含有一種金屬(陽離子),而這種金屬只會產生一種離子。II類離子化合物含有的金屬陽離子則可以產生多於一種離子,換句話說,該金屬能夠產生不同電荷的離子。.

新!!: 离子和單原子離子 · 查看更多 »

味觉

味觉是一种受到直接化学刺激而产生的感觉,由五种味道——甜、鹹、苦、酸和鲜组成,其中最后一种味道是近期才予以承认的。味觉指的是能够感受物质味道的能力,包括食物、某些矿物质以及有毒物质的味道,与同属于化学诱发感觉的嗅觉相比是一种近觉。大多数动物其口腔中都有味觉感受器,然而相对低等的动物在其它部位可能会存在额外的味觉感受器,例如鱼类的触须及昆虫足末端的跗节和触角。和其它多数脊椎动物一样,人类对于味道的实际感受还受到不太直接的化学刺激感受器——嗅觉的深度影响,我们所闻到的味道在大脑中和味觉细胞得到的刺激合成了我们认为的味道,當嗅覺缺損時,感受到的味道也就會跟著變動。 西方的专家传统上认为味觉有四种基本味道组成:甜、鹹、酸、苦。而日本的专家则识别出第五种味道——鲜味。最近,心理物理学和神经学建议味道还包括一些其它的元素(鲜味,我们最能感觉到的脂肪酸,以及金属和水的味道,虽然后者通常由于味觉的自适应性而被忽略)。味觉是中枢神经系统所接受的感觉中的一种。人类的味觉感受细胞存在于舌头表面、软腭、咽喉和会厌的上皮组织中等。.

新!!: 离子和味觉 · 查看更多 »

咪唑

咪唑(Imidazole),即1,3-二氮唑,是一个五元杂环芳香性有机化合物,化学式。它也是一个生物碱。白色或浅黄色固体结晶,可溶于水、氯仿、醇、醚,具有酸性,也具有碱性。氢原子在两个氮原子之间移动,因此存在两个互变异构体。 咪唑环结构在生物分子中广泛存在,例如组氨酸和对应的荷尔蒙组胺。很多药物也包含有咪唑环,例如硝基咪唑和咪唑类抗真菌药物。.

新!!: 离子和咪唑 · 查看更多 »

傅里叶变换离子回旋共振质谱法

傅里叶变换离子回旋共振质谱法也称作傅里叶变换质谱分析,这是一种根据给定磁场中的离子回旋频率来测量离子质荷比(m/z)的质谱分析方法。 彭宁离子阱(Penning Trap)中的离子被垂直于磁场的震荡电场激发出一个更大的回旋半径,这种激发作用同时也会导致离子的同相移动(形成离子束)。当回旋的离子束接近一对捕集板时,捕集板上会检测到影像电流信号。这种信号被称为自由感应衰减(FID),是一种由许多重叠的正弦波组成的瞬态或干涉图。通过傅里叶变换,我们可以从这些信号数据中萃取出有用的信号形成质谱。 傅里叶变换离子回旋共振质谱法(FTICR-MS)具有非常高的析像能力,可以十分精确地测定物质。因此对于FTICR-MS的使用主要是利用它的高分辨率检测分子组成。这一检测的理论前提是元素在这一过程中会发生质量亏损。 此外,FTICR-MS通常也被用来研究复杂的混合物。这是由于它所产生的分析图像具有较窄的峰宽,能够将两个质量相近的离子返回的信号(质荷比m/z)区分开来。 利用电喷射离子化作用产生的大量电荷,这种高分辨率同样也可以应用于蛋白质等高分子研究中。这些大分子中包含的同位素分布能够产生一系列同位素峰,由于这些同位素峰在质荷比坐标轴上十分接近,因此我们就要用到FTICR所具有的高解析分辨能力,结合大量电荷喷射来对其进行观察研究。 FTICR-MS与其他质谱分析仪器最大的不同点在于,它不是用离子去撞击一个类似电子倍增器的感应装置,只是让离子从感应板附近经过。而且对于物质的测定也不像其他技术手段一样利用时空法,而是根据频率来进行测量。利用象限仪(sector instruments)检测时,不同的离子会在不同的地方被检测出来;利用飞行时间法(time-of-flight)检测时,不同的离子会在不同的时间被检测出来;而利用FTICR-MS检测时,离子会在给定的时空条件下被同时检测出来。 FTICR是由英属哥伦比亚大学(University of British Columbia)的Alan G. Marshall 和 Melvin B. Comisarow二位学者发明的。首篇相关论文发表于1974年的《化学物理学》杂志。这一发明的灵感来源于传统的离子回旋共振(ICR)和傅里叶核磁共振(FT-NMR)波谱学。Alan G. Marshall随后在俄亥俄州立大学、佛罗里达州立大学继续丰富和发展了这项技术。.

新!!: 离子和傅里叶变换离子回旋共振质谱法 · 查看更多 »

冠醚

冠醚是一种杂环有机化合物,包含有多个醚基团。最常见的冠醚就是乙撑氧的低聚物,其中重复的单位是乙烯氧基(-CH2CH2O- 可看作是环氧乙烷断裂碳氧键后的剩余基团)。这一系列中最重要的是四聚体、五聚体和六聚体。之所以用“冠”来命名,是因为就像皇冠可以戴在头上一样,冠醚能够和一个阳离子成键。在冠醚的命名法中,前面那个数字代表了环内的原子数,第二个数字代表氧的个数。冠醚的概念远远大于乙撑氧的低聚物,另外一个很重要的系列是鄰苯二酚的衍生物。 冠醚一般通过卤代烃与醇盐的威廉姆逊合成反应制取。.

新!!: 离子和冠醚 · 查看更多 »

冷阴极计数管

冷阴极计数管是一类特殊的电子管,曾在二十世纪五六十年代的计算机中作为内存储器使用。.

新!!: 离子和冷阴极计数管 · 查看更多 »

冕 (大氣層)

冕是太陽或其他天體由電漿構成的大氣層,延伸至太空中數百萬公里,在日全食的時候很容易看見,但使用日冕儀隨時都可以看見。在拉丁文中字根corona的意義就是光環。 高溫的日冕呈現特殊的光譜特徵,在19世紀產生了一些爭議,認為有一種早先未知的元素「coronium」。後來,這些光譜的特徵被追蹤對應上了高度電離的鐵(Fe(XIV)),顯示是在溫度超過106 K 的電漿 。 來自冕的光有三種主要來源,雖然所有的都分享相同的空間,但有各自不同的名稱。K-冕(源自德文的kontinuerlich,是"連續"的意思)是被陽光驅散的自由電子創造的,都卜勒致寬使被反射的光球層吸收線完全被遮蔽掉,讓光譜呈現連續而完全看不見吸收線。F-冕(F來自夫朗和斐)是由被陽光彈起的微塵粒子創造的,因為它包含了未加工就能在陽光下看見的夫朗荷斐吸收線,所以可以被觀測到。F-冕延伸到離太陽非常遠的距角時,就會被稱為黃道光。E-冕(E源自輻射這個字)是來自冠冕部分的電漿離子的發射譜線,並且是關於冕區成分的主要訊息來源 。.

新!!: 离子和冕 (大氣層) · 查看更多 »

兩性 (化學)

在化學,兩性的物質是指既可跟酸反應,又能跟鹼反應的物质。例子有氨基酸、蛋白質、水及許多金屬如鉻、鋅、錫、鋁、鎵、鉛和鈹。.

新!!: 离子和兩性 (化學) · 查看更多 »

八隅體規則

二氧化碳的路易斯結構──中央的碳原子及兩側的氧原子均被八個電子包圍。 八隅體規則(或稱八電子規則)是化學中一個簡單的規則,即原子間的組合趨向令各電子的價層都擁有八個電子,與惰性氣體擁有相同的電子排列。主族元素,如碳、氮、氧、鹵素族、鈉、鎂都依從這個規則。簡單而言,當組成離子或分子的組成原子的最外電子層有八個電子,它們便會趨向穩定,而若不满8个时,原子间会互相共享或交换电子达到平衡稳定。例如Cl与Na形成NaCl的结构。 第一層電子最多有2個,第二層8個,第三層18個,第四層32個。公式為2n2。.

新!!: 离子和八隅體規則 · 查看更多 »

六氟化鈾

六氟化鈾(uranium hexafluoride)是一种铀的化合物,其化学式为。六氟化铀被用于制取浓缩铀,因此在核工业中有很重要的价值。标准状况下,六氟化铀为灰色的晶体。六氟化铀有很强的毒性,可与水剧烈反应,并且能腐蚀大多数金属。它與鋁反應溫和,在鋁的表面形成致密的氟化铝薄膜,阻止反應進一步進行。.

新!!: 离子和六氟化鈾 · 查看更多 »

六氟砷酸五氮

六氟砷酸五氮,化学式\rm \ N_5^+^-,白色晶体,极易爆炸,爆炸时,分解出大量氮气。室温下不稳定,需在 −78°C 保存。含 \rm \ N_5^+ 离子,该离子结构是五个氮原子呈V字型排列,由5个氮原子形成两个三键和两个单键构成。其中一个氮原子最外层只带4个电子,所以整个分子显正一价。 1999年,Christe 等利用如下反应首次制得 \rm \ N_5^+^-:.

新!!: 离子和六氟砷酸五氮 · 查看更多 »

六氰合钴(III)酸六氨合钴(III)

六氰合钴(III)酸六氨合钴(III)(化学式:)是一种无机化合物,其阴、阳离子均为配离子。.

新!!: 离子和六氰合钴(III)酸六氨合钴(III) · 查看更多 »

共質體途徑

共質體途徑(symplast pathway)這是植物的根吸收水和無機鹽的一種方式,相對於質體外途徑。植物用根毛細胞膜上的小通道讓水及離子進入,再利用細胞與細胞間的小孔道(原生質絲),經由皮層、內皮層及周鞘進入根內部的導管細胞,此種運送途徑稱為共質體運輸(symplast transport)。 在運送途中,有些水及離子可以輸入液胞貯存,有些從液胞輸出,此種運輸經過細胞膜要消耗能量,運用主動運輸,此外,這些運輸都在細胞質內進行,所以不受內皮層中的凯氏带阻止。.

新!!: 离子和共質體途徑 · 查看更多 »

共振 (化学)

共振论是化学中表示分子结构的一种方法,是价键理论的重要组成部分。该方法认为,对于结构无法用一个经典结构式来表达的分子、离子或自由基,可以通过若干经典结构式的共振来表达其结构。共振中的结构并不存在,真实粒子也并非这些共振结构的混合物或是平衡体系,只是价键理论中无法用单一结构式来准确表达物质结构,必须要借助共振的思想。.

新!!: 离子和共振 (化学) · 查看更多 »

共晶体

共晶体或共晶(英语:cocrystal)是晶体学中的概念,人们对其定义有着争议,一种认为共晶体是由至少两种组分组成的晶体,其组分可以是原子、分子或离子。另一种认为共晶体是由至少两种组分组成的、具有独特性质的晶体。.

新!!: 离子和共晶体 · 查看更多 »

先驱者11号

先驱者11号(Pioneer 11)是第二个用来研究木星和外太阳系的空间探测器。它也是去研究土星和它的光环的第一个探测器。与先驱者10号不同的是,先驱者11号(也称做先驱者G号)不仅拜访木星。它还用了木星的強大引力去改变它的轨道飞向土星。它靠近土星后,就顺着它的逃离轨道離開太阳系。 探測器在1973年4月6日,位於佛羅里達州的卡納維爾角發射。探測器全長2.9米,設有一个直徑2.74米的高增益天線,在其之前再裝上一个中增益天線。至於另外一條全方位低增益天線則裝設於高增益天線接收器之下。探測器以兩個放射性同位素熱電機(RTG)作為能源,在拜訪木星時仍能產生144 瓦特,但到達土星時只能產生100 瓦特的功率。 探測器上還設有三個感應器:恆星(老人星)感應器及兩個太陽感應器,藉以根據相對於地球及太陽的位置,及以老人星的位置作後備,用以計算探測器的位置。先鋒11號的恆星感應器及起點設定,是按先鋒10號的經驗而被重新修改的。探測器上的三對火箭推進器,負責控制轉軸(4.8rpm)及為探制器提供動力。三對火箭推進器都可以按指令持續燃點,或暫停燃點亦可。 在探測器上的儀器負責研究星際間及行星的磁場太陽風、宇宙射線、太陽圈的轉變區域、大量存在的中性氫;星塵粒子的分佈、大小、質量、通量及速度;外太陽系行星極光、電波、其衛星的大氣層;以及木星與土星及其衛星的表面等等。 以上的研究主要由探測器上的磁力計、等離子分析器(太陽風專用)、粒子感測器、離子感測器、一具可以重疊不同視點來探測由經過的隕石折射而來的陽光的非影像望遠鏡、一些已密封並加壓的氬氣及氮氣用以計算隕石的滲透、測紫外光計、測紅外光計、及一具影像光偏計用以拍攝照片及計算光偏振等等。至於進一步的數據則從天體力學及掩星法現象去計算出來。.

新!!: 离子和先驱者11号 · 查看更多 »

光合作用

光合作用是植物、藻類等生產者和某些細菌,利用光能把二氧化碳、水或硫化氢變成碳水化合物。可分为產氧光合作用和不產氧光合作用。 植物之所以称为食物链的生产者,是因为它们能够透过光合作用利用无机物生产有机物并且贮存能量,其能量轉換效率約為6%。通过食用,食物链的消费者可以吸收到植物所贮存的能量,效率为10%左右。對大多數生物來説,這個過程是賴以生存的關鍵。而地球上的碳氧循环,光合作用是其中最重要的一环。.

新!!: 离子和光合作用 · 查看更多 »

光分解離子成像

光分解離子成像,或更普遍地來說,產物成像是一種測量化學反應或光分解產物速度分佈的實驗技術 。 該方法使用二維偵測器,通常是微通道板,來擷取透過共振增強多光子離子化之態選擇後的離子到達偵測器的位置。第一個光分解離子成像實驗是由大衛·錢德勒(David W. Chandler)和保羅·休斯頓(Paul L. Houston)在1987年完成,其題目為碘甲烷的光分解動態學。.

新!!: 离子和光分解離子成像 · 查看更多 »

光離子化檢測儀

光離子化檢測儀或PID是一種氣態檢測儀。 光離子化檢測儀是利用惰性氣體真空放電現象所產生的紫外線 (VUV),使待測氣體分子發生電離,並通過測量離子化後的氣體所產生的電流強度,從而得到待測氣體濃度。可以用來測量揮發性有機化合物和其他濃度從1ppm到10000ppm(十億分之一)的氣體。是一種有效且平價的檢測儀。檢測時會持續獲得每單位時間偵測到的訊號,將這些資料重疊分析後,即可得到我們所要的資訊,為一種精確而有效的檢測手段,在今天獲得了越來越廣泛的應用。手提式的的分析器則是被廣泛的應用在軍事、工業和狹小工作設施的安全等方面。 PID常被用來.

新!!: 离子和光離子化檢測儀 · 查看更多 »

固体

固體是物質存在的一種狀態,是四種基本物质状态之一。與液體和氣體相比,固體有固定的體積及形狀,形狀也不會隨著容器形狀而改變。固體的質地較液體及氣體堅硬,固體的原子之間有緊密的結合。固體可能是晶体,其空間排列是有規則的晶格排列(例如金屬及冰),也可能是無定形體,在空間上是不規則的排列(例如玻璃)。一般而言,固体是宏观物体,一个物体要达到一定的大小才能夠被称为固体,但是对其大小無明确的规定。 物理學中研究固體的分支稱為固体物理学,是凝聚态物理学的主要分支之一。材料科学探討各種常見固體的物理及化學特性。固體化學研究固體結構、性質、合成、表徵等的一門化學分支,也和一些固體材料的化學合成有關。.

新!!: 离子和固体 · 查看更多 »

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

新!!: 离子和国际单位制 · 查看更多 »

四苯甲烷

四苯甲烷是甲烷的四个氢都被苯基取代后形成的有机化合物,于1898年由摩西·冈伯格首次制得。 冈伯格的合成路线为:.

新!!: 离子和四苯甲烷 · 查看更多 »

四氟化汞

四氟化汞是一种近期才合成的无机化合物,化学式为HgF4,它是化学家发现的一种汞的+4氧化态化合物。汞与其他IIB族元素(锌和镉)一样都具有ns2(n-1)d10的价电子构型,它们通常只用s轨道参与形成化学键。这意味着通常汞的最高氧化态为+2,正因为这样,汞通常被认为是后过渡元素而不是普通的过渡元素。.

新!!: 离子和四氟化汞 · 查看更多 »

四氟硼酸二茂铁

四氟硼酸二茂铁是一种有机金属化合物,化学式为BF4。这种盐由+阳离子和氟硼酸根阴离子(BF4-)组成。性质类似的六氟磷酸盐也是一种受欢迎的试剂。阳离子往往缩写成Fc+或(Cp2Fe)+。颜色为深蓝,具有顺磁性。 二茂铁盐有时用作单电子氧化剂,惰性还原产物二茂铁很容易从离子产物分离出来。在电化学中,二茂铁/二茂铁盐经常被用来作为参比电极。在0.1 M NBu4PF6乙腈溶液中,相比标准氢电极,Fc+/0电势为+0.641 V。.

新!!: 离子和四氟硼酸二茂铁 · 查看更多 »

四氟铵

四氟铵离子是一种带正电荷的多原子离子,化学式为。它是铵根离子中的氮原子周围的氢原子全部被氟原子所取代的产物。 四氟铵的存在形式主要是一系列含氟阴离子的盐。这些例子包括氟化氢根离子(),四氟合溴酸根离子(),金属五氟化物阴离子((其中X是Ge、Sn或Ti)),六氟化物阴离子()(其中X是P、As、Sb、Bi或Pt),七氟化物阴离子()(其中X是W、U或Xe),八氟化物阴离子(), 许多种氟氧化物((其中X是W或U)、、)以及高氯酸根()。四氟铵的硝酸盐,未能获得。.

新!!: 离子和四氟铵 · 查看更多 »

四氧化钌

四氧化钌(RuO4)是一种反磁性的、正四面体构型的钌化合物。正如理论预测的那样,它是对称的非极性分子,但很不稳定。类似的四氧化锇用途更广,也更为人们所知。它在多数溶剂中都不稳定,较好的溶剂是四氯化碳。.

新!!: 离子和四氧化钌 · 查看更多 »

四氮化四硫

四氮化四硫(分子式:S4N4)是最重要的硫-氮二元化合物,室温下为橙黄色的固体。它的结构和成键较特殊,也是制备其他含S-N键化合物时最主要的原料,因此成为化学家研究的焦点之一。Greenwood, N. N.; Earnshaw, A. Chemical Elements; 2nd edition; Butterworth-Heinemann: Boston, MA, 1997, pp 721-725.

新!!: 离子和四氮化四硫 · 查看更多 »

噻蒽

噻蒽(化学式:C12H8S2)是一种含硫杂环化合物,易被氧化。.

新!!: 离子和噻蒽 · 查看更多 »

Be星

Be星是光譜中有明顯的氫發射線的B-型恆星,這類恆星的光譜類型通常標示為Be,B表示是B型恆星,e表示是發射光譜,雖然也可能有其它原子的離子發射譜線,但通常都很微弱。觀測上的其他特徵包括光學上的線性偏極化和比一般的B型恆星更強的紅外線輻射,稱為紅外過量。自然的Be星都是暫時性的,Be星通常都可能保持著正常的B型光譜,而且到前為止都是正常的B型星可能成為Be星。 雖然大多數的Be星都是主序星,但它們都是在複雜的族群中被辨識出來的,包括主序前星、超巨星、原行星雲,和其它的天體。它們或許可以再細分為Be超巨星、赫比格Be星、緻密行星狀星雲Be、共生Be星,而這些全部都還是"不明確"的分類。 第一顆被確認的Be星是策(仙后座γ),在1866年就被安吉洛·西奇觀測到,也是第一顆被發現有發射譜線的恆星。在20世紀初期,瞭解了發射譜線形成的的過程,知道這些譜線來自環繞在周圍的拱星物質,而不是來自恆星本身。現在,所有的觀測特性都可以用恆星拋射出的物質形成的氣體環解釋。紅外過量和偏極化是星光被盤面散射的結果,發射譜線是恆星的紫外線被盤面的氣體吸收之後再輻射出來的。 Be星一般被認為是高速自轉的天體,並且經由干涉儀測量到水委一的自轉扭曲得到證實。雖然,單獨的自轉或許還不足以形成盤面,但是額外的拋射機制是需要的,像是一個磁場或是非徑向的恆星的脈動。Be現象瞬變的本質非常像是過渡到另一種程序的聯接過程,但是細節還有待進一步的研究。 Be星是典型的變星,並且被認為是由於暫時存在的星盤和散射過程造成的仙后γ型變星,或是自然脈動性質造成的波江λ型變星。.

新!!: 离子和Be星 · 查看更多 »

短波

短波(short wave,SW)是无线电的一个波长范围,其对应的频率范围被称为高频。短波的波长范围是10米至100米,高频的范围则是3MHz到30MHz。短波波段的电磁波除了能够利用地波传播外,还可通过电离层的反射进行远距离传输,因而国际广播通常都位于短波波段。.

新!!: 离子和短波 · 查看更多 »

石墨层间化合物

石墨层间化合物(Graphite intercalation compound,缩写GIC)又称石墨插层化合物、石墨插层复合物,是由带正电或负电的离子插入被氧化或还原的石墨层间后形成的具有二维层状结构的化合物,通式为MCx·δS。式中M表示插入石墨层间的带电荷离子、S为可能存在的与离子共插层的电中性溶剂分子。.

新!!: 离子和石墨层间化合物 · 查看更多 »

石榴石

石榴石(Garnet),是一組在青銅時代已經使用為寶石及(Abrasive)的礦物。常見的石榴石為紅色,但其顏色的種類十分廣闊,足以涵蓋整個光譜的顏色。英文來自拉丁文"granatus"("grain",即粮食、穀物),可能由"Punica granatum"("pomegranate",即石榴)而來,它是一種有紅色種子的植物,其形狀、大小及顏色都與部分石榴石結晶類似。 常見的石榴石因應其化學成分而確認為數種種類,分別為(Pyrope)、(Almandine)、錳鋁榴石(Spessartite)、鈣鐵榴石(Andradite)、(Spessartine)、(Grossular,變種有(tsavorite)及肉桂石(hessonite))及(Uvarovite)。 石榴石形成兩個固溶體系列:.

新!!: 离子和石榴石 · 查看更多 »

环己六酮

环己六酮也称为“六酮环己烷”或“三醌”,是一种碳氧化物。这种有机物的分子式为C6O6。六酮环己烷可看作是环己烷的六羰基取代物,也可视为一氧化碳的六聚物。环己六酮是乙烯四甲酸二酐的同分异构体。.

新!!: 离子和环己六酮 · 查看更多 »

环磷酰胺

环磷酰胺(Cyclophosphamide)。,National Cancer Dictionary為oxazophorines的衍生物。.

新!!: 离子和环磷酰胺 · 查看更多 »

环戊五酮

环戊五酮也称为“五酮环戊烷”或“白酮酸”,是一种有机碳氧化物,其分子式为C5O5。这种化合物可看作是环戊烷的五羰基取代物或一氧化碳的五聚物。.

新!!: 离子和环戊五酮 · 查看更多 »

环戊[c,d]戊搭烯

环戊戊搭烯,也被称作裤衩烯,是一种三环反芳香性有机化合物,其分子式为C10H6,由三个五元环两两相并而成,中央的碳原子是三个环所共有的。环戊[c,d]戊搭烯含五个双键,其分子外围有四个,另有一个和中央的碳原子直接相连。 环戊戊搭烯的阴离子可以与两个锂离子作用而使其稳定性增强。自由基负离子也已被发现。.

新!!: 离子和环戊[c,d]戊搭烯 · 查看更多 »

火星96

火星96(另外稱之為火星8號)是一個俄羅斯在1996年所進行的火星太空探測計畫,與火星計畫中相同名稱的任務並無關聯性。當第二次的第四節火箭點火失敗時,探測器零件重新返回大氣層並在太平洋、智利、玻利維亞一帶解體成一條320公里長的碎片帶 火星96太空探測器是基於1988年弗伯斯1號、弗伯斯2號的架構所建造而成,兩台探測器皆堪稱當代最新設計的探測器但最終均以失敗收場;火星96的設計者也相信已經將弗伯斯太空探測器的缺陷修復,遺憾的是火星96在發射階段就宣告失敗,永遠無法證明錯誤是否已經被修正。 然而在當時火星96號稱是最重的行星際探測器,也是一項野心勃勃的探測任務。火星96包括軌道探測器、表面登陸器、表面穿透器,不僅探測方式眾多,火星96的儀器也由法國、德國等歐洲國家與美國提供,相似的儀器被用在2003年發射的火星特快車。.

新!!: 离子和火星96 · 查看更多 »

現代物理學

近代物理學(Modern physics)所涉及的物理學領域包括量子力學與相對論,與牛頓力學為核心的古典物理學相異。近代物理研究的對象有時小於原子或分子尺寸,用來描述微觀世界的物理現象。愛因斯坦創立的相對論經常被視為近代物理學的範疇。.

新!!: 离子和現代物理學 · 查看更多 »

砷酸鹽

砷酸鹽是所有帶有砷酸根離子(化學式:AsO43−)的化合物的統稱,包括砷酸形成的各种盐。砷酸鹽中,砷原子的氧化態為+5,所以砷酸鹽的系統命名作砷(V)酸鹽。 由於砷和磷都屬於元素週期表的第五族,且砷酸鹽和磷酸鹽的氧化態都是+5,所以砷酸鹽和磷酸鹽的化學性質甚為相似。砷酸鹽是中等強度的氧化劑,還原成亞砷酸鹽的标准电极电势為+0.56V。.

新!!: 离子和砷酸鹽 · 查看更多 »

砹化氫

砹化氫,又稱氫砹酸(化學式:),是一種鹵氫酸,由氫原子與砹原子組成的共價化合物。 這種化合物溶於水生成氫砈酸,性質和其他四種鹵化氫相似——實際上具備氫鹵酸中最強的酸性。但它極易分解為氫與砈單質,加之砈的同位素半衰期均很短,因此它的用途有限。由於氫原子和砹原子有著幾乎相等的電負度,砹的陽離子已被觀察到,解離時極易造成在氫攜帶負電荷。因此,砹化氫可以進行以下反應: 此外,鹵化氫HX的趨勢是隨著鹵化物的周期增加,形成的焓降低。儘管氫碘酸溶液是穩定的,但是砈化氫溶液明顯不如水-氫-砈系統穩定。砈原子核的輻解也可能會切斷H-At鍵。 進一步的,砈沒有穩定的同位素,其中最穩定的是砹-210,它的半衰期約為8.1小時,使得它的化學成分及結構改變,特別難以處理,由於砹會衰變成其他元素(鉍或釙),所以可能會變成鉍化氫或釙化氫或分子崩解。.

新!!: 离子和砹化氫 · 查看更多 »

硝鎓离子

硝鎓離子是一種十分特別的離子,化學式為NO2+,雖然全由非金屬元素構成,卻有金屬特性,是鎓離子的一種。.

新!!: 离子和硝鎓离子 · 查看更多 »

硝酸鈰銨

硝酸鈰銨是化學物質的一種,外觀为呈现橘紅色的晶體,分子式為 (NH4)2Ce(NO3)6,通常在有機合成中作为氧化剂及生产其它含铈化合物。硝酸铈铵溶于水时,完全电离,生成、和三种离子。 硝酸铈铵固体中含有两种离子:NH4+ 和 2−。六硝酸根合铈(IV)离子中,硝酸根作为双齿配体与Ce螯合。.

新!!: 离子和硝酸鈰銨 · 查看更多 »

硝酸钙

硝酸钙是硝酸根离子与钙离子化和生成的无机盐。为无色透明单斜晶体。.

新!!: 离子和硝酸钙 · 查看更多 »

硝酸铍

硝酸铍是铍元素的硝酸盐,它是一种离子化合物,化学式为Be(NO3)2。每个化学式单位由一个Be2+阳离子和两个NO3-阴离子所构成。.

新!!: 离子和硝酸铍 · 查看更多 »

硫化

在高分子化学中,硫化(Vulcanization)指的是橡胶胶料通过生胶分子间交联,生成具有三维网络结构的硫化胶的过程。 含有双键的弹性体在工业上多采用硫或有机硫化合物来进行硫化交联,因此在橡胶工业中,“硫化”与“交联”是同义词。交联的目的是为了使胶料具备高强度、高弹性、高耐磨、抗腐蚀等优良性能,消除永久形变,使橡胶在变形之后,能迅速并完全地恢复原状。因为最早发现的交联剂是硫磺,故得名“硫化”。 一般需经过硫化的橡胶品种有丁二烯、氯丁二烯、异戊二烯的1,4-聚合物——顺丁、异戊、氯丁橡胶,以及共聚物丁苯、丁基和丁腈橡胶等。.

新!!: 离子和硫化 · 查看更多 »

硫化物

无机化学中,硫化物指电正性较强的金属或非金属与硫形成的一类化合物。大多数金属硫化物都可看作氢硫酸的盐。由于氢硫酸是二元弱酸,因此硫化物可分为酸式盐(HS−,氢硫化物)、正盐(S2−)和多硫化物(Sn2−)三类。 有机化学中,硫化物(英文:Sulfide)指含有二价硫的有机化合物。根据具体情况的不同,有机硫化物可包括:硫醚(R-S-R)、硫酚/硫醇(Ar/R-SH)、硫醛(R-CSH)、硫代羧酸(S取代羧基中的一个或两个O,如R-CO-SH、R-CS-SH)和二硫化物(R-S-S-R)等。参见有机硫化合物。.

新!!: 离子和硫化物 · 查看更多 »

硫酸鹽

硫酸盐,由硫酸根离子()与其他金属离子组成的化合物,幾乎都是电解质,且大多数溶于水。.

新!!: 离子和硫酸鹽 · 查看更多 »

硫酸钾

硫酸钾(化学式K2SO4)是硫酸根离子与钾离子结合生成的化合物。其固体为无色或白色六方形或斜方晶系结晶或颗粒状粉末。溶于水,不溶于醇、丙酮和二硫化碳。具有苦咸味。.

新!!: 离子和硫酸钾 · 查看更多 »

硫酸根

硫酸根的化学式为SO42−,是硫酸二级电离出的负离子。.

新!!: 离子和硫酸根 · 查看更多 »

硫氰酸汞

硫氰酸汞也稱為硫氰化汞,化學式Hg(SCN)2,是由硫氰根離子和Hg2+形成的無機化合物。其外觀為白色无臭味的粉末或针状结晶,若是純度較低,顏色會變為灰色。硫氰酸汞是市售的化學品,不過其價格較高。硫氰酸汞曾被應用在爆竹中,當燃燒時硫氰酸汞會膨脹,曲折如蛇形,一般稱為法老之蛇。現今還是有爆竹使用硫氰酸汞,但因為在反應時會產生有毒氣體,多半已不使用。.

新!!: 离子和硫氰酸汞 · 查看更多 »

硒化物

化物是含硒的阴离子的化合物。和硫化物类似,Se2−只有在强碱性溶液中才能存在,中性溶液中为HSe−,而酸性溶液中形成H2Se。有一些硒化物很容易和空气中的氧反应,金属硒化物比硫化物更容易分解。活泼金属的硒化物很容易发生氧化或水解反应,硒化铝在潮湿空气中可以被氧化,并迅速水解,放出剧毒的硒化氢气体。 纯的硒化物矿物很少见,它们大多与硫化物矿物共生。硒化物的矿物有和。Bernd E. Langner "Selenium and Selenium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim.

新!!: 离子和硒化物 · 查看更多 »

碰撞

“碰撞”在物理学中表现为两粒子或物体间极短的相互作用。 碰撞前后参与物发生速度,动量或能量改变。由能量转移的方式区分为弹性碰撞和非弹性碰撞。彈性碰撞是碰撞前後整個系統的動能不變的碰撞。彈性碰撞的必要條件是動能沒有轉成其他形式的能量(熱能、轉動能量),例如原子的碰撞。非弹性碰撞是碰撞后整个系统的部分动能转换成至少其中一碰撞物的内能,使整个系统的动能无法守恒。 下面示例的碰撞原理的数学表述是由克里斯蒂安·惠更斯在1651年到1655年间提出的。.

新!!: 离子和碰撞 · 查看更多 »

在各种酸碱理论中,碱都是指与酸相对的一类物质。鹼多指鹼金屬及鹼土金屬的氢氧化物,而对碱最常见的定义是根据阿伦尼乌斯(Arrhenius)提出的酸碱离子理论作出的定义:碱是一种在水溶液中可以电离出氢氧根离子并且不产生其它阴离子的化合物。随后这个定义被扩展为提供氢氧根或者吸收氢离子的化合物。 根据不同的酸碱理论,碱有着不同的定义。.

新!!: 离子和碱 · 查看更多 »

碱式乙酸铁

碱式乙酸铁是一种配位化合物,化学式为OAc (OAc为CH3CO2−)。其为一种盐,由+阳离子及乙酸根阴离子组成。常以是否生成此红棕色配合物来检验三价铁离子。.

新!!: 离子和碱式乙酸铁 · 查看更多 »

碱式硫酸铬

没有描述。

新!!: 离子和碱式硫酸铬 · 查看更多 »

碱土金属

碱土金属指的是元素週期表上第 2 族(ⅡA族)的六个金属元素,包括鈹、鎂、鈣、鍶、鋇 和放射性元素鐳。 鹼土金屬都是銀白色的,比較軟的金屬,密度比較小。鹼土金屬在化合物中是以+2的氧化態存在。鹼土金屬原子失去電子變為陽離子時,最外層一般是8個電子,但铍離子最外層只有2個電子。 碱土金属具有很好的延展性、可以制成许多合金、如鎂鋁合金。 碱土金属都是活泼金属。.

新!!: 离子和碱土金属 · 查看更多 »

碱金属

碱金属是指在元素周期表中同属一族的六个金属元素:锂、钠、钾、铷、铯、钫.

新!!: 离子和碱金属 · 查看更多 »

碳酸

碳酸(Carbonic acid),原來也稱揮發酸(Volatile acid)和呼吸酸(Respiratory acid), by Kerry Brandis 化學式O3,是酸的一種。二氧化碳(O2)溶於水後,一部分二氧化碳會與水化合,形成碳酸。該反應是一個可逆反應,方程式如下: 該反應在常溫下的平衡常數是Kh.

新!!: 离子和碳酸 · 查看更多 »

碳氧化物

碳氧化物是指只由碳与氧组成的化合物。 最简单常见的碳氧化物包括一氧化碳(CO)和二氧化碳(CO2)。除了这两种为人熟知的无机物,碳与氧其实还能构成许多稳定或不稳定的碳氧化物,但在现实生活中很难接触到其他碳氧化物(例如二氧化三碳(C3O2)等)。 教科书一般只介绍以上列出的前三种碳氧化物,极少有介绍第四种的。但事实上,已有数十种碳氧化物被人们发现,之中大部分是在20世纪60年代人工合成的。这些碳氧化物有的在室温下是稳定的,有的却即使在超低温环境中也会迅速分解为较简单的其他碳氧化物。一部分寿命极短的亚稳态碳氧化物是作为化学反应的中间体出现而被观测到的,这类碳氧化物的化学性质十分活跃,以至于常常只能在气相中或基质隔离下短暂存在。 新碳氧化物的合成量至今仍有不断上升的趋势。氧化石墨烯以及具有可变结构的稳定碳氧化物聚合物的发现说明在这个领域还有许多未知等待人们探索。.

新!!: 离子和碳氧化物 · 查看更多 »

碘化物

化物指含有碘离子(I−)的化合物, 包括以碘化铯为例的离子化合物以及以四碘化碳为例的共价化合物。大多数离子性碘化物都是可溶于水的,除了黄色的碘化银和碘化铅。 检验碘离子时,先加入几滴酸以消除碳酸根离子的干扰,再加入硝酸铅,若出现亮黄色的碘化铅沉淀,则可证明碘离子的存在。 碘在含碘离子的溶液中溶解度增大,原因是生成了下述的棕色I3−配离子:.

新!!: 离子和碘化物 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 离子和磁場 · 查看更多 »

磷(Phosphorum,化学符号:P)是一种化学元素,它的原子序数是15。.

新!!: 离子和磷 · 查看更多 »

磷化物

磷化物是一类含有磷阴离子(如P3-)的化合物。几乎所有的金属都能形成磷化物,这些磷化物有着很多种类型的结构。Hg、Pb、Sb、Bi、Te和Po不能形成稳定的磷化物。 膦的金属衍生物,如KPH2、PtP2H2也是已知的。.

新!!: 离子和磷化物 · 查看更多 »

磷酸鹽

磷酸鹽(phosphate,符号:),是磷酸的鹽,在無機化學、生物化學及生物地質化學上是很重要的物質。.

新!!: 离子和磷酸鹽 · 查看更多 »

磷酸酶

磷酸酶是一种能够将对应底物去磷酸化的酶,即通过水解磷酸单酯将底物分子上的磷酸基团除去,并生成磷酸根离子和自由的羟基。磷酸酶的作用与激酶的作用正相反,激酶是磷酸化酶,可以利用能量分子,如ATP,将磷酸基团加到对应底物分子上。在许多生物体中都普遍存在的一种磷酸酶是碱性磷酸酶。 磷酸酶可以被分为两类:半胱氨酸依赖的磷酸酶和金属磷酸酶(其活性依赖位于活性位点上的金属离子)。.

新!!: 离子和磷酸酶 · 查看更多 »

磺胺嘧啶银

胺嘧啶银(INN:Silver sulfadiazine,或silvadene)是一种磺胺类/银盐抗细菌药,用于治疗烧伤的外用药膏,用於二度灼傷和三度灼傷以預防感染。磺胺嘧啶银通常被制成1%的药膏或水悬浮液。品牌有Silvadene(通用商标)等。研究发现,磺胺嘧啶银可能会增加治疗的时间——如果用这种药物治疗,伤口可能需要更长的时间才能愈合,因此科克伦系统评价的作者不推荐使用。 常見的副作用包括使用部位的瘙癢和疼痛,其他副作用包括低白細胞水平、過敏反應、皮膚藍灰色變色、紅血球分解或肝炎,對其他磺胺類藥物過敏的患者應慎用。接近分娩的孕婦也不應該使用,兩個月以內的兒童也不建議使用磺胺嘧啶銀。 磺胺嘧啶銀是在20世紀60年代發現的。此种化合物被列于世界卫生组织基本药物标准清单内,其中包含基本所需的最重要药物。它是學名藥,在發展中國家,批發成本在每克0.004到0.072美元之間,在美國,一個療程一般花費為25至50美元。.

新!!: 离子和磺胺嘧啶银 · 查看更多 »

神秘果蛋白

果蛋白(英语:Miraculin)是一种从神秘果中提取出来的糖蛋白,又称作奇果蛋白及神秘果素。该蛋白本身并没有甜味,但能让人在品尝原本不甜的酸性食物时尝出甜味。这种特性属于一种味觉修改功能,并非改变了食品本身的化学成分。.

新!!: 离子和神秘果蛋白 · 查看更多 »

神經膠質細胞

經膠質細胞(英語:neuroglial cell、glial cell),又稱神經膠細胞、膠質細胞,是神經系統中的組成單位之一,其角色主要為提供支持、供給營養、維持環境恆定及提供絕緣;近來亦有研究指出膠質細胞可參與訊息的傳遞。在人類的腦中,膠質細胞對神經元的比例估計約為10:1。其英文名的字根"glia"在希腊语中的意思为“胶水”。.

新!!: 离子和神經膠質細胞 · 查看更多 »

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

新!!: 离子和离子 · 查看更多 »

离子半径

离子半径(rion)是对晶格中离子的大小的一种量度。离子半径通常以皮米(pm)或埃(Å,1Å.

新!!: 离子和离子半径 · 查看更多 »

离子反应

离子反应指的是过程中有离子参加或生成的化学反应。主要有复分解、盐类水解、氧化还原和络合四种反应方式。.

新!!: 离子和离子反应 · 查看更多 »

离子强度

离子强度是溶液中离子浓度的量度,是溶液中所有离子浓度的函数,定义如下: 其中:.

新!!: 离子和离子强度 · 查看更多 »

离子化合物

离子化合物,是由阴离子(Anion,带负电)和阳离子(Cation,带正电)组成,以本质上是库仑力的离子键相结合的化合物。离子化合物通常熔点和沸点较高,熔融时或电离产生其组成离子的水溶液中时能导电。 大部分离子化合物在常温下是固体,但也有一些常温下存在于液态离子化合物,它们通常是一些含有复杂有机组份的盐。注意液态离子化合物和离子化合物溶液的区别,后者中含有一些不具电性的分子。.

新!!: 离子和离子化合物 · 查看更多 »

离子列表

离子列表是一个记载了各元素所能形成的离子及其性质的列表。.

新!!: 离子和离子列表 · 查看更多 »

离子积

离子积常数是化学平衡常数的一种形式,多用于纯液体和难溶电解质的电离。 形如这样的一个电离方程式: 其中R为溶质,M和N分别为电离出来的阳离子和阴离子,其离子积可表示为: 与一般的平衡常数表达式相比,离子积常数的表达式少了关于反应物的项。这就限制了离子积常数只适用于反应物是纯液体或纯固体的反应,因为在计算平衡常数时,纯液体和纯固体的浓度视作1。.

新!!: 离子和离子积 · 查看更多 »

离子阱

离子阱,又称离子陷阱,是一种利用电场或磁场将离子(即带电原子或分子)俘获和囚禁在一定范围内的装置,离子的囚禁在真空中实现,离子与装置表面不接触。应用最多的离子阱有“保罗离子阱”(即四极离子阱,沃尔夫冈·保罗)和彭宁离子阱。 离子阱可以应用于实现量子计算机。传统计算机以电位的高低表示位元0和1,而量子计算机以粒子的量子力学状态,如原子的自旋方向等表示0和1,称为“量子位元”。离子阱利用电极产生电场,将经过超冷处理的离子囚禁在电场里,实现量子位元。 L L Category:离子 Category:质谱.

新!!: 离子和离子阱 · 查看更多 »

离子键

离子键又被称为盐键,是化学键的一种,通过两个或多个原子或化学基团失去或获得电子而成为离子后形成。带相反电荷的原子或基团之间存在静电吸引力,两个带相反电荷的原子或基团靠近时,周围水分子被释放为自由水中,带负电和带正电的原子或基团之间产生的静电吸引力以形成离子键。 此类化学键往往在金属与非金属间形成。失去电子的往往是金属元素的原子,而获得电子的往往是非金属元素的原子。带有相反电荷的离子因电磁力而相互吸引,从而形成化学键。离子键较氢键强,其强度与共价键接近。 仅当总体的能级下降的时候,反应才会发生(由化学键联接的原子较自由原子有着较低的能级)。下降越多,形成的键越强。 现实中,原子间并不形成“纯”离子键。所有的键都或多或少带有共价键的成分。成键原子之间电平均程度越高,离子键成分越低。.

新!!: 离子和离子键 · 查看更多 »

离子通道

离子通道(英语:Ion channel)是一种成孔蛋白,它通过允许某种特定类型的离子依靠电化学梯度穿过该通道,来帮助细胞建立和控制质膜间的微弱电压压差(参见细胞电势)。这些离子通道存在于所有细胞的细胞膜上。针对离子通道的研究叫做通道学,这一研究涉及了许多许多科学技术,例如电流生理学的电压钳位(尤其是膜片钳位技术)、免疫组织化学以及逆转录。.

新!!: 离子和离子通道 · 查看更多 »

离子源

离子源是产生原子和分子离子的设备。离子源被用于质谱仪,光学发射光谱仪,粒子加速器,离子注入机和离子发动机形成离子。.

新!!: 离子和离子源 · 查看更多 »

离子方程式

离子方程式(Ionic equation)即是用实际参加化学反应的离子符号来表示的式子。.

新!!: 离子和离子方程式 · 查看更多 »

离子晶体

离子晶体指的是内部的离子由离子键互相结合的固态物质。.

新!!: 离子和离子晶体 · 查看更多 »

离解

离解又稱解離,在化学中,指化合物分裂而形成离子或原子团的过程。.

新!!: 离子和离解 · 查看更多 »

稀土金属

土金属,或称稀土元素,是元素週期表第Ⅲ族副族元素钪、钇和镧系元素共17种化学元素的合称。钪和钇因为经常与镧系元素在矿床中共生,且具有相似的化学性质,故被认为是稀土元素。 与其名称暗示的不同,稀土元素(钷除外)在地壳中的豐度相当高,其中铈在地壳元素豐度排名第25,占0.0068%(与铜接近)。稀土元素並不稀有,但其傾向於兩兩一起生成合金,且難以將稀土元素單獨分離。另外,稀土元素在地殼中的分佈相當分散,很少有稀土元素集中到容許商業开采的礦床。人类第一种发现的稀土矿物是从瑞典伊特比村的矿山中提取出的,许多稀土元素的名称正源自于此地。.

新!!: 离子和稀土金属 · 查看更多 »

穴状配体

醚是一类人工合成的,可以与阳离子发生配位的双环和多环多齿配体。“穴醚(cryptand)”一词是指该配体形如空穴,将底物分子容纳在里面。整个分子是一个三维的结构。因此与单环的冠醚相比,穴醚配合物更加稳定,对底物分子的选择性也更强。形成的复合物具有脂溶性。唐纳德·克拉姆、让-马里·莱恩和查尔斯·佩特森通过对穴醚和冠醚进行研究,开创了超分子化学的先例,并因此获得了1987年的诺贝尔化学奖。.

新!!: 离子和穴状配体 · 查看更多 »

等离子体

--(又稱--)是在固態、液態和氣態以外的第四大物質狀態,其特性與前三者截然不同。 氣體在高溫或強電磁場下,會變為等離子體。在這種狀態下,氣體中的原子會擁有比正常更多或更少的電子,從而形成陰離子或陽離子,即帶負電荷或正電荷的粒子。氣體中的任何共價鍵也會分離。 由於等離子體含有許多載流子,因此它能夠導電,對電磁場也有很強的反應。和氣體一樣,等離子體的形狀和體積並非固定,而是會根據容器而改變;但和氣體不一樣的是,在磁場的作用下,它會形成各種結構,例如絲狀物、圓柱狀物和雙層等。 等離子體是宇宙重子物質最常見的形態,其中大部分存在於稀薄的星系際空間(特別是星系團內介質)和恆星之中。.

新!!: 离子和等离子体 · 查看更多 »

等离子体物理学

等离子体物理学是研究等离子体性质的物理学分支。等离子体是物质的第四态,是由电子、离子等带电粒子及中性粒子组成的混合气体,宏观上表现出准中性,即正负离子的数目基本相等,整体上呈现电中性,但在小尺度上具有明显的电磁性质。等离子体还具有明显的集体效应,带电粒子之间的相互作用是长程库仑作用,单个带电粒子的运动状态受到其它许多带电粒子的影响,又可以产生电磁场,影响其它粒子的运动。等离子体物理学目的是研究发生在等离子体中的一些基本过程,包括等离子体的运动、等离子体中的波动现象、等离子体的平衡和稳定性、碰撞与输运过程等等。等离子体物理学具有广阔的应用前景,包括受控核聚变、空间等离子体、等离子体天体物理、低温等离子体等等。.

新!!: 离子和等离子体物理学 · 查看更多 »

等电子体

等电子体是指具有相同价电子数并且具有相同结构的微粒,可以是原子,分子或离子。.

新!!: 离子和等电子体 · 查看更多 »

等離子體參數

等離子體參數就是一系列決定電漿性質的參數。一般來說是以厘米-克-秒制來當作參數的基本單位,但是溫度卻是以電子伏特(eV)當作單位,而質量則是以質子質量(μ.

新!!: 离子和等離子體參數 · 查看更多 »

简并态物质

簡併態物質 在物理是一種自由的集團、非互動的顆粒,由量子力學的效應決定它的壓力和其它物理特徵。它類比於古典力學中的理想氣體,但簡併態物質是離經叛道的理想氣體,它有極高的密度(在緻密星),或存在於實驗室的極低溫度下see http://apod.nasa.gov/apod/ap100228.htmlAndrew G. Truscott, Kevin E. Strecker, William I. McAlexander, Guthrie Partridge, and Randall G. Hulet, "Observation of Fermi Pressure in a Gas of Trapped Atoms", Science, 2 March 2001。它一般發生在諸如電子、中子、質子和費米子等物質粒子,分別被稱為電子簡併物質、中子簡併物質、等等。在混合的粒子,像是在白矮星或金屬內的離子和電子,電子可能成簡併態,而離子不是。 以量子力學描述,自由粒子的體積受限於一定的體積內,可以是一組不連續的能量,稱為量子態。包立不相容原理限制了相同的費米子不能佔據相同的量子狀態。最低的總能量(當粒子的熱能量可以忽略不計)是所有最低能量的量子狀態都被填滿,這種狀態稱為完全簡併。這種壓力(稱為簡併壓力或費米壓力)即使在絕對零度時依然不為零。增加粒子或是壓縮體積都會強迫粒子進入能階的量子狀態。這需要一個壓縮力,並表現為抗壓力。主要特徵是這種簡併壓力並不取決於溫度,而只和費米子的密度有關。它使高密度星的平衡狀態與恆星的熱結構無關。 簡併態物質也稱為費米氣體或簡併氣體,而速度接近光速的費米子(其粒子能量大於靜止質量能量)的簡併態稱為相對論性簡併態物質。 拉爾夫·福勒在1926年首度描述離子和電子混合的簡併態物質,觀測顯示白矮星的電子是在高密度的狀態(遵守費米-狄拉克統計,尚未使用到簡併態這個術語),其壓力高於離子的粒子壓力。.

新!!: 离子和简并态物质 · 查看更多 »

粘土矿物

粘土矿物(Clay minerals)是含水铝层状硅酸盐,有时有不同数量的铁,镁,碱金属,碱土金属和其它阳离子,在一些行星表面上或附近发现。 粘土矿物在水的存在下形成,并且对生命是重要的,许多生物学的理论涉及它们。它们是土壤的重要成分,并且自古以来在农业和制造业中对人类有用处。.

新!!: 离子和粘土矿物 · 查看更多 »

糙皮病

糙皮病又称癞皮病,是一种维生素缺乏性疾病,主要诱因是缺乏维生素B3(烟酸)和蛋白质,特别是含必需氨基酸色氨酸的蛋白质。色氨酸能被转化为烟酸,大约60mg色氨酸能被转化成1mg烟酸,过程中需要维生素B1、B2和B6的参与。因此色氨酸含量丰富但不含烟酸的食物,比如牛奶也能有效预防糙皮病。然而,如果通过食物摄入的色氨酸全部被用于蛋白质合成,则仍有可能引起糙皮病。 糙皮病是一种地区性流行病,主要发生于非洲,墨西哥,印度尼西亚以及中国。在较发达的地区,糙皮病患者一般是贫穷、酗酒的无家可归者或者是拒绝进食的精神病患者。 色氨酸是一种必需氨基酸,在黄豆、肉类、禽类、鱼类以及蛋类中含量丰富。 亮氨酸与糙皮病是否存在一定的关系,目前尚不清楚。.

新!!: 离子和糙皮病 · 查看更多 »

細胞質

細胞質是一種使細胞充滿的凝膠狀物質。細胞質包含有胞質溶膠及除細胞核外的細胞器。原生質是由水、鹽、有機分子及各種催化反應的酶所組成。細胞質在細胞內有著重要的角色,就是用作「分子液」,使各種細胞器能在其中懸浮及透過脂肪膜聚集一起。它在細胞膜內包圍著細胞核及細胞器。.

新!!: 离子和細胞質 · 查看更多 »

細野秀雄

細野秀雄(,),FRS,日本材料科學家,專長無機材料與奈米超導材料、無機光材料與電子材料、核磁共振、透明氧化物半導體,現任東京工業大學陶瓷研究所教授。紫綬褒章表彰。 細野教授是氧化銦鎵鋅(IGZO)的發明者、鐵基超導體的發現者。2013年名列湯森路透引文桂冠獎,2016年獲日本國際獎。.

新!!: 离子和細野秀雄 · 查看更多 »

維多利亞多管發光水母

維多利亞多管發光水母(學名:Aequorea victoria),又名水晶水母、水晶果凍水母,是一種分佈在北美洲西岸能發光的水母。它們曾被認為是下村脩所發現的Aequorea aequorea的異名。下村脩聯同馬丁·查爾菲及錢永健因發現及改造了綠色熒光蛋白而獲得了2008年的諾貝爾化學獎。原先維多行亞多管發光水母是用來描述分佈在太平洋的變種,而aequorea則是指分佈在大西洋及地中海的群落。這個起初的分法受到質疑,而下村脩亦確認它們之間有很大的不同處。.

新!!: 离子和維多利亞多管發光水母 · 查看更多 »

經典物理術語

這一篇詞彙收集了經典物理內所有最常用的術語,並且簡單地表述了它們的定義。.

新!!: 离子和經典物理術語 · 查看更多 »

線粒體

--(mitochondrion)是一种存在于大多数真核细胞中的由两层膜包被的细胞器,直径在0.5到10微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。这种细胞器拥有自身的遗传物质和遗传体系,但因其基因组大小有限,所以线粒体是一种半自主细胞器。线粒体是细胞内氧化磷酸化和合成三磷酸腺苷(ATP)的主要场所,为细胞的活动提供了化学能量,所以有“細胞的發電站”(the powerhouse of the cell)之称。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 英文中的“线粒体”(mitochondrion,复数形式为“mitochondria”)一词是由希腊语中的“线”(“μίτος”或“mitos”)和“颗粒”(“χονδρίον”或“chondrion”)组合而成的。在“线粒体”这一名称出现前后,“粒体”“球状体”等众多名字曾先后或同时被使用。这些现在已不再继续使用的名称包括:blepharoblast、condriokont、chondriomite、chondrioplast、chondriosome、chondrioshere、filum、fuchsinophilic granule、interstitial body、körner、fädenkörner、mitogel、parabasal body、plasmasome、plastochondria、plastome、sphereoplast和vermicle等(按首字母在英文字母表中的顺序排列),其中“chondriosome”(可译为“颗粒体”)直至1982年仍见诸欧洲各国的科学文献。.

新!!: 离子和線粒體 · 查看更多 »

緊湊緲子線圈

緊湊緲子線圈(CMS,Compact Muon Solenoid),瑞士歐洲核子研究組織CERN的大型強子對撞機計劃的兩大通用型粒子偵測器中的一個。直至2006年,已有約2300位來自159個不同的研究機構的科學家,共同參與建設。CMS將建在法國的Cessy的地下洞穴中,剛好跨過瑞士日內瓦的邊境。完成後的偵測器將是一個長約21公尺,直徑約16公尺的筒狀的結構,重量達12500公噸(這也是其名稱的由來)。.

新!!: 离子和緊湊緲子線圈 · 查看更多 »

總無機碳

總無機碳(CT或TIC),又名溶解無機碳(DIC)是溶液中無機碳的總和量,當中包括二氧化碳、碳酸、碳酸氢盐离子及碳酸根。通常二氧化碳及碳酸將同列於CO2*一欄下。總無機碳量用於測量自然水體的PH值等數據。 其中:.

新!!: 离子和總無機碳 · 查看更多 »

约翰逊-奈奎斯特噪声

约翰逊–奈奎斯特噪声(Johnson–Nyquist noise,也称作热噪声, 约翰逊噪声,或奈奎斯特噪声)是由于热搅动导致导体内部的电荷载体(通常是电子)达到平衡状态时的电子噪声,与所施加电压无关。一般用统计物理推导该噪声被称作波动耗散定理,这里用广义阻抗或广义极化率来表征该介质。 一个理想电阻器的热噪声接近白噪声,也就是功率谱密度在整个频谱范围内几乎是不间断的(然而在极高频时并不如此)。 当限定为有限带宽时,热噪声近似高斯分布。.

新!!: 离子和约翰逊-奈奎斯特噪声 · 查看更多 »

纯净水

纯净水,简称净水或纯水,文義上是纯洁、干净,不含有杂质或细菌的水,是以符合生活饮用水卫生标准的水为原水,通过电渗析器法、离子交换器法、反渗透法、蒸馏法及其他适当的加工方法制得而成,密封于容器内,且不含任何添加物,无色透明,若食品標準下製造則可直接饮用。市场上出售的太空水,蒸馏水均属纯净水。有时候这个词也和化学实验室中提炼的蒸馏水或去離子水類似,但是製程則有所差異,純度的品質也有不同。.

新!!: 离子和纯净水 · 查看更多 »

线粒体内膜

线粒体内膜(inner mitochondrial membrane,缩写为“IMM”)是位于线粒体外膜内侧,包裹着线粒体基质的一层单位膜。线粒体内膜比外膜稍薄,厚约5-6nm。线粒体内膜中蛋白质与磷脂的质量比较高(约为0.7:0.3),并含有大量的心磷脂(心磷脂与磷脂的质量比约为0.22:0.78)。线粒体内膜的某些部分会向线粒体基质折叠形成嵴,嵴的形成可大大增加该膜的表面积。线粒体内膜的标志酶是细胞色素氧化酶。 线粒体内膜的脂质组成与细菌细胞膜的相似,这一现象可利用内共生假说解释。该假说认为线粒体是由被真核细胞胞吞后内化的原核细胞衍变而来的。.

新!!: 离子和线粒体内膜 · 查看更多 »

线粒体膜转运蛋白

线粒体膜转运蛋白质一般简称为“线粒体膜转运蛋白”,是位于线粒体膜中的蛋白质的统称。这些转运蛋白被用于转运各种分子和离子进出线粒体。它们以通过调节离子等化学物质在线粒体膜两侧的浓度来维持线粒体膜两侧正常的电化学梯度。线粒体膜转运蛋白包括:.

新!!: 离子和线粒体膜转运蛋白 · 查看更多 »

维生素B12缺乏症

维生素B12缺乏症指的是血液中维生素B12含量过低的情况。此病症状广泛,可致思考能力下降、人格改变(如抑郁、易怒、思覺失調)、、反射改变、肌肉功能减退,以及、、贫血(红细胞数低)、及生育能力减退。在小儿中,此症还可导致、障碍,以及。如不及早治疗,部份症状可能会永久存在。 此症常为维生素B12肠胃吸收障碍、摄入不足或需求增多所致 -->吸收障碍可能由恶性贫血、胃摘除手术、慢性胰腺炎、腸道寄生蟲、一些药品或一些所致。 -->摄入不足的情况可见于純素主義者或營養不良人群。 -->艾滋病和红细胞快速分解的情况都可导致需求增多。诊断一般基于血液含量做出,成人中的指征为血液维生素 B12 含量低于 120–180 皮摩/升(170–250 pg/mL)。 -->血液中甲基丙二酸浓度较高(超过 >0.4 毫摩/升)也可指示维生素B12缺乏。 -->此症常伴随发生,但并非一定如此。 一般推荐食素的孕妇补充维生素B12以预防此缺乏症。一旦确诊,此症可轻易通过口服或注射补充剂治疗。对于健康人来说,维生素B12过量并不构成问题。此症的一些病例也可经过治疗病因缓解;如不可行,则可能需要持续补充。维生素B12缺乏症较为常见:经估计,低于60岁的人群有6%患此病,高于60岁者有20%患此病。 -->在非洲和亚洲的一些地方,患此病者高达八成。.

新!!: 离子和维生素B12缺乏症 · 查看更多 »

络合滴定

络合滴定是滴定法的一种,利用金属离子与其他配体的络合反应进行滴定分析。 一般使用螯合剂乙二胺四乙酸(EDTA)作为滴定剂来测定金属离子的量。络合滴定法因其较高的准确度而获得广泛应用。.

新!!: 离子和络合滴定 · 查看更多 »

结合能

结合能(Binding Energy)是指两个或多个粒子结合成更大的微粒释放的能量,或相应的微粒分解成原来的粒子需要吸收的能量,这两种表述是等价的。比如质子和中子结合成原子核时放出的能量,或原子核完全分解成质子和中子时吸收的能量,就是这种原子核的结合能。在结合成原子核的过程中,结合之前质子与中子质量之和大于结合之后原子核的质量,出现质量亏损,放出能量。放出的能量可以用质能方程\Delta E.

新!!: 离子和结合能 · 查看更多 »

结晶水合物

结晶水合物(Crystalline Hydrate)是指含有结晶水的物质。其中的水分子属于组成结晶水合物化学性质固定的一部分。 許多物質從水溶液裡析出晶體時,晶體裡常含有一定數目的水分子,這樣的水分子叫做結晶水。含有結晶水的物質叫做結晶水合物。 結晶水合物裡的水分子屬於結晶水合物化學固定組成的一部分。 水合物含一定量水分子的固體化合物。水合物中的水是以確定的量存在的,例如天水硫酸銅CuSO4的水合物的組成為CuSO4·5H2O。水合物中的水有幾種不同的結合方式:一種是作為配體,配位在金屬離子上,稱為配位結晶水;另一種則結合在陰離子上,稱為陰離子結晶水。例如CuSO4·5H2O加熱到113℃時,只失去四分子水。只有加熱到258℃以上,才能脫去最後一分子水。由此可見,4個水分子是作為配體配位在銅離子上的,即2+;另一個水分子則結合在硫酸根上。一般認為,一個水分子通過氫鍵與中的氧原子相連接的。CuSO4·5H2O按水分子的結合方式,其結構式可寫成4。許多其他水合硫酸鹽晶體如FeSO4·7H2O、NiSO4·7H2O、ZnSO4·7H2O等,均有相同的結合方式。 在過渡金屬的水合物中,相同組成的水合物往往由於其中的水分子的結合方式不同而使其性質發生變化。例如無水三氯化鉻呈紅紫色;其水合物為暗綠色晶體,實驗式為CrCl3·6H2O。經實驗證明,6個水分子中只有4個水分子和2個氯離子作為配體與鉻離子結合在內界〔Cr(H2O)4Cl2+,不論在晶態或在水溶液中均穩定存在,因此,這種水合物的結構式可寫成Cl·2H2O。如將暗綠色晶體的溶液冷卻至0℃以下並通入氯化氫氣體,則析出紫色晶體,其結構式為Cl3。將紫色晶體的溶液用乙醚處理並通以氯化氫氣體,就析出一種淡綠色晶體,其結構式為〔Cr(H2O)5ClCl2·H2O。 水也可以不直接與陽離子或陰離子結合而依一定比例存在於晶體內,在晶格中佔據一定的部位。這種結合形式的水稱為晶格水,一般含有12個水分子。有些晶形化合物也含水,但無一定比例。例如沸石和其他矽酸鹽礦物。一些難溶的金屬氫氧化物實際上也是水合物。.

新!!: 离子和结晶水合物 · 查看更多 »

细胞核

细胞核(nucleus)是存在於真核細胞中的封閉式膜狀细胞器,內部含有細胞中大多數的遺傳物質,也就是DNA。這些DNA與多種蛋白質,如組織蛋白複合形成染色質。而染色質在細胞分裂時,會濃縮形成染色體,其中所含的所有基因合稱為核基因組。細胞核的作用,是維持基因的完整性,並藉由調節基因表現來影響細胞活動。 細胞核的主要構造為核膜,是一種將細胞核完全包覆的雙層膜,可使膜內物質與細胞質、以及具有細胞骨架功能的網狀結構核纖層分隔開來。由於多數分子無法直接穿透核膜,因此需要核孔作為物質的進出通道。這些孔洞可讓小分子與離子自由通透;而如蛋白質般較大的分子,則需要攜帶蛋白的幫助才能通過。核運輸是細胞中最重要的功能;基因表現與染色體的保存,皆有賴於核孔上所進行的輸送作用。 細胞核內不含有任何其他膜狀的結構,但也並非完全均勻,其中存在許多由特殊蛋白質、RNA以及DNA所複合而成的次核體。而其中受理解最透徹的是核仁,此結構主要參與核糖體的組成。核糖體在核仁中產出之後,會進入細胞質進行mRNA的轉譯。.

新!!: 离子和细胞核 · 查看更多 »

置换反应

置換反應又稱單置換反應,是指一種元素或化合物的離子根與一種離子化合物發生的反應,狹義氧化還原反應是置換反應的一種,且必為廣義的氧化還原反應。在反應中,關鍵在於還原性或氧化性的強弱,還原性或氧化性強的物質與相對較弱的物質進行置換。置换反应是无机化学反应的基本类型之一,指一种单质和一种化合物生成另一种单质和另一种化合物的反应。 一个简单的置换反应例子 铁 + 硫酸铜 → 铜 + 硫酸亚铁 上面是一个置换反应的例子,反应前后各元素氧化態可能改变。 在置換反應中,只會有正離子或負離子的其中一方進行置換,沒有進行反應的離子為旁觀離子。上面的例子中硫酸根為旁觀離子。.

新!!: 离子和置换反应 · 查看更多 »

羟基

基,又称氢氧基,化学式为–OH,是含有氧原子以共價鍵與氫原子連接的化學官能團,有時也稱為醇官能團,是常见的极性基团。羥基基團以共價鍵結合羰基(–C.

新!!: 离子和羟基 · 查看更多 »

羟基乙叉二膦酸

羟基乙叉二膦酸(etidronic acid (INN)、1-hydroxyethane 1,1-diphosphonic acid (HEDP) 、國際非專利藥品名稱),亦稱HEDP,是一種用於洗潔精、淨水過程、化妝品和藥物生產過程中的二磷酸鹽化合物。 這種酸所產生的鹽的化學式為MnHEDP(M是陽離子,n是M的數量,最多為4)。.

新!!: 离子和羟基乙叉二膦酸 · 查看更多 »

羥磷灰石

磷灰石(hydroxyapatite),又稱氫氧基磷灰石,是一種天然的磷灰石礦物,其分子式為Ca5(PO4)3(OH),不過常寫成Ca10(PO4)6(OH)2以表示由二個分子組成的晶體結構。羥磷灰石是磷灰石中含氫氧根的。OH-離子可以被氟離子、氯離子或碳酸根離子取代,形成或氯磷灰石。羥磷灰石的晶系為六方晶系,比重為3.08,摩氏硬度為5。純的羥磷灰石粉末是白色,但天然的羥磷灰石會夾雜著棕色、黃色或綠色。也可以用人工的方式合成,應用於骨組織修復。 羥磷灰石是人體骨骼組織主要成分。植入體內後,鈣和磷會游離出材料表面被身體組織吸收,並生長出新的組織。有研究證明羥磷灰石的晶粒越細,生物活性越高。牙齒表面的琺瑯質的主要成份亦是羥磷灰石。 羥基磷灰石可由自己製作的方式來取得。製作羥磷灰石粉末的方法很多,比較常見的方法有沉澱法、水解法、水熱法及固相法等。其中水熱法的設備比較複雜而且昂貴。相較於水熱法,沉澱法則是操作簡單、設備便宜、產能大,目前大多數以此種方法為主。但是沉澱法有一些缺點,像是粉末容易聚集在一起、質量不穩定等等。.

新!!: 离子和羥磷灰石 · 查看更多 »

羧酸

酸(Carboxylic acid),有機酸的一種,是帶有羧基的有機化合物,通式是R-COOH。羧基的化學式為-C(.

新!!: 离子和羧酸 · 查看更多 »

羧酸盐

羧酸盐(carboxylate,羧:suō /ㄙㄨㄛˉ)是羧酸形成的盐类,含有羧酸根负离子(-COO−)。在水中可溶的羧酸盐类会解离为羧酸根负离子和相应的阳离子,但由于多数羧酸是弱酸,因此碱金属羧酸盐的水溶液大多呈碱性。 相比于醇类,羧酸在水中更易离解为相应的羧酸根离子和水合氢离子,酸性更强。 这是因为羟基氧上的孤对电子会与碳氧双键形成共轭,使氧上的电子云向双键转移,从而极化O-H键,使其更易断裂;同时也使得形成的羧酸根负离子因电荷分散而更加稳定。该负离子中,两个氧和一个碳各提供一个p轨道,存在一个四电子三中心的离域π分子轨道,负电荷平均分散到两个氧上,可以用以下共振式来表示: 实验证明,甲酸盐中的两个C-O键是没有区别的。.

新!!: 离子和羧酸盐 · 查看更多 »

热发射

热发射(thermionic emission)是一种通过热激发发射载流子的方式。这个现象发生的原因是,提供给载流子的热能使它们能够克服束缚势能(在金属材料中,这束缚势能也被称为功函数或逸出功)。通过热发射产生的载流子可能是电子或者离子。发射载流子之后原始区域会产生一个于被发射载流子总和大小相同、极性相反的载流子。不过,如果发射极连接在电池上,则物体上产生的电荷会立即被电池提供的载流子中和掉,最终发射极会达到电平衡,重新回到之前的状态。产生电子的热发射被称为热电子发射。.

新!!: 离子和热发射 · 查看更多 »

烯烃

(alkene)是指含有C.

新!!: 离子和烯烃 · 查看更多 »

爆速

速,是爆炸火焰或其化學反應在藥炷內傳遞速度稱為爆速,依炸藥成份不同而不同。 爆炸依其爆炸火焰或其化學反應傳遞速度或方式之不同,還可區分為爆燃(Deflagration)與爆轟(Detonation),化學反應在炸藥中的傳遞速度稱為爆速。 爆燃是一種爆速小於聲音在炸藥內傳遞速度的爆炸,而爆轟則為超音速的爆炸,其化學反應是以震波的形式傳遞,故爆轟產生的爆炸壓力及破壞力均遠大於爆燃。 爆速小於每秒3000英呎的爆炸稱為爆燃,而爆速大於每秒3000英呎的爆炸稱為爆轟。(1英呎.

新!!: 离子和爆速 · 查看更多 »

結晶紫

結晶紫(crystal violet)或稱龍膽紫(gentian violet),也稱「甲基紫10B」,是一種三苯甲烷系染料。使用於組織學染色,也用在革蘭氏染色試驗中以區別不同類的細菌。具有抗菌、抗真菌、驅蟲的性質,因此早年用作外用殺菌劑,现多仅限于用于皮肤标记。 龍膽紫一詞原指甲基對薔薇苯胺染料(methyl pararosaniline dyes,即甲基紫)的混合物,但現今多視為結晶紫的同義詞。龍膽紫的名稱來自於顏色與龍膽花瓣相似,亦可由龍膽花提煉。.

新!!: 离子和結晶紫 · 查看更多 »

絕緣體

绝缘体(Insulator),又称电介质或绝缘子,是一种阻碍电荷流动的材料。在绝缘体中,价带电子被紧密的束缚在其原子周围。这种材料在电气设备中用作绝缘体,或称起绝缘作用。其作用是支撑或分离各个电导体,不让电流流过。 玻璃、纸或聚四氟乙烯等材料都是非常好的电绝缘体。更多的一些材料可能具有很小的电导,但仍然足以作为电缆的绝缘,例如橡胶类高分子和绝大多数塑料。这些材料可以在低压下(几百甚至上千伏特)用作安全的绝缘体。.

新!!: 离子和絕緣體 · 查看更多 »

瑟倫·索倫森

瑟倫·彼特·路勒茲·索倫森(,),丹麥化學家,是pH值測量酸度和鹼度的提出者。他出生於一個丹麥小鎮 。.

新!!: 离子和瑟倫·索倫森 · 查看更多 »

瑞岩溫泉

岩溫泉位於臺灣南投縣仁愛鄉發祥村,分布於當地瑞岩部落東北方的北港溪溪谷。依地質分類屬於雪山山脈帶的變質岩溫泉,依其流域屬於北港溪溫泉區。該溫泉於2004年敏督利颱風襲台時(七二水災),造成北港溪河床大量砂石淤積而遭到埋沒。.

新!!: 离子和瑞岩溫泉 · 查看更多 »

瑞穆尔-悌曼反应

尔-悌曼反应(Reimer–Tiemann reaction)是苯酚类化合物和氯仿在强碱水溶液中反应,在酚基的邻位引入一个醛基(-CHO)的过程。这个反应是一个典型的亲电芳香取代反应,亲电试剂是二氯卡宾(:CCl2),但仅有苯环上富电子的酚类(实际上是酚基负离子)才可发生此类反应。.

新!!: 离子和瑞穆尔-悌曼反应 · 查看更多 »

炔烃

(alkyne)是一类有机化合物,属于不饱和烃。其官能团为碳-碳三键(-C≡C-)。通式CnH2n-2,其中n為非1正整數。简单的炔烃化合物有乙炔(),丙炔()等。炔烃也被叫做电石气,电石气通常也被用来特指炔烃中最简单的乙炔。 炔字是新造字,左边的火取自“碳”字,表示可以燃烧;右边的夬取自“缺”字,表示氢原子数和化合价比烯烃更加缺少,意味着炔是烷(完整)和烯(稀少)的不饱和衍生物。「炔」的讀音同「缺」。.

新!!: 离子和炔烃 · 查看更多 »

生命元素

生命元素是指生命所必需的元素。在天然的条件下,地球上或多或少地可以找到90多种元素,根据目前掌握的情况,多数科学家比较一致的看法,生命元素共有28种,包括氢、硼、碳、氮、氧、氟、钠、镁、硅、磷、硫、氯、钾、钙、钒、铬、锰、铁、钴、镍、铜、锌、砷、硒、溴、钼、锡和碘。 硼是某些绿色植物和藻类生长的必需元素,而哺乳动物并不需要硼,因此,人体必需元素实际上为27种。在27种生命必需的元素中,按体内含量的高低可分为宏量元素和微量元素。 宏量元素指含量占生物体总质量0.01%以上的元素。如碳、氢、氧、氮、磷、硫、氯、钾、钠、钙和镁,这些元素在人体中的含量均在0.04%~62.8%之间,这11种元素共占人体总质量的99.97%。 微量元素指占生物体总质量0.01%以下的元素。如铁、硅、锌、铜、溴、锡、锰等。这些微量元素占人体总质量的0.03%左右。这些微量元素在体内的含量虽小,但在生命活动过程中的作用是十分重要的。.

新!!: 离子和生命元素 · 查看更多 »

生物膜

生物膜(Biological membrane)是对生物体内所有膜结构的统称。它是一层封闭的、有分隔作用的膜,在生物体中担任选择透过性屏障。细胞膜是生物膜的一种,通常由磷脂双分子层组成,其上带有内在膜蛋白或外周膜蛋白,这些膜蛋白用于运输化学物质与离子。膜上的大量脂质给蛋白质提供了旋转运动及横向扩散的流体环境。细胞膜不应与细胞层叠而成的、具有分隔功能的组织混淆,如黏膜和基底膜。 生物膜可分为:.

新!!: 离子和生物膜 · 查看更多 »

甲基

基(Methyl group),为化學名词,指一种和甲烷對應的疏水性烷基官能團,化學式為-CH3,常簡寫做-Me。甲基常見於許多的有機化合物中,多半是相當穩定的官能團。甲基多半是較大化學分子中的一部份,不過偶爾也會以以下三種形式出現:陰離子、陽離子及自由基。其陽離子有八個價電子,陰離子有十個價電子,這三種形式都非常不穩定,很容易和其他化學物質反應。.

新!!: 离子和甲基 · 查看更多 »

甲基叔丁基醚

基第三丁基醚,英文缩写为MTBE(methyl tert-butyl ether),是一种无色透明、粘度低的可挥发性液体,具有特殊气味,含氧量为18.2%的有机醚类。它的蒸汽比空气重,可沿地面扩散,与强氧化剂共存时可燃烧。 MTBE的纯度约为97%-99.5%,分子式为:CH3OC(CH3)3。.

新!!: 离子和甲基叔丁基醚 · 查看更多 »

甲基紫

基紫(methyl violet),俗稱龍膽紫、苯胺紫、紫藥水,是一系列同類的有机化合物,是副品红的四、五、六甲基衍生物(副品紅鹼)的混合物。可作为染料、酸碱指示剂、消毒剂,稀釋後可用作外用藥品。而不同比例的衍生物混合,可以製作出一系列不同深淺的紫色染料。一般來說,混合物的甲基比例愈多,染料的顏色亦較藍。這些衍生物的特色如下:.

新!!: 离子和甲基紫 · 查看更多 »

甲基汞

基汞是化學式为(CH3)Hg+的有机金属阳离子。对环境有生物累积毒害。 無機汞離子在微生物的作用下,會轉化為甲基汞,因此它很容易在河流和湖泊中發現,被湖中的魚蝦吞食後會累積毒素,經過食物鏈轉化後,逐漸累積在人體大腦中。1950年代日本所爆發的水俁病即是甲基汞中毒。.

新!!: 离子和甲基汞 · 查看更多 »

甲磺酸酯

酸酯(mesylate、甲磺酸、甲磺酸鹽)在化學上是指所有的"甲磺酸"(CH3SO3H)盐或酯。在鹽裡,甲磺酸酯是以"CH3SO3−"的陰離子形式存在的。當辯證醫藥品所含有的基(官能团和自由基)或"陰離子"(anion)之国际非专利药品名称時,甲磺酸酯(mesylate)正確的拼寫是甲磺酸(mesilate,"甲磺酸伊马替尼"(imatinib mesilate)、又為"伊馬替尼甲磺酸")。 甲磺酸酯是有机化合物的基(團)且共享著一般的結構CH3SO2O−R(簡稱MsO−R)的普通官能团,其中R是一種"有機取代物"(organic substituent)。甲磺酸酯在亲核取代反应上被認為是一種極佳的離去基團。 "甲磺酰基"(mesyl)是"甲磺酸酯"(methanesulfonyl)或CH3SO2−(Ms−)官能團的術語。比如,甲基磺酰氯通常被稱為"甲磺酰氯"(mesyl chloride)。.

新!!: 离子和甲磺酸酯 · 查看更多 »

甲酸盐

酸盐俗称蚁酸盐(Formate)是甲酸根(即蚁酸根,HCOO−)离子和阳离子形成的盐。此为最简单的羧酸阴离子。.

新!!: 离子和甲酸盐 · 查看更多 »

甘油磷酸

油磷酸(glycerophosphate,全称为甘油3-磷酸)是甘油的有机磷酸酯的阴离子,为甘油磷脂的组成部分,亦是合成甘油三酸酯的原料。生物合成甘油-3-磷酸的方法有两种:一种是在甘油-3-磷酸脱氢酶的作用下,以NADH还原二羟丙酮磷酸或3-磷酸甘油醛得到;其二是在甘油激酶的作用下,以ATP磷酸化甘油得到。.

新!!: 离子和甘油磷酸 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 离子和电子 · 查看更多 »

电子亲合能

在一般化學與原子物理學中,电子亲合能(或电子亲和势、电子亲和力,electron affinity,Eea)的定義是,將一個電子加入一個氣態的原子或分子所需耗費,或是釋出的能量。 在固態物理學之中,對於一表面的電子親合能定義不同。.

新!!: 离子和电子亲合能 · 查看更多 »

电子俘获

电子俘获(Electron capture)是富质子的原子核吸收一个自身轨道的电子(使一个质子转变为中子)、并同时发射出一个中微子的过程。伴随发生的过程还包括光子的辐射(伽马射线),使新产生原子核的能级降至基态。.

新!!: 离子和电子俘获 · 查看更多 »

电子盐

电子盐、电子化合物是一类新型的化合物,其中以电子作阴离子。 第一个研究的电子盐是碱金属的液氨溶液。 比如,钠溶于液氨时,会生成含有+及溶剂合电子的蓝色溶液。此类溶液是强还原剂,可以用于Birch还原芳香化合物,放置时氨会被电子还原,逐渐生成金属氨基盐: +e−中加入2.2.2-穴醚生成+e−溶液,蒸发得到蓝黑色顺磁性的盐类,化学式为+e−,于240K以上分解。这些盐属于莫特绝缘体,电子在阳离子之间离域。 又如金属钠在一定量的二苯并-18-冠-6中的溶解度可以达到0.21mol/L,成为电解质溶液。以钠为电极电解可得钠的电子盐,反应方程式如下 Na(s)+nL ↔Na+(L)+e-(溶剂化) ↔+-(电子盐).

新!!: 离子和电子盐 · 查看更多 »

电子陶瓷

电子陶瓷主要使用了陶瓷的电性能。所谓材料的电性能是由材料中电荷(包括离子、电子、空穴等)的分布及移动所决定的。如果电荷短程传输,则表现为电极子,如果电荷长程传输则表现为导电。 根据陶瓷的导电性,陶瓷可以分为介电陶瓷(主要利用电荷的短程传输性)、导体陶瓷(主要利用电荷的长程传输性)和高温超导陶瓷(库柏电子对的移动)。 Category:电子材料 Category:陶瓷材料.

新!!: 离子和电子陶瓷 · 查看更多 »

电化学

电化学(electrochemistry)作为化学的分支之一,是研究两类导体(电子导体,如金属或半导体,以及离子导体,如电解质溶液)形成的接界面上所发生的带电及电子转移变化的科学。 传统观念认为电化学主要研究电能和化学能之间的相互转换,如电解和原电池。但电化学并不局限于电能出现的化学反应,也包含其它物理化学过程,如金属的电化学腐蚀,以及电解质溶液中的金属置换反应。.

新!!: 离子和电化学 · 查看更多 »

电化学梯度

电化学梯度(electrochemical gradient)是离子跨膜运动而产生的梯度,通常包括电位梯度和浓度梯度。电化学势能是一种维持细胞生命活动的势能。这一能量以化学势的形式存储,表现为细胞膜两侧的离子浓度梯度。.

新!!: 离子和电化学梯度 · 查看更多 »

电现象

电现象是关于电的物理现象,例如人类熟知的闪电就是自然界中的一种放电现象。此外,随着电学的发展,人们还认识到了摩擦起电、静电感应、电磁感应、壓電效應等各种电现象。.

新!!: 离子和电现象 · 查看更多 »

电离

电离(Ionization),或称电离作用、離子化,是指在(物理性的)能量作用下,原子、分子在水溶液中或熔融状态下产生自由离子的过程。 電離大致可細分為兩種類型:一種連續電離(sequential ionization)和非連續電離(Non-sequential ionization)。在古典物理學中,只有連續電離可以發生。非連續電離則違反了若干物理定律,屬於量子電離。 例如:.

新!!: 离子和电离 · 查看更多 »

电离平衡

电离平衡是一种化学现象,通常发生在具有极性共价键的化合物溶于水中的情况。.

新!!: 离子和电离平衡 · 查看更多 »

电离能

電離能(Ionization energy),或稱游離能、電離焓,常簡記為EI,指的是將一個電子自一個孤立的原子、離子或分子移至無限遠處所需的能量。更廣義的用法,第一电离能定义为气态原子失去一个电子成为一价气态正离子所需的最低能量,记作I1;气态一价正离子失去一个电子成为气态二价正离子所需的能量称为第二电离能,记作I2。依此类推。 电离能的数值和原子的有效核电荷密切相关,也和原子大小、原子轨道中电子间的推斥作用等因素有关。 电离能是了解原子性质的重要数据。.

新!!: 离子和电离能 · 查看更多 »

电离氢区

电离氢区(H II區)是發光的氣體和電漿組成的雲氣,有時會有數百光年的直徑,是恆星誕生的場所。從這些氣體中誕生的年輕、炙熱的藍色恆星散發出大量的紫外線,使星雲環繞在周圍的氣體游離。 H II區在數百萬年的歲月中也許可以誕生成千上萬顆的恆星。最後,超新星爆炸和來自星團中質量最大的那些恆星吹出的強烈恆星風,將會吹散掉H II區的氣體,留下來的就是像昴宿星團這樣的星團。 H II區是因為有大量被游離的氫原子而得名的,天文學家同樣的將中性氫的區域稱為HI區,而H2稱為分子氫。在宇宙的遠處的H II區不會被忽略,也能被看見,對其它星系H II區的觀測,在測量距離和化學組成是很重要的研究項目。.

新!!: 离子和电离氢区 · 查看更多 »

电突触

電突觸是神經元之間突觸的一種,是以直接電氣方式耦合。 電突觸是以兩個神經元之間相距僅2至4奈米的縫隙連接作為傳遞信號的地方,相對於20-40奈米的化學突觸來說小得多,帶電的離子可以在此交換,並引起神經衝動。對於到多數動物,同時存在電突觸和化學突觸這兩種神經突觸。 电突触的优点是传播速度较快,可以在更短的时间内传递信息。但是,由于缺乏增益,这种突触的突触后神经元受到的刺激的程度总是和突触前神经元的相同或更小。故电突触常常存在于神经系统中需要快速回应的地方,比如防卫反射。电突触的另一种特点是,一般情况下它们是双向的(即允许兴奋从突触两侧的任意细胞发出),但有些电突触仍是单向的。 Category:细胞通讯 Category:电生理学 Category:神經生理學.

新!!: 离子和电突触 · 查看更多 »

电解质

电解质()是指在水溶液或熔融状态可以产生自由离子而导电的化合物。通常指在溶液中导电的物质,但熔融态及固态下导电的电解质也存在。这包括大多数可溶性盐、酸和碱。一些气体,例如氯化氢,在高温或低压的条件下也可以作为电解质。电解质通常分为强电解质和弱电解质。.

新!!: 离子和电解质 · 查看更多 »

电解池

电解池(electrolytic cell)是用于电解的装置,可以将电能转化为化学能,使某些平常情况下无法自发的化学反应得以发生。电解池一般由电解液和两个电极组成,电解液可以是盐类的水溶液也可以是熔融的盐类。当在电极上加上外加电场时,电解液中的离子会被带相反电荷的电极所吸引,靠近该电极,进而在该电极上发生得电子或失去电子的还原或氧化反应。电解池的重要应用例子包括电解水、电解食盐水、电解熔融的氧化铝制取铝等过程。材料的电镀和金属的精炼也通过电解池进行。.

新!!: 离子和电解池 · 查看更多 »

电阻

在電磁學裏,電阻是一個物體對於電流通過的阻礙能力,以方程式定義為 其中,R為電阻,V為物體兩端的電壓,I為通過物體的電流。 假設這物體具有均勻截面面積,則其電阻與電阻率、長度成正比,與截面面積成反比。 採用國際單位制,電阻的單位為歐姆(Ω,Ohm)。電阻的倒數為電導,單位為西門子(S)。 假設溫度不變,則很多種物質會遵守歐姆定律,即這些物質所組成的物體,其電阻為常數,不跟電流或電壓有關。稱這些物質為「歐姆物質」;不遵守歐姆定律的物質為「非歐姆物質」。 電路符號常常用R來表示,例: R1、R02、R100等。.

新!!: 离子和电阻 · 查看更多 »

电泳

电泳是空间匀强电场作用下,分散粒子在流体中发生移动的现象。由于各物质的迁移速率有差别,故电泳是分离物质的常用方法。它又可分为:.

新!!: 离子和电泳 · 查看更多 »

电渗析

利用半透膜的选择透过性来分离不同的溶质粒子(如离子)的方法称为渗析。在电场作用下进行渗析时,溶液中的带电的溶质粒子(如离子)通过膜而迁移的现象称为电渗析。利用电渗析进行提纯和分离物质的技术称为电渗析法。 D.

新!!: 离子和电渗析 · 查看更多 »

电流

電流(courant électrique; elektrischer Strom; electric current)是电荷的平均定向移动。电流的大小称为电流强度,是指单位时间内通过导线某一截面的电荷,每秒通过1库仑的電荷量稱为1安培。安培是國際單位制七個基本單位之一。安培計是專門測量電流的儀器 。 有很多種承載電荷的載子,例如,導電體內可移動的電子、電解液內的離子、電漿內的電子和離子、強子內的夸克。這些載子的移動,形成了電流。 有一些效應和電流有關,例如電流的熱效應,根據安培定律,電流也會產生磁場,馬達、電感和發電機都和此效應有關。.

新!!: 离子和电流 · 查看更多 »

电流密度

在電磁學裏,電流密度(current density)是電荷流動的密度,即每單位截面面積電流量。電流密度是一種向量,一般以符號\mathbf表示。採用國際單位制,電流密度的單位是安培/公尺2(ampere/meter2,A/m2)。.

新!!: 离子和电流密度 · 查看更多 »

熱絲極離子真空計

熱絲極離子真空計(英文:Hot filament ionization gauge),有時又稱熱絲極真空計或熱陰極真空計,是一種非常廣泛用於壓力範圍在10^至10^托的測量裝置。構造和三極管類似,但是絲極作為負極。 熱絲極離子真空計 巴雅-愛泊特熱釷-銥絲極離子真空計在2.75 in的刀口法蘭 其他名稱.

新!!: 离子和熱絲極離子真空計 · 查看更多 »

異丙托溴銨

丙托溴銨(Ipratropium bromide),商品名「Atrovent」,屬於一種支气管扩张药。本品通常用於治療慢性阻塞性肺病(COPD)以及哮喘 -->,通常以或的形式銷售 -->。通常藥效會於15-30分鐘後開始作用,作用時間維持3至5小時。 常見副作用包含口乾、咳嗽,以及支气管炎 -->。潛在副作用包含尿瀦留、呼吸道痙攣,以及全身型過敏性反應。妊娠和哺乳期間用藥目前顯示為安全。異丙托溴銨是一種抗膽鹼劑,可以幫助平滑肌舒張。 異丙托溴銨最早於1976年的德國所研製,並於1986年引入美國醫療體系。該藥品列名世界卫生组织基本药物标准清单,為基礎醫療體系必備藥物之一。異丙托溴銨屬於學名藥,一管200劑量的吸入劑批發價約在6.60美金左右。在美國,一個月療程所需的藥物花費約在100至200美元之間。.

新!!: 离子和異丙托溴銨 · 查看更多 »

界達電位

界達電位(zeta potential)在膠體化學中,是指膠體粒子上累積的離子所引發的靜電壓;膠體粒子由電雙層構成,包含固定層和擴散層。一個粒子可以藉由亨利公式(Henry's function)導出電泳的移動率,進而求出其界達電位的值。 Category:物理化学.

新!!: 离子和界達電位 · 查看更多 »

物质状态

物質狀態是指一種物質出現不同的相。早期來說,物質狀態是以它的體積性質來分辨。在固態時,物質擁有固定的形狀和容量;而在液態時,物質維持固定的容量但形狀會隨容器的形狀而改變;氣態時,物質不論有沒有容量都會膨漲以進行擴散。近期,科學家以分子之間的相互關係作分類。固態是指因分子之間因為相互的吸力因而只會在固定位置震動。而在液體的時候,分子之間距離仍然比較近,分子之間仍有一定的吸引力,因此只能在有限的範圍中活動。至於在氣態,分子之間的距離較遠,因此分子之間的吸引力並不顯著,所以分子可以隨意活動。電漿態,是在高溫之下出現的高度離化氣體。而由於相互之間的吸力是離子力,因而出現與氣體不同的性質,所以電漿態被認為是第四種物質狀態。假如有一種物質狀態不是由分子組成而是由不同力所組成,我們會考慮成一種新的物質狀態。例如:費米凝聚和夸克-膠子漿。 物質狀態亦可用相的轉變來表達。相的轉變可以是結構上的轉變又或者是出現一些獨特的性質。根據這個定義,每一種相都可以其他的相中透過相的轉變分離出來。例如水數種固體的相。超導電性便是由相的轉變引伸出來,因此便有超導電性的狀態。同樣,液晶體狀態和鐵磁性狀態都是用相的轉變所劃分出來並同時擁有不一樣的性質。.

新!!: 离子和物质状态 · 查看更多 »

盐 (化学)

在化学中,是指一类金属离子或銨根離子(NH)与酸根离子或非金屬離子结合的化合物,如硫酸钙,氯化铜,醋酸钠,一般来说盐是複分解反应的生成物,如硫酸与氢氧化钠生成硫酸钠和水,也有其他的反应可生成盐,例如置换反应。 盐分为單盐和合盐,單盐分為正盐、酸式盐、碱式盐,合盐分為複盐和錯盐。其中酸式盐除含有金属离子与酸根离子外还含有氢离子,碱式盐除含有金属离子与酸根离子外还含有氢氧根离子,複盐溶於水時,可生成與原盐相同离子的合盐;络盐溶於水時,可生成與原盐不相同的複雜离子的合盐-絡合物。 通常在標準狀況下,不可溶的盐會是固態,但也有例外,例如及离子液体。可溶盐的溶液及有导电性,因此可作為電解質。包括細胞的細胞質、血液、尿液及礦泉水中都含有許多不同的盐類。 强碱弱酸盐是强碱和弱酸反应的盐,溶于水显碱性,如碳酸钠。而强酸弱碱盐是强酸和弱碱反应的盐,溶于水显酸性,如氯化铁。.

新!!: 离子和盐 (化学) · 查看更多 »

盐酸

酸,學名氢氯酸(hydrochloric acid),是氯化氢(化学式:HCl)的水溶液,属于一元无机强酸,工业用途广泛。盐酸为无色透明液体,有强烈的刺鼻味,具有较高的腐蚀性。浓盐酸(质量百分濃度约为37%)具有极强的挥发性,因此盛有浓盐酸的容器打开后氯化氢气体会挥发,与空气中的水蒸气结合产生盐酸小液滴,使瓶口上方出现酸雾。盐酸是胃酸的主要成分,它能够促进食物消化、抵御微生物感染。 16世纪,利巴菲乌斯正式记载了纯净盐酸的制备方法:将浓硫酸与食盐混合加热。之后格劳勃、普利斯特里、戴维等化学家也在他们的研究中使用了盐酸。 工业革命期间,盐酸开始大量生产。化学工业中,盐酸有许多重要应用,对产品的质量起决定性作用。盐酸可用于酸洗钢材,也是大规模制备许多无机、有机化合物所需的化学试剂,例如聚氯乙烯的前体氯乙烯。盐酸还有许多小规模的用途,比如用于家务清洁、生产明胶及其他食品添加剂、除水垢试剂、皮革加工。全球每年生产约两千万吨的盐酸。.

新!!: 离子和盐酸 · 查看更多 »

盐酸胍

酸胍是胍的盐酸盐,通常可以缩写为GuHCl,有时也会写作GdnHCl或GdmCl。.

新!!: 离子和盐酸胍 · 查看更多 »

相转移催化剂

转移催化剂(Phase transfer catalyst,PTC)是可以帮助反应物从一相转移到能够发生反应的另一相当中,从而加快异相系统反应速率的一类催化剂。一般存在相转移催化的反应,都存在水溶液和有机溶剂两相,离子型反应物往往可溶于水相,不溶于有机相,而有机底物则可溶于有机溶剂之中。不存在相转移催化剂时,两相相互隔离,几个反应物无法接触,反应进行得很慢。相转移催化剂的存在,可以与水相中的离子所结合(通常情况),并利用自身对有机溶剂的亲和性,将水相中的反应物转移到有机相中,促使反应发生。.

新!!: 离子和相转移催化剂 · 查看更多 »

相态列表

态列表是关于各种常见(固态,液态,气态,等离子态)和不常见的相态(物质在一定温度压强下所处的相对稳定的状态)的列表,列表是根据能量密度由低到高排列。.

新!!: 离子和相态列表 · 查看更多 »

D-苏醛糖1-脱氢酶

D-苏醛糖1-脱氢酶(D-threo-aldose 1-dehydrogenase,EC ),是一种以NAD+或NADP+为受体、作用于供体CH-OH基团上的氧化还原酶。这种酶能催化以下酶促反应: D-苏醛糖1-脱氢酶也能催化L-岩藻糖、D-阿拉伯糖、L-木糖等发生反应,石竹假单胞菌(Pseudomonas caryophylli)和动物的D-苏醛糖1-脱氢酶和还分别表现出对L-葡萄糖和L-阿拉伯糖的活性,并可能受到对氯汞基苯甲酸、对羟基汞基苯甲酸、N-乙基顺丁烯二酰亚胺等有机物质或Cu2+、Hg2+等阳离子的抑制。.

新!!: 离子和D-苏醛糖1-脱氢酶 · 查看更多 »

D2sp3杂化

d2sp3杂化(d2sp3 hybridization)是指一个原子同一电子层内由两个n-1d轨道、一个ns轨道和三个np轨道发生生杂化的过程。原子发生d2sp3杂化后,上述n-1d、ns和np轨道便会转化成为六个轨道,称为“d2sp3杂化轨道”。六个d2sp3杂化轨道分别存在于两个平面上,其中,位于水平面的四个杂化两两之间的夹角皆为90°,另有两个杂化轨道位于轴向平面、对称地分布于水平面两侧。一般认为d2sp3杂化的水平杂化轨道是由dx²-z²、s、px和py轨道组成的,而轴向杂化轨道则由dz²和pz组成。d2sp3杂化一般发生在分子形成过程中。杂化过程中,能量相近的d轨道、s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。 以3−中的铁离子(Fe3+)为例:处于基态的Fe3+(电子排布式为:3d5)的3d电子发生重排(两个3d电子发生d-d跃迁,由eg轨道进入t2g轨道)。然后,两个空的3d轨道、一个空的4s轨道和三个空的4p轨道进行d2sp3杂化,形成六个d2sp3杂化轨道。该过程中铁离子的轨道排布变化情况如下图所示(图中灰色的配位电子对由6个氰酸根离子提供):.

新!!: 离子和D2sp3杂化 · 查看更多 »

Dsp2杂化

dsp2杂化(dsp2 hybridization)是指一个原子内的一个n-1d轨道、一个ns轨道和两个np轨道发生杂化的过程。原子发生dsp2杂化后,上述n-1d轨道、ns轨道和np轨道便会转化成为四个等价的杂化轨道,称为“dsp2杂化轨道”。四个dsp2杂化轨道存在于同一平面上,且对称轴两两之间的夹角相同,皆为90°,故dsp2杂化也称为“平面正方形杂化”。dsp2杂化一般发生在分子形成过程中。杂化过程中,能量相近的d轨道、s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。 一般只有过渡金属元素才能发生dsp2杂化。以2-中的二价铂离子(Pt2+)为例:处于基态的Pt2+(电子排布式为:4f145d8),它的一个空的5d轨道、一个空的6s轨道和两个空的6p轨道进行dsp2杂化,形成四个dsp2杂化轨道。该过程中Pt2+的轨道排布变化情况如下图所示(图中灰色的配位电子对由4个氯离子提供):.

新!!: 离子和Dsp2杂化 · 查看更多 »

Duga远程警戒雷达

Duga远程警戒雷达(Дуга)是苏联在冷战时期所建设的超视距雷达,是苏联反弹道导弹远程警戒网络的一部分,于1976年7月至1989年12月期间服役。该系统总共部署了两套,一套位于乌克兰苏维埃社会主义共和国(今天的乌克兰)境内的切尔诺贝利与切尔尼戈夫附近,另一套位于东西伯利亚。 Duga雷达极为强大,峰值功率约10MW,工作在短波波段。其信号往往突然出现,发出10 Hz的尖锐敲击声,故得名俄罗斯啄木鸟。它随机的跳频干扰了正常的无线电广播、业余无线电台以及其他传输应用,在全球范围内的许多国家引发了数以千计的投诉。这个干扰让世界范围内的业余无线电操作员深受其苦,并导致了一个蓬勃发展的行业,研制“啄木鸟滤波器”和噪音屏蔽装置。业余无线电操作员曾经提议了一个对抗干扰的办法,那就尝试是“阻塞”这个信号,通过发送同步、未经调制的连续波信号,使用同样的脉冲频度来进行信号攻击。这个想法经过考虑后被废弃,因为其不够现实。 不明信号引起了许多猜测,诸如苏联在进行思想控制或是天气控制实验等。不过因为其独特的信号特征,很多专家以及业余无线电爱好者很快发现它是超视距雷达的信号。北约军事情报部门给它给予的北约代号为 STEEL WORK或是STEEL YARD。尽管在业余无线电爱好者社区中广为人知,相关信息仍然等到苏联解体后才公布。.

新!!: 离子和Duga远程警戒雷达 · 查看更多 »

芦丁

芦丁(Rutin,也叫芸香苷、路丁、络通或槲皮素-3-O-芸香糖苷)是黄酮醇槲皮素与二糖芸香二糖(α-L-鼠李吡喃糖基-(1→6))-β-D-葡萄吡喃糖)之间形成的糖苷。在巴西芸香(Dimorphandra mollis)中,芦丁的合成是经过芦丁合酶的活性而完成的。.

新!!: 离子和芦丁 · 查看更多 »

芳香环

芳香环是一类有机芳香化合物。 芳香环拥有共轭的平面环体系,原子间成键并不是不连续的单双键交替,而是被离域π电子云覆盖。典型的芳香环化合物是苯和吲哚。.

新!!: 离子和芳香环 · 查看更多 »

鎂營養

鎂是人體必須的宏量礦物質營養素,現代的食品多經加工再造,容易導致鎂離子流失,容易發生攝取不足的問題,可能增加糖尿病等慢性疾病的風險。.

新!!: 离子和鎂營養 · 查看更多 »

聚电解质

聚电解质(polyelectrolyte)是带有可电离基团的长链高分子,这类高分子在极性溶剂中会发生电离,使高分子链上带上电荷。链上带正或负电荷的聚电解质分别叫做聚阳离子或聚阴离子。聚电解质分别具有电解质和高分子的一些性质。聚电解质溶液类似电解质溶液,可以导电,类似高分子溶液,有很大的粘度。作为软物质体系,聚电解质对很多分子组装体的结构、稳定性和相互作用具有重要影响。 分类:高分子.

新!!: 离子和聚电解质 · 查看更多 »

聖石小子

《聖石小子》,--,日本漫畫家真島浩創作之冒險類少年漫畫,於《週刊少年Magazine》1999年32號開始連載,直至2005年35號的最終回。單行本全35卷,最後一卷於2005年9月16日發行。.

新!!: 离子和聖石小子 · 查看更多 »

荷包蛋星系

荷包蛋星系,又名NGC 7742,是一個位於飛馬座的螺旋星系,屬於第二型西佛星系(Seyfert galaxy),距離地球大約7,500萬光年。 由於在星系的光譜中,其中間核心特別光亮,形成一個類似荷包蛋的形狀,這是該星系擁有高度離子化原子的證據。 天文學家已經在荷包蛋星系發現2顆II型超新星:SN 1993R及SN 2014cy。.

新!!: 离子和荷包蛋星系 · 查看更多 »

荷電粒子炮

荷電粒子砲(Charged Particle Cannon 或 Charged Particle Weapon)是指電離的帶電粒子利用加速器將其加速打出以其破壞敵械的武器。 在今日科技已經能做出具破壞力的高能加速器,但因為難以小型化,所以仍是科幻作品裡才會出現的武器。.

新!!: 离子和荷電粒子炮 · 查看更多 »

華特·蕭特基

-- 華特·赫尔曼·蕭特基(Walter Hermann Schottky,),德國物理學家。他在早期的電子與離子發射現象的理論發展上扮演着重要角色,於1919年發明簾柵極真空管(四極管),後來也在半導體元件、工程物理學、科技领域有許多重大貢獻。現今蕭特基二極體廣泛用於每一台電腦、也在一些高頻領域等有所应用。.

新!!: 离子和華特·蕭特基 · 查看更多 »

在化學中,鏻,又稱鏻離子或磷鎓离子,是由膦(或磷化氫)分子衍生出的正一价、帶1個正電荷的離子。是磷化氫分子,由磷提供孤電子對而被質子化(與氫離子配位結合)後產生的正離子,其化學式為。其在化學反應中有類似於金屬離子的特性。.

新!!: 离子和鏻 · 查看更多 »

萊曼極限

萊曼極限是氫的萊曼系最短的波長,結束在91.2奈米。它相當於一個電子從氫的基態逃逸到電位勢障壁所需要的能量,也就是創造一個氫離子。這個能量等同於里德伯常量。.

新!!: 离子和萊曼極限 · 查看更多 »

萤光素酶

萤光素酶(Luciferase)是自然界中能够产生生物发光的酶的统称,其中最有代表性的是一种学名为Photinus pyralis的萤火虫体内的萤光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有萤光素酶的情况下,萤光素与氧气反应的速率非常慢,而钙离子的存在常常可以进一步加速反应(与肌肉收缩的情况相似)。萤光生成反应通常分为以下两步: 萤光素 + ATP → 萤光素化腺苷酸(luciferyl adenylate) + PPi 萤光素化腺苷酸 + O2 → 氧萤光素 + AMP + 光 这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有約10%的能量被转化为光,剩余的能量都变为热能而被浪费。 萤光素或萤光素酶不是特定的分子,而是对于所有能够产生萤光的底物和其对应的酶的统称,虽然它们各不相同。不同的能够控制发光的生物体用不同的萤光素酶来催化不同的发光反应。最为人所知的发光生物是萤火虫,而其所采用不同的萤光素酶与其他发光生物如荧光菇(发光类脐菇,Omphalotus olearius)或许多海洋生物都不相同。在萤火虫中,发光反应所需的氧气是从被称为腹部气管(abdominal trachea)的管道中输入。一些生物,如叩头虫,含有多种不同的萤光素酶,能够催化同一萤光素底物,而发出不同颜色的萤光。萤火虫有2000多种,而叩甲总科(包括萤火虫、叩头虫和相关昆虫)则有更多,因此它们的萤光素酶对于分子系统学研究很有用。目前研究得最透彻的萤光素酶是来自Photinini族萤火虫中的北美萤火虫(Photinus pyralis)。.

新!!: 离子和萤光素酶 · 查看更多 »

鐵氧體

鐵氧體(Ferrite)是一種陶瓷材料,以氧化铁為其主要成份。大部份的鐵氧體是磁性材料,用來製作永久磁鐵、變壓器的鐵芯及其他相關的應用。.

新!!: 离子和鐵氧體 · 查看更多 »

非中性電漿

非中性電漿是總電荷數不為零的電漿,在電漿動力學中由非中性電荷所產生的電場扮演了重要甚至是主要的角色。R.

新!!: 离子和非中性電漿 · 查看更多 »

非电解质

非电解质是指在水中或熔融状态下都不能电离出离子的化合物.

新!!: 离子和非电解质 · 查看更多 »

非金属性

非金属性(氧化性)指原子、分子或离子在化学反应中吸收电子能力。吸收电子能力越强的粒子其非金属性也就越强;反之则越弱,而其金属性(还原性)就越强。非金属性最强的元素是氟。.

新!!: 离子和非金属性 · 查看更多 »

非配位阴离子

与阳离子作用弱的阴离子被称为非配位阴离子,虽然更准确的术语是弱配位阴离子。非配位阴离子在研究亲电试剂的活性时很有用。它们通常是配位数不饱和的金属配合物中阳离子的平衡离子(电荷相反使整体显电中性)。这些特殊的离子是均相烯烃聚合催化剂中必需的成分,其中活性催化中心配位数不饱和,是过渡金属配合物阳离子。例如,它们被用于平衡14个价电子的阳离子+(R.

新!!: 离子和非配位阴离子 · 查看更多 »

非苯芳烃

非苯芳烃指分子中没有苯环结构却具有芳香性的环状烃类分子或离子。一般来说,非苯芳烃符合休克尔规则(4n+2),即含有4n+2个π电子。此外还要求环为平面型,且环内氢原子的排斥较小。.

新!!: 离子和非苯芳烃 · 查看更多 »

非整比化合物

非整比化合物(Non-stoichiometric compound,又譯非化学计量化合物),又稱贝多莱体(berthollides),指的是组成中各类原子的相对数目不能用几个小的整数比表示的化合物。.

新!!: 离子和非整比化合物 · 查看更多 »

靜電透鏡

電透鏡 (electrostatic lens) 是一種引導帶電粒子的裝置,靜電透鏡可以類似光學透鏡使帶電粒子聚焦。用在引導電子稱電子透鏡 (electron lens),而用在引導離子則稱離子透鏡 (ion lens)。.

新!!: 离子和靜電透鏡 · 查看更多 »

靈異教師神眉角色列表

本條目是《靈異教師神眉》的人物列表。 註:原作:童守小學→電視劇:童守高中.

新!!: 离子和靈異教師神眉角色列表 · 查看更多 »

蝕刻

蝕刻是指以酸性、腐蝕性或有研磨效用的物質在玻璃表面上創作的技術。傳統上,這段過程是在玻璃吹製好或鑄好之後進行的。 1920年代,人們發明一種新的模刻技術,即將圖案直接刻在鑄模上。所以當鑄模好了之後,圖案就已經在玻璃的表面上了。這項技術降低了製作成本,且結合彩色玻璃的廣泛運用導致了1930年代便宜花瓶的出現,這些花瓶後來被稱之為「Depression glass」。因為用在此過程中的酸劑很危險,現在大多是使用研磨的方法。 到了近代,現在的蝕刻應用在半導體的製程上,透過黃光製程來定義出想要的圖形,利用蝕刻來得到。 半導體的蝕刻可分為乾式蝕刻與溼式蝕刻:.

新!!: 离子和蝕刻 · 查看更多 »

静电除尘

電除塵,简称“電除塵”,即利用静电吸引轻小物体的性质,利用静电吸附工业粉尘。在鞍钢等大型工厂都采用这种废气处理方式。 與濕式洗滌器相反: 濕式洗滌器將能量直接施加到流動的流體介質,ESP僅將能量用在收集顆粒物質上,因此能量消耗非常有效率。.

新!!: 离子和静电除尘 · 查看更多 »

静息电位

静息电位(英文:resting potential)(又称靜態電位、靜止電位、靜止膜電位、休息電位、休息膜電位),是神經元处于相对靜止状态时,细胞膜内外存在的恒定电位差。其主要成因源於鈉鉀-zh:泵;zh-hans:泵;zh-hant:幫浦;zh-cn:泵;zh-tw:幫浦;zh-hk:泵;zh-sg:泵;zh-mo:泵;-的活動。靜止膜電位的存在對於神經傳導而言,是非常重要的。 在神經細胞未受刺激的狀態,可想像為一個不會影響細胞的電壓器,將一端電極置於神經細胞膜內,一端置於神經細胞膜外,將可發現細胞膜內外存在一電位差,此電位差在人類神經細胞膜上約為−70 mV(負值代表細胞膜內之電位較膜外低)。 這是由於細胞膜的內外離子濃度分佈不均所導致的。眾離子中最主要影響的是鉀離子和鈉離子,且細胞膜上有多個鈉鉀-- ,它們會進行主動運輸,每次把三個鈉離子送到細胞外,把兩個鉀離子送入細胞內,過程中耗用了一個ATP。細胞膜上還有鈉離子通道和鉀離子通道,在細胞靜止的狀態下,鈉離子通道是完全關閉的,使鈉離子不能進出,而一些鉀離子通道卻會打開,因此若干鉀離子會擴散出細胞外。(此處是指主動離子通道,事實上細胞膜上存在一些被動離子通道,但影響不大。)總體而言,神經細胞內有很多的鉀離子,而細胞外有非常多的鈉離子加上一些鉀離子,造成外面的阳离子比內部的阳离子還要多,此即為產生靜止膜電位的主要原因。.

新!!: 离子和静息电位 · 查看更多 »

類氫原子

類氫原子(hydrogen-like atom)是只擁有一個電子的原子,與氫原子同為等電子體,例如,He+, Li2+, Be3+與B4+等等都是類氫原子,又稱為「類氫離子」。類氫原子只含有一個原子核與一個電子,是個簡單的二體系統,系統內的作用力只跟二體之間的距離有關,是反平方連心力。這反平方連心力二體系統不需再加理想化,簡單化。描述這系統的(非相對論性的)薛丁格方程式有解析解,也就是說,解答能以有限數量的常見函數來表達。滿足這薛丁格方程式的波函數可以完全地描述電子的量子行為。在量子力學裏,類氫原子問題是一個很簡單,很實用,而又有解析解的問題。所推演出來的基本物理理論,又可以用簡單的實驗來核對。所以,類氫原子問題是個很重要的問題。 稱滿足上述系統的薛丁格方程式的波函數為單電子波函數,或類氫原子波函數。類氫原子波函數是單電子角動量算符 L 與其 z-軸分量算符 L_z 的本徵函數。由於能量本徵值 E_n 跟量子數 l ,m 無關,而只跟主量子數 n 有關。所以,類氫原子波函數可以由主量子數 n 、角量子數 l 、磁量子數 m ,獨特地決定。因為構造原理,還必須加上自旋量子數 m_s.

新!!: 离子和類氫原子 · 查看更多 »

表面科学

表面科学(surface science)主要研究的是发生在两种相的(例如固-液界面、固-气界面、固-真空界面和液-气界面)上的物理和化学现象,其子领域包括表面化学和表面物理。表面科学的相关实际应用常被称为表面工程(surface engineering),其中的概念包括多相催化、半导体器件制造、燃料电池、自組裝單分子膜、黏合劑等。表面科学和密切相關;.

新!!: 离子和表面科学 · 查看更多 »

表面电荷

表面电荷即在界面处存在的电荷。有很多过程可以使表面带电,比如离子吸附、质子化或去质子化、表面的化学基团发生电离、外加电场。表面电荷会产生电场,使粒子之间有排斥或吸引的相互作用,这是很多胶体性质的成因。 物体处于流体中一般都會带上电荷。几乎所有的流体都会含有离子,包括正离子(阳离子)和负离子(阴离子),离子与表面會有相互作用,导致有离子吸附到物体表面。 另外一个表面电荷的机制是,表面的化学基团发生电离。.

新!!: 离子和表面电荷 · 查看更多 »

表面物理学

表面物理学是固體物理學的分支之一,它主要是在高真空中用電子束、離子束、原子束、光子、熱、電場和磁場等與固體的面交互用,並且藉此得知固體的表面幾層原子的電子狀態、原子的排列情況、吸附在表面上的外來原子或分子以及其他物理性質。表面物理学是1960年代以後固體物理學中的一個重要而且發展極為迅速的領域,目前對半導體的研究和製造非常重要。.

新!!: 离子和表面物理学 · 查看更多 »

表面活性剂

表面活性剂(又稱界面活性劑)是能使目标溶液表面张力显著下降的物质,可降低两种液体或液体-固体间的表面张力。最典型的例子是肥皂,具分解、滲入的效果,應用廣泛。 表面活性剂一般为具有亲水与疏水基团的有机两性分子,通常是两亲的有机化合物,含有疏水基团(“尾”)和亲水基团(“头”)。因此,它们在有机溶剂和水中均可溶。“ 表面活性剂按照种类,可以分为:.

新!!: 离子和表面活性剂 · 查看更多 »

表面改性技术

表面改性技术(Surface modification)是仅对材料的表面进行处理的技术,如渗碳(或渗氮)、喷丸、激光处理、离子注入、表面涂层法、阳极氧化、化学气相沉积、物理气相沉积等等。 Category:材料科學.

新!!: 离子和表面改性技术 · 查看更多 »

血浆蛋白

血浆蛋白(英語:plasma proteins)——又被称为血液蛋白(英語:blood proteins)——是血浆中的蛋白质,是血液中除了血红蛋白以外的蛋白质。有时也有人用血清蛋白来称呼它,但是血浆蛋白与血清蛋白还是有些细微区别。一般认为血清蛋白缺乏凝血因子(如纤维蛋白原),血浆蛋白则含有凝血因子,但一般差别不大。血液中的血浆蛋白总浓度约为70 g/L~75 g/L。.

新!!: 离子和血浆蛋白 · 查看更多 »

風化作用

化作用為岩石、土壤及其礦物等與地球大氣層接觸而分解。風化作用發生在當地或無包含物體移動,所以不能和侵蝕作用互相混淆。侵蝕作用包括岩石和礦物經由媒介如水、冰、風及重力等引起其移動與瓦解。不是風對地表的侵蝕力量 風化作用可以分為兩種。機械性或物理性的風化作用包括因為大氣情況如熱力、水、冰及壓力导致岩石及土壤的分解。化學性的風化作用包括與大氣化學物的直接反應,或與生物產生的化學物反應,最終令岩石、土壤及礦物分解。 岩石分解後的物質與有機物質結合製成土壤。土壤的礦物成分取決於母質,所以由一種岩石形成的土壤常常會缺乏一種或多種肥沃土壤所需的礦物質,而由多種岩石混合形成的土壤(如冰川、風成或沖積沉積物)常常會形成肥沃土壤。.

新!!: 离子和風化作用 · 查看更多 »

被动运输

被动运输指的是生物化学物质的运动或其他原子或分子穿过细胞膜。不像主动运输,该过程不需要化学能,这是因为顺浓度梯度的跨膜转运总是伴随着系统熵增大的方向进行的。因此,被动运输是基于细胞膜的半透性,这也相应地依赖膜脂以及膜蛋白的组织形式及其化学表征。被动运输的四种形式分别是:简单扩散(自由扩散)、易化扩散(协助扩散)、过滤以及渗透。.

新!!: 离子和被动运输 · 查看更多 »

食物

食物通常以碳水化合物、脂肪、蛋白質或水構成,能夠藉由進食或是飲用為人類或者生物提供營養或愉悅的物質。食物的來源可以是植物、動物或者其他界的生物,例如真菌,亦或發酵產品像是酒精。生物攝取食物後,被生物的細胞同化,提供能量,維持生命及刺激成長。 在歷史上,人類主要是透過狩獵採集者及耕種兩種方式獲得食物,其餘的還有畜牧、釣魚等。現在日益增加的世界人口中,大部份需要的食物熱量是由食品产业提供。 有許多機構在監控食品衛生及食品安全,包括、、世界糧食計劃署、聯合國糧食及農業組織及。他們關注的議題包括可持續性、生物多樣性、氣候變化、、人口自然增长率、供水及食品安全。 食物權是經濟、社會及文化權利國際公約(ICESCR)提出的人权之一 ,認可「有適當生活水平的權利,包括適當的食物」也就是「免於飢餓的自由。.

新!!: 离子和食物 · 查看更多 »

食物中毒

食源性疾病(foodborne illness或foodborne disease),俗稱食物中毒(food poisoning),泛指所有因為進食了受污染食物、致病細菌、病毒,又或被寄生蟲、化學品或天然毒素(例如:有毒蘑菇)感染了的食物。根據如上各種致病源,食物中毒可以分為以下四类,即:化学性食物中毒、细菌性食物中毒黃麴毒素、霉菌毒素与霉变食品中毒和有毒动植物中毒。 食物中毒发病为非传染性的急性、亚急性疾病,可区别于其他食源性疾患。1994年中国卫生部颁发的《食物中毒诊断标准及技术处理总则》从技术上和法律上明确了食物中毒的定义。 食物中毒既不包括因暴饮暴食而引起的急性胃肠炎、食源性肠道传染病(如伤寒)和寄生虫病(如囊虫病),也不包括因一次大量或者长期少量摄入某些有毒有害物质而引起的以慢性毒性为主要特征(如致畸、致癌、致突变)的疾病。.

新!!: 离子和食物中毒 · 查看更多 »

飘升机

升機是一種離子推進的飛行器,也是電流體動力學(electrohydrodynamics)的設計模型。目前在全世界范围内,有关飘升机的实验已经越来越普及,而飘升机本身的结构也越来越复杂,由最简单普及的三角形发展到多格三角形、六边形、圆柱形、伞型以及多层结构等,其尺寸也越来越大,日本出现了直径达五米的飘升机。而最大的飘升机提升重量达到了一磅。.

新!!: 离子和飘升机 · 查看更多 »

褐色钻石

褐色钻石是呈褐色的天然钻石,褐色是天然钻石最常见的颜色变种。褐色钻石曾经因反射光能力弱而不太用于做宝石,而主要用于工业。但是,随着技术进步和市场营销的推动,褐色钻石近些年也正被接受为宝石,尤其是在美国和澳大利亚。澳大利亚所出产的相当大比例的钻石为褐色钻石。科学界为揭示褐色的起源也做了大量研究,已经找到多种原因,如辐照、镍杂质和塑形形变导致的晶格缺陷,后者被认为是主要原因,尤其对于纯钻石。高温高压处理可以修复晶格缺陷,使褐色变成黄色甚至无色。.

新!!: 离子和褐色钻石 · 查看更多 »

西莫尼尼反应

Simonini反应(Simonini reaction),以阿道夫·李本(Adolf Lieben,维也纳大学)的学生 Angelo Simonini 的名字命名。 羧酸银盐与碘作用,当两者摩尔比为1:1时,得到比羧酸少一个碳的碘代烃;摩尔比为2:1时,得到酯类(RCOOR);摩尔比为3:2时,则上述两种产物都有生成。 这个反应为离子历程,可能经过两个阶段。反应过程中形成结构未知的络合物中间体,有时可以离析,有人提出为下列分子式:\rm \ ^-I^+ 和 \rm \ RCOOAg\cdot RCOOI 。 用脂肪酸银盐时得到满意的产率。亦可用羧酸铅盐进行反应。.

新!!: 离子和西莫尼尼反应 · 查看更多 »

馬德隆常數

在一個晶體內,其中一個離子的總電勢能,可表示為它與距離最近的另一個離子的電勢能的M倍,E.

新!!: 离子和馬德隆常數 · 查看更多 »

解离常数

在化学、生物化学及药理学中,解离常数(dissociation constant,K_)是一种特定类型的平衡常数,用于衡量一较大物体与另一较小组分分开(解离)的倾向,也可以描述配合物解体成组分分子或盐分裂为其组分离子。解离常数是缔合常数的倒数。对于一些特定的盐,解离常数亦可被称为电离常数。 对于一般的反应: \mathrm_\mathrm_ \rightleftharpoons x\mathrm + y\mathrm 其中复合物\mathrm_\mathrm_分解为x份A亚单位及y份B亚单位,则解离常数被定义为: K_.

新!!: 离子和解离常数 · 查看更多 »

高分子

分子(Macromolecule)化合物是一個非常大的分子,如蛋白質,通常由較小的亞基(單體)的聚合產生。它們一般由數千或更多的原子組成。通过一定形式的聚合反应生成具有非常高的分子量的大分子,一般指聚合物和结构上包括聚合物的分子。在生物化学中,这个术语被应用于三个传统的生物聚合物(核酸、蛋白质、和碳水化合物),以及具有大分子量的非聚合分子,例如脂类和。这些分子有时也被称为生物大分子。 聚合物高分子的各个构成分子被称为单体。 人工合成的高分子包括塑料。金属和晶体虽然也是由许多原子组成的,其内部通过类似分子的键联合在一起,但是它们一般不被认为是高分子。有时不同的高分子之间通过分子间力(但不是通过化学键)组合到一起,尤其是假如这样的组合是自然发生的,而且其组成部分一般不单独出现的话,那么这样的混合物也会被称为高分子。实际上这样的混合物更应该被称为高分子复合物。在这种情况下组成这个复合物的单个高分子往往被称为下单位。由高分子组成的物质往往有不寻常的物理特性。液晶和橡胶就是很好的例子。许多高分子在水中需要特殊的小分子帮助才能溶解。许多需要盐或者特殊的离子来溶解。.

新!!: 离子和高分子 · 查看更多 »

高分子支载催化剂

高分子支载型催化剂是一类通过接枝法,将有很高活性的小分子催化剂负载在高分子上的非均相催化剂。该类催化剂所具有的特点:可实现重复利用,减少重金属离子的排放,经济高效的达到小分子催化剂的最高利用性。目前研究最广泛的高分子载体主要包括无机高分子载体和天然高分子载体。 Category:高分子化学 Category:催化剂.

新!!: 离子和高分子支载催化剂 · 查看更多 »

高鎝酸鈉

鎝酸鈉是一種無機化合物,它是高鎝酸鹽的一種,化學式為NaTcO4,是由−陰離子和鈉陽離子組成,由離子鍵结合而成。該化合物中的Tc若是同質異能放射性同位素99mTc(即Na99mTcO4)的話是一個重要的放射性診斷藥物。鎝的同質異能放射性同位素99mTc的優勢包括其半衰期短為6小時,低輻射接觸病人,這讓病人被注射的輻射量超過30微居里。.

新!!: 离子和高鎝酸鈉 · 查看更多 »

高铁酸盐

铁酸盐中的高铁酸根是一种无机阴离子,化学式2-。它对光敏感,使得化合物和溶解有它的溶液呈淡紫色。其为已知最强的对水稳定的氧化物质之一。尽管它被归为弱碱,高铁酸盐浓溶液仍具有腐蚀性,且会烧伤皮肤,只能在高pH环境中稳定存在。.

新!!: 离子和高铁酸盐 · 查看更多 »

高铼酸盐

铼酸盐是含有阴离子ReO4-的盐类,又称偏高铼酸盐。常见的高铼酸盐有高铼酸钠、高铼酸铵等。.

新!!: 离子和高铼酸盐 · 查看更多 »

高氯酸氧锆

氯酸氧锆是一种无机化合物,化学式为ZrO(ClO4)2,易溶于水,溶于水放热,在水中解离出ZrO2+和ClO4−离子。.

新!!: 离子和高氯酸氧锆 · 查看更多 »

高效液相色谱法

效液相色谱法(high performance liquid chromatography,縮寫 HPLC),又譯高效液相层析法,以前曾指高壓液相層析法(high pressure liquid chromatography),是一種色譜分析技術,用來分離混合物,以確認並量化各個成分的比例。它依賴泵加壓樣品以令其通過填充有吸附劑的壓力柱,導致樣品的各個成分因而分離。高效液相色谱法常用於生物化學和分析化學。.

新!!: 离子和高效液相色谱法 · 查看更多 »

鱟 (拼音:hòu;注音:ㄏㄡˋ)为鲎科(学名:Limulidae)动物的通称,又名「馬蹄蟹」、「夫妻魚」,屬肢口綱劍尾目的海生節肢動物,被譽為活化石。現存的鱟種類僅存3屬4種。.

新!!: 离子和鱟 · 查看更多 »

豆汁

豆汁是一种北京风味小吃,用生产淀粉或粉丝过程中产生的绿豆下脚料制成。生豆汁是水发绿豆加水经研磨,并除去大部分淀粉(用于生产粉丝凉粉等)之后的液体经发酵生产的。熟豆汁需要将生豆汁慢慢熬制而成,色泽灰绿,口感醇厚,味酸而回味微甜。因其制作过程中需发酵,所以有较强的特殊气味。饮用时常配焦圈、辣咸菜丝或者马蹄烧饼,可开胃。因其口味特别,一些人饮用时会感到不适应,并有一定的抗拒感。.

新!!: 离子和豆汁 · 查看更多 »

鲁米诺

鲁米诺(英文:Luminol),或称发光胺、光敏靈、流明諾,是通用的发光化学试剂,与适当的氧化剂混合时会发出引人注目的蓝色光。它是白色至淡黄色的晶体,可溶于大多数有机极性溶剂,但不溶于水。 法医学上使用鲁米诺来检验犯罪现场含有的痕量血迹,生物学上则使用鲁米诺来检测细胞中的铜、铁及氰化物的存在。.

新!!: 离子和鲁米诺 · 查看更多 »

貓眼星雲

貓眼星雲(Cat's Eye Nebula,NGC 6543,科德韋爾6)是位於天龍座的一个行星狀星雲。它是已知的星雲中結構最複雜的之一,哈勃太空望遠鏡的高解析度觀測圖像揭示出其中獨特的扭結、噴柱、氣泡以及纖維狀的弧形結構。它的中心是一顆明亮、熾熱的恆星,約1000年前這顆恆星失去了它的外層結構,從而產生了貓眼星雲。 貓眼星雲於1786年2月15日由威廉·赫歇爾首先發現。1864年,英國業餘天文學家威廉·赫金斯對貓眼星雲作了光譜分析,使之成為首個通過光譜分析技術進行研究的行星狀星雲。赫金斯的研究結果首次表明行星狀星雲由高溫氣體而非恆星組成。目前,貓眼星雲已被人們在從遠紅外到X 射線的整個電磁波段進行過觀測。 現代研究引出了數個關於貓眼星雲的謎團。它的複雜結構有可能部分地是由一對中心聯星拋射的物質造成的,但迄今尚未有直接證據表明其中心恆星擁有伴星。此外,通過兩種方法測量的化學物質豐度的結果出現重大差異,其原因目前仍不能肯定。哈勃望遠鏡的觀測揭示出在「貓眼」的周圍有幾個由中心恆星在遠古時代拋射出的球形外殼構成的昏暗的光環,這些拋射的確切機制現在尚不明確。.

新!!: 离子和貓眼星雲 · 查看更多 »

質量數

質量數(mass number)也稱為原子質量數(atomic mass number)或核子數(nucleon number),符号為A,是指中性原子中,原子核內質子數目和中子數目的總和,質量數的數值都是整數。如氧-16中性原子的原子核內質子數和中子數皆為8,故其質量數為16。 有時會將質量數和原子序數(Z,質子數)分別標示在元素的左上角及左下角,如即為質量數為16,原子序數為8的氧原子,因為同一元素的原子序數不會改變,有時也會省略左下角的原子序數。 質子和中子都是重子,因此質量數和原子(或離子)的重子數B相等。化學元素的不同同位素會有相同的原子序數,但不同的質量數,例如和都是氧,但質量數分別為16和18。而一原子的質量數減去質子數都可以得到其中子數N:N.

新!!: 离子和質量數 · 查看更多 »

贝里斯-希尔曼反应

贝里斯-希尔曼反应(Baylis–Hillman reaction),是α,β-不饱和化合物与亲电试剂(醛、酮)在合适的催化剂作用下,生成烯烃α-位加成产物的反应。催化剂一般采用DABCO(1,4-二氮双环辛烷的缩写形式,俗称:三亚乙基二胺),生成物为烯丙基醇。这一反应又被称为森田-贝里斯-希尔曼反应(Morita–Baylis–Hillman reaction),或者简称为MBH反应(MBH reaction),这一反应名称得名自日本化学家森田健一(Ken-ichi Morita)、英国化学家安东尼·贝里斯(Anthony B. Baylis)和德国化学家梅维尔·希尔曼(Melville E. D. Hillman)。 后来,亲电试剂扩展到亚胺类sp2型碳的亲电试剂,称为氮杂-贝里斯-希尔曼反应。 反应底物中的亲电试剂可以是醛、亚胺、亚胺盐以及活化的酮。α,β-不饱和化合物(活化烯烃)可以是丙烯酸酯、丙烯醛、乙烯基酮、丙烯腈、α,β-不饱和砜、亚砜、亚胺以及α,β-不饱和环烯酮等缺电子烯烃。 除DABCO可作为催化剂外,其他的叔胺和叔膦等弱亲核试剂也可以用于催化这个反应。.

新!!: 离子和贝里斯-希尔曼反应 · 查看更多 »

质子化

在化学中,质子化是原子、分子或离子获得质子(H+)的过程。  简单的可以理解为和质子化合, 即结合一个质子,一般都是该物质有孤对电子,所以可以通过配位键结合一个质子。如H2O变成H3O+,NH3变成NH4+等等。 质子化的逆过程是去质子化。 质子化可能是最基本的化学反应,是很多化学计量和催化过程中的一步。一些多元离子和原子可以进行多次质子化,例如很多生物高分子。 基底经过质子化後,其中每一种粒子的质量和电荷都增加了一个单位。分子质子化或去质子化後,很多化学性质都发生了改变,不仅限於电荷和质量,如亲水性、还原势、光学特性等。在特定的分析步骤中,如电喷雾质谱,质子化是必需的一步。 质子化和去质子化会发生在大多数酸碱反应,是大多数酸碱反应理论的核心。布朗斯特-劳里酸被定义为将另一物质质子化的化学物质。.

新!!: 离子和质子化 · 查看更多 »

质子溶剂

在化学中,质子溶剂指分子中带有羟基或氨基的溶剂。更加笼统的说,任何可以给出H+的溶剂都可以被叫做质子化溶剂,例如氢氟酸。非质子溶剂则与此相反,不能贡献氢离子。.

新!!: 离子和质子溶剂 · 查看更多 »

质谱法

质谱(mass spectrometry,缩写:MS)是一种电离化学物质并根据其质荷比(质量-电荷比)对其进行排序的分析技术。简单来说,质谱测量样品内的质量。 质谱法被用于许多不同领域,并被用于纯样品和复杂混合物。 质谱是离子信号作为质荷比的函数的曲线图。这些频谱被用于确定样品的元素或,颗粒和分子的质量,并阐明分子的化学结构,如肽和其他化合物。 在典型的质谱法中,可以是固体,液体或气体的样品被电离,例如用电子轰击它。 这可能导致一些样品的分子破碎成带电的碎片。 然后,这些离子根据其质荷比被分离,通常通过加速它们并使其经受电场或磁场:相同质荷比的离子将经历相同数量的偏转。离子通过能够探测带电粒子的机制被探测到,例如一个电子倍增管。 结果被显示为作为质荷比的函数的已经探测离子的相对丰度的频谱。 样品中的原子或分子可以通过将已知质量与鉴定的质量相关联或通过特征分解模式来鉴定。.

新!!: 离子和质谱法 · 查看更多 »

足細胞

足細胞(podocyte、或"內臟上皮細胞"(visceral epithelial cell))為位於腎臟鮑氏囊上環繞着腎小球毛細血管之細胞。 鮑氏囊過濾血液,阻礙大分子,如蛋白質、紅血球、血小板;並通過小分子,如水、鹽及糖,進一步形成尿液。 足細胞的長足突或"足突出部分"環繞着毛細血管,介於足突之間留有裂隙。血液濾過這些裂隙,每個裂隙稱為裂隙隔膜(slit diaphragm)或濾過裂隙。足突出部分需要幾種蛋白質(腎病蛋白、NEPH1、NEPH2、足蛋白、CD2AP)環繞着毛細管及運作。當嬰兒出生時,這些蛋白質存在着一定的缺陷,諸如"腎病蛋白"及"CD2AP",使他們的腎臟不能正常的運作。人們的這些蛋白質存在著變異,以及某些變異在以後的生活中可能會使他們的患有腎功能衰竭。腎病蛋白是一拉鏈狀的蛋白、形成裂隙隔膜(濾過裂隙),在這些拉鍊的齒之間存有空間,足夠大到允許糖和水通過,但又裂隙太小以至於不允許蛋白質(白蛋白)通過(防制水腫)。腎病蛋白缺陷對先天性腎功能衰竭負責。CD2AP調節足細胞細胞骨架構及穩定裂隙隔膜。.

新!!: 离子和足細胞 · 查看更多 »

超精细结构

超精细结构是指导致原子、分子和离子的能级造成细微变化和分裂的一系列效应。这个名字来源于“精细结构”,这是指由于电子自旋和轨道角动量产生的磁矩之间的相互作用所产生的。而超精细结构造成的能级变化和分裂更为微小,并且是由原子核内部的电磁场所产生的。.

新!!: 离子和超精细结构 · 查看更多 »

超環面儀器

超環面儀器(A Toroidal LHC ApparatuS, ATLAS),是歐洲核子研究組織(CERN)的大型強子對撞器(LHC)所配備的七大實驗探測器之一。此實驗專門為觀測涉及高質量粒子的現象而精心設計建造;使用先前較低能量的粒子加速器無法觀測到這些現象。物理學者希望此實驗能為在標準模型之後關於粒子物理學的新理論找到一些線索。 超環面儀器的長度為44m,直徑為25m,總重量為7000ton,內部連接的電線長達3000km。大約有來自38個國家174個學術機構的3000位科學家和工程師共同參與這實驗計畫。最初15年,團隊領導為,從2009年至2013年,法比奥拉·吉亞諾提是第二任領導人,從2013年開始,團隊領導為。2012年7月4日,CERN宣布,緊湊渺子線圈(CMS)探测到质量为125.3±0.6GeV的新玻色子(超過背景期望值4.9个标准差),超環面儀器测量到质量为126.5GeV的新玻色子(5个标准差),这两種粒子极像希格斯玻色子。後來確認就是希格斯玻色子。.

新!!: 离子和超環面儀器 · 查看更多 »

超金属

超金属是电子简并态物质的别称,是通常物质在超高压下形成的,由原子核紧密排列,浸泡在自由电子海洋中的物质状态。(普通金属是金属阳离子浸泡在自由电子海洋中的物质状态) 最简单,也是实验室能够得到超金属的是金属氢,因为氢没有内层电子,其金属化后,所有电子都处于简并气体状态。金属氢存在于多数气态氢行星(例如木星)的内核。因为金属氢中的质子既是普通阳离子,又是原子核,因此金属氢也是唯一既属于超金属,又属于通常金属的物质。 而最常见的电子简并态物质存在于白矮星,即物质在1400000大气压下,其原子中的电子被挤出,形成类似金属中的电子气体。原子核紧密排列,密度相当大,就成为了超金属。.

新!!: 离子和超金属 · 查看更多 »

跨灣隧道

跨灣隧道(Transbay Tube),也稱海湾隧道,是美國舊金山灣區捷運系統的一部分,位于加州舊金山灣下方,西端銜接舊金山市中心內的市場街地鐵隧道,以東則銜接至柏克萊、奧克蘭(屋崙)等東灣地區。隧道长,如果从隧道边最近的车站计算,长度共计。隧道在地表以下最深达到。 隧道的部件在地面组装,再由船只运至施工现场,然后沉入海底并固定(将管壁用沙砾和海床固定)。这种沉管式隧道不同于在岩层中破土前进的鑽挖式隧道。 这条隧道是湾区地铁初期计划的最后一部分。除里奇蒙-費利蒙線外的所有地铁线都通过这里,所以此隧道是湾区地铁里最繁忙的区间,在高峰期每小时会有2.8万人次通过,最短班距只有2分半。 地铁在隧道里可达到最高时速, 是均速 的两倍多。.

新!!: 离子和跨灣隧道 · 查看更多 »

跨膜运输

跨膜运输(membrane transport)是细胞生物学中,细胞控制像離子或是小分子的溶質通過生物膜(由磷脂双分子层及蛋白質組成)的許多機制。跨膜运输的調節是透過選擇性滲透的機制(生物膜可以控制不同化學結構的物質進出)。因此有可能一些物質可以跨膜运输,而另外一些物質不行。.

新!!: 离子和跨膜运输 · 查看更多 »

麥可·法拉第

迈克尔·法拉第(Michael Faraday,),英國物理学家,在電磁學及電化學領域做出許多重要貢獻,其中主要的貢獻為電磁感應、抗磁性、電解。 雖然法拉第沒有得到足夠的正式教育,卻成為歷史上最具有影響力的科學家之一。實際而言,他時常被認為是科學史上最優秀的實驗家。他詳細地研究在載流導線四周的磁場,想出了磁場線的點子,因此建立了電磁場的概念。法拉第觀察到磁場會影響光線的傳播,他找出了兩者之間的關係。 entry at the 1911 Encyclopaedia Britannica hosted by LovetoKnow Retrieved January 2007.

新!!: 离子和麥可·法拉第 · 查看更多 »

黑寡婦蜘蛛

黑寡妇蜘蛛(學名:Latrodectus mactans)又名红斑寇蛛,常称作黑寡妇,是一种具强烈神经毒素的蜘蛛,人若被咬,可能會產生激烈的肌肉疼痛。“黑寡妇”这一名称一般特指本种,但有时也指其它多个同属(寇蛛属)物种。.

新!!: 离子和黑寡婦蜘蛛 · 查看更多 »

輻射壓

輻射壓(Radiation pressure)(亦稱光壓)是電磁輻射對所有暴露在其下的物體表面所施加的壓力。如果被吸收,壓力是流量密度除以光速;如果完全被反射,輻射壓將會加倍。例如,太陽輻射的能量在地球的流量密度是1370 W/m2,所以吸收狀態下的輻射壓是 4.6 µPa(參考氣候模型)。.

新!!: 离子和輻射壓 · 查看更多 »

輻射下的材料科學

輻射下的材料科學描述了輻射和物質之間的相互作用:它是涵蓋了輻射作用对物質所產生的各種形態的影響的非常寬廣的領域。.

新!!: 离子和輻射下的材料科學 · 查看更多 »

齐格勒-纳塔催化剂

格勒-纳塔催化剂是一种有机金属催化剂,用于合成非支化、高立体规整性的聚烯烃,又称齐格勒-纳塔引发剂,属于配位聚合引发剂。典型的齐格勒-纳塔催化剂是双组分体系,由元素周期表中IV~VIII族过渡金属化合物与I~III主族金属烷基化合物组成,常常具有引发α-烯烃进行配位聚合的活性,典型的如三氯化钛-三乙基铝。1950年代德国化学家卡尔·齐格勒合成了这一催化剂,并将其用于聚乙烯的生产,得到了支链很少的高密度聚乙烯;意大利化学家居里奥·纳塔将这一催化剂用于聚丙烯生产,发现得到了高聚合度,高规整度的聚丙烯。两位科学家因此项贡献于1963年获得诺贝尔化学奖。目前。齐格勒-纳塔引发剂是配位阴离子聚合中数量最多的一类引发剂,可用于α-烯烃、二烯烃、环烯烃的定向聚合。.

新!!: 离子和齐格勒-纳塔催化剂 · 查看更多 »

软硬酸碱理论

软硬酸碱理论简称HSAB(Hard-Soft-Acid-Base)理论,是一种尝试解释酸碱反应及其性质的现代理论。20世纪60年代初,拉尔夫·皮尔逊採用HSAB原理,嘗試统一有机和无机化学反应。它目前在化学研究中得到了广泛的应用,其中最重要的莫过于对配合物稳定性的判别和其反应机理的解释。软硬酸碱理论的基础是酸鹼電子論,即以电子对得失作为判定酸、碱的标准(即路易斯酸碱理论)。该理论可用于定性描述,而非定量的描述,这将有助于了解化学性质和反应的主要驱动因素。尤其是在过渡金属化学,化学家们已经完成了无数次实验,以确定配体和过渡金属离子本身的硬和软方面的相对顺序。.

新!!: 离子和软硬酸碱理论 · 查看更多 »

载体蛋白

载体蛋白(carrier protein)简称“载体”,是参与离子、小分子或高分子跨越生物膜进行运输的一类多回旋折叠蛋白质。载体蛋白都是跨膜蛋白,它们能在协助扩散或主动运输过程中将被运载物从自身所处的膜的一端转运到另一端,有载体蛋白参与的物质转运机制被统称为载体介导转运。载体蛋白的转运机制是载体蛋白分子构象发生可逆性变化后与被转运分子结合,使被转运分子随之作跨膜运动。载体蛋白按被运载物的数量和运载方向分为三种类型,分别是单向运输载体(uniport carrier)、同向运输载体(symport carrier)和反向运输载体(antiport carrier)。每种载体蛋白一般只能识别并转运单独一种或十分相似的一类化学物质。.

新!!: 离子和载体蛋白 · 查看更多 »

载流子

在物理学中,载流子(charge carrier),或簡稱載子(carrier),指可以自由移动的带有电荷的物质微粒,如电子和离子。在半导体物理学中,电子流失导致共价键上留下的空位(空穴)被视为载流子。 在电解质溶液中,载流子是已溶解的阳离子和阴离子。类似地,游离液体中的阳离子和阴离子在液体和熔融态固体电解质中也是载流子。霍尔-埃鲁法就是一个熔融电解的例子。 在等离子体,如电弧中,电离气体和汽化的电极材料中的电子和阳离子是载流子。电极汽化在真空中也可以发生,但技术上电弧在真空中不能发生,而是发生在低压电气中;在真空中,如真空电弧或真空管中,自由电子是载流子;在金属中,金属晶格中形成费米气体的电子是载流子。.

新!!: 离子和载流子 · 查看更多 »

辣椒素

辣椒素(Capsaicin)又名辣椒鹼,即反式-8-甲基-N-香草基-6-壬烯酰胺,分子结构式为(CH3)2CHCH.

新!!: 离子和辣椒素 · 查看更多 »

辅因子

輔因子(cofactor)指與酶(酵素)結合且在催化反應中必要的非蛋白質化合物。某些分子如水和部分常見的離子所扮演的角色和輔因子相當類似,但由於含量不受限制且普遍存在,因此不歸類為輔因子。 辅因子可以被分类为或称为"辅酶"的复合有机分子,后者主要衍生自少量的维生素和其他有机必需营养素。 一個不含輔因子的酶稱為脫輔基酶(apoenzyme),脫輔基酶加上輔因子並產生完整作用時,稱為全酶(holoenzyme): 金屬離子是常見的輔因子,這些金屬離子反映在生物必須的微量元素名單當中。例如鈣、鎂、錳、鐵、鈷、鎳、銅、鋅與鉬等。除了這些無機化學物之外,輔因子也包括一些有機物質,例如血紅蛋白中的鐵。另外有些維生素也可作為輔因子如維生素C;或是輔因子的前趨物,如維生素B1。.

新!!: 离子和辅因子 · 查看更多 »

辉石

辉石是一种重要的硅酸盐矿物,是辉石类矿物的总称,常在火成岩和变质岩中被发现。根据晶体结构的不同,辉石可被分为单斜辉石和斜方辉石两个亚族,前者属于单斜晶系,后者属于斜方晶系。辉石类矿物的共同特点是其晶体中含有硅氧四面体形成的单链结构。.

新!!: 离子和辉石 · 查看更多 »

连接蛋白

连接蛋白(Connexin,Cx)。在脊椎动物,由connexin组成的间隙连接通道(Gap Junction channel)介导相邻细胞之间离子、小分子营养物质交换及信号分子传播。哺乳动物发育早期已有多种connexin表达,不同connexin组成的间隙连接通道具有不同通透特征,相邻细胞利用间隙连接介导的细胞间通讯(GJIC,Gap Junction Intercellular Communication)或者不依赖间隙连接通道的途径传递发育信号,调节发育过程中的细胞增殖、迁移和分化。 connexins是一个广泛表达于脊椎动物细胞的蛋白质家族。该家族成员组成的六聚体(connexon)定位于细胞膜上,形成间隙连接通道或半通道(hemi-channel)介导细胞之间、细胞与细胞外基质之间的物质交换。基因组中编码connexin蛋白家族的基因组成connexin基因家族。在人类基因组中已发现21种connexin基因,在小鼠基因组中有20种。这些connexin按其序列相似程度及胞内环长度分为α、β或γ亚组。人类与小鼠connexin基因根据序列同源性配成19对。Connexin基因的结构相对简单,只有两个外显子,一般来说编码区位于第二个外显子,5`-UTR被内含子分隔在两个外显子中,3`-UTR位于第二个外显子中。 connexin与其他膜蛋白一样,在粗面内质网的核糖体上翻译,边翻译边被引导入内质网膜的蛋白孔道。在全部翻译完毕后插入内质网膜,在插入内质网膜的过程中connexin获得四次跨膜结构。connexin组装成的六聚体称为连接子(connexon),不同的connexon组装位置可能不同。如Cx32在内质网膜组装,而Cx43在反面高尔基网络(TGN,trans-golgi network)组装。同种connexin组装成homomeric connexon,而不同connexin组装成heteromeric connexon(只有同一亚组的connexin才可以组装成heteromeric connexon)。组装好的connexon由内质网膜经高尔基体或直接由高尔基体以微管依赖或微管非依赖的方式运送到细胞膜。插入到细胞膜的connexon正常情况下关闭,在与相邻细胞膜的connexon对接后才开放。但当有细胞膜去极化、细胞外低钙等情况时,connexon可开放成为半通道(hemi-channel),介导细胞内外物质交换。相对connexin的胞外环呈并指状相互交叉形成密闭的水相通道,由相同connexon对接而成的通道称为homo-typic channel,由不同connexon对接而成的通道称为hetero-typic channel。对接的间隙连接通道聚集成为间隙连接斑(Gap Junction Plaque)。间隙连接斑的维持是动态的,新的通道不断移动到间隙连接斑的外缘,而间隙连接斑中心的通道则内化到一侧的细胞质内,由溶酶体或蛋白酶体途径降解。 间隙连接通道是细胞间小分子物质(分子量小于1000Da)转移的水相通道。通道在静息状态下是开放的,但在低Ph值、细胞内高钙、细胞间存在电压差、生长因子刺激及通道蛋白磷酸化等情况下通道会关闭。尽管各种connexin构成的通道结构相同,但不同connexin构成的通道通透性相差很大。connexin的转录、翻译、修饰、组装、转运等过程的改变都会影响细胞间通讯的性质与数量。 在多细胞生物中,间隙连接通道广泛分布于各种细胞。哺乳动物每种器官可有多种connexin表达。对connexin基因突变所致疾病及动物模型的研究证明:间隙连接通道对于哺乳动物生理功能的维持有着重要作用,其作用可以概括为:①离子通道功能,如Cx26、Cx30参与内耳钾离子循环,Cx40参与心脏电传导。②营养物质转运功能:如Cx46、Cx50在无血管的晶状体转运营养物质,Cx26在小鼠胎盘的两层合体滋养层细胞之间转运营养物质。③细胞信号转导功能:如Ca、IP3等信号分子可以通过间隙连接;另外,connexin可能通过与其他蛋白质相互作用而不依赖间隙连接通道参与信号转导。.

新!!: 离子和连接蛋白 · 查看更多 »

过二硫酸

过二硫酸(或称为“过氧二硫酸”、“过硫酸”或“马歇尔酸”)是一种硫的含氧酸,分子式为H2S2O8 。 其结构可以表示为HO3SOOSO3H。虽然过二硫酸分子中的硫的氧化态为+6,但因为该分子中还具有类似过氧根的结构,所以其表现出比硫酸根更高的氧化态。过二硫酸常态下为固体,加热熔化时易分解。过二硫酸的盐称为“过二硫酸盐”。 过二硫酸易溶于水并具有吸水性,在热溶液中易发生水解,先后产生过一硫酸与过氧化氢。过二硫酸具有不稳定性,在室温下可以缓慢分解,放出氧气。过二硫酸具有强氧化性,能将氯离子等卤素离子氧化成卤素单质、氨氧化成氮气、将苯胺氧化成苯胺黑,与乙醇、乙醚等有机物作用会发生爆炸。过二硫酸的氧化性弱于过一硫酸。.

新!!: 离子和过二硫酸 · 查看更多 »

过氧化氢

过氧化氢,分子式H2O2,是除水外的另一种氢的氧化物。粘性比水稍微高,化学性质不稳定,一般以30%或60%的水溶液形式存放,其水溶液俗称双氧水。过氧化氢有很强的氧化性,且具弱酸性。.

新!!: 离子和过氧化氢 · 查看更多 »

过渡金属

过渡元素(Transition element)是指元素周期表中d区的一系列金属元素,又称过渡金属(Transition metal)。一般来说,这一区域包括3到12一共十个族的元素,但不包括f区的内过渡元素。 “过渡元素”这一名词首先由门捷列夫提出,用于代表8、9、10三族元素。他认为从碱金属到锰族是一个“週期”,铜族到卤素又是一个,那么夹在两个周期之间的元素就有过渡的性质。而現今雖然過渡金屬这个词还在使用,但已和原本的意思不同。 过渡金属元素的一个周期称为一个过渡系,第4、5、6周期的元素分别属于第一、二、三过渡系。.

新!!: 离子和过渡金属 · 查看更多 »

茂金属

茂金属是一类有机金属化合物,典型的是由两个环戊二烯阴离子(茂基,简写为Cp,即C5H5-)和二价氧化态金属中心连接而成,通式为(C5H5)2M。与茂金属密切相关的为茂金属衍生物,如二氯二茂钛、二氯二茂钒等。某些茂金属及其衍生物表现出催化剂的性质,尽管在工业生产中很少用到。如+相关的第四族元素阳离子茂衍生物,可以催化烯烃聚合。茂金属属于夹心型配合物中的一类。 右侧的茂金属结构示意图中,两个五边形表示两个环戊二烯离子,五边形中的圆圈表示这个结构稳定且具有芳香性。图中所示的构象为交错式构象。.

新!!: 离子和茂金属 · 查看更多 »

胞外

在細胞生物學、分子生物學及其相關領域中,胞外,或細胞外(extracellular,有時亦作胞外空間/細胞外空間(extracellular space))指「在細胞外」。通常,胞外空間位於質膜之外,被流體佔據(即細胞外基質,extracellular matrix)。與胞外相對的概念是胞內(intracellular)。 根據基因本體數據庫,胞外空間是這樣一種細胞組分:「多細胞生物的一部分,位於細胞固有物質外,通常指位於細胞膜之外的部分,爲流體所佔據。對多細胞生物來說,胞外空間指所有位於細胞外,但仍然位於生物體內的物質(除細胞外基質以外)。因此,多細胞生物細胞的基因產物,如果被分泌到組織液或血液中,就可以用「胞外」來形容。」 細胞外空間的組分包括代謝產物、離子、多種蛋白質以及非蛋白質物質(即DNA、RNA、脂質、微生物產物等)。這些組分可能會影響細胞的功能。比如,激素、生長因子、細胞因子以及趨化因子在穿過細胞外空間,與細胞表面的受體結合後發揮作用。另外,還有一些在胞外有活性的酶,比如消化酶(胰蛋白酶、胃蛋白酶)、胞外蛋白酶((Matrix metalloproteinase)、、(Cathepsin)),以及抗氧化酶(胞外超氧化物歧化酶)。通常,位於胞外空間的蛋白質通過與多種細胞外基質組分(膠原蛋白、蛋白聚醣等)結合而儲存在細胞外。另外,細胞外基質的蛋白水解產物亦存在於胞外空間中,尤其是正在經歷重塑的組織。.

新!!: 离子和胞外 · 查看更多 »

能量均分定理

在经典統計力學中,能量均分定理(Equipartition Theorem)是一種聯繫系統溫度及其平均能量的基本公式。能量均分定理又被稱作能量均分定律、能量均分原理、能量均分,或僅稱均分。能量均分的初始概念是熱平衡時能量被等量分到各種形式的运动中;例如,一个分子在平移運動时的平均動能應等於其做旋轉運動时的平均動能。 能量均分定理能够作出定量預測。类似于均功定理,对于一个给定温度的系统,利用均分定理,可以計算出系統的總平均動能及勢能,從而得出系统的熱容。均分定理還能分別給出能量各個组分的平均值,如某特定粒子的動能又或是一个彈簧的勢能。例如,它預測出在熱平衡時理想氣體中的每個粒子平均動能皆為(3/2)kBT,其中kB為玻爾兹曼常數而T為溫度。更普遍地,無論多複雜也好,它都能被應用於任何处于熱平衡的经典系統中。能量均分定理可用於推導经典理想氣體定律,以及固體比熱的杜隆-珀蒂定律。它亦能夠應用於預測恒星的性質,因为即使考虑相對論效應的影響,该定理依然成立。 儘管均分定理在一定条件下能够对物理现象提供非常準確的預測,但是當量子效應變得显著時(如在足够低的温度条件下),基于这一定理的预测就变得不准确。具体来说,当熱能kBT比特定自由度下的量子能級間隔要小的時候,該自由度下的平均能量及熱容比均分定理預測的值要小。当熱能比能級間隔小得多时,这样的一個自由度就說成是被“凍結”了。比方說,在低溫時很多種類的運動都被凍結,因此固體在低溫時的熱容會下降,而不像均分定理原測的一般保持恒定。對十九世紀的物理學家而言,這种熱容下降现象是表明經典物理学不再正確,而需要新的物理学的第一個徵兆。均分定理在預測電磁波的失敗(被稱为“紫外災變”)普朗克提出了光本身被量子化而成為光子,而這一革命性的理論對刺激量子力學及量子場論的發展起到了重要作用。.

新!!: 离子和能量均分定理 · 查看更多 »

背散射分析

背散射分析是指通過探測大角度散射離子能譜來確定靶物質特性的分析方法,一般角度介於165°~170°之間,主要應用於分析靶物質成分。背散射分析有許多的優點,例如快速、定量、無損等等,另外它還可以元素同時分析,因此這個方法可以作定量分析而不需要“標樣”。一般背散射分析都用能量為 1~2.5MeV的α粒子束作入射束,因為α粒子束可以得到較好的質量分辨率和深度分辨率。背散射分析已成為固體物理、半導體物理、材料科學研究等領域中常採用的較成熟的分析手段。 Category:材料科學 Category:原子核物理學.

新!!: 离子和背散射分析 · 查看更多 »

鈣礦

一般口語中的鈣礦,其實並不是真正的金屬鈣礦。目前世界上已知地殼中含有1,150多種礦產,依其性質和工業用途,可分為金屬礦、非金屬礦產和有機燃料礦床,雖然鈣是金屬,且在地殼中含量排名第五(占地殼總質量的3%),但是純鈣的活性大,很容易氧化成二價離子的各式化學變化(在熱水中即會產生反應),因此鈣並沒有實際的“鈣礦”,要製造純金屬鈣,或是挖掘含鈣礦物,通常會取用屬於非金屬礦產的石灰岩等。碳酸鈣是許多生物會利用來作為骨骼的成分之一,尤其是珊瑚與部分的軟體動物(如貝類的外殼),當這些物質沉積或累積,再經過擠壓就會形成石灰岩(屬於一種沉積岩);如過再經或高溫高壓的作用,最終會形成大理岩(屬於一種變質岩)。.

新!!: 离子和鈣礦 · 查看更多 »

鈣質

鈣對生物體而言是必需的營養物質,在絕大多數的生物體內皆具有顯著影響生理功能與生物化學功能不可或缺、且極為重要的角色。對於「人」這種生物體來說,鈣當然也是具有不可或缺且顯著影響的角色,往往也因此一般在討論「鈣」的生理生化角色的時候,人們極為容易僅以「鈣在人體中的角色」概括之,或是忽略其在不同生物體之間所扮演之相同、相似、相異的角色。。 本頁面是用以討論鈣質在生物體中的相關用途與機制。 生物必須藉由來自外在環境的供應來補充每日固定的流失,這包含但不只限於攝食,或是單指細胞必須透過許多機制將鈣從環境透過通道蛋白進入細胞中這是因為,.

新!!: 离子和鈣質 · 查看更多 »

鈉鉀氯共轉運蛋白

鈉鉀氯共轉運蛋白(Na+-K+-2Cl- cotransporter、NKCC、Na +-K+-2Cl-共同轉運體)是一幫助鈉、鉀、氯離子進行主動運輸進出細胞的蛋白質。 此轉運膜蛋白有兩種變化或等形(isoforms),稱NKCC1或NKCC2。NKCC1廣泛地分佈在全身;其在分泌液體的器官中具有重要的功能。NKCC2則常出現在腎臟裡,可從尿中萃取納、鉀、氯使得他們可以被重新再吸收回到血液中。.

新!!: 离子和鈉鉀氯共轉運蛋白 · 查看更多 »

鈉離子電池

钠离子电池(Sodium-ion battery),是一种充电电池,主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池相似。.

新!!: 离子和鈉離子電池 · 查看更多 »

鈉氯同向轉運體

鈉氯同向轉運體(sodium-chloride symporter、亦稱為鈉氯協同轉運蛋白(Na+-Cl− cotransporter)、簡稱為NCC或NCCT,或敏感噻嗪類鈉氯協同轉運蛋白(thiazide-sensitive Na+-Cl− cotransporter)、或簡稱TSC,鈉氯離子同向轉運體)是在腎臟的一個協同轉運蛋白(cotransporter)其具有再吸收鈉及氯離子的功能,並從腎小管液進入腎的遠曲小管細胞內。它是"電中性的陽離子結合氯離子的協同轉運蛋白"之SLC12協同轉運蛋白家族的一個成員。在人類中,它是由位於16q13的SLC12A3基因(溶質載體家族12成員的第3)所編碼。.

新!!: 离子和鈉氯同向轉運體 · 查看更多 »

阿尔伯特·爱因斯坦科学出版物列表

阿尔伯特·爱因斯坦(1879年-1955年)是二十世纪著名理论物理学家,以狭义相对论和广义相对论的建立闻名于世。他在统计力学领域也做出了重要的贡献,特别是他对布朗运动的研究,解决了关于比热容的佯谬,以及建立了涨落与耗散之间的联系。尽管他在对量子力学的诠释上有保留意见,爱因斯坦对量子力学的诞生仍然做出了开创性的贡献,并且他对光子的理论研究也间接导致了量子场论的诞生。 爱因斯坦的科学出版物在下面的四个列表中列出:期刊论文、书籍章节、书籍和授权译作。在列表的第一列中,每一篇出版物的索引号都采用了保罗·席尔普(Paul Arthur Schilpp)的参考书目(参见席尔普所著《阿尔伯特·爱因斯坦:哲人-科学家》(Albert Einstein: Philosopher-Scientist)第694-730页)中的编号以及《爱因斯坦全集》中的编号。这两个参考书目的完整信息可以从后面的参考书目章节中找到。席尔普编号用于注解中的交叉参考(每一个列表的最后一列),因为它们涵括了爱因斯坦人生的大部分时期。中文翻译的标题大部分来自于出版的中文版《爱因斯坦全集》和《爱因斯坦文集》(商务印书馆1976年第一版)。然而一些出版物并没有官方的翻译,非官方的翻译以§记号标明。虽然列表是按时间顺序排列,然而点击每一列顶部的箭头,每一个列表的任意栏可以重新按照字母顺序排列。举例说明,按照主题重新排序一个表,以便将“广义相对论”和“比热容”相关的文章分组,只需按一下“分类注释”一栏的箭头即可。打印重新排列的列表,页面可能会直接使用浏览器默认的打印选项打印,左侧的“打印版本”的链接只提供了缺省排序的版本。爱因斯坦与他人合作作品用淡紫色标识,合作者的名字列在表格的最后一栏中。 为了限制本文的重点和长度,爱因斯坦的许多非科学作品没有列在这裡。区分科学和非科学作品标准是根据席尔普参考书目,书中列出了130多个非科学作品,大部分是关于人道主义或政治主题(第730-746页)。《爱因斯坦全集》中的5卷(第1、5、8-10卷)是关于他的信件,其中大部分与科学问题相关。由于这些信件原来并不准备出版,因此同样也没有列在这裡。.

新!!: 离子和阿尔伯特·爱因斯坦科学出版物列表 · 查看更多 »

阿特贝限

阿特贝限(Atterberg limits),--,是指土壤的各个结持度阶段间的分界点含水量。它亦称为结持限,是阿特贝值的一部分。阿特贝限广泛用于农业、工程、建筑、陶瓷、塑雕等部门,作为选择适宜土壤耕作、土质材料施工或泥塑造型等操作时的含水量(土水比)范围的依据。 20世纪初期,瑞典化学家阿尔贝特·阿特贝提出了土壤结持度及其指标——结持限的概念。随着含水量的变化,土壤呈现出不同的物理相态阶段——结持度。从湿到干,依次有粘滞、塑性、酥性、刚性等结持度,从干到湿则其呈现的次序反之。在每两种结持度阶段的转折处,均分别有一个显明的分界点含水量,即结持限。土壤的各结持度含水量范围和扦结持限含水量值,都是重要的土壤物理参数,统称为阿特贝值,或称阿特贝常数或土壤结持常数。其小,塑性结持度的三个阿特贝值——流限、塑限和塑性指数的应用最为普遍。土壤的—系列阿特贝值包括阿特贝限的大小,与土壤的比面大小和表面性质有关,因而决定质地、粘土矿物类型、交换性阳离子组成、有机质含量和组成等因素,也受土壤结构以及土壤液相组成的影响,在不同类型和不同质地的土壤中,其含水量位大小和分布范围变化甚大。.

新!!: 离子和阿特贝限 · 查看更多 »

阿茲海默症

阿茲海默症(Morbus Alzheimer,Alzheimer-Krankheit,縮寫:AK,Alzheimer's disease,縮寫:AD)或稱腦退化症。舊稱為Senile Dementia of the Alzheimer Type,縮寫:SDAT 、奥茨海默症、老人失智症;俗稱早老性痴呆、老人痴呆(但醫界不建議使用此名稱),是一種發病進程緩慢、隨著時間不斷惡化的持續性神經功能障礙,此症佔了失智症中六到七成的成因。最常見的早期症狀,是難以記住最近發生的事情,早期症狀還應該增加行為或性格的改變,「輕微行為能力受損」(Mild Behavioral Impairment, MBI),對平日最喜歡的活動失去興趣、對人物冷感、對日常作息焦慮、無法控制衝動、多侵略性、挑戰社會規範、對食物失去興趣、事事疑心,突然經常動怒爆粗話。隨著疾病的發展,症狀可能會包含:譫妄、易怒、具攻擊性、無法正常言語、容易迷路、、喪失生存動力、喪失長期記憶、難以自理和行為異常等。當患者的狀況變差時,往往會因此脫離家庭和社會關係,並逐漸喪失身體機能,最終導致死亡。雖然疾病的進程因人而異,很難預測患者的預後,但一般而言,確定診斷後的平均餘命是三到九年,確診之後存活超過十四年的病患少於3%。 阿茲海默症的真正成因至今仍然不明。目前將阿茲海默症視為一種神經退化的疾病,並認為有將近七成的危險因子與遺傳相關;其他的相關危險因子有:頭部外傷、憂鬱症或高血壓的病史。疾病的進程與大腦中和Tau蛋白相關。要確切地診斷阿茲海默症,需要根據病人病史、行為評估、的結果、腦部影像檢查和血液採檢,亦可能接著做神經影像檢查輔助診斷,以排除其他類似的認知障礙。初期症狀常被誤認為是正常的老化狀況,或是壓力的一種表現,因而常耗時三到六年才確診。在無法排除其他可治癒原因時,有極少情況下,腦部切片可能對確診有幫助。、運動、避免肥胖等,都有助於減少罹患阿茲海默症的風險。目前並沒有特定藥物或營養補充品,有實證證明對疾病治療有效。 目前並沒有可以阻止或逆轉病程的治療,只有少數可能可以暫時緩解或改善症狀的方法。截至2012年為止,已有超過1000個臨床試驗研究如何治療阿茲海默症,然而這些研究是否能找到有效的治療方法仍是未知數。疾病會使患者會越來越需要,這對照護者是一大負擔;這樣的照護壓力涵括了社會層面、精神層面、生理層面和經濟因素。不同的運動計畫,無論時間長度與每週運動頻率,都能改善病人的居家生活表現功能,也對於改善預後有相當助益。由失智症狀引起(造成)的行為異常和思覺失調,常以抗精神病藥治療,惟其效益不高且可能增加死亡率,因此並不特別建議使用。 阿茲海默症最早於1906年,由德國精神病學家和病理學家愛羅斯·阿茲海默首次發現,因此而得名;主要分為家族性阿茲海默症與阿茲海默老年痴呆症兩種,其中又以後者較常見。阿茲海默症好發於65歲以上的老年人(約有6%發生率),但有4%~5%的患者會在65歲之前就發病,屬於。在2010年,全球有將近2100萬到3500萬名阿茲海默症患者;而歸因於阿茲海默症相關的死亡案例,大約有48.6萬例。在已開發國家中,阿茲海默症是相當耗費社會財政補助的疾病之一。.

新!!: 离子和阿茲海默症 · 查看更多 »

阿梅代奥·阿伏伽德罗

阿梅代奥·阿伏伽德罗(Amedeo Avogadro,),意大利化学家,生于都灵。全名Lorenzo Romano Amedeo Carlo Avogadro di Quaregua。1811年发表了阿伏伽德罗假說,也就是今日的阿伏伽德罗定律,并提出分子概念及原子、分子区别等重要化学问题。 阿伏伽德罗出生於意大利西北部皮埃蒙特区的首府都灵,是當地的显赫家族,阿伏伽德罗的父親菲立波,曾擔任撒伏以王國的最高法院法官。父親對他有很高的期望。阿伏伽德罗勉強地讀完中學,進入都灵大学讀法律系,成績突飛猛進,1796年获博士学位。 阿伏伽德罗30歲時,對研究物理產生興趣。後來他到鄉下的一所職業學校教書,1815年1月與馬西亞結婚。1832年,出版了四大冊理論物理學,其中寫下有名的假設:「在相同的物理條件下,相同體積的氣體,含有相同數目的分子。」但未被當時的科學家接受。后来经坎尼札罗用实验论证,到1860年才获得公认。 著名的阿伏伽德罗常數(Avogadro's number, NA.

新!!: 离子和阿梅代奥·阿伏伽德罗 · 查看更多 »

薛定谔猫

薛定谔猫(Schrödinger's Cat)是奥地利物理學者埃尔温·薛定谔於1935年提出的一個思想实验。通過這思想实验,薛定諤指出了應用量子力學的哥本哈根詮釋於宏觀物體會產生的問題,以及這問題與物理常識之間的矛盾。在這思想實驗裏,由於先前發生事件的隨機性質,貓會處於生存與死亡的疊加態。 根據退相干理論,貓不可能永遠處於生存與死亡的疊加態,由於環境的影響,很快地會產生退相干效應,貓改而處於生存或死亡的經典統計學狀態,因此,一般而言,絕對無法觀察到這生存與死亡的疊加態。至今為止,物理學者只能精心製備出一些介觀物體的疊加態。 雖然這是個思想實驗,類似原理已被研究與運用在實際應用領域。當理論研討量子力學的詮釋問題時,這思想實驗也時常會被特別提出為試金石。.

新!!: 离子和薛定谔猫 · 查看更多 »

闊邊帽星系

闊邊帽星系(梅西爾編號:M104,NGC 4594,又稱草帽星系、墨西哥帽星系)位於室女座,為一個Sa-Sb型之旋渦星系,光度+8.7等,距離地球2,800萬光年。这个星系的直径是大约50,000光年,有银河系的大小的30%。 天文学家最初认为光环是小而轻的旋渦星系,但史匹哲太空望遠鏡发现,周围的草帽星系晕是一个比以前认为的更大规模的巨大的椭圆星系。这个星系拥有星等+9.0,使得它很容易被用业余望远镜观测到,它被有些作家认为是在银河系的10 百萬秒差距(megaparsecs)半径范围内最亮的星系。 它具有明亮且巨大的超大质量黑洞星系核,尤其在赤道方向有一條由星際塵埃所形成的暗帶。由於它形態美麗,也是不少天文台,甚至是擁有專業天文攝影設備的天文愛好者必定拍攝的對象之一。.

新!!: 离子和闊邊帽星系 · 查看更多 »

藍血人 (衛斯理系列)

《藍血人》是倪匡筆下著名科幻小說衛斯理系列之一,是系列中首次出現的外星人。初期出版時,是單一本小說。後期出版時,由於全個故事篇幅極長,故此分為上、下兩本書,下半部故事名為《回歸悲劇》。 原著中曾敍述藍血人來自土星,但於衛斯理回憶錄中记载,衛斯理決定要把一切錯誤改善,所以藍血人的真正來源是土衛六。當他們一緊張、開心、傷心的時候,他們的臉色會變成藍色,就像地球人會臉紅一樣。 本故事亦曾經被改編成廣播劇 、電影。.

新!!: 离子和藍血人 (衛斯理系列) · 查看更多 »

藤田誠

藤田誠(,),日本化學家,現任東京大學教授。紫綬褒章表彰。 藤田教授是發表最多《自然》、《科學》期刊論文的日本化學家之一。他與奧馬爾·亞基同獲2018年沃爾夫化學獎。.

新!!: 离子和藤田誠 · 查看更多 »

闪烁体探测器

闪烁体探测器(Scintillation Detector)是利用电离辐射在某些物质中产生的闪光来进行探测的,也是目前应用最多、最广泛的电离辐射探测器之一。辐射引起物质发光的现象很早就被人们所关注和利用:早在1903年,威廉·克鲁克斯就发明了由硫化锌荧光材料制成的闪烁镜并用其观察镭衰变放出的辐射;卢瑟福在其著名的卢瑟福散射实验中也曾使用硫化锌荧光屏观测α粒子。不过,由于传统荧光材料在使用上很不方便,闪烁探测器一直没有大的进展。1947年Coltman和Marshall成功利用光电倍增管测量了辐射在闪烁体内产生的微弱荧光光子,这标志着现代闪烁体探测器的发端。之后随着光电倍增管等微光探测器件的应用和相关技术的进步,闪烁体探测器得到了非常迅速的发展,各种新型闪烁体材料层出不穷。由于具有探测效率高、分辨时间短、使用方便、适用性广等特点,闪烁体探测器在某些方面的应用已超过气体探测器,并为γ射线谱学的形成和发展提供了可能。.

新!!: 离子和闪烁体探测器 · 查看更多 »

鈽(Plutonium,--)是原子序数94、元素符號為Pu的放射性超鈾元素。它屬於錒系金屬,外表呈銀白色,接觸空氣後容易腐蝕、氧化,在表面生成無光澤的二氧化鈽。鈽有六种同素異形體和四種氧化態,易和碳、鹵素、氮、矽起化學反應。鈽暴露在潮濕的空氣中時會產生氧化物和氫化物,其體積最大可膨脹70%,屑狀的钚能自燃。它也是一种放射性毒物,会於骨髓中富集。因此,操作、處理鈽元素具有一定的危險性。 鈽是天然存在於自然界中質量最重的原子。它最穩定的同位素是鈽-244,半衰期約為八千萬年,足夠使鈽以微量存在於自然環境中。 鈽最重要的同位素是鈽-239,半衰期為2.41萬年,常被用來製造核子武器。鈽-239和鈽-241都易于裂變,即它們的原子核可以在慢速熱中子撞擊下產生核分裂,釋出能量、伽馬射線以及中子輻射,從而形成核連鎖反應,並應用在核武器與核反應爐上。 鈽-238的半衰期為88年,並放出α粒子。它是放射性同位素熱電機的熱量來源,常用於驅動太空船。 鈽-240自發裂變的比率很高,容易造成中子通量激增,因而影響了鈽作為核武及反應器燃料的適用性。 分離鈽同位素的過程成本極高又耗時費力,因此鈽的特定同位素時幾乎都是以特殊反應合成。 1940年,格倫·西奧多·西博格和埃德溫·麥克米倫首度在柏克萊加州大學實驗室,以氘撞擊鈾-238而合成鈽元素。麥克米倫將這個新元素取名Pluto(意為冥王星),西博格便開玩笑提議定其元素符號為Pu(音類似英語中表嫌惡時的口語「pew」)。科學家隨後在自然界中發現了微量的鈽。二次大戰時曼哈頓計劃則首度將製造微量鈽元素列為主要任務之一,曼哈頓計劃後來成功研製出第一個原子彈。1945年7月的第一次核試驗「三一试验」,以及第二次、投於長崎市的「胖子原子彈」,都使用了鈽製作內核部分。關於鈽元素的人體輻射實驗研究並在未經受試者同意之下進行,二次大戰期間及戰後都有數次核試驗相關意外,其中有的甚至造成傷亡。核能發電廠核廢料的清除,以及冷戰期間所打造的核武建設在核武裁減後的廢用,都延伸出日後核武擴散以及環境等問題。非陸上核試驗也會釋出殘餘的原子塵,現已依《部分禁止核試驗條約》明令禁止。.

新!!: 离子和钚 · 查看更多 »

钝化

钝化()指金属表面由活泼态变化为不活泼态,使它不容易腐蚀的过程。由金属与介质自发相互作用(化学钝化),或金属通过电化学阳极氧化引起(阳极钝化)。 金属钝化會使其表面形成一层保护膜,厚几到几十纳米,钝化膜有侵蚀性阳离子难以扩散的结构,把金属与溶液隔离开,使金属溶解率大为降低。.

新!!: 离子和钝化 · 查看更多 »

钠(Natrium,化学符号:Na)是一种化学元素,它的原子序数是11,相对原子质量为23。鈉单质不會在地球自然界中存在,因為鈉在空氣中會迅速氧化,並與水產生劇烈反應,所以常見於化合物中,元素狀態的鈉通常以特殊物質(如石蠟、煤油)保存,以防與空氣中的水份或氧氣產生化合物。.

新!!: 离子和钠 · 查看更多 »

钠硫电池

钠硫电池是一种由液体钠(Na)和硫(S)組成的熔盐电池。这类电池擁有高能量密度、高充/放电效率(89-92%)和长寿命周期,亦由廉价的材料制造。由於本電池操作温度高達300至350°C,而且钠多硫化物具有高度腐蚀性,它们主要用於定點能量储存。電池愈大;效益愈高。.

新!!: 离子和钠硫电池 · 查看更多 »

釔()是化學元素,符號為Y,原子序為39,是銀白色過渡金屬,化學性質與鑭系元素相近,且常歸為稀土金屬。釔在自然中並不單獨出現,而是和鑭系元素結合出現在稀土礦中。89Y是釔的唯一一種穩定同位素和自然同位素。 1787年,在瑞典伊特比附近發現了一種新的礦石,即,並根據發現地村落的名稱將它命名為「Ytterbite」。在1789年於阿列紐斯的礦物樣本中,發現了氧化釔。把這一氧化物命名為「Yttria」。弗里德里希·維勒在1828年首次分離出釔的單質。 釔的最大用途在於磷光體的生產,特別是紅色LED和電視機陰極射線管(CRT)顯示屏的紅色磷光體。釔元素也被用於電極、電解質、電子濾波器、激光器和超導體中,也有多項醫學和材料科學上的應用。釔沒有已知的生物用途,人類接觸釔元素可導致肺病。.

新!!: 离子和钇 · 查看更多 »

钙(Calcium)是一種化学元素。其化学符号是Ca,原子序数是20。鈣是银白色的碱土金属,具有中等程度的軟性。雖然在地殼的含量也很高,為地殼中第五豐富的元素,占地殼總質量3%,因其化學活性頗高,可以和水或酸反應放出氫氣,或是在空氣中便可氧化(形成緻密氧化層(氧化鈣)),因此在自然界多以離子狀態或化合物形式存在,而沒有单质存在。在工業的主要礦物來源如石灰岩、石膏等,在建筑(水泥原料)、肥料、制鹼、和医疗上用途佷广。.

新!!: 离子和钙 · 查看更多 »

钙合蛋白

鈣結合蛋白(Calbindin)是一種專門跟生物內的鈣離子結合的蛋白質,屬於肌鈣蛋白C超家族。這種蛋白最初被稱為27-kD的蛋白,在的雞十二指腸內由維生素D引導產生。在腦內,這種蛋白質的生成與維生素D衍生的荷爾蒙沒有關連。鈣結合蛋白含有4個活動鈣結合域,兩個已失去與鈣結合功能的修改域。鈣結合蛋白主要作為運輸蛋白的功能。在人體中,可在腸道、腎臟、胰島細胞及腦內找到。 鈣結合蛋白可以分為兩種:.

新!!: 离子和钙合蛋白 · 查看更多 »

钙粘蛋白

钙粘蛋白(或钙粘素、cadherins(calcium-dependent adhesion))是一类I型跨膜蛋白,由日本科學家竹市雅俊發現並命名。它们在细胞连接中扮演重要角色,保证了细胞在组织中彼此结合。发挥它们的功能需要钙离子(Ca2+),因此得名。钙粘蛋白超家族包括钙粘蛋白,原钙粘蛋白,桥粒芯糖蛋白(desmogleins),桥粒芯胶粘蛋白(desmocollins)等。它们在结构方面,共享了“钙粘蛋白重复”的胞外钙离子-结合结构域。钙粘蛋白分为若干类型,每一类用一个前缀表示(一般地,表示了其与哪一类组织相关)。已在细胞培养和发育过程中观察到,包含某一特定钙粘蛋白亚型的细胞趋向于簇集在一起而排斥包含其他类别的细胞。例如,包含N-钙粘蛋白的细胞趋向于同其他表达N-钙粘蛋白的细胞聚集在一起。然而,也要注意到细胞培养实验中,混合速度可以影响其同型(homotypic)特异性的程度。此外,其他若干小组在不同的实验中观察到异型结合亲和性(即,不同类型的钙粘蛋白结合在一起)。目前一种模型主张细胞基于动力学特异性而非热力学特异性来区分钙粘蛋白亚型,理由是不同的钙粘蛋白同型键具有不同的寿命。.

新!!: 离子和钙粘蛋白 · 查看更多 »

邊收縮二十面體

在幾何學中,邊收縮二十面體是一種凸多面體,具有18個面、27條邊和11個頂點,擁有四階的C2v循環群,由18個三角形構成,屬於三角面多面體,是十八面體中的一個特例,由於面分布的很均勻,但是比較不像球體,但,具有這種結構在嚴格的凸多面體中,他們邊不能等長,因為有的頂點周為有6個面,如果是等邊三角形,在這些頂點的將會共面,也因此,邊收縮二十面體也可以被歸類為擬詹森多面體。.

新!!: 离子和邊收縮二十面體 · 查看更多 »

肟(oxime、)是一类具有通式R1R2C.

新!!: 离子和肟 · 查看更多 »

肥皂

-- 肥皂,又名香皂,是用作個人清潔用品的表面活性劑,通常以固體塊狀的形式存在。.

新!!: 离子和肥皂 · 查看更多 »

邻二氮菲

邻二氮菲,即“1,10-邻二氮杂菲”,也称邻菲罗啉、邻菲啰啉、邻菲咯啉,是一种常用的氧化还原指示剂。它是一个双齿杂环化合物配体,类似于2,2'-联吡啶,会与大多数金属离子形成很稳定的配合物。 邻二氮菲最常用的应用是分光光度法测定铁。它可通过邻苯二胺、硫酸、甘油和砷酸的水溶液回流反应制取。 邻二氮菲在pH为2~9时,会与亚铁离子(Fe2+)形成稳定的橙红色邻二氮菲亚铁离子(2+),可通过分光光度法来分析。logK.

新!!: 离子和邻二氮菲 · 查看更多 »

肽类激素

肽类激素(Peptide Hormones)由氨基酸通过肽键连接而成,最小的肽类激素可由三个氨基酸组成,如促甲状腺激素释放激素(Thyrotropin Releasing Hormone,TRH)。多数肽类激素可由十几个,几十个或乃至上百及几百个氨基酸组成。肽类激素的主要分泌器官是下丘脑及脑垂体,在其他一些器官中,如胃肠道、脑组织、肺及心脏中也发现一些内源性肽类激素,多数处于研究阶段。.

新!!: 离子和肽类激素 · 查看更多 »

肖特基缺陷

肖特基缺陷(Schottky defect)是晶体结构中的一种因原子或离子离开原来所在的格点位置而形成的空位式的点缺陷。每一个空位都是一个独立的肖特基缺陷。在离子晶体中,各种离子形成的肖特基缺陷数目符合晶体的元素构成比例,因为只有这样形成缺陷后的晶体才是电中性的。形成后的空位可以在其所处的亚点阵中自由运动。通常晶体的密度会由于肖特基缺陷的存在而减小。 该缺陷以德国物理学家沃尔特·肖特基的名字命名。 下图是氯化钠(NaCl)晶体结构中的肖特基缺陷示意图,图中示出的是二维情况。.

新!!: 离子和肖特基缺陷 · 查看更多 »

铝(Aluminium 或Aluminum)是一种化学元素,属于硼族元素,其化学符号是Al,原子序数是13。相对密度是2.70。铝是一种较软的易延展的银白色金属。铝是地壳中第三大丰度的元素(仅次于氧和硅),也是丰度最大的金属,在地球的固体表面中占约8%的质量。铝金属在化学上很活跃,因此除非在极其特殊的氧化还原环境下,一般很难找到游离态的金属铝。被发现的含铝的矿物超过270种。最主要的含铝矿石是铝土矿。 铝因其低密度以及耐腐蚀(由于钝化现象)而受到重视。利用铝及其合金制造的结构件不仅在航空航太工业中非常关键,在交通和结构材料领域也非常重要。最有用的铝化合物是它的氧化物和硫酸盐。 尽管铝在环境中广泛存在,但没有一种已知生命形式需要铝元素。.

新!!: 离子和铝 · 查看更多 »

铪酸钡

铪酸钡是一种无机化合物,化学式为BaHfO3。.

新!!: 离子和铪酸钡 · 查看更多 »

铬酸盐

铬酸盐是铬酸形成的非多聚阴离子的盐,含有铬酸根离子——,呈现特征性的黄色;重鉻酸根化學式則為 Cr2O72−,在水性溶液中呈橙色。铬酸盐中的铬为 VI 氧化态,具氧化性、有毒且具有致癌性,被国际癌症研究机构(IARC)划分为第一类致癌物质。 常见的铬酸盐有铬酸钠、铬酸钾、铬酸铅和铬酸铵。更多请参见列表。.

新!!: 离子和铬酸盐 · 查看更多 »

银镜反应

银镜反应(英語:silver mirror reaction)是一價银化合物的溶液被还原为金属银的化学反应,由于生成的金属银附着在容器内壁上,光亮如镜,故称为银镜反应。常见的银镜反应是银氨络合物〈氨銀錯合物〉(又称多倫试剂)被醛类化合物还原为银,而醛被氧化为相应的羧酸根离子的反应,不过除此之外,某些一價银化合物(如硝酸银)亦可被还原剂(如肼)还原,产生银镜。 银镜反应通常是中学化学实验之一。实验室中用这个反应来鉴定含有醛基的化合物,工业上则用这个反应来对玻璃涂银制镜和制保温瓶胆。.

新!!: 离子和银镜反应 · 查看更多 »

银氨溶液

银氨溶液(Tollens' reagent),也称多伦试剂、吐伦试剂、土伦试剂,指含有二氨合银(I)离子(+)的水溶液,一般由硝酸银或其他银化合物与氨水反应制取,用作银镜反应的试剂。.

新!!: 离子和银氨溶液 · 查看更多 »

銣是一種化學元素,符號為Rb,原子序数為37。銣是種質軟、呈銀白色的金屬,屬於鹼金屬,原子量為85.4678。單質銣的反應性極高,其性質與其他鹼金屬相似,例如會在空氣中快速氧化。自然出現的銣元素由兩種同位素組成:85Rb是唯一一種穩定同位素,佔72%;87Rb具微放射性,佔28%,其半衰期為490億年,超過宇宙年齡的三倍。 德國化學家羅伯特·威廉·本生和古斯塔夫·基爾霍夫於1861年利用當時的新技術火焰光譜法發現了銣元素。 銣化合物有一些化學和電子上的應用。銣金屬能夠輕易氣化,而且它有特殊的吸收光譜範圍,所以常被用在原子的激光操控技術上。 銣並沒有已知的生物功用。但生物體對銣離子的處理機制和鉀離子相似,因此銣離子會被主動運輸到植物和動物細胞中。.

新!!: 离子和铷 · 查看更多 »

铜(copper)是化学元素,化学符号Cu(来自cuprum),原子序数29。纯铜是柔软的金属,表面刚切开时为红橙色帶金屬光澤、延展性好、导热性和导电性高,因此在电缆和电气、电子元件是最常用的材料,也可用作建筑材料,以及組成众多種合金。铜合金机械性能优异,电阻率很低,其中最重要的是青铜和黄铜。此外,铜也是耐用的金属,可以多次回收而无损其机械性能。 人类使用铜及其合金已有数千年历史。古罗马时期铜的主要开采地是塞浦路斯,因此最初得名cyprium(意为塞浦路斯的金属),后来变为cuprum,这是copper、cuivre和Kupfer的来源。二价铜盐是常见的铜化合物,常呈蓝色或绿色,是蓝铜矿和绿松石等矿物颜色的来源,历史上曾广泛用作颜料。铜质建筑结构受腐蚀后会产生铜绿(碱式碳酸铜)。装饰艺术主要使用金属铜和含铜的颜料。 铜是所有生物所必需的微量膳食矿物质,因为它是呼吸酶复合体细胞色素c氧化酶的关键组分。软体动物和甲壳亚门动物的血液色素血蓝蛋白中含有铜。鱼类和其他哺乳动物的血液中则是含铁的复合物血红蛋白。铜在人体中主要分布于肝脏、肌肉和骨骼中。铜的化合物可用作、杀真菌剂和木材防腐剂。.

新!!: 离子和铜 · 查看更多 »

铵(拼音:,,舊譯作錏,化学式),又叫铵离子、铵根、铵根离子,是由氨分子衍生出的正一价、带1个正电的离子。氨分子与一个氢離子配位结合就形成铵根离子(氨提供孤電子對)。铵离子在化学反应中相当于金属离子。.

新!!: 离子和铵 · 查看更多 »

铋化物

铋化物是含Bi3-阴离子的化合物。碱金属的铋化物M3Bi都是已知的,例如铋化钠(Na3Bi)可以由钠和铋的单质在高温、高压下反应得到。 多元铋化物也有文献报道,例如有着PbClF结构的KCaBi、同时含有-1和-3价Bi的化合物Ba2Cd2.13Bi3O等。.

新!!: 离子和铋化物 · 查看更多 »

锎(Californium,--)是一種放射性金屬元素,符號為Cf,原子序為98。鉲屬於錒系元素,是第六種人工合成的超鈾元素。鉲是產量能以肉眼可見的元素中原子量第二高的(最高的是鑀),也是自然界能自行產生的元素中質量数最高的,所有比鉲更重的元素皆必須通過人工合成才能產生。伯克利加州大學於1950年以α粒子(氦-4離子)撞擊鋦,首次人工合成鉲元素,因此該元素是以美國加利福尼亞州及加州大學命名的。 鉲擁有三種晶體結構,分別存在於正常氣壓900 °C以下、正常氣壓900 °C以上與高壓下(48 GPa)。在室溫下,鉲金屬塊會在空氣中緩慢地失去光澤。鉲的化合物主要由能夠形成3個化學鍵的鉲(III)形成。目前已知的20個鉲的同位素中,鉲-251是最為穩定的,其半衰期為898年,而鉲-252是最常被使用的同位素,半衰期約為2.64年,該同位素主要在美國的橡樹嶺國家實驗室及俄羅斯的合成。由於大部分鉲同位素的半衰期都很短,所以地殼中不存在大量的鉲元素。地球大約在45億年前形成,而在地球中自然放射的中子不足以從較穩定的元素產生出大量的鉲。 鉲是少數具有實際用途的超鈾元素之一,利用某些鉲同位素是強中子射源的特性,鉲能夠用於啟動核反應爐,還可以使用在中子衍射技術和中對材料進行研究。另外,鉲可用来合成质量数更高的元素,例如以鈣-48離子撞擊鉲-249可合成第118號元素Og。但在處理鉲的時候,也因此必須考慮到放射性的問題。當鉲累積在動物的骨骼組織時,將破壞紅血球的形成,影响造血功能。.

新!!: 离子和锎 · 查看更多 »

锍有两种意义,在化学上代表一正离子,在冶金中代表一互熔体。.

新!!: 离子和锍 · 查看更多 »

锝(--)是一種化學元素,其原子序數是43,化學符號是Tc。其所有同位素都具有放射性,是原子序最小的非穩定元素。地球上現存的大部分鍀都是人工製造的,自然界中僅有極少量存在。在鈾礦中,鍀是一種自發裂變產物;在鉬礦石中,鉬經中子俘獲后可以生成鍀。鍀是一種銀灰色的金屬晶體,其化學性質介於錳和錸之間。 在鍀發現以前,德米特里·門捷列夫就已經預測了它的許多性質。在他的周期表中,門捷列夫把這種尚未發現的元素叫做“類錳”,符號為Em。1937年,鍀(準確的說是鍀-97)成為第一個大部分由人工製造的元素。它的英文名來自希腊語τεχνητός,意為“人造”。 鍀的短壽命同位素鍀-99m具有γ放射性,廣泛用於核醫學。鍀-99僅具有β放射性。商業上,鍀的長壽命同位素是反應堆中鈾-235裂變的副產物,可以從乏燃料中提取得到。鍀最長壽命的同位素是鍀-98(半衰期為420萬年)。1952年,有人在壽命超過十億年的紅巨星中發現了鍀-98,讓人們認識到恆星可以製造重元素。.

新!!: 离子和锝 · 查看更多 »

锡是一种化学元素,其化学符号是Sn(拉丁语Stannum的缩写),它的原子序数是50。它是一种主族金属。纯的锡有银灰色的金属光泽,它拥有良好的伸展性能,它在空气中不易氧化,它的多种合金有防腐蚀的性能,因此它常被用来作为其它金属的防腐层。锡的主要来源是它的一种氧化物矿物锡石(SnO2),盛產於中國雲南、馬來西亞等地。.

新!!: 离子和锡 · 查看更多 »

锌指

锌指(Zinc finger),又稱鋅手指,是一种小的蛋白质结构模体,其特征在于配合一个或多个锌离子(Zn2+)以稳定折叠。最初用来描述非洲爪蟾卵母细胞转录因子IIIA假说结构的手指状外观,锌指名称现在已经包含了各种不同的蛋白质结构。 在1983年,非洲爪蟾TFIIIA最初被证明含有锌,并且需要这种金属才能运行,这是被报道的第一个基因调节蛋白中具有锌的要求。 这些具有锌指结构的蛋白大多都是与基因表达的调控有关的功能蛋白。锌指结构的共同特征是通过肽链中氨基酸残基的特征基团与Zn2+的结合来稳定一种很短的,可自我折叠成“手指”形状的的多肽空间构型。 含有锌指的蛋白(锌指蛋白)被分为几个不同的结构家族。大多數的超二級結構,包括希臘鑰匙、,都已經被清楚定義。但鋅指的狀況並不是那麼簡單,含有鋅指的蛋白質大約分成幾類,每個鋅指結構都有相當特殊的三級結構,但其加上鋅離子的一級結構也是可以辨認配體。雖然鋅指之間有很大的變異,但大多是都是與DNA、RNA、蛋白質結合。 自从它们最初的发现和它们的结构阐明以来,这些相互作用的模块已经在生物世界中无处不在,并且可以在人类基因组的3%基因中被发现。另外,锌指在各种治疗和研究能力方面已经变得非常有用。研究者會設計出特殊的鋅手指,使其有不同的親合性。鋅指核酸酶和是當今最重要的應用。.

新!!: 离子和锌指 · 查看更多 »

锗酸铋

锗酸铋(Bismuth Germanate 或 Bismuth Germanium Oxide,简称BGO)是-系化合物的总称,最常见的两种锗酸铋化合物的化学式为(CAS:12233-56-6)和(CAS:12233-73-7)。由于应用最为广泛、研究最为深入,“锗酸铋”或“BGO”通常被用来特指(本条目亦遵从此习惯),这是一种立方晶系的无色透明晶体,在高能粒子或高能射线(γ射线、X射线)的作用下能发出峰值波长为480 nm的绿色荧光,利用其闪烁性能可探测高能粒子和高能射线。.

新!!: 离子和锗酸铋 · 查看更多 »

锂离子电池

锂离子电池(Lithium-ion battery)是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。锂离子电池使用一个嵌入的锂化合物作为一个电极材料。目前用作鋰離子電池的正極材料主要常見的有:鋰鈷氧化物(LiCoO2)、錳酸鋰(LiMn2O4)、镍酸锂(LiNiO2)及磷酸鋰鐵(LiFePO4)。 這些锂离子电池與其發展產品是在消费电子领域常见的。它们是便携式电子设备中可充电电池最普遍的类型之一,具有高能量密度,无记忆效应,在不使用时只有缓慢电荷损失。除了消费类电子产品,越來越進步的锂离子电池也越来越普及,可用于军事,纯电动汽车和航空航天应用。例如,磷酸鋰鐵电池正在成为铅酸蓄电池的一种常见的替代蓄电池,在历史上铅酸蓄电池用于高尔夫球车和多用途车,但這種高效的新型電池已經能夠突破舊有鋰電池與鉛酸電池的各種缺點,達成全面替代的目標。 此外,锂离子电池容易与下面两种电池概念混淆:.

新!!: 离子和锂离子电池 · 查看更多 »

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

新!!: 离子和脱氧核糖核酸 · 查看更多 »

脉冲激光沉积

脈衝雷射沉積(Pulsed Laser Deposition,PLD),也被稱為脈衝雷射燒蝕(pulsed laser abalation,PLA)為物理气相沉积(Physical Vapor Deposition,PVD)的一種, 是一種利用聚焦後的高功率脈衝雷射於真空腔體中對靶材進行轟擊,由於雷射能量極強,會將靶材汽化形成電漿蕈狀團(plasma plume),並沉澱於基板上形成薄膜。 於鍍膜可於高真空、超高真空或通入工作氣體(如欲沉積氧化物薄膜,通常會通入氧氣作為其工作氣體)的環境下進行。 於脈衝雷射沉積的過程中,雷射的能量被靶材吸收之後,能量首先激發靶材內部的電子躍遷,之後再轉成熱能等使靶材汽化形成電漿態,於電漿雲中,包含分子、原子、電子、離子、微粒、融球體等物質。 Category:半導體物理學 Category:薄膜沉積 Category:雷射机械加工 Category:雷射應用.

新!!: 离子和脉冲激光沉积 · 查看更多 »

膜间隙

膜间隙、膜間腔(intermembrane space,简称IMS)是指线粒体或叶绿体的内膜与外膜之间的区域。膜间隙的主要功能是进行氧化磷酸化。 位于外膜的叫做孔蛋白的一类通道蛋白允许离子与小分子自由移动进入膜间隙。这对于与这些细胞器功能相关的溶质来说,并不意味着他们与胞质溶胶之间在本质上是连续的。驶往线粒体基质或组织基质的酶可以以运输的方式穿过线粒体膜间隙。线粒体中的移位酶有的在线粒体外膜上(TOM)有的在线粒体内膜上(TIM,叶绿体中的移位酶有的在外膜上(TOC)有的在内膜上(TIC)。在电子传递期间,因为质子梯度的缘故,膜间隙倾向于低pH,当质子从线粒体基质被泵入膜间隙时就会产生质子梯度。负责形成质子梯度的相应细胞结构包括了:辅酶Q、NADH-辅酶Q氧化还原酶复合体(复合体I)、琥珀酸盐-辅酶Q氧化还原酶复合体(复合体II)与辅酶Q-细胞色素c氧化还原酶复合体(复合体III)。.

新!!: 离子和膜间隙 · 查看更多 »

醛固酮

醛固酮(Aldosterone)是一種類固醇類激素(盐皮质激素家族),由腎上腺皮質所產生,主要作用於腎臟,進行鈉離子及水份的再吸收,以維持血壓的穩定。整體來說,醛固酮為一種增進腎臟對於離子及水分再吸收作用的一種激素,為肾素-血管紧张素系统的一部分。.

新!!: 离子和醛固酮 · 查看更多 »

醛糖1-脱氢酶 (NAD+)

醛糖1-脱氢酶 (NAD+)(aldose 1-dehydrogenase (NAD+),EC ),是一种以NAD+或NADP+为受体、作用于供体CH-OH基团上的氧化还原酶。这种酶能催化以下酶促反应: 醛糖1-脱氢酶 (NAD+)也能催化D-葡萄糖、2-脱氧-D-葡萄糖、6-脱氧-D-葡萄糖、D-半乳糖、6-脱氧-D-半乳糖、2-脱氧-L-阿拉伯糖以及D-木糖等发生反应,并会受到1,10-邻氮二菲、2,3-苯并呋喃、己二烯雌二醇、吲唑、吲哚等有机分子及Ag+、Ca2+等阳离子的抑制。.

新!!: 离子和醛糖1-脱氢酶 (NAD+) · 查看更多 »

重離子

重離子簡單的說就是比碳原子大的原子核或離子(像是碳、矽、鎢、金、鉛、或鈾的原子核),在核子物理學中,重離子通常用來製造更重的元素或同位素,像是把氪-86轟炸鉛-208的原子核,就會產生新的元素Og。 Category:离子 Category:物理化學.

新!!: 离子和重離子 · 查看更多 »

重氮盐

重氮盐有时也称“重氮化合物”, 是一类通式为R-N2+X−的有机化合物,R指有机基团(如烷基或芳基),X指任何阴离子,通常为卤素离子。 重氮盐是无色结晶固体,爆炸性很强,干燥情况下不稳定,一般不直接分离出来。它可溶于水呈中性,发生电离,水溶液具有很强的导电能力。重氮盐是合成染料时的重要中间体。.

新!!: 离子和重氮盐 · 查看更多 »

量子生物学

量子生物学是利用量子理论来研究生命科学的一门学科。该学科包含利用量子力学研究生物过程和分子动态结构。利用量子生物学研究量子水平的分子动态结构和能量转移,如果所得结果与宏观的生物学现象相吻合且很难用其他学科的研究重复,则这一研究结果较为可信。 量子生物化学和光合过程的量子研究已得到了可核查的重要的结果。尤其是光合作用中,对于俘获光子后发生的分步的、对质子的量子式释放,利用量子生物学的理论,已获得显著的研究进展(相关理论涉及到较为复杂的光系统II)。此外,实验和理论的发现都支持酶促反应中包含量子穿隧机制。将能量转化为化学能(可用于化学转化)的生物学过程在实质上都是量子力学过程。这些过程包含化学反应、光俘获、电子激发态的形成、激发能的转移和化学过程(如光合作用及细胞呼吸)中电子及质子(氢离子)的转移。量子生物学以量子力学效应为根据,借助数学计算,对生物学相互作用进行模拟。奧地利出生的量子物理学家和数理生物学家埃尔温·薛定谔早在1946年就提出了用量子理论研究遗传系统的需求,理论生物学家罗伯特·罗森在1961年接着给出了一份详细、正式的研究量子遗传学的办法。在这方面的一个仍未解决的存在争议的问题是:量子效应在生物系统中的非平凡/通用角色(即不受限于分子性质)究竟是什么?然而,新近关于转录的研究与转录酶对于相干态双链DNA的量子信息处理是一致的。.

新!!: 离子和量子生物学 · 查看更多 »

臨界膠束濃度

臨界微胞濃度(Critical micelle concentration,經常縮寫為CMC),其定義為表徵界面活性劑結構與性能的一個最重要的物理量,根據界面活性劑的CMC值大小可以設計界面活性劑加入量以得到膠束大小、形狀可控的溶液。.

新!!: 离子和臨界膠束濃度 · 查看更多 »

自然

自然(英文:Nature),是指不断运行演化的宇宙萬物,包括生物界和非生物界两个相辅相成的体系。 人类所能理解地自然现象有:生物界的基因模因、共识主动、意识行为、社会活动和生态系统等;宇宙间的天使粒子、次原子粒子、星系星云和黑洞白洞等。 人类不能理解地宗教信仰、灵魂观念和神明信念等现象,被称为超自然现象。 从对超自然现象的探索,到对自然现象的认知,是人类逐渐理解自己、适应生存环境和丰富社会活动的过程。例如,古时,火是神明,日月星辰是超自然现象;如今,卫星、电视、电脑和手机成为了神话中的千里眼和顺风耳;区块链成了全球共识共享的无字天书。.

新!!: 离子和自然 · 查看更多 »

臭氧

臭氧(分子式为O3)是氧气(O2)的同素异形体,在常温下,它是一种有特殊臭味的淺蓝色气体。英文臭氧(Ozone)一词源自希腊语ozon,意为“嗅”。 臭氧主要存在于距地球表面20公里的同温层下部的臭氧层中,含量約50ppm。它吸收对人体有害的短波紫外线,防止其到达地球。O2經紫外光照射而得。在大氣層中,氧分子因高能量的輻射而分解為氧原子(O),而氧原子與另一氧分子結合,即生成臭氧。臭氧又會與氧原子、氯或其他游離性物質反應而分解消失,由於這種反覆不斷的生成和消失,乃能使臭氧含量維持在一定的均衡狀態,而大氣中約有90%的臭氧存在於離地面15到50公里之間的區域,也就是平流層,在平流層的較低層,即離地面20到30公里處,為臭氧濃度最高之區域,是為臭氧層,臭氧層具有吸收太陽光中大部分的紫外線,以屏蔽地球表面生物,不受紫外線侵害之功能。.

新!!: 离子和臭氧 · 查看更多 »

金(gold)是化学元素,化学符号Au(来自aurum),原子序数79。纯金是有明亮光泽、黄中带红、柔软、密度高、有延展性的金属。金在元素周期表中在11族,属过渡金属,是化学性质最不活泼的几种元素之一。金在标准状况下是固体,在自然界中常以游离态单质形式(自然金)存在,如岩石、地下及沖積層中堆积的砂金或金粒。金能和游离态的银形成固溶体琥珀金,在自然界中也能和铜、钯形成合金。矿物中的金化合物不太常见,主要是碲化金。 金的原子序数在宇宙中天然存在的元素中是较高的。据信这种重元素是在两颗中子星碰撞时的超新星核合成中产生,在太阳系形成前的尘埃中就已存在。由于地球形成之初还处于熔化状态,的金几乎都已沉入地核。因此,现在地球上地壳和地幔的金多是拜后来后期重轰炸期(约40亿年前)的小行星撞击事件所赐。 金能抵抗单一酸的侵蚀,但却能被王水溶解(“王水”因此得名)。这种混合酸能和金反应生成四氯合金酸根离子。金也能溶于碱性氰化物溶液,这是其开采和电镀的原理。能夠溶解銀及卑金屬的硝酸不能溶解金,这些性質是黃金精煉技術的基础,也是用硝酸来鉴别物品裡是否含有金的原理,这一方法是英語諺語「acid test」的語源,意指用「測試黃金的標準」来測試目標物是否名副其實。此外,金能溶于水銀,形成汞齊(也是一种合金),但这并非化学反應。 金在有历史记载以前就是一種廣受歡迎的貴金屬,用于貨幣、保值物、珠寶和艺术品。以前国内和国际通常实行以金为基础的金本位货币制度,但1930年代时金币已停止流通。70年代,随着布雷頓森林協定的结束,世界范围内的金本位制终于让位给法定货币制度。不过因其稀有,易于熔炼、加工和铸币,色泽独特,抗腐蚀,不易和其他物质反应等特点,金的价值不减。 底,人类总共开采18.36万公噸(相当于9513立方米)的金。 产量中的50%用于珠宝,40%用于投资,还有10%用于工业。 因其高延展性,抗腐蚀性,在大多数反应中的惰性和导电性,金一直在各类电子设备中用作耐腐蚀的电子连接器,这是它的主要工业用途。此外它还用于屏蔽红外线,生产和金箔,以及修补牙齿。有些金盐在医学上仍作为消炎药使用。.

新!!: 离子和金 · 查看更多 »

金印草

金印草(学名:Hydrastis canadensis),又名白毛茛或北美黃蓮,是多年生的毛茛科植物,原產於加拿大東南部及美國東北部。它們的根莖粗壯及呈黃色。在地上的莖略帶紫色及有毛,地底下的呈黃色,連接著根莖。金印草的葉子呈手掌狀及有毛,葉子上有5-7塊雙鋸齒的小葉,並會在春末長出單支細小的花朵。在夏天會長出單一個草莓,外觀像山莓,有10-30顆種子。 金印草有多種醫藥療效,包括可以作為抗菌藥、內服幫助消化、或是用來漱口清除口腔潰瘍。 日本的白根葵以往被分類在金印草屬中,現已改為分類在白根葵屬。 File:Hydrastis.jpg|植株 File:Hydrastis flor.jpg|花 File:Hydrastis fruit.jpg|果 File:Hydrastidis rhizoma 239128.jpg|乾燥地下莖.

新!!: 离子和金印草 · 查看更多 »

金属

金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由於金屬的電子傾向脫離,因此具有良好的導電性,且金属元素在化合物中通常帶正价電,但當溫度越高時,因為受到了原子核的熱震盪阻礙,電阻將會變大。金屬分子之間的連結是金屬鍵,因此隨意更換位置都可再重新建立連結,這也是金屬伸展性良好的原因之一。 在自然界中,絶大多數金屬以化合態存在,少數金屬例如金、銀、鉑、鉍可以游離態存在。金屬礦物多數是氧化物及硫化物。其他存在形式有氯化物、硫酸鹽、碳酸鹽及矽酸鹽。 屬於金屬的物質有金、銀、銅、鐵、鋁、錫、錳、鋅等。在一大氣壓及25攝氏度的常温下,只有汞不是固體(液態),其他金属都是固體。大部分的純金屬是銀色,只有少數不是,例如金為黄色,銅為暗紅色。 在一些個別的領域中,金屬的定義會有些不同。例如因為恆星的主要成份是氫和氦,天文學中,就把所有其他密度較高的元素都統稱為「金屬」。因此天文學和物理宇宙學中的金屬量是指其他元素的總含量。此外,有許多一般不會分類為金屬的元素或化合物,在高壓下會有類似金屬的特質,稱為「金屬性的同素異形體」。.

新!!: 离子和金属 · 查看更多 »

金属离子

金属离子是一类由金属元素(铵根离子除外)失去电子而形成的阳离子,通常由可溶性盐溶于水解离或金属单质、高价金属离子发生氧化还原反应而来,亦有极少数金属离子是阴离子。正价金属离子可以与酸根离子结合形成盐,也可以与氢氧根离子结合形成碱。部分金属离子可用作催化剂。在酸根离子中的金属则不属于金属离子(例如高锰酸根中氧化數+7的锰原子)。.

新!!: 离子和金属离子 · 查看更多 »

金属键

金屬鍵是化學鍵中的一种,主要在金属中存在,一些原子簇化合物中也存在金属键。由離域電子及排列成晶格状的金屬離子之间的静电吸引力组合而成。由于电子的自由运动,金屬鍵没有固定的方向,因而是非极性鍵。 金屬鍵決定了金屬許多物理特性,如強度、可塑性、延展性、傳導熱量、导电性、和光澤。例如一般金属的熔点、沸点随金屬鍵的强度而升高。离子半径越小,金属键越强。 金屬之間的鍵結除了金屬鍵以外,也有其他的鍵結方式,甚至是純物質也不例外。例如元素態的鎵在固態及液態下有共價的原子對鍵結,這些原子對形成晶格,和其他的金屬仍以金屬鍵鍵結。另一個金屬-金屬共價鍵的例子是。.

新!!: 离子和金属键 · 查看更多 »

金属蛋白

金属蛋白(Metalloprotein)是一类含有配位结合的金属离子作为辅因子的结合蛋白质。所有蛋白质中有大量是属于这一类。.

新!!: 离子和金属蛋白 · 查看更多 »

金属活动性

金属活动性(又稱活性序)是指金属在溶液或化学反应中的活泼程度。它最初是由化学家根据金属间的置换反应,还有金属跟水和各种酸、碱的反应总结而成。这个序列体现了金属在溶液中活动性的大小关系。在判断溶液中的置换反应能否发生时,使用它是一种很简便的办法。.

新!!: 离子和金属活动性 · 查看更多 »

金属性

金属性或还原性是指在化学反应中原子、分子或离子失去电子的能力。失电子能力越强的粒子所属的元素金属性就越强;反之越弱,而其非金属性就越强。.

新!!: 离子和金属性 · 查看更多 »

金星10號

金星10號是蘇聯所發射的金星探測器(製造代號又稱為:4V-1 No.660)。於1975年6月14日03:00:31(協調世界時)發射。.

新!!: 离子和金星10號 · 查看更多 »

金星1號

金星1號是蘇聯第二台探測金星的太空探測器,第一台金星1A號未能脫離地球軌道NSSDC (NASA Goddard Space Center), accessed August 9, 2010NSSDC (NASA Goddard Space Center), accessed August 9, 2010。金星1號研究太陽風、磁場、隕石、宇宙射線等,發射十天後訊號消失,但仍於5月飛掠金星http://nssdc.gsfc.nasa.gov/nmc/masterCatalog.do?sc.

新!!: 离子和金星1號 · 查看更多 »

金星9號

金星9號是蘇聯所發射的金星探測器(製造代號又稱為:4V-1 No.660)。包含一臺軌道環繞器與一臺著陸器,於1975年6月8日02:38:00協調世界時發射,重量約。是第一臺成功環繞金星、第一臺成功從金星表面傳回科學數據的探測器。.

新!!: 离子和金星9號 · 查看更多 »

镍氰酸盐

镍氰酸盐是一类氰配位的镍化合物。最重要的镍氰酸盐是四氰合镍(II)酸盐,它包含着2−阴离子。它可以存在于溶液中或固体中。该配离子具有围绕中心镍离子排列成正方形的氰根。离子的对称性为D4h。从镍原子到碳的距离为1.87Å,碳-氮距离为1.16Å。四氰合镍酸根可以在溶液中被电化学氧化为四氰合镍(III)酸根−。−不稳定,其中的Ni(III)可以将CN-氧化为OCN−。−可以进一步配位2个氰基,形成3-。 与烷基二胺和其他金属离子结合,四氰合镍酸根离子可以形成可以容纳有机分子的笼结构,它是一种Hofmann-diam型包合物。 如果遇到强还原性试剂,如Yb2+,2−可以被还原为2−,其中镍为+1价。.

新!!: 离子和镍氰酸盐 · 查看更多 »

镀层

镀层是一种用金属在表面沉积的工艺。镀层工艺具有数百年的历史。在当今,其仍然是一门重要的技术。 镀层有多种方法,其中一种是在表面覆盖金属,然后加压加热使其融化。.

新!!: 离子和镀层 · 查看更多 »

在有机化学中,酚类化合物(phenol)是一类通式为ArOH,结构为芳烃环上的氢被羟基(—OH)取代的一类芳香族化合物。酚类化合物中最简单的酚为苯酚(,亦稱石炭酸)。 虽然结构与醇类似,但酚的性质相对独特而与醇不属同类化合物,这主要因为酚羟基连接于不饱和碳原子上。由于酚类的芳香环紧密的与羟基氧原子结合,而相对使羟基的氧原子与氢原子之间的化学键不是那么牢固,因此酚比起醇类化合物具有更强的酸性。酚上的羟基酸性通常间于脂肪醇与羧酸之间(它们的pKa通常在10-12之间)。 当酚类化合物的羟基失去一个质子(H+),就会形成相应的负离子形态的酚负离子或称为芳基氧负离子,而相应形成的盐称为酚盐或芳基氧盐。 酚化合物还允许一个芳香环上连接两个或数个羟基,其中最简单的是苯二酚,它的结构是两个羟基连接在一个苯环上。一些酚类化合物具有杀菌效果,可制成消毒剂。另外一些具有雌激素作用或内分泌干扰素的活性。.

新!!: 离子和酚 · 查看更多 »

腎生理學

腎尿的生成及調節示意圖(分為五個大階段(由左至右):1.腎小體(藍色),2.近曲小管(棕色),3.亨利氏環(深淺兩小段綠色),4.遠曲小管(紫色),5.收集管系統(深紫色)) 腎生理學(renal physiology、拉丁语:rēnēs、"腎")為腎的生理学研究。這包括腎臟的所有的功能,包括葡萄糖、氨基酸,及其它小分子的再吸收;鈉、鉀及其它电解质的調節;體液平衡(Fluid balance)及血壓調節;酸鹼穩態(Acid–base homeostasis)的維持;各種激素的生成、包括红细胞生成素,及维生素D的活化。.

新!!: 离子和腎生理學 · 查看更多 »

配合物

配位化合物(coordination complex),--,包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子,通常称为「配位单元」。凡是含有配位单元的化合物都称做配位化合物。研究配合物的化学分支称为配位化学。 配合物是化合物中较大的一个子类别,广泛应用于日常生活、工业生产及生命科学中,近些年来的发展尤其迅速。它不仅与无机化合物、有机金属化合物相關聯,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。.

新!!: 离子和配合物 · 查看更多 »

配位异构

配位异构是构型异构的一种形式。在配位异构中,组成的复合离子具有不同的构型,这些离子成为配位异构物。.

新!!: 离子和配位异构 · 查看更多 »

配位聚合物

配位聚合物是無機或含有金屬陽離子中心金屬有機聚合物藉由有機配體相連的結構。更正式的配位聚合物說法是具有重複的1,2或3個維度上延伸的配位實體。 配位聚合物的重複單元是配合物。配位聚合物包含子類的配位網絡就是配位化合物的延伸,為1個維度上透過配位實體重複,與具有兩個或更多個單獨的鏈、環、螺形鏈接或透過配位實體在2或3維度上延伸在配位化合物之間的交叉連接。這些含有空洞的有機配體所產生的配位網絡有潛力應用在金屬-有機骨架材料方面。 配位聚合物與許多領域相關,例如有機和無機化學,生物化學,材料學,電化學,和藥理學,都有很大應用潛力。這個跨學科性質,使其在過去的幾十年裡一直被廣泛的研究。 配位聚合物可以根據它們的結構和組成分成許多不同的方法。一個重要的分類被稱為維度。一個結構可以被決定為一維,二維或三維是取決於在空間中其延伸方向的排列。一維結構以直線延伸(沿著x軸);二維結構在平面中延伸(兩個方向為X和Y軸);而三維結構向三個方向延伸(X,Y,和Z軸)。敘述於右圖:.

新!!: 离子和配位聚合物 · 查看更多 »

配體

配體(ligand,也稱為配基、配位基)是一個化學名詞,表示可和中心原子(金屬或類金屬)產生鍵結的原子、分子和離子。一般而言,配體在參與鍵結時至少會提供一個電子。配體扮演路易士鹼的角色。但在少数情况中配体接受电子,充当路易斯酸。 在有機化學中,配体常用來保護其他的官能团(例如配体BH3可保護PH3)或是穩定一些容易反應的化合物(如四氢呋喃作為BH3的配体)。中心原子和配基組合而成的化合物稱為配合物。 金屬及類金屬只有在高度真空的環境,可以以氣態、不受和其他原子鍵結的條件存在。除此以外,金屬和類金屬都會和其他原子以配位或共價鍵的方式鍵結。络合物中的配體主宰了中心金屬的的活性,其受配體本身被替換的速度、配體的活性等因素影響。在生物無機化學、藥物化學、均相催化及環境化學等領域中,如何選擇配體都是個重要的課題。 一般配体可依其帶電、大小、其原子特性及可提供電子數(如齿合度或哈普托數)加以分類。而配體的大小可以用其圆锥角來表示。 -->.

新!!: 离子和配體 · 查看更多 »

配體 (生物化學)

在生物化學和藥理學中,配體(ligand)是指一種能與受体結合以產生某種生理效果的物質。在蛋白質—配體複合物中,配體通常是與靶蛋白特定結合位點相連的信號觸發分子。而在DNA—配體複合物中,與DNA雙鏈相連的配體在一般情況下可以是任何的小分子或離子甚至是蛋白質。值得注意的是,生物化學中的配體和化學中定義的配體(比如銅氨絡離子中,氨是銅離子的配體)並無實際聯繫,配體未必要結合在金属原子上。 配體與受體的連接由諸如離子鍵的化學鍵或氫鍵、范德華力等分子間作用力維繫。它們的連接過程通常是可逆的,配體與受體之間形成的真正難以斷開的共價鍵在生物界是相當罕見的。 配體在與受體結合後,可以改變它們的立體構型,而立體構型又常常決定了蛋白質的功能。配體包括底物、酶抑制劑、酶激活劑、以及神經遞質。配體與受體結合的難易度與結合後的強度叫做親和力。兩者越容易結合,結合後結合的強度越大,則親和力越強,反之亦然。親和力不僅由配體和受體間的直接的相互作用決定,還由溶劑效應決定,后者間接主導溶液中的非共價性結合。 用放射性同位素標記的已被用作正電子發射計算機斷層掃描(PET)中的放射性示蹤劑。此外,這種物質還被用於在體外進行的配體—受體結合研究。.

新!!: 离子和配體 (生物化學) · 查看更多 »

腐殖质

腐殖质是土壤特异有机质,也是土壤有机质的主要组成部分,约占有机质总量的50%-65%。 腐殖质是一种分子复杂、抗分解性强的棕色或暗棕色无定形胶体,动植物残体(如植物組織(枯枝落葉)和动物的排泄物,皮毛和屍體等)经微生物分解转化又重新合成的一类有机高分子化合物。 主要有胡敏酸、富里酸等,其含量比例随土壤而异。整体黑色或褐色,无定型。具有适度的粘结性,能够使粘土疏松,粘土粘结,是形成团粒结构的良好胶结剂。 在養分生物循環中,生物死亡後,生物殘體會進行礦物化的過程轉化成礦質養分。但是生物殘體也會不完全被礦物化。生物殘體會進行腐殖化過程,以腐殖質形式保留下來。即是在養分生物循環中,生物殘體轉化成礦質養分的一個養分儲藏室,腐殖質最終會進行礦物化過程轉化成礦質養分的。腐殖質的重要是當雨水沖走泥土上的礦質養分時,而微生物未能及時分解生物殘體來補充(微生物分解生物殘體時間很慢),腐殖質可以根據土壤養分濃度來釋出養分來補充,對肥力有積極作用。.

新!!: 离子和腐殖质 · 查看更多 »

酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.

新!!: 离子和酶 · 查看更多 »

酸(有时用“HA”表示)的传统定义是当溶解在水中时,溶液中氢离子的浓度大于纯水中氢离子浓度的化合物。换句话说,酸性溶液的pH值小于水的pH值(25℃时为水的pH值是7)。酸一般呈酸味,但是品尝酸(尤其是高浓度的酸)是非常危险的。酸可以和碱发生中和作用,生成水和盐。酸可分为无机酸和有机酸两种。.

新!!: 离子和酸 · 查看更多 »

酸度系数

酸度系數(英語:Acid dissociation constant,又名酸解離常数,代號Ka、pKa、pKa值),在化學及生物化學中,是指一個特定的平衡常數,以代表一種酸解離氫離子的能力。 該平衡狀況是指由一種酸(HA)中,將氫離子(即一粒質子)轉移至水(H2O)。水的濃度是不會在系數中顯示的。一种酸的pKa越大则酸性越弱,pKa越小则酸性越强(反過來說,Ka值越大,解離度高,酸性越強,Ka值越小,部份解離,酸性越弱)。pKa\mbox_ + \mbox_2\mbox_ \leftrightarrow \mbox_3\mbox^+_ + \mbox^-_ 平衡狀況亦會以氫離子來表達,反映出酸質子理論: 平衡常數的方程式為: 由於在不同的酸這個常數會有所不同,所以酸度系數會以常用對數的加法逆元,以符號pKa,來表示: 在同一的濃度下,較大的Ka值(或較少的pKa值)離解的能力較強,代表較強的酸。一般来说,Ka>1(或pKa<0),则為強酸;Ka<10-4(或pKa>4),则為弱酸。 利用酸度系數,可以容易的計算酸的濃度、共軛鹼、質子及氫氧離子。如一種酸是部份中和,Ka值可以用來計算出緩衝溶液的pH值。在亨德森-哈塞爾巴爾赫方程亦可得出以上結論。.

新!!: 离子和酸度系数 · 查看更多 »

酸式盐

酸式盐是盐类的一种,由阳离子和多元酸的不完全电离酸根阴离子组成。由于阴离子中含有在水中可电离的氢原子,因此被称作“酸式”盐。但实际上,只有强酸(如硫酸)及少部分中强酸(如磷酸)的酸式盐呈酸性,大多数弱酸的酸式盐都因阴离子的水解而显碱性。 要注意的是,酸式盐在以离子晶体形式存在时,阴离子并不电离出氢离子,氢离子是酸式酸根离子的一部分。在熔融状态下,酸根离子也不电离。.

新!!: 离子和酸式盐 · 查看更多 »

酸碱电子理论

酸碱电子理论,也称广义酸碱理论、路易斯酸碱理论,是1923年美国化学家吉尔伯特·路易斯提出的一种酸碱理论。该理论认为:凡是可以接受外来电子对的分子、基团或离子为酸(路易斯酸);凡可以提供电子对的分子、基团或离子为碱(路易斯碱)。因為跳脫了限定氫離子與氫氧根的酸鹼概念,这种理论包含的酸碱范围很广,但是,它对确定酸碱的相对强弱来说,没有统一的标度,对酸碱的反应方向难以判断。后来,提出的软硬酸碱理论弥补了这种理论的缺陷。 常見的路易斯酸有:.

新!!: 离子和酸碱电子理论 · 查看更多 »

酸碱电离理论

酸碱电离论是1884年由瑞典化学家斯凡特·阿瑞尼斯提出的一种酸碱理论,该理论认为在水中解离出的正离子全是H+的化合物为酸;解离出的负离子全是OH−的化合物称为碱。 该理论是目前应用最为广泛的一种理论,但是它具有很多局限性,例如它把酸与碱只限制為水溶液,在非水溶液中无法判定酸碱,无法解释一些物质本身不含H+(例如:AlCl3 氯化铝)或OH−(例如:Na2CO3,碳酸钠)却在水溶液中呈酸性或碱性等。.

新!!: 离子和酸碱电离理论 · 查看更多 »

酸碱质子理论

酸碱质子理论(-----酸碱理论)是丹麦化学家布朗斯特和英国化学家湯馬士·馬丁·劳里于1923年各自独立提出的一种酸碱理论。该理论认为:凡是可以释放質子(氫離子,H+)的分子或离子为酸(布朗斯特酸),凡是能接受氫離子的分子或离子則为碱(布朗斯特碱)。 當一個分子或離子釋放氫離子,同時一定有另一個分子或離子接受氫離子,因此酸和鹼會成對出現。酸碱质子理论可以用以下反應式說明: 酸在失去一個氫離子後,變成共軛鹼;而鹼得到一個氫離子後,變成共軛酸。以上反應可能以正反應或逆反應的方式來進行,不過不論是正反應或逆反應,均維持以下的原則:酸將一個氫離子轉移給鹼。 在上式中,酸和其對應的共軛鹼為一組共軛酸鹼對。而鹼和其對應的共軛酸也是一組共軛酸鹼對。.

新!!: 离子和酸碱质子理论 · 查看更多 »

酸根离子

酸根离子是酸电离时产生的阴离子。常见的酸根离子有:(硝酸根),(硫酸根),(碳酸根),(碳酸氢根),(高锰酸根),Cl − (氯离子)等。是构成盐和酸的基本成分。.

新!!: 离子和酸根离子 · 查看更多 »

酒石酸脱氢酶

酒石酸脱氢酶(tartrate dehydrogenase,EC ),是一种以NAD+或NADP+为受体、作用于供体CH-OH基团上的氧化还原酶。这种酶能催化以下酶促反应: 酒石酸脱氢酶是一种具有立体特异性(stereospecific)的胞内酶(intracellular enzyme)。这种酶人们发现的第三个金属离子依赖性、脱羧型R-羟酸脱氢酶,可以将内消旋酒石酸和L-酒石酸作为底物,并需要Mn2+和一价阳离子作为辅因子。可能是因为经历的自然选择的时间不长,酒石酸脱氢酶对酒石酸的催化能力较弱。恶臭假单胞菌(Pseudomonas putida)基因编码的酒石酸脱氢酶与原核生物的异丙基苹果酸脱氢酶具有很高的同源性,但其酒石酸脱氢酶具有独特的NAD+结合域。酒石酸脱氢酶在以异丙基苹果酸为底物时酶促反应的米氏常数Km为14±2μM。.

新!!: 离子和酒石酸脱氢酶 · 查看更多 »

色谱法

--(chromatography,--)是一种分离和分析方法,在分析化学、有机化学、生物化学等领域有着非常广泛的应用。色谱法利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。色谱法起源于20世纪初,1950年代之后飞速发展,并发展出一个独立的三级学科——色谱学。历史上曾经先后有两位化学家因为在色谱领域的突出贡献而获得诺贝尔化学奖,此外色谱分析方法还在12项获得诺贝尔化学奖的研究工作中起到关键作用。.

新!!: 离子和色谱法 · 查看更多 »

鉀離子

钾离子(K+)是金屬元素钾的阳离子。.

新!!: 离子和鉀離子 · 查看更多 »

苯扎氯铵

苯扎氯銨,也被稱為BZK,BKC,BAC,alkyldimethylbenzylammonium chloride和ADBAC,是屬於季銨基類的陽離子性介面活性劑。它主要有三個用途:作為殺生物劑,陽離子介面活性劑,以及在化學工業中的相轉移劑。此化合物是各種偶數烷基鏈烷基芐氯化物的非勻相混合物。.

新!!: 离子和苯扎氯铵 · 查看更多 »

苹果猪笼草

苹果猪笼草(学名:Nepenthes ampullaria)是一种分布广泛的猪笼草。其存在于在婆罗洲、摩鹿加群岛、新几内亚、西马来西亚、新加坡、苏门答腊和泰国。McPherson, S.R. 2009.

新!!: 离子和苹果猪笼草 · 查看更多 »

鋅銅電池

丹尼爾電池又稱锌铜电池,是一种以锌为负電极;铜为正電极;硫酸鋅與硫酸銅為電解液的電化電池,由约翰·弗雷德里克·丹尼尔(John Frederic Daniell)於1836年發明,丹尼尔电池一稱來自其发明者的名字,丹尼爾為了消除伏打電堆中出現氫氣泡的問題,他的解決方法是使用第二種電解液來消耗只有一種電解液時會產生的氫氣。 其化学反应式如下:.

新!!: 离子和鋅銅電池 · 查看更多 »

離域電子

離域電子(delocalized electron),也称游離電子,是在分子、離子或固體金屬中不止與單一原子或單一共價鍵有關係的電子。 游離電子包含在分子軌道中,延伸到幾個相鄰的原子。一般来讲,離域電子存在于共轭系統和化合物中。人們漸漸地了解到,σ鍵中的電子也會游離。例如甲烷中的成键電子是由五個原子共享的。更多细节详见分子軌道理論。.

新!!: 离子和離域電子 · 查看更多 »

離子導入法

離子導入法(Iontophoresis),又稱為離子電泳法。離子導入法是利用連續性之直流電流,以同電性相斥的原理,將離子或帶電的化學藥物驅送至體內的治療方法。.

新!!: 离子和離子導入法 · 查看更多 »

離子交換

離子交換技術(Ion exchange)或稱離子色譜法,是將兩種電解質間做離子的交換,或是在電解溶液和配合物之間的交換。最常見到的例子是使用聚合物或礦物用來純化、分離或淨化純水和其他離子溶液。其他的例子有離子交換樹脂,功能化多孔或凝膠聚合物)、沸石、、黏土和土壤中的腐殖質。 離子交換有兩類,一種是陽離子交換,指的是帶正電的離子互相交換;另外的陰離子交換,則是帶負電的離子互相交換。也有兩性離子交換劑可讓陰、陽離子同時交換。而在混床中能同時有效的進行交換陰、陽離子的交換。混床包括了陰、陽離子交換樹脂,或由處理過的溶液通過幾種不同的離子交換材料所製造出來。 離子交換劑,可以為非選擇性或因喜好結合為某些類別的離子,這取決於其化學結構。這根據了離子的大小、電價或結構而定。可以結合交換離子的常見範例有:.

新!!: 离子和離子交換 · 查看更多 »

雷酸盐

雷酸盐,,是包含雷酸根离子的化合物。雷酸根离子(),是一种拟卤离子,具有类似卤素的电荷和性质。由于离子的不稳定性,雷酸盐多是对摩擦敏感的炸药。其中最著名的是雷酸汞,它被广泛用于雷管的起爆药。雷酸盐可以由金属(如银和汞)溶解在硝酸中,并与乙醇反应制得。氮-氧单键很大程度上导致了雷酸盐的不稳定。其中的氮很容易与另一个氮原子形成稳定的三键,成为气态氮。.

新!!: 离子和雷酸盐 · 查看更多 »

電是靜止或移動的電荷所產生的物理現象。在大自然裏,電的機制給出了很多眾所熟知的效應,例如閃電、摩擦起電、靜電感應、電磁感應等等。 很久以前,就有許多術士致力於研究電的現象,但所得到的結果乏善可陳。直到十七和十八世紀,才出現了一些在科學方面重要的發展和突破,不過在那時,電的實際用途並不多。十九世紀末,由於電機工程學的進步,電才進入了工業和家庭裡。從那時開始,日新月異、突飛猛進的快速發展帶給了工業和社會巨大的改變。作為能源的一種供給方式,電有許多優點,這意味著電的用途幾乎是無可限量。例如,交通、取暖、照明、電訊、計算等等,都必須以電為主要能源。進入二十一世紀,現代工業社會的骨幹仍是電能。.

新!!: 离子和電 · 查看更多 »

電子倍增管

電子倍增管是一個能倍增入射電荷的真空偵測器。 一個高速的帶電粒子,如電子和離子撞擊偵測器表面時,可產生二次電子;再透過適當的形狀與電場的安排,產生一連串的二次電子來倍增訊號,最後到達陽極。通常一個電子加速撞極偵測器表面可以產生一到三個二次電子,多次撞擊使得電子數目倍增,其靈敏度相當高,可以用來偵測粒子的數目。.

新!!: 离子和電子倍增管 · 查看更多 »

電化電池

電化電池包含兩種類型,一類是發生化學反應(氧化還原反應)將化學能轉為電能的裝置,又稱伽凡尼電池;另一種則是輸入電能引發化學反應的電解池。.

新!!: 离子和電化電池 · 查看更多 »

電傳導

電傳導(electrical conduction)是指介質內,載電荷的粒子的運動。稱這些粒子為電荷載子。它們的運動形成了電流。這運動可能是因為感受到電場的作用而產生的,或是因為載子分佈的不均勻引發的擴散機制的結果。對於不同的物質,電荷傳輸的物理參數也不同。根据物质电传导性的不同可以分为导体和绝缘体。常见的导体有金属,电解质溶液或液体。常见的绝缘体有干燥的木材、塑料、橡胶。 歐姆定律明確地描述了金屬和電阻器的電傳導。歐姆定律闡明,電流與外加的電場成正比,在一個物質內,由於外加的電場 \mathbf\,\! 而產生的電流密度 \mathbf\,\! ,可以用方程式表達為 其中,\sigma\,\! 是物質的電導率; 或者, 其中,\rho\,\! 是物質的電阻,是 \sigma\,\! 的倒數。 在半導體元件裏,電傳導是由電場作用和擴散這兩種物理機制共同引發的。因此,電流密度可以表達為 其中,D\,\! 是擴散常數,q\,\! 是電荷量,n\,\! 是電子的體積密度。 由於電子的電荷量是負值,載子是朝著電子密度遞減的方向移動。因此,對於電子,假若電子密度的梯度是正值,則電流是負值;假若載子是電洞,則必須將電子密度 n\,\! 改換為電洞密度 p\,\! 的負值: 對於線性異向性物質,\sigma\,\! 、\rho\,\! 、D\,\! ,都是張量。.

新!!: 离子和電傳導 · 查看更多 »

電動勢

在電路學裏,電動勢(electromotive force,縮寫為emf)表徵一些電路元件供應電能的特性。這些電路元件稱為「電動勢源」。電化電池、太陽能電池、燃料電池、熱電裝置、發電機等等,都是電動勢源。電動勢源所供應的能量每單位電荷是其電動勢 。假設,電荷 Q\, 移動經過一個電動勢源後,獲得了能量 W\, ,則此元件的電動勢定义為 \mathcal.

新!!: 离子和電動勢 · 查看更多 »

電磁波譜

在電磁學裏,電磁波譜包括電磁輻射所有可能的頻率。一個物體的電磁波譜專指的是這物體所發射或吸收的電磁輻射(又稱電磁波)的特徵頻率分佈。 电磁波谱频率从低到高分別列为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。可见光只是电磁波谱中一个很小的部分。電磁波譜波長有長到數千公里,也有短到只有原子的一小段。短波長的極限被認為,幾乎等於普朗克長度,長波長的極限被認為,等於整個宇宙的大小,雖然原則上,電磁波譜是無限的,而且連續的。.

新!!: 离子和電磁波譜 · 查看更多 »

電荷密度

在電磁學裏,電荷密度是一種度量,描述電荷分佈的密度。電荷密度又可以分類為線電荷密度、面電荷密度、體電荷密度。 假設電荷分佈於一條曲線或一根直棒子,則其線電荷密度是每單位長度的電荷密度,單位為庫侖/公尺 (coulomb/meter) 。假設電荷分佈於一個平面或一個物體的表面,則其面電荷密度是每單位面積的電荷密度,單位為庫侖/公尺2。假設電荷分佈於一個三維空間的某區域或物體內部,則其體電荷密度是每單位體積的電荷密度,單位為庫侖/公尺3。 由於在大自然裏,有兩種電荷,正電荷和負電荷,所以,電荷密度可能會是負值。電荷密度也可能會跟位置有關。特別注意,不要將電荷密度與電荷載子密度 (charge carrier density) 搞混了。 電荷密度與電荷載子的體積有關。例如,由於鋰陽離子的半徑比較小,它的體電荷密度大於鈉陽離子的體電荷密度。.

新!!: 离子和電荷密度 · 查看更多 »

電解水

电解水通常是指含鹽(如氯化鈉)的水经过电解之後所生成的產物。電解過後的水本身是中性,可以加入其他離子,或者可经过半透膜分離而生成两种性質的水。其中一种是碱性離子水,另一种是酸性離子水。以氯化鈉為水中所含電解質的電解水,在電解後會含有氫氧化鈉、次氯酸與次氯酸鈉(如果是純水經過電解,則只會產生氫氧根離子、氫氣、氧氣與氫離子)。 在某些條件下,電解後產生的酸性電解水有殺菌用途。依據電解原理在電極(正極反應:H2O(l) → 2H+(aq) + 1/2 O2(g) + 2e-,負極反應:2H2O(l) + 2e- → 2OH-(aq) + H2(g),全反應:2H2O→2 H2 + O2)生成的氧氣,在較低pH值(例,pH。.

新!!: 离子和電解水 · 查看更多 »

電解水機

電解水機(Water-Ionizer)是依據「電化學」與「電解」原理,採用鈦白金(鉑)素材或其它合金材質,做為電解槽之電極板,其間配置陶瓷離子分離膜的透析與分離作用。依操作使用功能需要,電解槽使用「鈦白金電極板」的片數(或換算成電極板總面積),已經發展有「3極2槽」、「5極4槽」、「7極6槽」甚至「9極8槽」的設計使用。 電解水機電解槽之構造與材質,甚至應用於管路水道自來水源之電解模式,都有別於傳統之電池與電解水操作實驗(製備氫氣及氧氣)。依電解水質之「機能性」需求,一般分為「飲用鹼性離子水」、「外用或環保殺菌用酸性離子水」以及「特別成份的離子水」。電解水機之功率輸出.操作面板及特殊設計都有相當成熟的技術產品推陳出新。.

新!!: 离子和電解水機 · 查看更多 »

蛋白質一級結構

蛋白质一级结构(Protein primary structure)是肽或蛋白质中氨基酸的线性序列。按照惯例,蛋白质的一级结构被报道从氨基末端(N)端到羧基末端(C)端。蛋白质生物合成最通常由细胞中的核糖体进行。肽也可以在实验室中合成。蛋白质一级结构可以被直接测序,或从DNA序列推断。 在生物化學裡,生物分子的一級結構是其分子組成和分子間化學鍵結的精確模樣。對於一典型的無分支、無交叉的生物聚合物(如DNA、RNA或典型的細胞內蛋白質等分子),其第一結構等同於描述其單體單位的序列,即如DNA序列和肽序列。「一級結構」這一名詞在Linderstrom-Lang於1951年的Lane Medical Lectures上首次被提到。一級結構和一級序列有一點相似,即使在二級或三級結構中並沒有平行的概念。.

新!!: 离子和蛋白質一級結構 · 查看更多 »

逆滲透

逆滲透(Reverse osmosis、又稱 RO)、反滲透,是一種淨化水的辦法。原理是利用滲透作用,將清水(低張溶液)和鹹水(高張溶液)置於一管中,中間以一支允許水通過的半透膜分隔開來,可見到水從滲透壓低(低張溶液)的地方流向滲透壓高(高張溶液)的地方。然若在高張溶液處施予力,則可見水由滲透壓高的地方流向滲透壓低的地方。逆滲透是“正滲透”的反向,通常比正滲透的自然過程,耗費更多的能量。正滲透分離技術,逐漸成為新趨勢。.

新!!: 离子和逆滲透 · 查看更多 »

选矿工程

选矿工程的研究内容是将低品位的矿物进行加工、提纯,主要目的是提高矿物的品位,去除矿物的杂质,例如去除煤炭中的灰分、硫、磷等杂质。选矿工程的对象主要有金属矿石、煤炭等,选矿的手段主要是物理方法和化学方法。.

新!!: 离子和选矿工程 · 查看更多 »

耀斑

閃焰是在太陽的盤面或邊緣觀測到的突發的閃光現象,它會釋放出高達6 × 1025焦耳的巨大能量(大約是太陽每秒鐘釋放總能量的六倍,或相當於160,000,000,000百萬噸TNT,超過舒梅克-李維九號彗星撞木星能量的25,000倍)。它們通常,但並非總是,伴隨著發生日冕大量拋射的事件。閃焰會從太陽日冕拋射出電子、離子、和原子的雲進入太空。通常,在事件發生後的一兩天,這些雲就可能會到達地球。這個名詞也適用在發生類似現象的恆星,但通常會使用「恆星閃焰」來稱呼。 閃焰會影響到太陽所有的大氣層(光球、色球和日冕)。當電漿物質被加熱至數千萬K的溫度時,電子、質子和更重的離子都會被加速至接近光速。它們產生電磁頻譜中所有波長的電磁輻射,從無線電波到伽瑪射線,然而絕大部分的能量都在視覺範圍之外,因此絕大碩的閃焰都是肉眼看不見的,必須要用特別的儀器觀測不同的頻率。閃焰發生在圍繞著太陽黑子的活動區,強烈的磁場從那兒穿透光球聯接日冕和太陽內部的磁場。 閃焰會突然(時間的尺度在幾分鐘至幾十分鐘)釋放儲藏在日冕中的磁場能量;日冕大量拋射(CME)也可以釋放出相等的能量,但是這兩者之間的關係尚不明確。 閃焰發射的X射線和紫外線輻射會影響地球的電離層,擾亂遠距離的無線電通訊。在分米波長的電波輻射會直接干擾雷達和使用這些波長的儀器和設備的操作。 對太陽閃焰的首度觀測是理查·卡靈頓和理查·霍奇森在1859年獨立完成的"", Monthly Notices of the Royal Astronomical Society, v20, pp13+, 1859,在黑子群當中看見一個小範圍的明亮區域。觀察望遠鏡或衛星觀測到的恆星光度變化曲線,可以推斷其他恆星是否產生恆星閃焰。 太陽閃焰發的頻率隨著平均11年的活動週期,從太陽位於活躍期的一天數個,到寧靜期的一星期不到一個,有很大的變化(參見太陽週期)。大的閃焰出現的頻率遠低於小的閃焰。 根據NASA的觀測,在2012年7月23日,一個有著巨大和潛在破壞力的太陽超級風暴(閃焰、日冕大量拋射、和)與地球擦身而過。估計在2012年至2022年之間,有12%的機率會發生類似的事件.

新!!: 离子和耀斑 · 查看更多 »

陰離子加成聚合反應

離子加成聚合反應(Anionic addition polymerization),是鏈增長聚合反應(chain-growth polymerization)或加成聚合反應(addition polymerization)的一種形式,其涉及乙烯基(vinyl)單體和強電負度基團的聚合反應Hsieh, H.;Quirk, R. Anionic Polymerization: Principles and practical applications; Marcel Dekker, Inc: New York, 1996.

新!!: 离子和陰離子加成聚合反應 · 查看更多 »

Fusor

Fusor,一種實驗裝置,以電場來加熱離子,直到產生適合核聚變的情況。這是一種惯性静电约束裝置,主體内部呈真空状态,當中有兩個帶著電極的金屬籠子,產生電壓。帶著正電的離子進入這個裝置,會被電場牽引而加速、發熱,並集中在中心位置。當達到適合的溫度,離子在裝置中心的濃度也增加,若發生相互碰撞,且燃料適當(氘)即會發生核聚變。 這種實驗裝置,最常見的類型,是Farnsworth–Hirsch fusor。這個裝置由由美国发明家費羅·法恩斯沃斯(1964年)和在1967年發明。Robert L. Hirsch, "Inertial-Electrostatic Confinement of Ionized Fusion Gases", Journal of Applied Physics, v. 38, no.

新!!: 离子和Fusor · 查看更多 »

G-四聯體

G-四聯體(英語:G-quadruplex、G-tetrads或G4-DNA)是一種由富含鳥嘌呤的核酸序列所構成的四股型態。含有經由氫鍵維持穩定,並由鳥嘌呤以正方形方式排列而成的結構。在方形中央有一個單價陽離子(通常是鉀)。這種結構可見於DNA、RNA、LNA(鎖核酸)與PNA(肽核酸);根據形成四聯體的各股的方向,可能有(intramolecular)、雙分子(bimolecular)或四分子(tetramolecular)等不同類型。 在四聯體的結構中,我們可以根據四股的方向,將結構分為平行和。.

新!!: 离子和G-四聯體 · 查看更多 »

Α-酮戊二酸

α-酮戊二酸(α-Ketoglutaric acid,較早的文獻稱為2-Oxoglutaric acid)是戊二酸的两种带酮基的衍生物中的一种(如果不特别说明,“酮戊二酸”这个术语大多数指的就α型。β-酮戊二酸只是酮基的位置不同而已,并且不太常用)。 这种物质的阴离子,α-酮戊二酸盐是一种重要的生物化合物。它是谷氨酸脱氨基的酮酸产物,并且是三羧酸循环的中间产物。.

新!!: 离子和Α-酮戊二酸 · 查看更多 »

Γ-氨基丁酸A型受体

GABAA受体(又称作γ-氨基丁酸A型受体)是一种离子型受体,而且是一类配体门控型离子通道。此通道的内源性配体是一种被称为GABA的神经递质。GABA是中枢神经系统里的一种主要的递质,虽然GABA在神经递质的释放过程中产生的是抑制性效应,但GABA本身并非一种抑制性而是一种刺激性递质,因为GABA激活GABA受体的开放。在GABAA受体被激活后,可以选择性的让Cl-通过,引起神经元的超极化。这种超极化引起了神经信号传递抑制,因为降低了动作电位产生的成功率GABAA,在正常条件下产生的抑制性突触后电位的翻转电位是-75 mV,高于GABAB受体的-100 mV。 GABAA受体的活性位点可与GABA以及许多药物诸如蝇蕈醇、、等结合。受体也包含许多异构调节,可间接调节受体活性,可调控异构位点的药物包括草字头下加「卓」字类、、巴比妥类药物、乙醇、、、等。 药物导致GABAA受体对神经元活动的中度抑制可使患者消除焦虑感(抗焦虑作用),而更强的抑制作用则会产生全身麻醉。药物的严重过量鲜有出现,而产生的反应是延长麻醉时间,甚至出现死亡。.

新!!: 离子和Γ-氨基丁酸A型受体 · 查看更多 »

KSTAR

KSTAR(Korea Superconducting Tokamak Advanced Research)是韩国大田研究基地国家聚变研究所的超导托卡马克核聚变装置,被称为“韩国太阳”,它是国际热核聚变实验反应堆(ITER)项目的一部分。KSTAR是世界上首一个采用新型超导磁体(Nb3Sn)材料产生磁场的全超导聚变装置,磁场强度是使用铌钛系统核聚变装置的3倍多。核聚变相比核裂变释放的能量更大,而且放射性污染几乎为零,其原料可以直接取于海水,是理想的能源方式。KSTAR的成功为韩国的利用核聚变发电奠定了基石。韩国计划在以后30年左右开始利用核聚变发电。 在2012年,它成功地维持高温等离子体(约5000万摄氏度)17秒。.

新!!: 离子和KSTAR · 查看更多 »

M94 (螺旋星系)

梅西爾94(也稱為M94或NGC 4736)是位於獵犬座的一個螺旋星系 ,於1781年被皮埃爾·梅香發現,並被梅西爾編入其目錄中。雖然有些參考資料描述M94是一個棒旋星系,但棒狀的結構看起來比較像卵型。這個星系已因為有雙重的環狀結構而著名。.

新!!: 离子和M94 (螺旋星系) · 查看更多 »

MAVEN

火星大氣與揮發物演化任務(Mars Atmosphere and Volatile Evolution Mission)簡稱MAVEN,是美國太空總署的火星探測器,於2014年9月22日進入火星軌道。MAVEN的目的是研究火星大氣,以及是什麼原因讓火星大氣變得如此稀薄與乾燥。.

新!!: 离子和MAVEN · 查看更多 »

MIKIKO

MIKIKO(日:みきこ,1977年8月11日 - ),有時稱作水野老師,本名水野幹子。是日本的舞者、編舞、導演。頭銜是「演出編舞家」。屬藝人經紀公司Amuse旗下人員。因擔任Perfume與BABYMETAL的編舞家而聞名,在里約奧運閉幕式代表日本的表演中,擔任總導演與舞蹈編排而受到世界矚目。.

新!!: 离子和MIKIKO · 查看更多 »

MPTP

MPTP(1-甲基-4-苯基-1,2,3,6-四氢吡啶)是一种神经毒素,能够通过破坏黑质中产生多巴胺的神经细胞而导致类似于帕金森氏症的症状。它被广泛运用于帕金森氏症各种动物模型的研究。 尽管MPTP本身并没有任何鴉片類藥物的作用,它的发现却和一种名为MPPP的,效果与吗啡和哌替啶类似的毒品有关。在MPPP的非法生产过程中,MPTP是一种意外产生的杂质,而这使得人们第一次发现了它诱导帕金森氏症的效果。.

新!!: 离子和MPTP · 查看更多 »

NGC 1275

NGC 1275 (也稱為英仙座A,科德韋爾24)是1.5型的西佛星系,位在英仙座的方向上,距離大約2億3500萬光年。NGC 1275對應於電波星系英仙座A,是位於巨大的英仙座星系團中心的星系。.

新!!: 离子和NGC 1275 · 查看更多 »

NGC 1672

NGC 1672是位於劍魚座的一個棒旋星系。它最初被認為是劍魚座星系團的成員,然而,稍後就被排除了。NGC 1672有個巨大的棒,估計長達20,000秒差距。從它的核心、棒、和螺旋臂內側的一部分都有強烈的無線電發射。核心是西佛2和,並且被星暴區域吞沒。最強的極化發射來自它的東北方塵埃帶的上游,磁場線相對於棒有著大角度並且平滑的轉到中心。.

新!!: 离子和NGC 1672 · 查看更多 »

NGC 6240

NGC 6240是在蛇夫座內一個被仔細研究的極亮紅外星系(ULIRG),這是兩個較小的星系合併的殘留物。這兩個前輩星系碰撞的結果是留下一個有兩個獨特核心和結構被高度擾動的大星系。.

新!!: 离子和NGC 6240 · 查看更多 »

Noctis

Noctis(取自拉丁语 “夜”之意)是一个开源的太空模拟游戏。此游戏最引人注目的特点与其小巧的体积(小于1MB)相比,它可以构造出一个完全虚拟的星系,让玩家在其中畅游。 游戏的科幻背景是这样的,很久以前,住在Balastrackonastreya太阳系中的Felysia星球上的一群智慧猫科动物Felysian创造了宇宙飞船Stardrifter,用于星际探险。但后来,由于未知原因,它们逃离了自己的家园而不知所踪。一批Stardrifter被留在了星系中,但是无法与它们的族群取得联系。Felysian是Noctis星系中唯一的智慧生命,所以没有其他文明可以寻找。.

新!!: 离子和Noctis · 查看更多 »

NVIDIA ION

ION是NVIDIA公司于2008年12月發佈的行動平台,官方中文名稱“翼揚”。因“ion”在英文中是“離子”的意思,所以也被俗稱“離子平台”。.

新!!: 离子和NVIDIA ION · 查看更多 »

PH值

pH,亦称pH值、氢离子浓度指数、酸鹼值,是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。这个概念是1909年由丹麦生物化学家瑟倫·索倫森(Søren Peder Lauritz Sørensen)提出的。「pH」中的「H」代表氫離子(H+),而「p」的來源則有幾種說法。第一種稱p代表德语「Potenz」,意思是力度、強度;第二種稱pH代表拉丁文「pondus hydrogenii」,即「氫的量」;第三種認為p只是索倫森随意选定的符号,因为他也用了q。现今的化学界把p加在无量纲量前面表示该量的负对数。 通常情况下(25℃、298K左右),当pH小于7的时候,溶液呈酸性,当pH大于7的时候,溶液呈碱性,当pH等于7的时候,溶液为中性。 pH允许小于0,如鹽酸(10 mol/L)的pH为−1。同样,pH也允许大于14,如氫氧化鈉(10 mol/L)的pH为15。.

新!!: 离子和PH值 · 查看更多 »

Salen

Salen是一类配位化学和均相催化中常用的螯合配体。Salen这个名字是由水杨醛(salicylaldehyde)和乙二胺(ethylenediamine,en)组合而成的。这种配体是淡黄色云母状固体,可溶于极性有机溶剂。.

新!!: 离子和Salen · 查看更多 »

SMART-1

Smart 1或SMART-1是欧洲空间局一个借助太阳能离子推进器进入月球轨道的环月人造卫星,该探测器由瑞典负责设计,于2003年9月27日23时14分(UTC)发射升空。'"SMART'"是用于先进技术研究的小型任务(Small Missions for Advanced Research in Technology)的缩写。(LISA Pathfinder是SMART-2的另一个名字,计划其将于2008年发射升空)SMART-1是欧洲第一个飞向月球的太空飞船。该飞船于2006年9月3日5时42分(UTC)成功撞击月球表面,为它的探月任务划上句号。.

新!!: 离子和SMART-1 · 查看更多 »

Sp2d杂化

sp2d杂化(sp2d hybridization)是指一个原子内的一个ns轨道、两个np轨道和一个nd轨道发生杂化的过程。原子发生sp2d杂化后,上述nd轨道、ns轨道和np轨道便会转化成为四个等价的杂化轨道,称为“sp2d杂化轨道”。四个sp2d杂化轨道存在于同一平面上,且对称轴两两之间的夹角相同,皆为90°。sp2d杂化一般发生在分子形成过程中。杂化过程中,能量相近的d轨道、s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。 一般只有过渡金属元素才能发生sp2d杂化,一些金属互化物中的部分原子也可以采取sp2d杂化形式。以2-中的二价钯离子(Pd2+)为例:处于基态的Pd2+(电子排布式为:4d8),它的一个空的5s轨道、两个空的5p轨道和一个空的5d轨道进行sp2d杂化,形成四个sp2d杂化轨道。该过程中Pd2+的轨道排布变化情况如下图所示(图中略去了出Pd2+价层未填满的4d轨道,灰色的配位电子对由4个氯离子提供):.

新!!: 离子和Sp2d杂化 · 查看更多 »

Sp3d2杂化

sp3d2杂化(sp3d2 hybridization)是指一个原子同一电子层内由一个ns轨道、三个np轨道和两个nd轨道发生生杂化的过程。原子发生sp3d2杂化后,上述ns、np和nd轨道便会转化成为六个轨道,称为“sp3d2杂化轨道”。六个sp3d2杂化轨道分别存在于两个平面上,其中,位于水平面的四个杂化两两之间的夹角皆为90°,另有两个杂化轨道位于轴向平面、对称地分布于水平面两侧。一般认为sp3d2杂化的水平杂化轨道是由s、px、py和dx²-z²轨道组成的,而轴向杂化轨道则由pz和dz²组成。sp3d2杂化一般发生在分子形成过程中。杂化过程中,能量相近的d轨道、s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。 以3−中的铁离子(Fe3+)为例:处于基态的Fe3+(电子排布式为:3d5)的一个空的4s轨道、三个空的4p轨道和两个空的4d轨道进行sp3d2杂化,形成六个sp3d2杂化轨道。该过程中铁离子的轨道排布变化情况如下图所示(图中灰色的配位电子对由6个氟离子提供):.

新!!: 离子和Sp3d2杂化 · 查看更多 »

TBE緩衝液

TBE或Tris/Borate/EDTA,是一種緩衝液,含有三羥甲基氨基甲烷(Tris)、硼酸,和EDTA。 在分子生物學上,TBE和經常用於溶解核酸,最常見於電泳實驗。由於Tris類的緩衝液皆呈弱鹼性,因此可將DNA脫除氫離子而有帶電性,更容易溶於水中。EDTA則是一種雙價陽離子螯合劑,特別是對鎂離子(Mg2+)。由於核酸酶需要這些離子,EDTA可以將這些離子牢牢抓住,避免核酸降解。但要注意的是,鎂離子同時是很多酵素的輔助因子,如限制酶、DNA聚合酶等等,因此EDTA的濃度一般不會太高(通常在1mM左右)。 近期研究顯示,TBE和TAE在電泳中是可以互相置換的。.

新!!: 离子和TBE緩衝液 · 查看更多 »

Ubh

Unbihexium是一種尚未被發現的化學元素,它的暫定化學符號是Ubh,原子序數是126,位於第8周期、g3族,屬於g區元素之一。雖然126号元素尚未被合成,但由于其处在假想的稳定元素岛中而引起兴趣。.

新!!: 离子和Ubh · 查看更多 »

Ust

Ust(英语:Unsepttrium,化学符号为Ust)是一种尚未被发现的化学元素,原子序数是173。其週期的歸屬眾說紛紜,有排列在第10周期g區元素的說法,也有排在第9週期鹼金族的說法,而根據現行較廣泛接受的模型Pekka Pyykkö, Peter Schwerdtfeger (2004), Relativistic electronic structure theory, p 23.

新!!: 离子和Ust · 查看更多 »

Uue

Uue(英語:Ununennium,化學符號為Uue)是一種尚未被發現的化學元素,原子序數是119,在元素週期表中排列在第8周期、1族。其相對原子質量約為297u。.

新!!: 离子和Uue · 查看更多 »

WDM

WDM 是三個英文單字的縮寫,可以是下列的描述:.

新!!: 离子和WDM · 查看更多 »

Z-DNA

Z-DNA又稱Z型DNA,是DNA雙螺旋結構的一種形式,具有左旋型態的雙股螺旋(與常見的B-DNA相反),並呈現鋸齒形狀。Z-DNA為三種具生物活性的DNA雙螺旋結構之一,另兩種為A-DNA與B-DNA。.

新!!: 离子和Z-DNA · 查看更多 »

抗静电剂

抗静电剂指能降低高分子材料表面或体积电阻率的物质。.

新!!: 离子和抗静电剂 · 查看更多 »

查爾斯·湯姆森·里斯·威爾遜

查尔斯·湯瑪斯·里斯·威耳逊,CH,FRS(Charles Thomson Rees Wilson,),英国原子物理學和核子物理學先驅,生於蘇格蘭中洛锡安郡格倫科斯。先後就學於曼徹斯特和劍橋,1925年到1934年任劍橋自然哲學教授。他以研究大氣電學而聞名,主要成就是發明雲室,用以觀察α粒子與電子的軌跡,從而進一步研究原子、粒子的交互作用。1927年他與康普頓一起分享诺贝尔物理学奖。卒於皮布爾斯郡卡洛普斯。.

新!!: 离子和查爾斯·湯姆森·里斯·威爾遜 · 查看更多 »

极紫外辐射

极紫外辐射(EUV)或高能紫外辐射是波长在124nm到10nm之间的电磁辐射,对应光子能量为10eV到124eV。自然界中,日冕会产生EUV。人工EUV可由等离子源和同步辐射源得到。主要用途包括光电子谱,对日EUV成像望远镜,光微影技術。 EUV是最易被空气吸收的谱段,因此其传输环境需高度真空。.

新!!: 离子和极紫外辐射 · 查看更多 »

恆星天文學年表

*本表為恆星天文學年表,以下譯自英文維基同名條目。.

新!!: 离子和恆星天文學年表 · 查看更多 »

李方訓

李方訓()是一位中国教育家和物理化学家,金陵大学和南京大学教授。李方訓的研究重点是离子在水溶液中的物理化学特性。 李方訓出生于一个书生之家,他的哥哥自己就创办过一所中学。1921年李方訓考入金陵大学,1925年他毕业于化学,在校教书三年后,李方訓于1928年赴美国西北大学深造,1930年获博士学位,此后返回金陵大学,担任理学院院长。日本入侵中国后李方訓随金陵大学内迁成都。1948年李方訓为他在离子特性方面所作出的贡献获得美国西北大学荣誉科学博士学位。1949年他加入中国民主同盟。1952年金陵大学和南京大学合并后李方訓出任南京大学副校长。1955年李方訓进入中国民主同盟中央委员会,并于同年当选中国科学院院士。.

新!!: 离子和李方訓 · 查看更多 »

核医学放射性药物列表

本表羅列出核医学放射性药物。一些放射性同位素¤在应用时采用的是离子形式或惰性形式,并没有依附于某种药物;这张列表之中也收录有此类的核医学放射性药物。在这张列表之中,每种放射性同位素自成一节,并配有一张列出那些采用这种放射性同位素的放射性药物的表格。小节排序是依据放射性同位素英文名称,按照字母顺序来编排的;同一元素的各个小节则按照原子序数(atomic mass number,原子质量数)来排序。.

新!!: 离子和核医学放射性药物列表 · 查看更多 »

核爆末世錄

《核爆末世錄》(COPPELION)是井上智德的SF漫畫作品。於《週刊Young Magazine》(講談社)2008年28號開始連載至2012年23號。其後轉至同出版社的《月刊Young Magazine》2012年6月號開始連載,至2016年3月號完結。共226話,26卷。台灣已由尖端出版出版11本單行本。 在2010年9月時,官方已決定把本作品動畫化,但受到於2011年3月發生的東北地方太平洋近海地震所引起的福島核事故的影響,有關動畫的訊息不再公佈。之後2013年7月發表同年秋天動畫化再開計劃,2013年10月2日起於BS11、AT-X、Animax等電視台播放。.

新!!: 离子和核爆末世錄 · 查看更多 »

樹是具有木質樹幹及樹枝的植物,可存活多年。一般将乔木称为树,主干,植株一,分枝距离地面较高,可以形成树冠。樹有很多種。 俗语中也有将比较大的灌木称为“树”的,如石榴树、茶树等。 樹在減少土地侵蝕及調整氣候上相當的重要,樹可以從空氣中吸收二氧化碳,將大量的碳儲存在組織內。樹木和森林是許多物種的棲息地。热带雨林是世界上生物多樣性最豐富的地方之一。樹可以提供遮陰及保護,木材可供建築用,木炭可以用來加熱及烹煮,果子可以用來作為食物。在世界各地的森林面積正在下降,目的是要增加可以農業使用的土地。由於樹的長壽及實用,在許多神話中也有樹的出現。 2015年有報告估計地球上共有約3萬億棵大樹,當中約1.39萬億棵在熱帶和亞熱帶,6100億棵在溫帶,7400億棵在圍繞北極的北方森林。與11000年前比較,人類活動已導致樹的數量減少一半。現時人類每年除去約150億棵樹,只植回約50億棵。.

新!!: 离子和树 · 查看更多 »

标准电极电势表

标准电极电势可以用来计算化学电池或原电池的电化学势或电极电势。 标准电极电位是以标准氢原子作为参比电极,即氢的标准电极电位值定为0,与氢标准电极比较,电位较高的为正,电位较低者为负。 本表中所给出的电极电势以以下條件測得:.

新!!: 离子和标准电极电势表 · 查看更多 »

标准氢电极

标准氢电极(英文:Standard Hydrogen Electrode,旧时用Normal Hydrogen Electrode,简称NHE,现已停用),简称SHE,是构成标准电极电势(E^0)基准的。在25℃时,它的大约为4.44±0.02V,但为了给所有电极反应的电动势设立一个基准值,在任意温度下氢电极的标准电极电势都定义为零。其他电极的电势都是相对于标准氢电极而确定的。 氢电极的氧化还原半反应式如下: 这个半反应是在镀有的处于标准状态(气体压强为1大气压、离子或分子的活度为1mol/L的溶液)的铂电极上发生的,相应的能斯特方程为: 或 其中:.

新!!: 离子和标准氢电极 · 查看更多 »

标准摩尔熵

标准摩尔熵(standard molar entropy)指在标准状况(298.15 K,105Pa)下,1摩尔纯物质的规定熵,通常用符號S°表示,單位是J/(mol·K)(或作J·mol−1·K−1,讀作「焦耳每千克开尔文」)。與标准摩尔生成焓不同,標準莫耳熵是絕對的。.

新!!: 离子和标准摩尔熵 · 查看更多 »

楊桃

楊桃(学名:Averrhoa carambola)又稱洋桃、五斂子,是酢漿草科洋桃屬的常綠灌木或小喬木。原産於熱帶印度、印尼和斯里蘭卡一帶熱帶亞洲。閩人稱為楊桃,因經大洋而來,廣東人包括香港,亦稱為洋桃。其果實大小約直徑6-8厘米,可作食用,以水果或當料理的食材来吃,如沙拉、西式鹹菜、蜜餞等,味道像梨。.

新!!: 离子和楊桃 · 查看更多 »

構造原理

構築理論(Aufbau principle,又称遞建原理或馬德隆規則)决定了原子、分子和离子中電子在各能級的排布。而構造原理認為全部電子是一個一個地依次進入電場(低能量軌域),待低能量軌域填滿後,才填入高能量軌域,並假設對電場而言它們是處於最穩定的情況中。假若違反構築理論,將導致電子組態的不穩定。它是在1920年前後由尼爾斯·波耳正式提出,主要是以量子力學描述。 洪特规则的特例:.

新!!: 离子和構造原理 · 查看更多 »

次氯酸鈉

次氯酸钠(sodium hypochlorite),化学式NaClO,是钠的次氯酸盐。次氯酸钠与二氧化碳反应产生的次氯酸是漂白剂的有效成分。.

新!!: 离子和次氯酸鈉 · 查看更多 »

欧姆定律

在電路學裏,欧姆定律(Ohm's law)表明,导电体两端的电压与通过导电体的电流成正比,以方程式表示, 其中,V是電壓(也可以標記為U,方程式表示為U.

新!!: 离子和欧姆定律 · 查看更多 »

欧内斯特·卢瑟福

欧内斯特·卢瑟福,第一代尼爾森的卢瑟福男爵,OM,FRS(Ernest Rutherford, 1st Baron Rutherford of Nelson,),新西兰物理学家,世界知名的原子核物理學之父。學術界公認他為繼法拉第之後最偉大的實驗物理學家。 卢瑟福首先提出放射性半衰期的概念,證實放射性涉及從一個元素到另一個元素的--。他又將放射性物質按照貫穿能力分類為α射線與β射線,並且證實前者就是氦離子。因為「对元素蜕变以及放射化学的研究」,他榮獲1908年諾貝爾化學獎。 卢瑟福領導團隊成功地證實在原子的中心有個原子核,創建了卢瑟福模型(行星模型)。他最先成功地在氮與α粒子的核反應裏將原子分裂,他又在同實驗裏發現了質子,並且為質子命名。第104号元素为纪念他而命名为“鑪”。.

新!!: 离子和欧内斯特·卢瑟福 · 查看更多 »

欧洲散裂中子源

欧洲散裂中子源(European Spallation Source,縮寫ESS)位于瑞典隆德,是一所正在建设中的跨领域科研机构。它将拥有迄今世界上通量最高的脉冲散裂中子源。来自欧洲的17个国家携手建设和运营这所机构。实验设施建在隆德,数据管理和软件中心坐落于丹麦的哥本哈根。 项目预期于2019年输送出散裂中子,2023年提供给用户开展实验,并于2025年建设完工。 欧洲散裂中子源将为科学家提供其它中子源机构所无法达到的最高中子通量,为进一步研究原子核结构提供了更加完善的工具。 它的工作原理是由直线共振加速器产生高能离子束,并打向钨靶,在靶上产生的脉冲散裂中子经由慢化器减速,再由中子导管引向光谱仪。散裂过程产生的中子束能够为开展材料科学、化学、医学、生物工程和地球物理学等科学实验提供帮助。.

新!!: 离子和欧洲散裂中子源 · 查看更多 »

氟化物

氟化物指含负价氟的有机或無機化合物。与其他卤素类似,氟生成单负阴离子(氟离子F−)。氟可与除He、Ne和Ar外的所有元素形成二元化合物。从致命毒素沙林到药品依法韦仑,从难溶的氟化钙到反应性很强的四氟化硫和三氟化氯都属于氟化物的范畴。.

新!!: 离子和氟化物 · 查看更多 »

氟化銫

氟化銫(CsF)是一種由氟和銫形成的離子化合物,它常以白色粉末或晶體存在,具有潮解性,而且極易溶於水,但不溶於甲醇。雖然氟化銫容易潮解,但是要把它復原也很容易,只要在真空中加熱兩個小時就可。Friestad, G. K.; Branchaud, B. P. in: Handbook of Reagents for Organic Synthesis: Acidic and Basic Reagents, (Reich, H. J.; Rigby, J. H. eds.), Wiley, New York, 1999.

新!!: 离子和氟化銫 · 查看更多 »

氟化氢

氟化氫(化學式:HF)是氫的氟化物,有強烈的腐蝕性,有剧毒。它是無色的氣體,在空氣中,只要超過3ppm就會產生刺激的味道。 氫氟酸是氟化氫的水溶液,可以透過皮膚黏膜、呼吸道及腸胃道吸收。若不慎暴露於氫氟酸,應立即用大量清水沖洗20至30分鐘,然後以葡萄酸鈣軟膏或藥水塗抹,并緊急送醫處理;若不小心誤飲,則要立即喝下大量的高鈣牛奶,然後緊急送醫處理。.

新!!: 离子和氟化氢 · 查看更多 »

氟化氢根

氟化氢根,是化学式为HF2−的离子。这个中心对称的三原子阴离子具有已知最强的氢键,F-H键键长为114pm,键能大于155 kJ mol−1。一个分子轨道图显示,三个原子形成了一个三中心四电子键。需要注意的是,氢、氟按1:2结合的化合物HF2是不存在的。根据等电子体假设,HeF2也是不存在的。而氟氦阴离子FHeO−的存在性是值得怀疑的。.

新!!: 离子和氟化氢根 · 查看更多 »

氟硼酸铜

氟硼酸铜是氟硼酸的二价铜盐,其中包含两个氟硼酸根离子(BF4−)。氟硼酸根的形状为四面体,类似于甲烷。中央的硼原子因为形成了四个共价键,因此具有一个负电荷。它的氧化态为+3。.

新!!: 离子和氟硼酸铜 · 查看更多 »

氢化物

氢化物是一类氢的化合物。严格意义上讲,氢化物只包含氢同金属相互结合的化合物,但由于概念的扩大,有时它也包含水、氨和碳氢化合物等物质。.

新!!: 离子和氢化物 · 查看更多 »

氢负离子

氢负离子(H−)是氢原子获得一个电子后产生的单价负离子,它是恒星(如太阳)大气的重要组分,作为能量0.75-4.0 eV的光子的主要吸收剂,也存在于地球电离层中。 氢负离子是很强的还原剂,它与氢气形成的半反应的标准电极电势为−2.25 V。它是除电子盐中的电子外最简单的负离子,含两个电子、一个质子。 形式上含氢负离子的化合物称为氢化物。 氢负离子 H−,由两个电子及一个质子组成,是已知除电子盐(Electride)外最小的阴离子。氢负离子不能在水溶液中存在,是已知的最强碱之一,这可通过以下生成反应看出: 负氢是非常强的还原剂: 已知自由氢负离子的有效半径为208pm。这个数据与其他数据比较时,特别是与He原子的93pm,H原子的50pm,Cl−的结晶半径181pm,H的共价半径30pm,及类盐氢化物中H−的半径(134-154pm)相比是有趣的。这个反常大的半径可以用H−的核电荷较小,电子彼此排斥和对核引力的屏蔽效应来解释。F.

新!!: 离子和氢负离子 · 查看更多 »

氢键

氫鍵是分子間作用力的一種,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是电负性较强的原子。氢键既可以是分子间氢键,也可以是分子内的。其键能最大约为200kJ/mol,一般为5-30kJ/mol,比一般的共价键、离子键和金属键键能要小,但强于静电引力。 氢键对于生物高分子具有尤其重要的意义,它是蛋白质和核酸的二、三和四级结构得以稳定的部分原因。.

新!!: 离子和氢键 · 查看更多 »

氢正离子

氢正离子(hydron)在化学中常指为原子氢的阳离子形式。由于氢原子只有一个电子,因此氢正离子实际上就是氢原子核。同位素氢-1(H)的正离子实际上就是质子。 在水溶液中,氢正离子往往以水合氢离子 H3O+ 的方式出现,而不是单独的质子。.

新!!: 离子和氢正离子 · 查看更多 »

氢氟酸

氢氟酸是氟化氢的水溶液,具有强烈的腐蚀性,纯氟化氢有时也称作无水氢氟酸。因为氢原子和氟原子间结合的能力相对较强,使得氢氟酸在水中不能完全电离,所以理论上低浓度的氢氟酸是一种弱酸,但是氢氟酸却能够溶解很多其他酸都不能溶解的二氧化硅玻璃。 反应方程式如下: 以上反应分两步进行: SiF4易溶于水,与HF继续反应: 正因如此,它必须储存在塑料容器中(放在聚四氟乙烯容器中最好)。如果要长期储存,不仅需要密封容器,而且容器应尽可能真空,因为氢氟酸能够溶解绝大多数无机氧化物。.

新!!: 离子和氢氟酸 · 查看更多 »

氢氧化钡

氫氧化鋇是一種鋇的化合物,分子式為Ba(OH)2,通常外觀為白色顆粒狀。.

新!!: 离子和氢氧化钡 · 查看更多 »

氢氧化铝

氢氧化铝(aluminium hydroxide),化學式Al(OH)3,是铝的氢氧化物。是一种碱,由于又显一定的酸性,所以又被俗称为“铝酸”(H3AlO3 或 HAlO2·H2O),但实际与碱反应时生成的是四羟基合铝酸盐。.

新!!: 离子和氢氧化铝 · 查看更多 »

氢氧根

氫氧離子,化學符號為OH-。其中氢和氧之间以共价键连接,整体带一单位的负电荷。常常與不同的元素組成氫氧化物。.

新!!: 离子和氢氧根 · 查看更多 »

氦合氢离子

氦合氢离子,化学式为HeH+,是一个带正电的离子。它首次发现于1925年,通过质子(或氢离子)和氦原子在气相中反应制得。它是已知最强的布朗斯特质子酸,质子亲和能为177.8 kJ/mol。这种离子也被称为氦氢分子离子。有人认为,这种物质可以存在于自然星际物质中。这是最简单的异核离子,可以与同核的氢分子离子H2+相比较。与H2+不同的是,它有一个永久的键偶极矩,使它更容易表现出光谱特征。.

新!!: 离子和氦合氢离子 · 查看更多 »

氧化铁

氧化铁,或称三氧化二铁,化学式Fe2O3,是铁锈和赤铁矿的主要成分。铁锈的主要成因是鐵金屬在杂质碳的存在下,與環境中的水份和氧氣反应,鐵金屬便會生鏽。.

新!!: 离子和氧化铁 · 查看更多 »

氧化态

氧化态(英文:Oxidation State)表示一个化合物中某个原子的氧化程度。形式氧化态是通过假设所有异核化学键都为100%离子键而算出来的。氧化态用阿拉伯数字表示,可以为正数、负数或是零。 氧化态的升高称为氧化,降低则称为还原。这两个过程涉及电子的形式转移,即总体上看,还原是获得电子的过程,而氧化是失去电子的过程。 IUPAC对氧化态的定义为: “氧化态:一种化学物质中某个原子氧化程度的量度。根据以下公认的规则可计算该原子的电荷:.

新!!: 离子和氧化态 · 查看更多 »

氧族元素

氧族元素是元素周期表上的ⅥA族元素(IUPAC新规定:16族)。 这一族包含氧(O)、硫(S)、硒(Se)、碲(Te)、钋(Po)、鉝(Lv)六种元素,其中釙、鉝为金属,碲為類金屬,氧、硫、硒是典型的非金属元素。在标准状况下,除氧单质为气体外,其他元素的单质均为固体。 在和金属元素化合时,氧、硫、硒、碲四种元素通常显-2氧化态;但当硫、硒、碲处于它们的酸根中时,最高氧化态可达+6。 一些过渡金属常以硫化物矿的形式存在于地壳中,如FeS2、ZnS等。.

新!!: 离子和氧族元素 · 查看更多 »

氨(Ammonia,或称氨氣、阿摩尼亞或無水氨,分子式为NH3)是无色气体,有强烈的刺激气味,极易溶于水。常温常压下,1單位体积水可溶解700倍体积的氨。氨對地球上的生物相當重要,是所有食物和肥料的重要成分。氨也是很多藥物和商業清潔用品直接或间接的組成部分,具有腐蝕性等危險性质。 由於氨有廣泛的用途,成為世界上產量最多的無機化合物之一,約八成用於製作化肥。2006年,氨的全球產量估計為1.465億吨,主要用於製造商業清潔產品。 氨可以提供孤電子對,所以也是路易斯鹼。.

新!!: 离子和氨 · 查看更多 »

氨络物

在配位化学中,氨的配合物被称为氨络物。 英文拼写上,氨络物(Ammine)双写了字母“m”以区别于有机物中的胺类物质(Amine)。 在化工方面,一些试剂中会含有氨络物离子。如,三价钴离子的盐中实际上常含有六氨合钴(hexaamminecobalt(III) (如三氯化六氨合钴,hexaamminecobalt(III) chloride,Cl3)。.

新!!: 离子和氨络物 · 查看更多 »

氨甲酰磷酸

氨甲酰磷酸(Carbamoyl phosphate)是一种在生物化学方面有重要意义的阴离子。在陆生生物体内,氨甲酰磷酸作为一个中间代谢物参与通过尿素循环进行的氮排泄以及嘧啶的生物合成。 此物质由二氧化碳、氨(衍生自谷氨酸)以及磷酸(来自腺苷三磷酸)经氨甲酰磷酸合成酶催化而合成,如下:.

新!!: 离子和氨甲酰磷酸 · 查看更多 »

氨氯地平

氨氯地平(Amlodipine或Amlodipine besylate)、著名商品名脈優(Norvasc、輝瑞公司商標名)為一種治療高血壓及冠狀動脈疾病的藥物。本品並不建議用於治療心臟衰竭,但可以配合其他藥物控制其他藥物無法控制的高血壓或心绞痛。本品可由口服給藥,效果可維持至少一天。 常見副作用包含水肿、疲勞、腹痛,以及恶心。嚴重副作用包含低血壓或心肌梗死。妊娠和哺乳期間用藥的安全性尚未明朗。老年人及肝臟有問題的患者用藥必須減量。本品屬於長效型钙离子通道阻滞剂,為類。本品一部分的機制是透過血管舒張運作。 氨氯地平最早於1986年取得專利,並於1990年開始上市。本品列名於世界卫生组织基本药物标准清单之中,為基礎公衛體系必備藥物之一。本品已有通用名药物上市。2015年,在開發中國家,每天劑量批發價約介於 0.003 至 0.066 美金之間。在美國,每月劑量的花費少於 25 美金。.

新!!: 离子和氨氯地平 · 查看更多 »

氨水

氨水(NH3 或者 NH4OH)常称为阿摩尼亚水,指氨气的水溶液,有强烈刺鼻气味,具弱碱性。 氨水中,氨气分子发生微弱水解生成氢氧根离子及铵根离子。“氢氧化铵”事实上并不存在,只是对氨水溶液中的离子的描述,并无法从溶液中分离出来。 氨的在水中的电离可以表示为: 反應平衡常數Kb.

新!!: 离子和氨水 · 查看更多 »

氩(Argon)是一种化学元素,在希臘語有「不活潑」的意思,由它的特性而來。Hiebert, E. N. Historical Remarks on the Discovery of Argon: The First Noble Gas.

新!!: 离子和氩 · 查看更多 »

氯化物

氯化物在无机化学领域里是指带负电的氯离子和其它元素带正电的阳离子结合而形成的盐类化合物。最常见的氯化物比如氯化钠(俗称食盐)。常见的氯化物列在右表。但有時金屬(如金)溶解在王水時會產生一種叫氯某酸(如氯金酸),一氧化氮和水。.

新!!: 离子和氯化物 · 查看更多 »

氯化钠

氯化钠(化学式:NaCl),是一种离子化合物。钠离子和氯离子的原子质量分别为22.99和35.45g/mol。也就是说100g的氯化钠中含有39.34 g的钠和 60.66 g的氯。氯化钠是海水中盐分的主要组成部分,它的存在也使得海水有其特有的咸味苦味。氯化钠也是细胞外液的主要盐类,0.9%的氯化鈉水溶液俗称为生理盐水。其可食用的形态是食盐的主要成分,多用于食物的调味和保存。 在工業中,主要用于制造氢氧化钠和氯以及应用于聚氯乙烯、塑料、木浆(紙漿)等許多其他產品的生产过程。由于它可以降低水的冰点,偶尔也用于解冻冰冻的路面。.

新!!: 离子和氯化钠 · 查看更多 »

氯的氧化物

氯和氧之间可以形成很多种化合物:.

新!!: 离子和氯的氧化物 · 查看更多 »

氯氧化鉲

氯氧化鉲是一種具有放射性的無機化合物,其化學式為CfOCl,是锎元素的氯氧化物。氯氧化鉲可由三氯化鉲的水合物在280-320℃的温度下发生水解制备。.

新!!: 离子和氯氧化鉲 · 查看更多 »

水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.

新!!: 离子和水 · 查看更多 »

水垢

水垢,又称水碱、水锈,是一种在水壶和锅炉以及保养不善的热水管線内壁中坚硬的,灰白色或黄白色的白垩沉积物。在老的水管的内表面和其他硬水蒸发的表面也可以发现类似的沉积物。.

新!!: 离子和水垢 · 查看更多 »

水合焓

水合焓(Hydration enthalpy),又称水合能(Hydration energy)、水合热,指一摩尔气态离子与水结合的热效应。水合焓是溶剂化热在溶剂为水时的特殊情况,它对自然过程和人工过程热力学模型的建立都有着重大作用。.

新!!: 离子和水合焓 · 查看更多 »

水合氢离子

水合氢离子也稱離子或(),指的是氢离子與水分子配位结合而生成的正離子。與水結合之氫正離子,通常的來源為可溶於水的酸,可溶於水的酸溶在水中會解離成為酸根離子與氫離子,由於水分子能提供孤對電子,所以氫離子便與水分子配位结合而生成水合氢离子。 水合氢离子通常用H3O+表示,为了简便,也常把H3O+写作H+。 命名时若作为前缀则称为𨦡基(oxonio-)。 2015年11月2日,使用水合氫離子來探測質子-電子質量比μ,布拉格查理大學物理研究團隊發現,在過去70億年內,Δμ/μ不大於10-7。.

新!!: 离子和水合氢离子 · 查看更多 »

水中毒

水中毒(Water intoxication)是一種因為人體攝取了過量水分而產生稀釋性低鈉症的中毒徵狀。 人體腎臟的持續最大利尿速度是每分鐘16毫升,一旦攝取了超過這個速度的水分,過剩的水分會使細胞膨胀,從而引起稀釋性低鈉血症。當飲用過量水分時,血液內的電解質因為被水分排出體外而降至低於安全水分的濃度,影響到腦部的運作,可能會致命,雖然致死的機會非常低。.

新!!: 离子和水中毒 · 查看更多 »

水的性質

水分子(化学式:H2O)是地球表面上最多的分子,除了以气体形式存在于大气中,其液体和固体形式占据了地面70-75%的组成部分。标准状况下,水分子在液体和气体之间保持动态平衡。室温下,它是无色,无味,透明的液体。作为通用溶剂之一,水可以溶解许多物质。因此,自然界极少有水的纯净物。.

新!!: 离子和水的性質 · 查看更多 »

水解

水解是一种化工单元过程,是物質與水反應,利用水形成新的物质的过程。通常是指鹽類的水解平衡。.

新!!: 离子和水解 · 查看更多 »

水電解

水電解是指以電流通過水以製造氫氣與氧氣。此電解的最低電流限制為1.23伏特。 這個工序可製作氫燃料和醫療氧氣,但由於成本問題,大部分人均以天然氣製作氫氣,並從空氣中提取氧氣。.

新!!: 离子和水電解 · 查看更多 »

水耕栽培

水耕栽培(英文:Hydroponics,简称为水培),是一種不使用土壤種植植物的技術,只透過水攜帶供植物生長所需的營養成分,或是兼使用支撐植物根部的材質,例如:珍珠岩、砾石、木質纖維、砂粒、泡棉。由於不需用土壤,故又稱無土栽培。 目前,西紅柿和茄子,諸如茄科蔬菜,菠菜和萵苣,如軟蔬菜,甜瓜和草莓果實特定的水果和蔬菜,如這樣的玫瑰,如花卉是已經在許多情況下被使用的方法。.

新!!: 离子和水耕栽培 · 查看更多 »

水楊酸

水楊酸(又名柳酸,源于拉丁文的“杨柳”,或鄰羥基苯甲酸、2-羟基苯甲酸)。水楊酸易溶於乙醇、乙醚、氯仿、苯、丙酮、松節油,不易溶于水,20°C时溶解度为每100毫升0.2克。存在於自然界的柳樹皮、白珠樹葉及甜樺中。水杨酸是一种有机酸,可由水杨苷代谢得到。它被广泛应用于有机合成中,也是一种植物激素。水杨酸具有与阿司匹林(乙酰水杨酸)相近的结构与药效,也可用于治疗痤疮。.

新!!: 离子和水楊酸 · 查看更多 »

水母

水母(Jellyfish,又名白鮓、)是無脊椎動物,屬於刺胞動物門中的一員,其中包括水母、海葵、珊瑚和水螅。全世界的海洋中有超過兩百種的水母,牠們分布於全球各地的水域裡,無論是熱帶的水域﹑溫帶的水域﹑淺水區﹑約百米深的海洋,甚至是淡水區都有牠們的蹤影。水母早於六億五千萬年前就已經存在。水母的形狀大小各不相同,最大的水母其觸手可以延伸約十米遠。 在分類上有些屬於水螅綱,有些屬於缽水母綱,其生活史中,幾乎所有種類都有兩型,即水螅型和水母型,並有兩型在有性生殖與無性生殖之間的世代交現象,而人們常見的水母則是有性的水母型。.

新!!: 离子和水母 · 查看更多 »

永不妥協

是一部2000年上映的美國荷里活大電影,故事內容改編自真實故事,內容關於艾琳·布羅克維齊(Erin Brockovich)與美國西岸電力公司巨擘太平洋瓦電公司(PG&E)的法律訴訟案件。此片由史蒂芬·索德柏執導,茱莉娅·罗伯茨領銜主演,她也因此片獲得奧斯卡最佳女主角奖。.

新!!: 离子和永不妥協 · 查看更多 »

氖(舊譯作氝,訛作氞)是一种化学元素,它的化学符号是Ne,它的原子序数是10,是一种无色的稀有气体,把它放电时呈橙红色。氖最常用在霓红灯之中。空气中含有少量氖。.

新!!: 离子和氖 · 查看更多 »

沃斯托克站

沃斯托克站(Станция Восток),是俄羅斯(前身蘇聯)的一個科學考察站,位於澳洲南極洲領地東南極冰蓋(Antarctic Ice Sheet)中心,南磁極附近。.

新!!: 离子和沃斯托克站 · 查看更多 »

波形蛋白

波形蛋白,或譯作波形纖維蛋白,是細胞裡中間絲這類蛋白質的其中一種,為人類結締組織細胞的特徵之一,於間葉細胞及其衍生細胞例如纖維母細胞中可見 。中間絲是真核生物細胞的重要結構性特徵。它們與微管及肌動蛋白微細絲,組成並且合稱為細胞骨架。.

新!!: 离子和波形蛋白 · 查看更多 »

泰坦降臨2

是由Respawn Entertainment開發並由美商藝電發行於Microsoft Windows、PlayStation 4和Xbox One的第一人稱射擊遊戲,為《泰坦天降》的續作,於2016年10月28日在全球發佈。單人模式的故事講述民兵傑克·庫珀(Jack Cooper)渴望駕駛戰鬥機械人「泰坦」,以對抗星際製造有限公司(Interstellar Manufacturing Corporation,IMC)及其僱傭軍。 遊戲在發行後因其單人模式的設計和實行與以前作為基礎的多人模式而受到稱讚,批評則主要集中於文字敘述和篇幅短小方面。儘管《泰坦降臨2》獲得頗為積極的評價,但它在商業上的表現卻跑輸市場。獎項方面,《泰坦降臨2》在2016年遊戲大獎中獲提名四項獎項,分別是年度遊戲、年度開發者、最佳多人遊戲和最佳動作遊戲,但最後無一得獎。而在同年的和金搖桿獎上則分別贏得最佳線上多人模式獎和評論家選擇獎。.

新!!: 离子和泰坦降臨2 · 查看更多 »

法拉第杯

法拉第杯是一種金屬製設計成杯狀,用來測量帶電粒子入射強度的一種真空偵測器。測得的電流可以用來判定入射電子或離子的數量。 法拉第杯是用在電學有卓著貢獻的麥可·法拉第的姓氏來命名。.

新!!: 离子和法拉第杯 · 查看更多 »

活性聚合反應

活性聚合反應在高分子化學中是一種鏈增長聚合反應,為了終止生長能力的聚合物鏈,而將它移除。缺少鏈終止反應和鏈轉移反應。鏈引發的速度比鏈擴展的速度來得大。就結果來說,聚合物鏈生長的速度比傳統的鏈的速度還來得恆定,且他們鏈的長度是相似的。(即它們具有非常低的多分散性指數)。活性聚合反應對於共聚物是一種常用的聚合方法,由於可以分階段進行合成,所以每個階段都有不同的單體存在。另外的優點是可以預定莫耳質量及控制末端基團。 活性聚合反應是理想的反應,因為它提供了精準度和控制大分子的合成。這一點很重要,因為從它們的微觀結構及分子量可以推測出許多聚合物的特性。因為分子量和分散度較少在非活性聚合反應中控制,所以這個方法是更有用的材料設計。 在許多情況下,活性聚合反應會被混淆或認為是控制聚合反應。雖然這兩個反應非常相似,但還是有明顯的區別來區分這兩個反應。活性聚合反應被定義為終止或鏈轉移被移除的聚合反應,可控制聚合反應終止的地方被抑制,但不被移除,藉此來引發聚合物的休眠狀態。然而,這區分仍然是一個有爭議的文獻。 主要的活性聚合反應技術是:.

新!!: 离子和活性聚合反應 · 查看更多 »

洗脱曲线

洗脱曲线,在化学的离子交换分离操作上,是指以流出液中交换离子的浓度为纵坐标,洗脱液体积为横坐标作图而得到的曲线。曲线与横坐标所围成的面积即为从交换柱上洗脱下来的该交换离子的总量。在实验中,我们先作洗脱曲线,进行式样的分离时,就可以根据洗脱曲线在规定的体积范围内,將该离子定量地收集以供测定。 Category:化学.

新!!: 离子和洗脱曲线 · 查看更多 »

洛伦兹力

在電動力學裏,勞侖茲力(Lorentz force)是運動於電磁場的帶電粒子所感受到的作用力。勞侖茲力是因荷蘭物理學者亨德里克·勞侖茲而命名。根據勞侖茲力定律,勞侖茲力可以用方程式,稱為勞侖茲力方程式,表達為 其中,\mathbf是勞侖茲力,q是帶電粒子的電荷量,\mathbf是電場强度,\mathbf是帶電粒子的速度,\mathbf是磁感应强度。 勞侖茲力定律是一個基本公理,不是從別的理論推導出來的定律,而是由多次重複完成的實驗所得到的同樣的結果。 感受到電場的作用,正電荷會朝著電場的方向加速;但是感受到磁場的作用,按照右手定則,正電荷會朝著垂直於速度\mathbf和磁場\mathbf的方向彎曲(詳細地說,假設右手的大拇指與\mathbf同向,食指與\mathbf同向,則中指會指向\mathbf的方向)。 勞侖茲力方程式的q\mathbf項目是電場力項目,q\mathbf \times \mathbf項目是磁場力項目。處於磁場內的載電導線感受到的磁場力就是這勞侖茲力的磁場力分量。 勞侖茲力方程式的积分形式为 其中,\mathbb是積分的體積,\rho是電荷密度,\mathbf是電流密度,\mathrm\tau是微小體元素。 勞侖茲力密度\mathbf是單位體積的勞侖茲力,表達為:.

新!!: 离子和洛伦兹力 · 查看更多 »

溴,是一個化學元素及一種鹵素;元素符號Br,原子序35。溴分子在標準溫度和壓力下是有揮發性的紅棕色液體,活性介於氯與碘之間。纯溴也称溴素。溴蒸氣具有腐蝕性,并且有毒。在2007年,約有556,000公噸的溴被製造。Jack F. Mills "Bromine" in Ullmann's Encyclopedia of Chemical Technology Wiley-VCH Verlag; Weinheim, 2002.

新!!: 离子和溴 · 查看更多 »

溴化物

溴化物是含有负价溴(Br−)的一类化合物。溴离子是溴原子得到一个电子后形成的离子。 溴离子可通过向试液中加入硝酸酸化的硝酸银溶液得到黄色溴化银沉淀的方法来鉴别。为了防止还原性阴离子 S2−、SO32− 和 S2O32− 干扰 Br− 的鉴定,可通过以下方法:.

新!!: 离子和溴化物 · 查看更多 »

溶解平衡

溶解平衡是一种关于化合物溶解的化学平衡。溶解平衡能作用于化合物的应用,并且可以用于预测特定情况下化合物的溶解度。 溶解的固体可以是共价化合物(有机化合物:糖和无机化合物:氯化氢)或离子化合物(如食盐,即氯化钠),它们溶解时的主要区别是离子化合物会在溶于水时电离为离子(部分共价化合物亦可,如醋酸、氯化氢、硝酸、醋酸铅等)。水是最常用的溶剂,但同样的原则适用于任何溶剂。 在环境科学中,溶解在水中的全部固体物质(无论是否达到饱和)的浓度被称为总溶解固体(TDS)。.

新!!: 离子和溶解平衡 · 查看更多 »

溶解性全表

下表列出各離子在水溶液溶解的情形,表中為「水」的即可溶于純水,出現「略溶」、「微溶」者即可溶,但容易沉澱,出現「熱水」、「沸水」、「HCl」、「HNO3」、「王水」、「難溶」或「不溶」即無法溶於純水,會發生沉澱。.

新!!: 离子和溶解性全表 · 查看更多 »

溶液

溶液(),又稱為單一相均勻混和物(),是由两种或以上純物质所组成的均相、稳定的分散体系;可能是固態、液態或是氣態甚至是其組合;可能導電也可能不導電;可能是固體、膠體或具流動性。溶液不是純物質,不具有一定的組成及一定的性質。但是組成溶液的粒子均勻,肉眼上無法分辨,也無法用傾析法分離組成物。儘管如此,所有的溶液仍可以在物理或化學方法的範圍內分離出內容物。 溶液形成,物質分散的過程稱為溶解。在溶解的過程中,有一物質的相沒有發生變化,稱此物質為溶劑;通常溶劑是體積最大的物質(或水);溶液中除了溶劑以外都稱為溶質。溶質在每單位溶劑內的多寡稱為浓度;溶質在穩定態下所能達到的最大濃度稱為溶解度;濃度低於溶解度的稱為未飽和溶液,濃度等於溶解度的稱為飽和溶液,濃度大於溶解度的稱為過飽和溶液。常見的溶液包括.

新!!: 离子和溶液 · 查看更多 »

溅射

--(sputtering),也称溅镀(sputter deposition/coating),是一种物理气相沉积技术,指固體靶"target"(或源"source")中的原子被高能量離子(通常來自等離子體)撞擊而離開固體進入氣體的物理过程。 溅射一般是在充有惰性气体的真空系统中,通过高压电场的作用,使得氩气电离,产生氩离子流,轰击靶阴极,被溅出的靶材料原子或分子沉淀积累在半导体晶片或玻璃、陶瓷上而形成薄膜。 溅射的优点是能在较低的温度下制备高熔点材料的薄膜,在制备合金和化合物薄膜的过程中保持原组成不变,所以在半导体器件和集成电路制造中已获得广泛的应用。 包括:.

新!!: 离子和溅射 · 查看更多 »

濃差電池

一个浓差電池是一个有限伽凡尼电池,有两个相同化合物但不同濃度的半電池,可使用能斯特方程计算出電池的電壓。一個濃差電池的电压在嘗試達到化学平衡會不斷下降,直至兩個半電池的濃度一樣為止。因为即使浓度差別是幾何級的,電壓仍低於60毫伏所以電池通常不被用作储存能量。 浓差電池利用热力学自由能的下降產生電能,而热力学自由能則存在於兩個半電池的濃度差別之中。當電流流過電池時,熱能亦可被轉化成電能。 浓差電池亦可用於化学分析。把一個已知浓度与一个未知濃度的溶液放到濃差電池內,再通過能斯特方程得知其濃度。 當金屬表面接觸到兩個不同濃度的溶液時,腐蚀便會發生。.

新!!: 离子和濃差電池 · 查看更多 »

激发态

发是在任意能级上能量的提升。在物理学中有对于这种能级有专门定义:往往与一个原子被激发至激发态有关。 在量子力学中,一个系统(例如一个原子,分子或原子核)的激发态是该系统中任意一个比基态具有更高能量的量子态(也就是说它具有比系统所能具有的最低能量要高的能量)。 一般来说,处于激发态的系统都是不稳定的,只能维持很短的时间:一个量子(例如一个光子或是一个声子)在发生自发辐射或受激辐射后,只在能量被提升的瞬间存在,随即返回具有较低能量的状态(一个较低的激发态或基态)。这种能量上的衰减一般被称为“衰变”(decay),它是“激发”的逆过程。 持续时间较长的激发态被叫做亚稳态(metastable)。同质异能素(nuclear isomers)与单线态氧(singlet oxygen)就是其中的两个例子。.

新!!: 离子和激发态 · 查看更多 »

激酶

在生物化学裡,激酶是一类从高能供体分子(如ATP)转移磷酸基团到特定靶分子(受質)的酶;这一过程谓之磷酸化。 一般而言,磷酸化的目的是“激活”或“能化”受質,增大它的能量,以使其可参加随后的自由能负变化的反应。所有的激酶都需要存在一个二价金属离子(如Mg2+或Mn2+),该离子起稳定供体分子高能键的作用,且为磷酸化的发生提供可能性。.

新!!: 离子和激酶 · 查看更多 »

木卫三

* 注意:在希臘神話方面,名稱叫做伽倪墨得斯。關於天文學方面,名稱叫蓋尼米德,也可以叫做甘尼米德。 木卫三又稱為「蓋尼米德」(Ganymede,),是围绕木星运转的一颗卫星,公转周期约为7天。按距离木星从近到远排序,木卫三在木星的所有卫星中排第七,在伽利略卫星中排第三。它与木卫二及木卫一保持着1:2:4的轨道共振关系。木卫三是太阳系中最大的卫星,其直径大于水星,质量约为水星的一半。 木卫三主要由硅酸盐岩石和冰体构成,星体分层明显,拥有一个富铁的、流动性的内核。人们推测在木卫三表面之下200公里处存在一个被夹在两层冰体之间的咸水海洋。木卫三表面存在两种主要地形。其中较暗的地区约占星体总面积的三分之一,其间密布着撞击坑,地质年龄估计有40亿年之久;其余地区较为明亮,纵横交错着大量的槽沟和山脊,其地质年龄较前者稍小。明亮地区的破碎地质构造的产生原因至今仍是一个谜,有可能是潮汐热所导致的构造活动造成的。 木卫三是太阳系中已知的唯一一颗拥有磁圈的卫星,其磁圈可能是由富铁的流动内核的对流运动所产生的。 其中的少量磁圈与木星的更为庞大的磁场相交迭,从而产生了向外扩散的场线。木卫三拥有一层稀薄的含氧大气层,其中含有原子氧,氧气和臭氧,同时原子氢也是大气的构成成分之一。而木卫三上是否拥有电离层还尚未确定。 一般认为木卫三是由伽利略·伽利莱在1610年首次观测到的。后来天文学家西门·马里乌斯建议以希腊神话中神的斟酒者、宙斯的爱人蓋尼米德为之命名。 从先驱者10号开始,多艘太空船曾近距离掠过木卫三。旅行者号太空船曾经精确地测量了该卫星的大小,伽利略号探测器则发现了它的地下海洋和磁场。此外,一个被称为“木衛二-木星系統任務”的全新的探测木星的冰卫星的计划,预计将会于2020年实施。.

新!!: 离子和木卫三 · 查看更多 »

木卫一

木衛一也稱為「埃歐」或「伊俄」(, 或是希臘 Ἰώ),是木星的四顆伽利略衛星中最靠近木星的一顆衛星,直徑為3,642公里,是太陽系第四大衛星。名字來自眾神之王宙斯的戀人之一:埃歐,祂是希拉的女祭司。 埃歐有400座的活火山,是太陽系中地質活動最活躍的天體。極端的地質活動是因為埃歐內部受到木星的牽引,造成潮汐摩擦產生的潮汐熱化所導致的結果。有些火山造成的硫磺和二氧化硫可以攀升到500公里(310英里)的高度。埃歐表面也有超過100座的山峰,是在矽酸鹽的地基上廣泛的壓縮和抬升,產生許多斑點,其中有些山峰比地球上的珠穆朗玛峰還要高。不同於大多數外太陽系的衛星(它們都有厚實的冰層包覆著),埃歐有著鐵或硫化鐵的熔融核心和以矽酸鹽為主的岩石層。埃歐表面大部分的平原都被硫磺和二氧化硫的霜覆蓋著。 埃歐的火山活動建構了其許多表面的特徵。其火山和熔岩流使廣大的表面產生各種變化並且造成各種不同的顏色採繪,有紅、黃、白、黑、和綠色,主要肇因於硫化物。為數眾多的廣闊熔岩流,有些長度達到500公里,也是表面的特徵。這些火山活動的過程提升了視覺對比,讓埃歐的表面好像是一個披薩。這些火山作用為埃歐稀薄的大氣提供了補湊的材料,也為木星巨大的磁層供應了材料。 埃歐在17和18世紀的天文學中扮演了一個重要的角色,它在1610年與其他的伽利略衛星一起被伽利略發現。這個發現促成了太陽系的哥白尼模型被接受,約翰·克卜勒發展出了行星運動定律,和奧勒·羅默首先測定光速。從地球來看,在19世紀後期和20世紀初,埃歐只是一個光點,直到我們有能力解釋它表面大規模的特徵,例如暗紅色的極區和明亮的赤道地區。在1979年,兩艘航海家太空船揭露埃歐是一個地質活躍的世界,有許多火山活動的特徵,大山和年輕的表面,沒有明顯的撞擊坑。伽利略號在1990年和2000年的早期多次執行接近和飛掠過埃歐的任務,得到了埃歐內部結構和表面組成的數據資料。這些太空船也揭露了衛星和木星的磁層之間的關係,和在埃歐圍繞的軌道上存在著輻射傳送帶,即伊俄环。在2007年的前幾個月,新視野號在前往冥王星的旅程中,於飛掠過埃歐時繼續進行探測。.

新!!: 离子和木卫一 · 查看更多 »

木质部

木質部(Xylem)是维管植物的运输组织,负责将根吸收的水分及溶解于水里面的离子往上运输,以供其他器官组织使用,另外还具有支持植物体的作用。.

新!!: 离子和木质部 · 查看更多 »

木星

|G1.

新!!: 离子和木星 · 查看更多 »

木星的磁層

木星的磁層是太陽風在木星的磁場創造出來的空腔(太陽風的低密度空間),在朝向太陽的方向上延伸超過700萬公里,背向太陽的方向上則幾乎達到土星的軌道。木星的磁層是太陽系的行星磁層中最強大,也是體積最大的連續結構體(僅次于日球)。比起地球的磁層,木星的磁層更寬且更扁平,而且強了數個數量級,它的磁矩大約是地球的18,000倍。早在1950年代末期,無線電波的觀測就首先推測出木星磁場的存在,先鋒10號在1973年更直接測量到木星的磁場。 木星內部的磁場是由液態金屬氫構成的外核電流產生的。木星衛星,埃歐上的火山噴發,產生大量的二氧化硫氣體進入太空,在木星的附近形成巨大的氣體環,木星的磁場迫使這個環以與木星自轉相同的方向與相同的角速度旋轉。這些環攜帶了與電漿在一起的磁場,在過程中它被拉成煎餅狀的結構,稱為磁盤。結果是,木星的磁層是由埃歐的電漿和它自身的旋轉決定了形狀,而不像地球的磁層形狀是由太陽風造成的。磁層中強大的電流在木星的極區形成永駐的極光和強烈多變的無線電波,圍繞著木星的極軸,這意味著木星可以被視為非常微弱的電波脈衝星。木星的極光幾乎包括所有的電磁波頻譜,像是紅外線、可見光、紫外線和軟X射線。 木星的磁層有捕獲粒子並使粒子加速的作用,產生類似地球的范艾倫輻射帶,但強大了千萬倍輻射帶。高能粒子與木星巨大的衛星表面的交互作用,對它們的物理和化學性質有顯著的影響。這些相同的粒子也影響木星稀薄的行星環內的粒子。輻射帶的存在很明顯地會危害探測器和在太空旅行的人類。.

新!!: 离子和木星的磁層 · 查看更多 »

未發現元素列表

未發現元素是一些在元素周期表內,未被列出的元素。目前所有已被發現的人造元素,在未發現之前也都可被稱之為未發現元素,基於目前化學理論漸趨完備,我們可以依此對未發現元素作一些基本性質上的推論。由於理論推測最大的原子質子數不得超過210,故下表所列之預測元素就僅至第九週期;而截至2015年12月為止,最新命名之元素為原子序118號的(Oganesson, Og),第七週期元素已经合成成功,并经IUPAC正式承認,下表不予以保留。 通常科學家用實驗室的所在地或名稱來命名新發現的元素,國際純粹與應用化學聯合會(IUPAC)亦會給予已發現之元素名稱正式的認可。但IUPAC為統一起見,對於所有未經核定但已發現或被預測的元素名稱一律依照IUPAC之命名法則制定暫定名稱,使用拉丁文數字頭以該元素之原子序來命名,如Biunseptium(Bus)便是由bi(二)- un(一)- sept(七)- ium(元素)四個字根組合而成,表示「元素217號」。詳細的法則請見IUPAC元素系統命名法。以下所列即為未發現元素的IUPAC暫定名稱。.

新!!: 离子和未發現元素列表 · 查看更多 »

朱诺号

朱諾號(Juno)是NASA环绕木星的太空探测器。它由洛克希德·马丁公司建造,和由NASA喷气推进实验室运营。作为新疆界計畫的一部分,太空探测器於2011年8月5日被從卡納維爾角空軍基地發射升空,并于2016年7月5日进入木星的极轨道。探测的持续时间为20个月Mission Jupiter, narrator Dan Riskin, Science Channel broadcast, 12:06 am July 6, 2016 (EDST, Verizon)。完成任务后,“朱諾號”将脱离轨道进入木星的大气层。 朱诺号已于東八區时间2016年7月5日到达木星。探測器將放置在繞極軌道,研究木星的組成、重力場、磁場、磁層和磁極。朱諾號也要搜索和尋找這顆行星是如何形成的線索,包括是否有固態核心、存在木星大氣層深處的水量、質量的分布、風速可以達到的深度。 朱诺号是进入木星轨道的第二个飛行器,而第一个为核动力的伽利略号探测器(1995-2003年)。與所有早期的飛行器與外部行星不同,朱诺号僅由太陽能陣列提供動力,太陽能陣列通常被用于环繞地球運行的衛星和在內太陽系進行工作的的衛星,而放射性同位素熱電機通常用於外太陽系和太陽系的任務。然而,對於朱諾号來說,已部署在行星探测器上的三個最大的太陽能陣列翼在穩定飛行器以及發電方面起著不可或缺的作用。.

新!!: 离子和朱诺号 · 查看更多 »

月球10号

月球10号(俄文:Луна10),是由苏联发射的人类第一个环绕月球的飞行器,同时也是人类第一个环绕其他天体的飞行器。月球10号携带的圆柱形月球卫星重254千克,直径约75厘米,高1.5米。卫星装备包括磁力计、伽马射线频谱仪、离子收集器压电测量仪、红外探测器、低能x射线质子测量设备等装置。.

新!!: 离子和月球10号 · 查看更多 »

惠蓀溫泉

惠蓀溫泉位於臺灣南投縣仁愛鄉發祥村,分布於北港溪和九仙溪交會的溪谷中。以地質分類屬於臺灣雪山山脈帶變質岩區的溫泉。.

新!!: 离子和惠蓀溫泉 · 查看更多 »

惯性静电约束

慣性靜電約束(Inertial Electrostatic Confinement,縮寫為IEC),一種核融合技術,以電場來加熱電漿,以誘發核融合。電場對帶電粒子(離子或電子)做功,可以將它加熱,直到發生核融合反應。這種裝置通常會採用球面設計,讓帶電粒子在其內部可以加速運動,但也有採用圓柱幾何設計。電場可能用線柵產生,或是由非中性的電漿雲來產生。.

新!!: 离子和惯性静电约束 · 查看更多 »

戊搭烯

戊搭烯化学式为C8H6,是一种二环反芳香性有机化合物,其分子式为C8H6,由二个五元环两两相并而成。戊搭烯的阴离子可以与两个锂离子作用而使其稳定性增强。.

新!!: 离子和戊搭烯 · 查看更多 »

戴利偵測器

戴利偵測器是一种由“門把”(doorknob)、閃爍器(荧光屏)與光電倍增管組成的真空離子偵測器。戴利偵測器的名稱是依其發明者諾曼·理查·戴利(Norman Richard Daly)的姓氏來命名。戴利偵測器通常用在質譜儀中,尤其是在需要非常高偵測靈敏度的儀器,如交叉分子束方法。.

新!!: 离子和戴利偵測器 · 查看更多 »

戴维·瓦恩兰

戴维·瓦恩兰(David Jeffrey Wineland,),美国物理学家,在科罗拉多州博尔德的美国国家标准与技术局(NIST)物理实验室與科羅拉多大學博爾德分校工作。他的工作主要在量子光學领域,特別是以下方面:.

新!!: 离子和戴维·瓦恩兰 · 查看更多 »

星尘号

星尘号(Stardust)是一个美国发射的行星际宇宙飞船,主要目的是探测维尔特二号彗星。首次完成从彗星采样返回任务。 1999年2月7日由NASA发射升空。返回舱于2006年1月15日在美国犹他州着陆。主探测器于2011年2月15日飞掠坦普尔一号彗星,3月24日停止工作。.

新!!: 离子和星尘号 · 查看更多 »

星际物质

星際物質(缩写为ISM)是存在於星系和恆星之間的物質和輻射場(ISRF)的总称。星際物質在天文物理的準確性中扮演著關鍵性的角色,因為它是介於星系和恆星之間的中間角色。恆星在星際物質密度較高的分子雲中形成,並且經由行星狀星雲、恆星風、和超新星獲得能量和物質的重新補充。換個角度看,恆星和星際物質的相互影響,可以協助測量星系中氣體物質的消耗率,也就是恆星形成的活耀期的時間。 以地球的標準,星際物質是極度稀薄的電漿、氣體、和塵埃,是離子、原子、分子、塵埃、電磁輻射、宇宙射線、和磁場的混合體。物質的成分是99%的氣體和1%的塵埃,充滿在星際間的空間。這種極端稀薄的混合物,典型的密度從每立方公尺只有數百到數億個質點,以太初核合成的結果來看氣體的成分,在數量上應該是90%氫和10%的氦,和其他微跡的「金屬」(以天文學說法,除氢和氦以外的元素都是金屬)。 2013年9月12日,美国航空航天局正式宣布,旅行者1号在2012年8月25日已经达到了星际物质(ISM),使其成为第一个这样做的人造物体。星际等离子体和灰尘会被研究直到任务结束的2025年。.

新!!: 离子和星际物质 · 查看更多 »

明矾

明礬(Potassium alum,化學式:KAl(SO4)2·12H2O),又稱鉀鋁礬、鋁明礬、鉀礬、白礬、生礬、羽涅或雲母礬,可以用作淨化水質、鞣製皮革、當作發粉或者代替硫酸鋁作凡拉明藍防染劑。明礬也可以添加在化妝品中當作除臭劑,或為刮鬍子時造成的小傷口當作止血劑。.

新!!: 离子和明矾 · 查看更多 »

海,是指佔地球表面积70.8%的咸水区域。海洋调节着地球的气候并在水循环、碳循环、氮循环中发挥了极其重要的作用。尽管人类从史前时期就开始在大海中旅行并探索未知的海域,但现代真正的海洋学研究始于19世纪70年代英国的挑战者号远征。海洋通常被划分为四个或五个大的部分和其余的小的部分,其中大洋的主流分划为:太平洋、大西洋、印度洋、北冰洋,而较小的分划---"海"则数量众多,如地中海。 由于大陆漂移,现今北半球几乎被陆地和海洋平分(约2:3的比例),而南半球多是海洋 (约1:4.7的比例)。Reddy, M.P.M..

新!!: 离子和海 · 查看更多 »

海砂屋

海砂屋,在台灣通俗的說法是指使用含鹽份的海砂摻入預拌混凝土所建造的房屋;精確的說法則是依據中華民國國家標準CNS 3090的定義,指的是「混凝土氯離子含量超過標準值(0.3kg/m3)」,2015-07-15,ltn,王定傳。海砂屋常見的問題有:牆壁及天花板混凝土剝落、鋼筋外露鏽蝕等,影響居住安全。在不動產交易過程中,混凝土氯離子含量數據會大幅影響估價結果。 除了建造用料不良的狀況之外,海風、工業蒸氣、工業粉塵、地下水滲入、以及使用含氯的房屋修補材料,也可能造成房屋的氯離子濃度升高。.

新!!: 离子和海砂屋 · 查看更多 »

海爾-博普彗星

海爾-博普彗星(英文:Comet Hale-Bopp,編號:C/1995 O1)是一顆長周期彗星,於1995年由兩位美國業餘天文學家共同發現,於1997年4月1日過近日點。 1995年7月23日,美國人艾倫·海爾和湯瑪斯·博普分別獨立發現該彗星,它是眾多由業餘天文學家發現的彗星當中,距離太陽最遠的(於木星軌道外被發現)。與哈雷彗星比較,若把兩顆彗星放在同一軌道上,海爾-博普彗星的亮度會超過前者千倍。 通常彗星在木星軌道外會比較不顯眼,但海爾-博普彗星則例外,該彗星過近日點時光度為-1.4等,縱使在城市中亦能以肉眼看見,是自1975年最亮的彗星,因此它成為了近二十年來最壯觀的彗星之一。根據哈勃太空望遠鏡的影像,海爾-博普彗星的直徑估計約40公里,屬於大型彗星。 海爾-博普彗星的出現也引起了一些恐慌。 直至2006年1月仍有日本天文愛好者在澳大利亞拍攝到該彗星的身影;經初步計算,海爾-博普彗星於二千多年後會回歸。.

新!!: 离子和海爾-博普彗星 · 查看更多 »

斐林试剂

斐林试剂(Fehling's reagent),也称斐林试液、菲林试剂,是一个常用的分析化学试剂。西元1849年由德國化學家赫爾曼·馮·斐林(Hermann von Fehling)制作出來。斐林試劑可以用來區分水溶性的醛及酮官能基,也可以用來測定單醣。.

新!!: 离子和斐林试剂 · 查看更多 »

新视野号

新視野號(New Horizons)又譯新地平線號,是美國國家航空暨太空總署旨在探索矮行星冥王星(在發射時間仍然被認為是一顆行星)和柯伊伯带的行星際機器人太空船任務,它是第一艘飛越和研究冥王星和它的衛星,凱倫、尼克斯和許德拉的太空探測器。NASA可能還會批准它飛越一個或两個古柏帶天體。任務概要是由美国西南研究院首席研究員所領導的一個團隊提出。 經過在發射地點的幾個延誤後,新視野號于2006年1月19日在卡纳维拉尔角發射,直接進入地球和太陽逃逸軌道,在最後關閉引擎時相對於地球的速度是16.26公里/秒,或58,536公里/小時(10.10英里/秒或36,373英里/小時)。因此,它是有史以來以最快的發射速度離開地球的人造物體。2015年7月14日新视野号飛越冥王星系统。随后,新視野號将繼續進入古柏帶。 經過與小行星132524 APL一個短暫的相遇後,新視野號飛往木星,在2007年2月28日使得其最接近木星的距離为。木星飛掠提供重力助推给新視野號的速度增加了。木星相遇也被用來作為新視野號科技性能的全面測試,傳回關於行星的大氣層,衛星和磁層的數據。在飛掠木星後,探測器繼續前往冥王星。在木星後的大部分旅行中,太空船是处于休眠模式度過,以保護太空船上的系統。在2006年9月,新視野號第一次拍攝了冥王星,其次是在2013年7月拍攝了區分冥王星和它的衛星冥卫一作為兩個單獨的對象的圖像。無線電信號从新視野號太空船旅行到地球需要用4個多小時。 格林威治時間2015年7月14日上午11時49分,新視野號接近冥王星12,500公里,為旅程中最接近冥王星的位置。 它成為了第一艘探索冥王星的航天器。 協調世界時7月15日00時52分37秒(美國東部時間7月14日20時52分37秒),美國國家航空暨太空總署收到了新視野號傳來的訊息,證實了探測器在預定的時間成功地飛越了冥王星,探測器各方面的運作一切正常,和先前預料的一樣。.

新!!: 离子和新视野号 · 查看更多 »

方铁矿

方铁矿 (Fe1-xO)是一种以氧化亚铁为主的矿物,常见于陨石和天然铁矿中。 其色泽灰暗,不透明,常带绿色金属光泽。 方铁矿为立方晶体,莫氏硬度为5-5.5,比重大约为5.7到6.0左右。方铁矿是一种常见的非整比化合物,其化学式中x的范围在0.04-0.12之间。 方铁矿的英文名称(wüstite)是为了纪念德国金属学家,矿物學家,基尔大学教授,马克斯·普朗克铁研究所公司首任所长 ,因其首次合成该矿物。 方铁矿的特征产地位于德国巴登-符腾堡州斯图加特附近。除此之外,在格陵兰的迪斯科岛和印度的贾里亚也有发现。在一些金伯利岩管的钻石包体以及深海锰结核中也可找到方铁矿。方铁矿的通常出现于强还原性的环境中http://rruff.info/doclib/hom/wustite.pdf。.

新!!: 离子和方铁矿 · 查看更多 »

无机化合物

无机化合物即无机物,一般指不含碳元素的化合物,如水、食鹽、硫酸等。但一些簡單的含有碳元素化合物如一氧化碳、二氧化碳、碳酸、碳酸鹽、氰化物和碳化物等,由於它們的組成和性質與其他无机化合物相似,因此也作為无机化合物來研究。絕大多數的无机化合物可以歸入氧化物、酸、鹼、鹽四大類。.

新!!: 离子和无机化合物 · 查看更多 »

无机化合物列表

无机化合物列表中,无机化合物名称遵循IUPAC無機化合物中文命名法。按照阳离子,带正电元素或基团的拼音顺序排列成表。.

新!!: 离子和无机化合物列表 · 查看更多 »

无机化学

无机化学是研究无机化合物的化学分支学科。通常,无机化合物与有机化合物相对,指不含C-H键的化合物,因此一氧化碳、二氧化碳、二硫化碳、氰化物、硫氰酸盐、碳酸及碳酸盐等都属于无机化学研究的范畴。但这二者界限并不严格,之间有较大的重叠,有机金属化学即是一例。.

新!!: 离子和无机化学 · 查看更多 »

无机化学命名法

无机化学命名法是命名无机化合物的标准化方法,其遵循IUPAC命名法(Nomenclature of Inorganic Chemistry,2005)和《无机化学命名原则(1980)》(中国化学会)两部现行命名法。对于还未统一中文命名的名称,以IUPAC英文命名标注,后加括号内有建议使用的中文名称。.

新!!: 离子和无机化学命名法 · 查看更多 »

摩尔 (单位)

莫耳(拉丁文「一團」),是物质的量的国际单位,符号为mol(mole)。1莫耳是指化学物质所含基本微粒个数等于12克的碳-12(_6^\!\mbox)所含原子个数,即阿伏伽德罗常数。使用莫耳时,应指明基本微粒,可以是分子、原子、离子、电子或其他基本微粒,也可以是基本微粒的特定组合体。1莫耳物质中所含基本微粒的个数等于阿伏伽德罗常数,符号为NA,数值约是6.02214129×1023,常取6.02×1023。摩尔是國際單位制的七個基本單位之一,在量綱分析中會用符號n表示。 摩尔可以用于表达原子、电子和离子等微观粒子的数量。在化学反应的定量计算中,常使用摩尔。例如氢气与氧气反应生成水,可以用化学方程式表达为:2+→2。其意义为2摩尔氢气与1摩尔氧气反应生成2摩尔水。溶液的浓度也常用物质的量浓度,即摩尔浓度表示,例如1mol/L的氯化钠溶液,表示每升该溶液中含有1摩尔氯化钠。 摩尔质量定义为一摩尔某物质的质量,以克计量时在数值上等于该物质的相对分子质量(或相对原子质量)。例如水分子的相对分子质量约为18.015,一摩尔水的质量为18.015克。 “克-分子”(gram-molecule)曾被用来表达本质上相同的概念,1克-分子的純物質表示其質量等於該物質數量為阿伏加德罗常数時的質量。而“克-原子”(gram-atom)则用来表示一个相关但不同的概念,1克-原子的元素表示其質量等於該原子的數量為阿伏加德罗常数時的質量。例如1摩尔是1“克-分子”,是由1“克-原子”及2“克-原子”組成。。 一些科学家以1摩尔物质所含微粒数——亞佛加厥数确定了一个纪念日——摩尔日。摩尔日纪念活动在每年的10月23日举行,也有一些纪念活动在6月2日举行。.

新!!: 离子和摩尔 (单位) · 查看更多 »

散射长度

量子力学中的散射长度是用于描述低能散射的一个物理量,其定义为: 其中的 a 为散射长度,k 为波数,\delta(k) 为散射后发出的球面波的相位差。 在理论中,若一中子被单一孤立的离子散射,其散射长度 a 被定义为使得中子的总散射截面 \sigma 等于 4\pi a^2(由玻恩近似给出)的长度。在速度较低的情形下,散射是各向同性的,散射截面与粒子的能量无关。然而,在电子的散射中,这一结果只适用于1eV以下的情形;对于能量更高的电子,散射截面与能量的大小相关(即)。.

新!!: 离子和散射长度 · 查看更多 »

拜耳-维立格氧化反应

拜耳-维立格氧化重排反应(Baeyer-Villiger氧化重排反应)是酮在过氧化物(如过氧化氢、过氧化羧酸等)氧化下,在羰基和一个邻近烃基之间引入一个氧原子,得到相应的酯的化学反应。醛可以进行同样的反应,氧化的产物是相应的羧酸。 前示反应使用间氯过氧化苯甲酸作为氧化剂,其他常用的氧化剂还包括过氧化乙酸、过氧化三氟乙酸等。为避免生成的酯在酸性条件下发生酯交换反应,常在反应物中加入磷酸氢二钠,以保持溶液接近中性。 环酮发生反应得到内酯。.

新!!: 离子和拜耳-维立格氧化反应 · 查看更多 »

晶体

晶体是原子、离子或分子按照一定的周期性,在结晶过程中,在空间排列形成具有一定规则的几何外形的固体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。 晶体内部原子或分子排列的三维空间周期性结构,是晶体最基本的、最本质的特征,并使晶体具有下面的通性:.

新!!: 离子和晶体 · 查看更多 »

晶体学

晶体学,又称结晶学,是一门以确定固体中原子(或离子)排列方式为目的的实验科学。“晶体学”(crystallography)一词原先仅指对各种晶体性质的研究,但随着人们对物质在微观尺度上认识的加深,其词义已大大扩充。 在X射线衍射晶体学提出之前(介绍见下文),人们对晶体的研究主要集中于晶体的点阵几何上,包括测量各晶面相对于理论参考坐标系(晶体坐标轴)的夹角,以及建立晶体点阵的对称关系等等。夹角的测量用测角仪完成。每个晶面在三维空间中的位置用它们在一个立体球面坐标“网”上的投影点(一般称为投影“极”)表示。坐标网的又根据不同取法分为Wolff网和Lambert网。将一个晶体的各个晶面对应的极点在坐标网上画出,并标出晶面相应的密勒指数,最终便可确定晶体的对称性关系。 现代晶体学研究主要通过分析晶体对各种电磁波束或粒子束的衍射图像来进行。辐射源除了最常用的X射线外,还包括电子束和中子束(根据德布罗意理论,这些基本粒子都具有波动性,参见条目波粒二象性),可以表现出和光波类似的性质)。晶体学家直接用辐射源的名字命名各种标定方法,如X射线衍射(常用英文缩写XRD),中子衍射和电子衍射。 以上三种辐射源与晶体学试样的作用方式有很大区别:X射线主要被原子(或离子)的最外层价电子所散射;电子由于带负电,会与包括原子核和核外电子在内的整个空间电荷分布场发生相互作用;中子不带电且质量较大,主要在与原子核发生碰撞时(碰撞的概率非常低)受到来自原子核的作用力;与此同时,由于中子自身的自旋磁矩不为零,它还会与原子(或离子)磁场相互作用。这三种不同的作用方式适应晶体学中不同方面的研究。.

新!!: 离子和晶体学 · 查看更多 »

晶体场理论

晶体场理论(Crystal field theory,首字母縮略字:CFT)是配位化学理论的一种,1929-1935年由汉斯·贝特和約翰·凡扶累克提出。它以过渡金属配合物的电子层结构为出发点,可以很好地解释配合物的磁性、颜色、立体构型、热力学性质和配合物畸变等主要问题,但不能合理解释配体的光谱化学序列和一些金属有机配合物的形成。 晶体场理论将配位键看成纯离子键,着眼于中心原子的d轨道在各种对称性配位体静电场中的变化,简明直观,结合实验数据容易进行定量或半定量的计算。但在实际配合物中,纯离子键或纯共价键都很罕见,目前配合物的结构理论兼有晶体场理论和分子轨道理论的精髓,称之为配位场理论。.

新!!: 离子和晶体场理论 · 查看更多 »

晶体结构

晶体结构是指晶体的周期性结构。固体材料可以分为晶体、准晶体和非晶体三大类,其中,晶体内部原子的排列具有周期性,外部具有规则外形,比如钻石(图)。 Hauy最早提出晶体的規則外型是因为晶體内部原子分子呈規則排列,比如鑽石所具有的完美外形和優良光学性質就可以歸結為其内部原子的規則排列。20世紀初期,勞厄發明X射線衍射法,從此人們可以使用X射线來研究晶體内部的原子排列,其研究结果進而證實了Hauy的判斷。 晶體内部原子排列的具体形式一般稱之为晶格,不同的晶体内部原子排列稱為具有不同的晶格結構。各種晶格結構又可以歸納為七大晶系,各種晶系分别与十四種空間格(稱作布拉维晶格)相對應,在宏观上又可以归结为三十二种空间点群,在微观上可进一步细分为230个空间群。 对于晶体结构的研究是研究固体材料的宏观性质及各种微观过程的基础。專門研究分子結晶結構的科學稱為晶體學,經常應用在化學、生物化學與分子生物學。.

新!!: 离子和晶体结构 · 查看更多 »

晶体生长

晶体生长(英语:Crystal growth)是物质结晶过程中,继成核之后进行的一个重要阶段。宏观上,晶体生长过程是晶体——环境相(蒸气、溶液、熔体) 界面向环境相中不断推进的过程,即晶核超过临界大小之后,由包含组成晶体单元的母相从低有序相向高有序晶相的转变。晶体被定义为原子,分子或离子以有序的重复模式排列,晶格在所有三个空间维度上延伸。 因此,晶体生长不同于液滴生长,因为在生长过程中,分子或离子必须落入正确的晶格位置,以便有序的晶体生长。.

新!!: 离子和晶体生长 · 查看更多 »

晶格空位

在晶體學中, 一個晶格空位是晶體的點缺陷之一。 P. Ehrhart, Properties and interactions of atomic defects in metals and alloys, volume 25 of Landolt-Börnstein, New Series III, chapter 2, page 88, Springer, Berlin, 1991, 當一個晶格格位上缺失了一個粒子(原子,離子甚至分子),這種缺陷既為晶格空位。除了被稱為晶質的缺陷的晶體本質上具有的不完整性外,晶格空位有時是由於溫度改變或受到輻射等外部因素造成的。 晶格空位自然存在於所有晶體。對於每一個小於該物質熔點的溫度,都存在一個晶格空位平衡濃度(具有空位的格位和其他格位的比率)。一些金屬在熔點溫度具有大約為0.1%的平衡濃度。.

新!!: 离子和晶格空位 · 查看更多 »

晶格能

離子化合物的晶格能是指在標準條件下,它在气态的状态下,成分離子(阴离子和阳离子)被分开時所需要的能量。离子半径越小,晶格能越大。而离子的电荷越大,晶格能就越大。晶格能通常不能直接测出,但可通过玻恩-哈伯循环计算出。 Category:能量 Category:固体化学.

新!!: 离子和晶格能 · 查看更多 »

𨥙

(Hydrazinium)是一種陽離子,化學式為,是肼(聯氨分子)質子化後的產物,但在某些情況下,肼(Hydrazine)也可以代表此種離子,例如硫酸肼。而四級氮的肼衍生物也可稱為𨥙。𨥙可以利用肼在強酸下質子化得到。部分𨥙的鹽是化學中的常用試劑,通常用於某些工業製程。兩者均為水溶性無色鹽Jean-Pierre Schirmann, Paul Bourdauducq "Hydrazine" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002.

新!!: 离子和𨥙 · 查看更多 »

𨦡鹽

也称为“氧鎓盐”,是指所有含三价氧的化合物,对应的正离子称为“𨦡正离子”。最简单的𨦡离子是水合氢离子(H3O+)。其他常见的𨦡盐还有有机化学中羰基、醚和醇的质子化或烷基化产物,即R-C.

新!!: 离子和𨦡鹽 · 查看更多 »

𨧀

𨧀(Dubnium)是一種化學元素,符號為Db,原子序為105。其名Dubnium源自位於俄羅斯的小鎮杜布納(Dubna),也是𨧀最早得到合成的地方。𨧀是一種人工合成元素,不出現於在自然界中,並具有放射性。其最穩定的已知同位素(𨧀-268)的半衰期約為28小時,这也是102号元素之后最长寿的同位素。 在元素週期表中,𨧀是一個d區元素,同時屬於錒系後元素。它位於第7週期和5族元素。化學實驗証實了𨧀的特性為鉭的較重的5族同系物。人們對𨧀的化學特性所知不多。 在1960年代,蘇聯和美國加州的實驗室製造了微量的𨧀元素。兩國未能確定彼此的發現次序,因此雙方科學家對其命名發生了爭論,直到1997年國際純粹與應用化學聯合會(IUPAC)確認了蘇聯的實驗室最早合成該元素,並為雙方妥協而取名為Dubnium。.

新!!: 离子和𨧀 · 查看更多 »

0號元素

0號元素(Neutronium),有時又被稱為中子元素(Neutrium),是指原子中僅含中子,不含質子的一種元素,或純粹只由中子組成的物質。1926年物理學家安德利亞·馮·安德羅波夫發明了這個詞,那時甚至還沒有中子的概念。安得羅波夫將0號元素放在了元素周期表最開始,以代表其質子數比氫還要少。 然而,該術語的含義隨著時間發生了改變,從20世紀後半葉起,這個詞被用來指一種密度極大的物質,最早被用於科幻小说中,代表一種密度極大的奇特元素,直到在中子被發現後,0號元素已主要指代中子星内部存在的一種高密度、無質子的元素,目前多以多中子核物質來表示許多中子聚集在一起所形成的核素,這種物質目前僅存在於中子星内部。直到現在,這個詞的使用尚有爭議。.

新!!: 离子和0號元素 · 查看更多 »

18-冠-6

18-冠-6,系统命名1,4,7,10,13,16-六氧杂环十八烷,是一个冠醚。.

新!!: 离子和18-冠-6 · 查看更多 »

重定向到这里:

根離子正离子正離子简单阳离子阳离子阴离子離子陽離子

传出传入
嘿!我们在Facebook上吧! »