徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

溶酶体

指数 溶酶体

溶酶体(lysosome),又稱--,存在於細胞(多存在于动物细胞中,植物细胞内不常见)中,是單層膜的囊狀胞器,內部含有數十種從高基氏體送來的水解酶,這些酶在弱酸性環境之下(通常為PH值5.0)能有效分解生命所需的有機物質。.

76 关系: 动力蛋白埃博拉出血热卡米洛·高尔基吞噬作用吞噬体吞噬細胞套體素妊娠巨噬细胞中性紅主要组织相容性复合体帕金森氏症三磷酸腺苷合酶人類白細胞抗原人類鐵代謝休克嗜天青顆粒催化三联体内质网凝集素免疫系统內膜系統先天免疫系統克里斯汀·德·迪夫灵菌红素秀麗隱桿線蟲精液細胞器細胞質纤毛虫细胞细胞区室细胞生物学细胞死亡真核生物甲状腺甲状腺激素白三烯B4鎘中毒非甾体抗炎药驱动蛋白高尔基体髓过氧化物酶足細胞连接蛋白过氧化物酶体胞內體胞饮作用胱胺酸症胱抑素C...胆红素阿托品肝細胞肺泡巨噬細胞脂褐素脂酶自体荧光自噬自噬体腦硫脂酸性磷酸酶離心機蛋白质蛋白酶体蛋白酶解I-細胞疾病NefPH值Tay-sachs抗菌肽波形蛋白法布瑞氏症泛素消化作用消化酶浆细胞 扩展索引 (26 更多) »

动力蛋白

动力蛋白(Dynein)是一种马达蛋白(或分子马达),可将ATP高能磷酸键的化学能转化为机械能。动力蛋白依靠在微管上向负端的“行走”运输细胞内的货物。细胞骨架微管的负端指向细胞中心,因此动力蛋白也被称为负端指向的分子马达。,而移动向微管正端的驱动蛋白则被称为是正端指向的分子马达,动力蛋白可以朝微管两极运动.

新!!: 溶酶体和动力蛋白 · 查看更多 »

埃博拉出血热

伊波拉出血熱(又名:伊波拉病毒病;通稱:伊波拉)是一種由伊波拉病毒引起,多出現於靈長動物身上之人畜共患傳染病。罹患此病的人會在2天至3週內陸續出現發燒、頭痛、肌肉疼痛、嘔吐、腹瀉及出疹等症狀。病情後會進一步惡化為肝、腎衰竭。步入此階段,病人或會出現體內、外出血的現象,並可能在首個症狀出現後的6至16天内,因血容量過低或多重器官衰竭而死亡。 伊波拉患者多因接觸了帶有病毒的體液(包括血液)、器官,或間接觸摸到最近受污染之器具而染病。目前尚未有足夠證據,顯示病毒能經空氣微粒在靈長動物間傳播。患者的精液或母乳在其康復後的數週至數月内,仍可能載有病毒。果蝠被認為是伊波拉病原體的,能在自身不受影響的狀況下將之散播。疫症的控制在乎醫療界以及一定程度的社區配合。前線醫學措施包括了快速的病例偵測、實驗室診斷、、正確看護、謹慎處理醫療廢物及妥善安葬或火化屍體。減少接觸受感染的個體為社區防疫的一大重點。在近距離接觸患者時,應穿著完整的連身型防護衣物,並勤加洗手。叢林肉易沾染病毒,故需在徹底煮熟後方能進食;在處理這類產物時,也需佩戴醫用手套。 盡可能撇除其他諸如瘧疾、霍亂、腦膜炎、其他病毒性出血熱等可造成近似症狀的疾病,為診斷伊波拉出血熱的首要工作。血液樣本中之抗病毒體、病毒的核糖核酸或病毒本身均為鑑定的指標。目前尚未有針對性的治療方案,各方亦正致力研發安全、可供廣泛使用的疫苗及藥物。病人大多接受或靜脈注射等,可提高存活率的舒緩性療法,以降低疾病所帶來的傷害及併發症的風險。深切治療則能進一步應付器官衰竭的問題。根據一直以來的疫情,此出血熱可造成高達25-90%(平均約五成)的綜合臨床致死率。 此病在1976年首次出現於當時的蘇丹及薩伊,並常於非洲撒哈拉以南的地區造成間歇性爆發。直至2013年,世界衛生組織一共公佈了1,716宗確診個案,合計24次爆發。最嚴重的一次流行,為肆虐西非的2013-16年疫症;是次爆發最終感染了人,奪取了人之性命。.

新!!: 溶酶体和埃博拉出血热 · 查看更多 »

卡米洛·高尔基

卡米洛·高尔基(Camillo Golgi,),是一位義大利醫師與科學家,高尔基体的發現者,出生於布雷西亞。1906年因為神經系統的研究,而與西班牙的桑地牙哥·拉蒙卡哈共同獲得諾貝爾生理學或醫學獎。 於1898年發現高尔基体,主要功能為處理细胞膜、溶酶体或内体與细胞生產的蛋白质,將它們分到不同的小泡,是细胞的中心傳送系统。.

新!!: 溶酶体和卡米洛·高尔基 · 查看更多 »

吞噬作用

吞噬作用(phagocytosis,来自古希腊语φαγεῖν)亦称吞食、噬菌作用,是吞噬细胞和原生动物通过细胞膜从周围环境摄取固体颗粒,并在其内部形成吞噬体的过程。 吞噬作用是细胞内吞作用的特殊形式,是将周围环境中的固体颗粒例如细菌等通过小泡的形式吞食进入细胞内部,这点与吞饮外部液体的胞饮作用等内吞作用的其他形式相区分。对于一些细胞而言,吞噬作用是为了获取营养物质,而在免疫系统中,这一细胞机制更多地用于清理病原体和细胞碎片等。细菌、死亡的组织细胞以及矿物质微粒都可以成为被吞噬的对象。 对于单细胞生物而言,吞噬作用与进食活动是同源的,而对于除丝盘虫以外的多细胞生物而言,这一机制更多地服务于细胞碎片与病原体的清理,而非为细胞活动提供能量。.

新!!: 溶酶体和吞噬作用 · 查看更多 »

吞噬体

吞噬体也称为吞噬小体,是一种在胞吞作用中在被吞噬物质周围形成的囊泡,这种囊泡由细胞膜向细胞内凹陷产生。吞噬体是一种在免疫过程中常见的细胞结构,入侵机体的病原微生物可在吞噬体中被杀灭、消化。在成熟过程中吞噬体需与溶酶体融合,生成兼具隔离与分解异己物质能力的吞噬溶酶体,这种经两种囊泡融合而成的新囊泡只曾在动物细胞中发现。.

新!!: 溶酶体和吞噬体 · 查看更多 »

吞噬細胞

吞噬細胞为一类防衛细胞,它們透過吞噬细菌、坏死細胞和凋亡细胞等有害物質来保衛有機體。其原文「Phagocytes」的前半部来自希腊语「phagein」(意为「食用、吞食」),后半部「-cyte」为细胞(cell)的词缀,来自希腊语「kutos」(意为「中空容器」)。吞噬细胞在对抗感染以及後續的免疫过程中不可或缺,它在整个动物界中都相当重要,在脊椎动物体内特別发达。一公升的人类血液约含六十亿个吞噬细胞。1882年,埃黎耶·埃黎赫·梅契尼可夫在研究海星幼虫时发现了吞噬细胞, retrieved on 2008-11-28.

新!!: 溶酶体和吞噬細胞 · 查看更多 »

套體素

套體素(coatomer)為一種蛋白質複合物。這種蛋白質會被覆在囊泡的外圍。目前已知的共有三種:.

新!!: 溶酶体和套體素 · 查看更多 »

妊娠

妊娠(pregnancy),又稱懷孕,是指在哺乳類雌性體內孕育成長的過程,而在哺乳動物中研究得最詳細的是人類的妊娠。人類的妊娠約40週,從受精排卵算起則為38週;妊娠始於末次經期,經歷40週(10個月)的孕期,分娩後即結束。受精後的前8週發育型態稱為胚胎,分娩後則稱為胎兒。妊娠早期的症狀包含:無月經來潮、乳房柔軟度增加、噁心嘔吐、飢餓與頻尿。多個胚胎的妊娠稱做,如常見的雙胞胎。性交或會導致妊娠,而妊娠可由妊娠試驗確診。 妊娠通常可分為3個時期。第一期定義為受精當週起算第1-12週。受精後所形成的受精卵,會經輸卵管向下移動,接觸子宮內層著床,並開始發育成胎兒與胎盤。第一期所承受流產(胚胎或胎兒自然死亡)的風險為三期之最 。第二期定義為第13-28週。在第二期中期,可能會感受到胎兒活動。第28週時,如果接受高品質醫療照護,大於90%的胎兒可在子宮外。第三期定義為第29-40週。懷孕初期因初著床,流產機率較高;懷孕中期開始,胎兒較易以儀器監測;懷孕後期,胎兒開始具備母體外存活能力,也因如此,法律和習俗多視懷孕後期的胎兒為個人。 良善的孕期保健有助提升懷孕期身體狀況,包含多攝取葉酸、避免使用毒品與酒精、規律運動、血液檢查與規律體格檢查。因妊娠而造成的包含、妊娠糖尿病、缺鐵性貧血與妊娠劇吐等等。正常孕期約為37-41週,以37週作為早產或足月的分界,在37-38週出生稱為早期足月產、足月產為39-40週、過月為41週;41週以上稱為過期妊娠。嬰兒在20-37週之間出生,稱為早產,可能會造成如腦麻痺等健康風險。如果在39週以前分娩,除非有其他醫療狀況,否則不建議進行人工引產或剖腹產。 2013年全球約有2.13億次妊娠事件發生,其中1.9億次在開發中國家,2,300萬次妊娠則發生在已開發國家。在15-44歲年齡層中,每千名女性就有133名妊娠。約10-15%已知懷有身孕的人因流產而終止妊娠。1990年,因妊娠併發症而死亡的人數為37.7萬人,2013年則降至29.3萬人;其常見原因包含產後出血、墮胎引起的併發症、妊娠高血壓、產褥熱與難產。全球約40%妊娠為非計畫懷孕,其中一半會選擇墮胎。在美國的非計畫懷孕中,60%女性曾施行避孕措施,甚至到受孕的那個月仍有進行避孕措施。.

新!!: 溶酶体和妊娠 · 查看更多 »

巨噬细胞

巨噬細胞(macrophage,縮寫為mφ)是一種位於組織內的白血球,源自單核球,而單核球又來源於骨髓中的前體细胞。巨噬細胞和單核球皆為吞噬細胞,在脊椎動物體內參與非特異性防衛(先天性免疫)和特異性防衛(细胞免疫)。它們的主要功能是以固定細胞或游離細胞的形式對細胞残片及病原體進行噬菌作用(即吞噬以及消化),并激活淋巴球或其他免疫細胞,令其對病原體作出反應。.

新!!: 溶酶体和巨噬细胞 · 查看更多 »

中性紅

中性紅是一種組織學復染色染色劑,可用來為溶酶體、 高爾基體和尼斯尔氏粒染色。同時也是酸鹼指示劑。 中性紅也是一種活體染劑,因為隨著細胞逐漸死亡,它們吸收中性紅的能力也會變差。RepettoG, del Peso A, Zurita JL.

新!!: 溶酶体和中性紅 · 查看更多 »

主要组织相容性复合体

主要组织相容性复合体(major histocompatibility complex,MHC),又称主要组织相容性複合基因,是存在于大部分脊椎动物基因组中的一个基因家族,与免疫系统密切相关,其中人類的MHC醣蛋白,又稱為人類白血球抗原(英語:human leukocyte antigen,簡稱HLA)。其中有兩類,第一類MHC處理細胞內部被分解後的蛋白質(例如病毒的)、第二類MHC則要經過胞吞並利用溶酶體處理(外部來源),MHC這些再跟這些小片胜肽結合,並呈現在細胞表面上供T細胞所辨識。調控的DNA位於6號染色體上(6p21.31),包括一系列緊密連鎖的基因座,它們與人類的免疫系統功能密切相關。其中部分基因編碼細胞表面抗原,成為每個人的細胞不可混淆的「特徵」,是免疫系統區分本身和異體物質的基礎。 HLA复合体位于6号染色体短臂上的21.31区(6p21.31),由360万个碱基对组成,是目前已知的人类染色体中基因密度最高,也是多态性最为丰富的区域,故有「人類體內的化學指紋」之稱。.

新!!: 溶酶体和主要组织相容性复合体 · 查看更多 »

帕金森氏症

帕金森氏症(Parkinson's disease,簡稱PD)是一種慢性中樞神經系統退化疾病,主要影響運動神經系统。它的症狀通常隨時間緩慢出現, -->早期最明顯的症狀為顫抖、肢體僵硬、運動功能減退和,也可能有認知和行為問題 -->;失智症在病情嚴重的患者中相當常見 -->,超過三分之一的病例也會發生重性抑鬱障礙和焦慮症。其它可能伴隨的症狀包括知覺、睡眠、情绪問題。帕金森氏症帶來的主要運動症狀合稱為。 帕金森氏症的成因目前還不清楚,但普遍認為和遺傳與環境因子相關。 -->家族中有帕金森氏症患者的人較可能得到此病,暴露於特定農藥、曾有頭部外傷者風險也比較高;但有吸菸習慣、常喝咖啡或茶者風險較低。帕金森氏症主要的運動症狀導因於中腦黑質細胞死亡 -->,使患者相關腦區的多巴胺不足。細胞死亡的原因目前瞭解很少,但已知和神經元蛋白質組成的過程有關。典型的帕金森氏症主要靠症狀診斷,神经成像也能協助排除其他疾病的可能性。 帕金森氏症目前無法治癒,初期症狀常用L-多巴治療,當L-多巴效果降低後則配合使用 -->。隨著病程惡化,神經元將持續流失,因此必須隨之增加藥物劑量,但藥量剛增加時又會產生以不自主抽動為首的副作用。飲食計畫和復健對症狀改善有些效果。對於藥物無效的嚴重患者,可以考慮神經外科的腦深層刺激手術,這種手術利用微電極放電以減少運動症狀。至於非運動相關症狀的帕金森氏症(如以睡眠干擾或情緒問題為主的患者)治療效果通常較差。 2015年,全球約有620萬人患有帕金森氏症,並造成11.7萬人死亡。帕金森氏症通常發生在60歲以上的老人,約有1%的老人罹患該病.

新!!: 溶酶体和帕金森氏症 · 查看更多 »

三磷酸腺苷合酶

三磷酸腺苷合酶或ATP合酶,三磷酸腺苷酶(ATPase)的一种,在这里并特指F类的FoF1ATP合酶(F Type FoF1 ATP Synthase)。它利用呼吸链产生的质子的电化学势能,通过改变蛋白质的结构来进行三磷酸腺苷(ATP)的合成。ATP是大多数生物体中细胞最常用的“能量通货”。 它由二磷酸腺苷(ADP)和无机磷酸盐(Pi)形成。 ATP合酶催化的总体反应为:.

新!!: 溶酶体和三磷酸腺苷合酶 · 查看更多 »

人類白細胞抗原

人類白細胞抗原(human leukocyte antigen,缩写为HLA),是編碼人类的主要组织相容性复合体(MHC)的基因。其位于6号染色体的短臂上(6p21.31),包括一系列紧密连锁的基因座,与人类的免疫系统功能密切相关。其中部分基因编码细胞表面抗原,成为每个人的细胞不可混淆的“特征”,是免疫系统区分自身和异体物质的基础。.

新!!: 溶酶体和人類白細胞抗原 · 查看更多 »

人類鐵代謝

鐵質是人體必需的營養素,由於需要量以毫克(mg)計,故稱為微量礦物質營養素。根據世界衛生組織的統計,缺鐵是目前世界上最普遍的營養缺乏問題,不僅盛行於開發中國家,也仍是已開發國家的公共衛生問題。.

新!!: 溶酶体和人類鐵代謝 · 查看更多 »

休克

休克是一急性的综合症。在这种状态下,全身有效血流量减少,微循环出现障碍,导致重要的生命器官缺血缺氧。即是身体器官需氧量与得氧量失调。休克不但在战场上,同时也是内外妇儿科常见的急性危重病症。 根据文献,休克的定义为各种强烈致病因素作用于机体,使其循环功能急剧减退,组织微循环灌流严重不足,以致重要生命器官机能,代谢严重障碍的全身性危重病理过程。 人的血管容量为20升,这比人身上的5升血液要多得多。若30%以上的毛细血管同时开放,其效果无异于失血。当人体失血超过20%,即可出现休克。倘若失血超过50%,即2.5升,即可致死。因此对休克的治疗是需要争分夺秒的。.

新!!: 溶酶体和休克 · 查看更多 »

嗜天青顆粒

嗜苯胺顆粒(azurophil,或Azurophilic granule)是一種苯胺染色下產生的構造。在勃艮地染色法和梅洛染色法下的白血球和染色質會成現天青色。嗜苯胺顆粒可能會含有髓过氧化物酶、、酸水解酶、、防禦素、中性絲氨酸蛋白酶、、 溶菌酶、、proteinase 3,和蛋白醣。嗜中性球的嗜苯胺顆粒內涵有許多抗菌的防禦素,可以和吞噬病原體的食胞融合。 嗜苯胺顆粒又被稱為「原發性顆粒」(primary granules).

新!!: 溶酶体和嗜天青顆粒 · 查看更多 »

催化三联体

催化三联体通常指在水解酶和转移酶的活性位点中心同时作用的三个氨基酸残基(如蛋白酶、酰胺酶、酯酶、酰基转移酶、脂酶和β-内酰胺酶)。用于共价催化的亲核残基一般是酸-碱-亲核三联体。残基会形成一个电荷中继网络,以极化和活化亲核试剂,来进攻底物形成共价中间体,然后中间体水解,再生出游离的酶。亲核试剂大多是丝氨酸或半胱氨酸,也有少量是苏氨酸。 因为酶会折叠成复杂的三维结构,催化三联体的残基可能在其所在的氨基酸序列(一级结构)中离得很远,但最后它们将会折叠到一起。 虽然在功能上(甚至是三联体中的亲核体)进化趋异,催化三联体却是趋同进化的最好案例。对催化的化学约束使得至少23个独立的进化出了相同的催化方法。生物化学中,研究得最透彻之一的就是这些反应的作用机理。.

新!!: 溶酶体和催化三联体 · 查看更多 »

内质网

内质网(Endoplasmic reticulum, ER)是在真核生物细胞中由膜围成的隧道系统,为细胞中的重要细胞器。实际上内质网是膜被摺疊成一個扁囊或細管狀構造,可分為粗糙內質網(Rough Endoplasmic Reticulum, rER)和光滑內質網(Smooth Endoplasmic Reticulum, sER)两种。 内质网联系了细胞核、细胞质和细胞膜这几大细胞構造。它內與細胞核(核膜外膜)相連,外與細胞膜相接,使之成为透過膜连接的一個整体。内质网负责物质从细胞核到细胞质、细胞膜以及细胞外的转运过程。因為細胞內質網膜與細胞核外膜是相連的,因此內質網空腔與核周腔(perinuclear space)是共通,且細胞可以靠內質網的膜來快速調節細胞核的大小。粗糙内质网上附着有大量核糖体,合成膜蛋白和分泌蛋白。光面内质网上无核糖体,为细胞内外醣类和脂类的合成和转运场所。 这一结构由Keith R. Porter、阿尔伯特·克劳德和Ernest F. Fullam在1945年时首先发现。.

新!!: 溶酶体和内质网 · 查看更多 »

凝集素

凝集素(Lectins)是一種對醣蛋白上的醣類具有高度特異性的结合蛋白。在實驗室中,經常被用來分離、純化醣蛋白。 Lectin的名字的由來是來自於拉丁文中的legere,代表選擇的意思。儘管它們最初是在一百多年前於植物中發現,但是如今認為它們在自然界中普遍存在。一般普遍認為最早關於血球凝集素的敘述,來自於1888年彼得·赫曼·斯蒂尔马克在塔尔图大学(專制時期的俄國最老的大學之一)发表的博士論文。血球凝集素,也具有高度毒性,由斯蒂尔马克自蓖麻的種子純化出來(Ricinus communis)而命名為蓖麻毒素(Ricin)。然而大部分的凝集素基本上在作用時不具有酵素活性以及不造成免疫反應。凝集素在自然中到處存在,它們可以結合游離溶液中的醣類,或者特定蛋白質結構的某一部分上。它們凝集細胞并(或者)參與糖结合(glycoconjugate)作用。 雖然人們認為在植物中凝集素的功能是結合細胞表面上的醣蛋白,然而在動物中它的功能也包括結合可溶性的細胞外或細胞內醣蛋白。舉例來說,有一種凝集素被發現在哺乳類动物肝細胞的表面上,能夠專一性的識別乳糖殘基。人們相信這些細胞表面上的接受器是負責將循環系統中的特定醣蛋白移除。另一個例子是甘露糖-6-磷酸接受器能夠識別含有此種殘基的水解酵素,隨後標定這些蛋白將其送至溶小體。它們提供許多不同的生物功能——從細胞附著的調控,到醣蛋白合成,以及血液中蛋白質的濃度。凝集素也能夠藉由識別僅在病原中發現或是無法進入宿主細胞的的醣類而在免疫系統中扮演重要的角色。 純化的凝集素對於臨床应用非常重要,因為它能夠用來鑑定血型。有些存在人類紅血球上的醣脂質以及醣蛋白能夠經通过凝集素來鑑定。一種來自於雙花扁豆(Dolichos biflorus)的凝集素,經鑑定後发现可识别A1血型。來自於植物Ulex europaeus的凝集素,經鑑定後发现可识别H血型抗原,而來自於植物Vicia graminea的凝集素则可识别N血型抗原。 凝集素在植物中的真正功能還有待研究,而是否僅具細胞附著功能依然還有疑問。凝集素在種子中大量表現(通常自種子中純化),并且隨著植物生長而減少,这顯示其在植物發芽或種子自我生存中扮演了重要角色。 凝集素被視為免疫系統中的直接演化前身,而且它們至今依然在此扮演重要角色 - lectin complement activation pathway, Mannose binding lectin, S,P,E lectins, etc.

新!!: 溶酶体和凝集素 · 查看更多 »

免疫系统

免疫系统是生物体体内一系列的生物学结构和所组成的疾病防御系统。免疫系统可以检测小到病毒大到寄生虫等各类病原体和有害物质,并且在正常情况下能够将这些物质与生物体自身的健康细胞和组织区分开来。 病原体可以快速地进化和调整,来躲避免疫系统的侦测和攻击。为了能够在与病原体的对抗中获胜,生物体进化出了多种识别和消灭病原体的机制。就连简单的单细胞生物,如细菌,也发展出了可以对抗噬菌体感染的酶系统。一些真核生物,例如植物和昆虫,从它们古老的祖先那里继承了简单的免疫系统。这些免疫机制包括抗微生物多肽(防御素)、吞噬作用和补体系统。包括人类在内的有颌类脊椎动物则发展出更为复杂多样的防御机制。 典型的脊椎动物免疫系统由多种蛋白质、细胞、器官和组织所组成,它们之间相互作用,共同构成了一个精细的动态网络。作为复杂的免疫应答的一部分,人类的免疫系统可以通过不断地适应来更有效地识别特定的病原体。这种适应过程被定义为“适应性免疫”或“获得性免疫”。针对特定的病原体的初次入侵,免疫系统中的記憶T細胞能够产生“免疫记忆”;当该种病原体再次入侵时,这种记忆就可以使免疫系统迅速作出强化的免疫应答(即“适应性”)。而适应性免疫正是疫苗注射能够产生免疫力的生物学基础。 免疫系统的紊乱会导致多种疾病的产生。免疫系统的活力降低就会发生免疫缺陷,进而导致经常性和致命的感染。免疫缺陷可以是遗传性疾病,如重症聯合免疫缺陷;也可以由药物治疗或病菌感染引发,如艾滋病就是由于艾滋病毒感染而引发的适应性免疫缺陷综合症。另一方面,免疫系统異常会将正常的组织作为入侵者而进行攻击,从而引起自体免疫疾病。常见的自体免疫疾病包括慢性甲状腺炎、类风湿性关节炎、第一型糖尿病和系統性紅斑性狼瘡。.

新!!: 溶酶体和免疫系统 · 查看更多 »

內膜系統

內膜系統(endomembrane system)真核細胞相對於原核細胞的所有化學反應都混在細胞質中進行,真核細胞內又演化出內膜系統,其中分隔出不同的胞器有效進行細胞內的空間規劃,使各種反應能在獨立的部位順利進行。 內膜系統為真核細胞特有的結構,使細胞分隔成許多互不干擾的空間,能有效提升細胞的代謝速率。.

新!!: 溶酶体和內膜系統 · 查看更多 »

先天免疫系統

先天性免疫(innate immunity)又稱為「非特异性免疫」、「固有免疫」、「非專一性防禦」,包括一系列的细胞及相关机制,可以以非特异性的方式抵御外来感染。先天免疫系统的细胞会非特异地识别并作用于病原体。与後天免疫系統不同,先天免疫系统不会提供持久的保护性免疫,而是作为一种迅速的抗感染作用存在于所有的动物和植物之中。.

新!!: 溶酶体和先天免疫系統 · 查看更多 »

克里斯汀·德·迪夫

克里斯汀·德·迪夫(Christian René de Duve,)),出生於英國的細胞學家與生物化學家,是比利時移民的後裔。1920年,他與家人一起回到比利時。 他主要的研究領與在生物化學與細胞生物學,他偶然地發現了真核生物的兩種細胞器,包括过氧化物酶体(peroxisome)、與溶酶体(lysosome)。1974年,由於對細胞構造的研究,而與阿爾伯特·克勞德(Albert Claude)及喬治·帕拉德(George Palade)共同獲得諾貝爾生理學或醫學獎。近年的研究則主要在於生命的起源,例如內共生學說。.

新!!: 溶酶体和克里斯汀·德·迪夫 · 查看更多 »

灵菌红素

灵菌红素(Prodigiosin,正式名称为2-methyl-3-pentyl-6-methoxyprodiginine)是Prodiginin(中文名不详)的一种。它具有Prodiginin的基本结构,也就是三吡咯环,其中的一个吡咯环C2上带有一个甲基,C3上则有一个戊基。灵菌红素是一种红色物质,可由粘质沙雷氏菌(Serratia marcescens)等细菌合成的次级代谢产物。虽然其对于生产者的作用和意义还不是彻底明了,但现在它已被发现具有多种生物活性作用,能抗癌,抗微生物,抗疟疾,抗霉,免疫抑制的作用。其中抗癌方面,因为其具有癌组织的高针对性和对正常细胞则表现的低毒害作用,而成为一种非常有潜力的抗癌物质。.

新!!: 溶酶体和灵菌红素 · 查看更多 »

秀麗隱桿線蟲

麗隱桿線蟲(学名:Caenorhabditis elegans)是一種非寄生性線蟲,身体透明,長度約1毫米,主要分布在温带地区的土壤中。其寿命约两至三周,其中发育时间在三天左右,分为胚胎期、幼虫期和成虫期。 秀丽隐杆线虫有雄性和雌雄同体两种性别。自然条件下,雌雄同体虫占大多数,可自体受精,也可接受雄虫的精子产生后代。 自20世纪60年代,悉尼·布伦纳利用線蟲研究細胞凋亡遺傳調控的機制之後,秀丽隐杆线虫逐渐成為分子生物學和發育生物學研究領域中最常用的模式生物之一。秀丽隐杆线虫具有固定且已知的細胞数量和发育过程,亦為第一种完成全基因组测序的多細胞真核生物,截至2012年,它是唯一完成(connectome,神经元连接)测定的生物体。.

新!!: 溶酶体和秀麗隱桿線蟲 · 查看更多 »

精液

精液(Semen)是一种可能含有精子的有機流質。它是由雄性或雌雄同體的動物的生殖腺等器官所分泌的,並能跟雌性的卵子受精結合。人類的精液除了精子以外,還含有其他不同的成分:像蛋白水解酶般的酶以及果糖皆能使精子在体外存活一段時間,此外精液亦提供一個介質予精子移動。 大部分精液源於位於骨盆的精囊。令精液射出的過程稱之為射精。 精液也是遺傳物質的一種。人類已對其他動物的精液進行冷冻保存,用以使某一特定品種得到保育。.

新!!: 溶酶体和精液 · 查看更多 »

細胞器

细胞器(organelle,或稱--)是细胞的一部分, 是细胞中通过生物膜与细胞中其他部分分隔开来的、功能上独立的亚细胞结构,与细胞质基质和细胞骨架统称为“细胞质”。 细胞器可依各自拥有膜的层数大致分为三类(广义的細胞器还包括囊泡及核小体等):.

新!!: 溶酶体和細胞器 · 查看更多 »

細胞質

細胞質是一種使細胞充滿的凝膠狀物質。細胞質包含有胞質溶膠及除細胞核外的細胞器。原生質是由水、鹽、有機分子及各種催化反應的酶所組成。細胞質在細胞內有著重要的角色,就是用作「分子液」,使各種細胞器能在其中懸浮及透過脂肪膜聚集一起。它在細胞膜內包圍著細胞核及細胞器。.

新!!: 溶酶体和細胞質 · 查看更多 »

纤毛虫

纤毛虫是纤毛虫门(學名:Ciliophora)生物的通称,是一类较复杂的原生动物,主要特点是以纤毛作为运动器,细胞核一般分化出大核(营养)、小核(生殖)、摄食胞器等,无性生殖为横二分裂,有性生殖为接合生殖,生活在淡水或海水中,也有寄生的。代表生物有草履虫,小瓜虫等。 纤毛虫在分类上比较复杂,尚无统一的定论。按传统的分类,原生动物作为动物界中的一个门,纤毛虫为其中的“纤毛纲”(Ciliata),有时也将其列为原生动物门的纤毛亚门,或将原生动物看作动物界的一个亚界,纤毛虫划为一个门——纤毛门。按照汤玛斯·卡弗利尔-史密斯提出的分类系统则属于囊泡藻界的“纤毛虫门”(Ciliophora)。.

新!!: 溶酶体和纤毛虫 · 查看更多 »

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

新!!: 溶酶体和细胞 · 查看更多 »

细胞区室

細胞區室(cellular compartment,亦称为细胞腔隙)是細胞生物學中使用的名詞,包括所有真核細胞的細胞質中封閉的部分,它們多被單層或雙層的磷脂所包圍。絕大多數的細胞器均被視為是細胞區室,例如:線粒體、葉綠體(光合生物)、過氧化物酶體、溶酶體、內質網、細胞核及高尔基体。更小的元素,如囊泡,和有時甚至是微管等也計算在內。 一般認為細胞區室化並不存在於原核生物的細胞內,但隨著諸如羧酶体(carboxysome)及對細菌的微區室(bacterial microcompartment)的研究顯示原核生物也有能力去對細胞器進行區室化。.

新!!: 溶酶体和细胞区室 · 查看更多 »

细胞生物学

细胞生物学(cell biology)舊稱细胞学(cytology),是研究细胞的形态结构、生理機能、細胞週期,细胞分裂, 细胞凋亡, 以及各種胞器及訊息傳遞路徑的学科。研究範圍專注在生物學的微觀下與分子層次。細胞生物學研究包括極大的多樣性的單細胞生物,如細菌和原生動物,以及在多細胞生物如人類,植物,和海綿的許多專門的細胞。 细胞生物学在显微、亚显微和分子水平三个层次上进行研究,并不断向探究细胞与细胞间、细胞与细胞外界相互作用等领域拓展,向探究细胞增殖、分裂、死亡等生命活动内在规律纵深。从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。 細胞是生命的基本單位,細胞的特殊性決定了個體的特殊性,因此,對細胞的深入研究是揭開生命奧秘、改造生命和征服疾病的關鍵。細胞生物學已經成為當代生物科學中發展最快的一門尖端學科,是生物、農學、醫學、畜牧、水產和許多生物相關專業的一門必修課程。 50年代以來諾貝爾生理與醫學獎大都授予了從事細胞生物學研究的科學家。 細胞生物學是研究細胞結構、功能及生活史的一門科學。細胞生物學由细胞学(cytology)發展而來,细胞学是關於細胞結構與功能(特別是染色體)的研究。現代細胞生物學從顯微水平,超微水平和分子水平等不同層次研究細胞的結構、功能及生命活動。 對於所有的生物科學,了解細胞的成分和細胞是如何工作是至關重要的。賞析細胞類型之間的異同,對於細胞和分子生物學領域以及生物醫學領域,如和發育生物學尤為重要。這些基本的相似性和差異提供了一個統一的主題,有時允許從研究一種細胞類型學到的原則進行外推並推廣到其他類型的細胞。因此,細胞生物學的研究和以下學科密切相關:遺傳學,生物化學,分子生物學,免疫學和發育生物學。.

新!!: 溶酶体和细胞生物学 · 查看更多 »

细胞死亡

細胞死亡(Cell death)是描述生物細胞永久中止運作生理功能的狀態。細胞死亡可能起因於個體計畫性的細胞死亡,或是因疾病或創傷導致細胞不可逆的損傷而死亡。 Necrosis is cell death caused by external factors such as trauma or infection, and occurs in several different forms.

新!!: 溶酶体和细胞死亡 · 查看更多 »

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

新!!: 溶酶体和真核生物 · 查看更多 »

甲状腺

腺(Glandula thyr(e)oidea;Thyroid)是脊椎動物非常重要的腺體,屬於内分泌器官。在哺乳動物它位於頸部甲狀軟骨下方,氣管兩旁。人類的甲狀腺形似蝴蝶,猶如盾甲,故名。 甲狀腺控制使用能量的速度、製造蛋白質、調節身體對其他荷尔蒙的敏感性。甲狀腺藉由製造解造甲狀腺素來調整這些反應,有三碘甲狀腺原氨酸(triiodothyronine,T3)和四碘甲狀腺原氨酸(tetraiodothyronine,thyroxine,T4)。這兩者調控代謝、生長速率還有調解其他的身體系統。T3和T4由碘和酪胺酸合成。甲狀腺也生產降鈣素(Calcitonin),調節體內鈣的平衡。.

新!!: 溶酶体和甲状腺 · 查看更多 »

甲状腺激素

腺激素(thyroid hormones)是由甲状腺滤泡上皮细胞合成的酪氨酸碘化物。主要是四碘甲腺原氨酸(又名甲状腺素,缩写为T4)和三碘甲腺原氨酸(缩写为T3),此外,还有少量逆-三碘甲腺原氨酸(缩写为rT3)。注意,甲状腺分泌的激素除了甲状腺激素外,还有降钙素。由于降钙素是甲状腺滤泡旁细胞产生的,所以,不属于甲状腺激素的范畴。 T4和T3均有生理活性,区别在于作用时间和强度:T4活性低、起效较慢,但持续时间长;T3活性高、起效快,但持续时间短。体内研究显示,在细胞水平发挥生理作用的主要是T3;绝大多数T4需转化为T3之后才能发挥生理效应,从这个意义上讲,T4更像是一种前激素。 rT3没有明显的生理活性,因此,在多数语境下,“甲状腺激素”只是指T4和T3。 到目前为止,甲状腺激素是唯一一类含碘的生理物质。.

新!!: 溶酶体和甲状腺激素 · 查看更多 »

白三烯B4

白三烯B4(Leukotriene B4)是一种与炎症反应有关的白三烯类物质。它由响应炎症介质的白细胞产生,让白细胞活化并依附在內皮上,允许其穿过组织。在中性粒细胞中,它也是一种强效化学诱导物,并且能够诱导形成活性氧类和溶酶体中酶的释放。它由水解白三烯A4而来。.

新!!: 溶酶体和白三烯B4 · 查看更多 »

鎘中毒

镉中毒(Cadmium poisoning)是指过量摄入重金属化学元素镉造成的中毒性疾病,可造成肾、骨骼、肺等多种器官病变。.

新!!: 溶酶体和鎘中毒 · 查看更多 »

非甾体抗炎药

非類固醇消炎藥(Non-Steroidal Anti-Inflammatory Drug,縮寫作NSAID),也譯作非甾体抗炎药,是一類具有解熱鎮痛效果的藥物,在施用更高劑量時也具有消炎作用。 “非類固醇”一詞用於將此類藥物與甾体藥物區分開,因類固醇類藥物也具有包括抑制花生酸生成、抗炎作用在內的諸多效果。“非類固醇消炎藥(非甾体抗炎药)”一詞首次使用於1960年,以將新藥與可能產生醫源性傷害的類固醇類藥物劃清界線。 非類固醇類消炎藥物中,屬阿斯匹靈、伊布洛芬、萘普生最為著名,在絕大多數國家都可作為非處方藥銷售。对乙酰氨基酚因其抗炎作用微弱,而通常不被歸為非類固醇類藥物,它主要通過抑制分布在中樞神經系統的COX-2,以減少前列腺素的生成,從而緩解疼痛,但由於COX-2在周邊組織中數量較少,因此作用微弱。 大多數的非類固醇消炎藥抑制了環氧合酶-1(COX-1)以及環氧合酶-2(COX-2),進而減少前列腺素和血栓素的合成。一般認為,非類固醇類消炎藥因為抑制環氧合酶-2會有解熱鎮痛、抗發炎的效果。部分非類固醇類消炎藥,像是阿斯匹靈,也同時抑制了環氧合酶-1(COX-1),因而容易導致腸胃道出血和潰瘍。Clive P. Page, Michael J. Curtis, Morley Sutter, Michael Walker, Brian Hoffman.

新!!: 溶酶体和非甾体抗炎药 · 查看更多 »

驱动蛋白

驱动蛋白(Kinesin)是一类蛋白质超级家族,属于分子马达的一种,其成员代表驱动蛋白-1(Kinesin-1)在1985年被发现。驱动蛋白是由单体组成的多聚体,其“头部”具有ATP酶活性,能通过水解ATP获得能量,改变构型,进行运动。它和动力蛋白一样,以微管构成的轨道进行滑行。与可以朝微管两极运动的动力蛋白有些不一样,一种驱动蛋白只能朝一个方向运动,如驱动蛋白-1可以沿着微管的+运动,而另一些驱动蛋白则沿着-极运动,在细胞内起运输作用,比如牵拉染色体,参与有丝分裂、减数分裂和细胞迁移过程。 最近的研究又发现一批与驱动蛋白-1结构相关的蛋白质,它们一起构成驱动蛋白超级家族。这些蛋白质存在于绝大多数真核生物中。它们共有一保守的“马达”域,含有约350氨基酸残基,内有ATP结合位点和微管结合位点。即使在植物中,如拟南芥(Arabidopsis thaliana)中,目前也发现了A,B,C和D四种类驱动蛋白蛋白。.

新!!: 溶酶体和驱动蛋白 · 查看更多 »

高尔基体

尔基体(Golgi apparatus)是真核细胞中的一种细胞器。屬於細胞的一組膜,專門收集並包裹各種物質,例如酶和激素。這些膜形成像一堆平板的扁囊,部份扁囊常常脫離並移向質膜,一旦與質膜接合,便將其中內含物排出細胞。 大多数真核细胞生物(包括植物、动物和真菌)均有高尔基体。 高尔基体是1898年被意大利解剖学家卡米洛·高基发现的并以他的名字命名。高尔基体的主要功能在于处理细胞膜、溶酶体或内体上的以及细胞生产的蛋白质,将它们分到不同的小泡中去。因此它是细胞的中心传送系统。 大多数离开内质网的运输小泡首先来到高尔基体,在这里被改变,分开和运送到它们的最终目的地。大多数真核细胞有高尔基体,但是尤其在分泌许多物质(比如蛋白质)的细胞裡它特别突出。比如免疫系统中分泌抗体的浆细胞的高尔基体就特别发达。.

新!!: 溶酶体和高尔基体 · 查看更多 »

髓过氧化物酶

髓过氧化物酶(Myeloperoxidase,简称为MPO)是一种由人类17号染色体上MPO基因编码的过氧化物酶。MPO主要表达于中性粒细胞(白细胞的一种)中,并产生次卤酸,发挥其抗菌活性。髓过氧化物酶是中性粒细胞嗜天青顆粒中的一种溶酶体蛋白,在脱颗粒的时候释放到胞外。MPO内含有一个血红素组分,使得富含中性粒细胞的分泌物显示出绿色,这些分泌物包括膿和黏液。.

新!!: 溶酶体和髓过氧化物酶 · 查看更多 »

足細胞

足細胞(podocyte、或"內臟上皮細胞"(visceral epithelial cell))為位於腎臟鮑氏囊上環繞着腎小球毛細血管之細胞。 鮑氏囊過濾血液,阻礙大分子,如蛋白質、紅血球、血小板;並通過小分子,如水、鹽及糖,進一步形成尿液。 足細胞的長足突或"足突出部分"環繞着毛細血管,介於足突之間留有裂隙。血液濾過這些裂隙,每個裂隙稱為裂隙隔膜(slit diaphragm)或濾過裂隙。足突出部分需要幾種蛋白質(腎病蛋白、NEPH1、NEPH2、足蛋白、CD2AP)環繞着毛細管及運作。當嬰兒出生時,這些蛋白質存在着一定的缺陷,諸如"腎病蛋白"及"CD2AP",使他們的腎臟不能正常的運作。人們的這些蛋白質存在著變異,以及某些變異在以後的生活中可能會使他們的患有腎功能衰竭。腎病蛋白是一拉鏈狀的蛋白、形成裂隙隔膜(濾過裂隙),在這些拉鍊的齒之間存有空間,足夠大到允許糖和水通過,但又裂隙太小以至於不允許蛋白質(白蛋白)通過(防制水腫)。腎病蛋白缺陷對先天性腎功能衰竭負責。CD2AP調節足細胞細胞骨架構及穩定裂隙隔膜。.

新!!: 溶酶体和足細胞 · 查看更多 »

连接蛋白

连接蛋白(Connexin,Cx)。在脊椎动物,由connexin组成的间隙连接通道(Gap Junction channel)介导相邻细胞之间离子、小分子营养物质交换及信号分子传播。哺乳动物发育早期已有多种connexin表达,不同connexin组成的间隙连接通道具有不同通透特征,相邻细胞利用间隙连接介导的细胞间通讯(GJIC,Gap Junction Intercellular Communication)或者不依赖间隙连接通道的途径传递发育信号,调节发育过程中的细胞增殖、迁移和分化。 connexins是一个广泛表达于脊椎动物细胞的蛋白质家族。该家族成员组成的六聚体(connexon)定位于细胞膜上,形成间隙连接通道或半通道(hemi-channel)介导细胞之间、细胞与细胞外基质之间的物质交换。基因组中编码connexin蛋白家族的基因组成connexin基因家族。在人类基因组中已发现21种connexin基因,在小鼠基因组中有20种。这些connexin按其序列相似程度及胞内环长度分为α、β或γ亚组。人类与小鼠connexin基因根据序列同源性配成19对。Connexin基因的结构相对简单,只有两个外显子,一般来说编码区位于第二个外显子,5`-UTR被内含子分隔在两个外显子中,3`-UTR位于第二个外显子中。 connexin与其他膜蛋白一样,在粗面内质网的核糖体上翻译,边翻译边被引导入内质网膜的蛋白孔道。在全部翻译完毕后插入内质网膜,在插入内质网膜的过程中connexin获得四次跨膜结构。connexin组装成的六聚体称为连接子(connexon),不同的connexon组装位置可能不同。如Cx32在内质网膜组装,而Cx43在反面高尔基网络(TGN,trans-golgi network)组装。同种connexin组装成homomeric connexon,而不同connexin组装成heteromeric connexon(只有同一亚组的connexin才可以组装成heteromeric connexon)。组装好的connexon由内质网膜经高尔基体或直接由高尔基体以微管依赖或微管非依赖的方式运送到细胞膜。插入到细胞膜的connexon正常情况下关闭,在与相邻细胞膜的connexon对接后才开放。但当有细胞膜去极化、细胞外低钙等情况时,connexon可开放成为半通道(hemi-channel),介导细胞内外物质交换。相对connexin的胞外环呈并指状相互交叉形成密闭的水相通道,由相同connexon对接而成的通道称为homo-typic channel,由不同connexon对接而成的通道称为hetero-typic channel。对接的间隙连接通道聚集成为间隙连接斑(Gap Junction Plaque)。间隙连接斑的维持是动态的,新的通道不断移动到间隙连接斑的外缘,而间隙连接斑中心的通道则内化到一侧的细胞质内,由溶酶体或蛋白酶体途径降解。 间隙连接通道是细胞间小分子物质(分子量小于1000Da)转移的水相通道。通道在静息状态下是开放的,但在低Ph值、细胞内高钙、细胞间存在电压差、生长因子刺激及通道蛋白磷酸化等情况下通道会关闭。尽管各种connexin构成的通道结构相同,但不同connexin构成的通道通透性相差很大。connexin的转录、翻译、修饰、组装、转运等过程的改变都会影响细胞间通讯的性质与数量。 在多细胞生物中,间隙连接通道广泛分布于各种细胞。哺乳动物每种器官可有多种connexin表达。对connexin基因突变所致疾病及动物模型的研究证明:间隙连接通道对于哺乳动物生理功能的维持有着重要作用,其作用可以概括为:①离子通道功能,如Cx26、Cx30参与内耳钾离子循环,Cx40参与心脏电传导。②营养物质转运功能:如Cx46、Cx50在无血管的晶状体转运营养物质,Cx26在小鼠胎盘的两层合体滋养层细胞之间转运营养物质。③细胞信号转导功能:如Ca、IP3等信号分子可以通过间隙连接;另外,connexin可能通过与其他蛋白质相互作用而不依赖间隙连接通道参与信号转导。.

新!!: 溶酶体和连接蛋白 · 查看更多 »

过氧化物酶体

过氧化物酶体(peroxisome)是一种被称为的细胞器,几乎存在于所有真核细胞中。它们参与,,D-氨基酸和多胺的异化作用,活性氧类的还原-尤其是过氧化氢-以及的生物合成,即-对于哺乳动物大脑和肺的正常功能至关重要。它们还含有大约10%的在戊糖磷酸途径中两种酶全部活动,这对能量代谢很重要。关于过氧化物酶体是否参与类萜和动物胆固醇合成的争论很激烈。 其他已知的过氧化物酶体功能包括发芽种子中的乙醛酸循环(“glyoxysomes”),叶子中的光呼吸,Trypanosomatida中的糖酵解(“(glycosome)”),以及某些酵母中的甲醇和/或胺氧化和同化。 過氧化體用外表的單層膜與細胞的原生質分隔開來,膜上有功能重要的膜蛋白,用以向細胞器中輸入蛋白質和促進細胞分裂。與溶酶體不同的是,過氧化物酶體不是由分泌通路產生,而是通過先長大後分裂的自我複製過程產生,也有證據顯示新的過氧化物酶體可以直接產生。.

新!!: 溶酶体和过氧化物酶体 · 查看更多 »

胞內體

胞内体(Endosome,又称内体)在细胞生物学中指的是一种真核细胞中的膜结合细胞器,属于一种囊泡结构。作为细胞内吞作用中运载途径的一个区室,胞内体从细胞质膜被传递到溶酶体被其降解,或者再循环回到细胞质膜。一个成熟的内体直径大约500纳米。.

新!!: 溶酶体和胞內體 · 查看更多 »

胞饮作用

胞饮作用(pinocytosis)是细胞内吞作用从外界获取物质及液体的一种类型,是细胞外的微粒通过细胞膜的内陷包裹形成小囊泡(胞饮囊泡),并最终和溶酶体相结合并将囊泡内部的物质水解或者分解的过程。 胞饮作用需要消耗大量的三磷酸腺苷(ATP),这也是大部分细胞所使用的能量形式。与吞噬作用不同,胞饮作用主要是将细胞外液体摄入进入细胞内并产生非常小的囊泡。这两者的工作方式很像,但是吞噬作用对于其吞噬的物质是有选择性的,需要相应的配体与细胞表面的受体相结合才能启动这一作用。 与受体介导的内呑作用相比不同的是,胞饮作用将细胞周边的液体连同其中的溶质一起吞入,对于内呑进入细胞的物质是没有选择性的。.

新!!: 溶酶体和胞饮作用 · 查看更多 »

胱胺酸症

胱胺酸症(Cystinosis)是溶小體貯積症的一種,因第17對染色體短臂13位置的CTNS基因發生缺損,導致將胱胺酸攜出溶小體的運輸酶功能異常,胱胺酸堆積溶小體上,進而造成器官的病變。 其發生率為1/200000。 遺傳方面,其遺傳方式為體染色體隱性遺傳疾病。.

新!!: 溶酶体和胱胺酸症 · 查看更多 »

胱抑素C

血清胱抑素C(cystatin C、cystatin 3、gamma trace、胱抑素C、半胱氨酸蛋白酶抑制劑、胱蛋白、後γ-球蛋白,或神經內分泌基本多肽),是由CST3基因編碼的一種蛋白質,其分子量小(13000)由體內有核細胞恆定產生,能自由通過(濾過)腎小球,且腎小管上皮細胞不分泌亦不重吸收,主要用作腎功能的生物标记。最近,已經研究了其在預測新發或惡化的心血管疾病的作用。它也似乎涉及類澱粉蛋白(一種特定類型的蛋白沉積)的腦功能障礙,如阿兹海默病。在人類中,所有细胞與细胞核(含DNA的細胞芯)產生具有120個氨基酸肽之血清胱抑素C。它幾乎存在於所有的組織及體液中。它是一種溶酶体蛋白酶的酶抑制剂(來自於分解蛋白質的特定細胞亞單位的一種酶),及可能是一種最重要的半胱氨酸蛋白酶(Cysteine protease)細胞外的(Extracellular)的抑製劑(經由的特定類型蛋白質降解酶、它可以防止細胞外蛋白質分解)。血清胱抑素C屬於基因家族2型胱抑素(Cystatin)。.

新!!: 溶酶体和胱抑素C · 查看更多 »

胆红素

胆红素(英文:Bilirubin)是胆色素的一种,是人類胆汁的主要色素,呈橙黄色。它是体内血紅素的主要代谢产物,有毒性,可对大脑和神经系统引起不可逆的损害,但也有抗氧化剂功能,可以抑制亚油酸和磷脂的氧化。胆红素是临床上判定黄疸的重要依据,也是肝功能的重要指标。.

新!!: 溶酶体和胆红素 · 查看更多 »

阿托品

阿托品(Atropine),又稱阿托平。是一種用來治療神經毒氣或的藥物,也用在某些心跳過緩,與手術時減少唾液分泌用,一般會以靜脈注射或肌肉注射給藥,眼藥水劑型使用於治療與早期弱視。靜脈注射劑型的藥物,在一分鐘內就會生效,並持續半小時到一小時左右。若是治療中毒,可能需要較高劑量的阿托品。 阿托品是一種,能可逆地阻碍乙酰胆碱与蕈毒鹼型乙醯膽鹼受體结合,可以抑制副交感神經。常見副作用包含口乾、瞳孔放大、尿瀦留、便祕,以及心跳過速 -->,青光眼患者如非必要請勿使用。目前顯示哺乳期使用是安全的。尚無證據孕婦使用阿托品會導致新生兒先天性障礙,相關研究仍待進行。 阿托品存在於數種茄科植物體內,如顛茄、天仙子、曼陀罗及茄參等,於1833年首次被分離出來。左旋莨菪碱为天然构型,经提取处理后得到的消旋莨菪碱即为阿托品。李端 殷明.

新!!: 溶酶体和阿托品 · 查看更多 »

肝細胞

肝細胞(hepatocyte(hepato-意爲肝,-cyte意爲細胞))是肝臟實質中的一類多邊形的腺上皮細胞。肝臟細胞直徑在20-30um之間,使用H&E染色於光學顯微鏡下觀察可見其細胞質整體嗜酸性並含有嗜鹼性顆粒、細胞核大而圓、核仁大且染色體着色淺。肝細胞的再生能力較強,常可見到含2個核的細胞,甚至有細胞是8倍體乃至16倍體。.

新!!: 溶酶体和肝細胞 · 查看更多 »

肺泡巨噬細胞

肺泡巨噬細胞(Alveolar macrophage),是存在於肺間質的特殊巨噬細胞,由遷移到肺的吞噬細胞發育而成,屬於單核吞噬細胞系統的一部份。可參與吞噬和清除外來的塵粒或病原並進行抗原呈現,也可吞噬衰老的紅血球與清除由第二型肺泡細胞分泌的表面張力素。吞噬完外来尘粒或病原的肺泡巨噬细胞则通称为塵細胞。尘细胞与被其包裹的异物会在溶酶体的作用下而分解,也可能被纤维质整体包裹后依附于气管粘液排出体外。.

新!!: 溶酶体和肺泡巨噬細胞 · 查看更多 »

脂褐素

脂褐素(lipofuscin)的命名由來是具有顆粒狀的褐黃色色素,由含有脂肪的殘存物與溶酶體消化物所組成。被認為是一種隨著年紀增長或細胞操勞而增加的色素,可見於肝臟、腎臟、心肌、腎上腺、神經細胞與神經節細胞。主要分布在細胞核週圍,是脂色素的一種。.

新!!: 溶酶体和脂褐素 · 查看更多 »

脂酶

脂酶,是一种催化脂类的酯键水解反应的水溶性酶。因此,脂酶是酯酶下的一个亚类。 脂酶存在于基本上所有的生物体中,它在对脂类(如甘油三酸酯、脂肪、油等)的消化、运输和剪切中发挥着关键作用。编码脂酶的基因甚至也存在于某些病毒中。.

新!!: 溶酶体和脂酶 · 查看更多 »

自体荧光

自体荧光自体荧光是生物结构(例如线粒体和溶酶体)在它们吸收光时自然发射的光,并且被用于区分源自人工添加的荧光标记(荧光团)的光。 最常见的自体荧光分子是NADPH和黄素; 细胞外基质也可以有助于自发荧光,因为胶原蛋白和弹性蛋白的固有特性。 通常,含有增加数量的氨基酸色氨酸,酪氨酸和苯丙氨酸的蛋白质显示一定程度的自发荧光。 在醫學上,有運用電射引發人體內的自體熒光,用以以診斷癌症等疾病的方式。.

新!!: 溶酶体和自体荧光 · 查看更多 »

自噬

自噬(Autophagy,或称自体吞噬)是一个涉及到细胞自身结构通过溶酶体机制而被分解的过程。这是一个受到紧密调控的步骤,此步骤是细胞生长、发育与稳态中的常规步骤,它帮助细胞产物在合成、降解以及接下来的循环中保持一个平衡状态。 命名为“自噬”(Autophagy)是由比利时化学家克里斯汀·德·迪夫在1963年發現的。当代的自噬研究是1990年代酵母的研究人员通过识别的自噬相关基因而被推动。其中之一人,日本科學家大隅良典因“對細胞自噬機制的發現”獲得2016年度的诺贝尔生理学或医学奖。.

新!!: 溶酶体和自噬 · 查看更多 »

自噬体

自噬体是在自噬过程中产生的一种一特殊的囊泡,它由细胞内的粗糙内质网或高尔基体膜包裹细胞内源性物质(如由于生理或病理原因损伤的细胞器及其他细胞结构或过量储存的营养物质等)后分离到细胞质中形成。 自噬体直径一般为300-900nm(平均约500nm),其囊泡内常见的内含物包括细胞质基质和某些细胞器(如线粒体、内吞体及过氧化物酶体等)。与其他细胞器相比,自噬体的半衰期较短,约为8min。 “自噬体”(autophagosome)一词合成自希腊语词根:“auto”(意为“自身”)、“phagy”(意为“吃”)及“some”(意为“体”)。.

新!!: 溶酶体和自噬体 · 查看更多 »

腦硫脂

腦硫脂(英語:sulfatide,硫酸腦苷脂、硫苷脂、硫脂類、半乳糖酰基鞘氨醇/3-O-sulfogalactosylceramide、SM4、硫酸化半乳糖/sulfated galactocerebroside)屬於一類,具體上是"硫酸醣脂"(sulfoglycolipid)的一類,因其含硫酸基糖脂。腦硫脂的合成主要在内质网開始而在高尔基体結束,過程中轉化成半乳糖之後硫化為腦硫脂。在髓磷脂的半乳糖脂中,有1/5是腦硫脂。腦硫脂主要被發現在由中樞神經系統的及周围神经系统中,施旺細胞所產生髓鞘细胞膜的胞膜外片上。然而,腦硫脂也存在於真核生物組織的許多細胞之细胞膜的胞膜外片上。 因為腦硫脂是一種多功能分子,它可以在多種生物學領域中使用。除了作為膜成分,腦硫脂功能作用在(靶向蛋白)、、神经可塑性、記憶及"神經膠質細胞軸突的相互作用"(glial-axon interaction)等功能上。腦硫脂也作用在一些生理過程及系統上,包括神经系统、免疫系统、胰岛素分泌、凝血、,及細菌感染等。其結果是,腦硫脂或可關聯於或也能夠結合到腎組織、癌症細胞/組織、红血球細胞及血小板的表面、免疫系統中的CD1a-d細胞、許多細菌細胞、一些病毒、髓鞘、神經元,以及星形膠質細胞等組織上。 硫脂顯出異常的代谢或改變也與各種病理病症有關包括在神經病理學(neuropathology)上,比如異染性腦白質退化症(MLD)、阿兹海默病及帕金森氏症。腦硫脂也與糖尿病,癌遠端轉移,及病毒包括HIV-1(HIV-1/Subtypes of HIV)、甲型流感病毒、丙型肝炎以及牛痘病毒(Vaccinia virus)等有關。此外,硫脂的過度顯現出與癫痫及「聽原性癲癇發作」(audiogenic seizures)以及其它神经系统裡的病理狀態有關。 過往及正在進行的研究將繼續闡明腦硫脂的多種生物學功能及其眾多的影響,且在病理学上已相關聯到腦硫脂。大多數研究利用小鼠模型,而且異源性表達(heterologous expression)系統也被利用,包括到但不限於"Madin-Darby犬腎細胞"及羰基硫-7細胞。.

新!!: 溶酶体和腦硫脂 · 查看更多 »

酸性磷酸酶

酸性磷酸酶(Acid phosphatase,)是一类磷酸酶(将磷酸基团从有机分子上水解下来的酶),且可进一步归类为磷酸单酯水解酶。酸性磷酸酶储存于溶酶体中,在其与核内体融合后执行作用。故此,酸性pH为其最适条件。酸性磷酸酶在许多动物与植物中都有分布。.

新!!: 溶酶体和酸性磷酸酶 · 查看更多 »

離心機

離心機是一種機械,可藉由電動機或其他機械的帶動而高速轉動,產生數千倍於重力的離心力,以加快液體中顆粒的沉降速度,把樣品中不同沉降系數和密度質量的物質分離。離心力的大與小,轉動速度、旋轉半徑岱以及物質的融質量而決定。離心機廣泛運用於化學工程、石油、食品加工、制藥、選礦工程、炭、水處理、核能工業和船舶等部門。 .

新!!: 溶酶体和離心機 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

新!!: 溶酶体和蛋白质 · 查看更多 »

蛋白酶体

蛋白酶体(Proteasomes)是一种巨型筒状蛋白质复合物,主要作用是通过打断肽键来实现降解细胞不需要的或受到损伤的蛋白质。 目前所有已知的真核生物和古菌皆有蛋白酶體,在一些原核生物中也存在。在真核生物中,它位于细胞核和细胞质中。能够发挥这一作用的酶被称为蛋白酶。蛋白酶体是细胞用来调控特定蛋白质的浓度和除去错误折叠蛋白质的主要机制。经过蛋白酶体的降解,蛋白质被切割为约7-8个氨基酸长的肽段;这些肽段可以被进一步降解为单个氨基酸分子,然后被用于合成新的蛋白质Lodish, H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. (2004).

新!!: 溶酶体和蛋白酶体 · 查看更多 »

蛋白酶解

蛋白酶解或蛋白水解(Proteolysis)是指蛋白质降解为较小的多肽或氨基酸的过程。通常情况下,被水解的都是肽键,且在蛋白酶的作用下进行,因此常用蛋白酶解。但也可能发生分子内消化,以及不依赖酶的途径,如酸和热的作用而产生的降解。 蛋白酶解在有机体中有多种用途,比如消化酶降解食物中的蛋白,为机体提供氨基酸;完成翻译的多肽链也需要水解加工才能产生有活性的蛋白质;某些生理和细胞过程的调控也是通过蛋白质的酶解进行;还有蛋白酶解可以防止不必要的或不正常的蛋白质在细胞中的积累。.

新!!: 溶酶体和蛋白酶解 · 查看更多 »

I-細胞疾病

I-細胞疾病是一種遺傳病,其會導致溶小體酵素的缺失,引起細胞結構不正常。 此遺傳病的發生率未知,荷蘭研究指出約為640000分之1。 遺傳方面,其遺傳方式為體染色體隱性遺傳疾病。.

新!!: 溶酶体和I-細胞疾病 · 查看更多 »

Nef

Nef是一种质量约为27-35千道尔顿的较小的豆蔻酰化的蛋白质,由灵长类慢病毒编码。其名称中的Nef是英文全称Negative Regulatory Factor的简写,意即负调节因子。编码Nef的慢病毒包括我们所熟知的造成AIDS的人類免疫缺陷病毒(HIV-1和HIV-2)还有猴免疫缺陷病毒(SIV)。Nef主要位于位于细胞质中,部分存在于细胞膜,属于之一;而致病因子是一类表达致病性的蛋白,这一类蛋白能够起到操纵宿主细胞机制的作用,从而使得病毒能够感染、生存乃至不断复制。虽然Nef字面意思是负调节因子,而且该蛋白也不是HIV-1病毒复制所必需,但是其在宿主体内的存在可以显著地提高病毒滴度。该蛋白被认为是由感染HIV到发展为AIDS的过程中所必需的蛋白。.

新!!: 溶酶体和Nef · 查看更多 »

PH值

pH,亦称pH值、氢离子浓度指数、酸鹼值,是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。这个概念是1909年由丹麦生物化学家瑟倫·索倫森(Søren Peder Lauritz Sørensen)提出的。「pH」中的「H」代表氫離子(H+),而「p」的來源則有幾種說法。第一種稱p代表德语「Potenz」,意思是力度、強度;第二種稱pH代表拉丁文「pondus hydrogenii」,即「氫的量」;第三種認為p只是索倫森随意选定的符号,因为他也用了q。现今的化学界把p加在无量纲量前面表示该量的负对数。 通常情况下(25℃、298K左右),当pH小于7的时候,溶液呈酸性,当pH大于7的时候,溶液呈碱性,当pH等于7的时候,溶液为中性。 pH允许小于0,如鹽酸(10 mol/L)的pH为−1。同样,pH也允许大于14,如氫氧化鈉(10 mol/L)的pH为15。.

新!!: 溶酶体和PH值 · 查看更多 »

Tay-sachs

Tay-Sachs,家族黑蒙性癡呆症。溶酶体缺少氨基己糖酯酶A,导致神经节甘脂GM2积累,影响细胞功能,造成精神性痴呆。.

新!!: 溶酶体和Tay-sachs · 查看更多 »

抗菌肽

抗菌肽(Cathelicidin),係一系列可在巨噬細胞和中性粒細胞的溶酶體中找到的具有抗菌作用的多肽。這種多肽在哺乳動物對侵襲性細菌感染的先天免疫中扮演着重要的角色。抗菌肽家族被歸爲抗微生物肽(antimicrobial peptides ,縮寫爲AMPs)的一種。防禦素則是抗微生物肽家族的另一成員。儘管抗菌肽家族與防禦素具有相同的結構特徵,但它們卻具有高度異質性。 抗菌肽家族的成員可通過一個高度穩定的區域(即凱薩林域(cathelin domain))和另一個高度可變的域來表徵。 哺乳動物的各個種的抗菌肽之間是互相孤立的。最初,科學家在中性粒細胞中發現了抗菌肽,不過,隨後,科學家發現,在經過細菌或病毒或骨化三醇(維生素D的活性形式)的刺激後,上皮細胞和巨噬細胞中亦會產生抗菌肽。.

新!!: 溶酶体和抗菌肽 · 查看更多 »

波形蛋白

波形蛋白,或譯作波形纖維蛋白,是細胞裡中間絲這類蛋白質的其中一種,為人類結締組織細胞的特徵之一,於間葉細胞及其衍生細胞例如纖維母細胞中可見 。中間絲是真核生物細胞的重要結構性特徵。它們與微管及肌動蛋白微細絲,組成並且合稱為細胞骨架。.

新!!: 溶酶体和波形蛋白 · 查看更多 »

法布瑞氏症

法布瑞氏症(Fabry disease,Fabry's disease,或Anderson-Fabry disease),一種X染色體上基因異常導致的X-连锁隐性遗传疾病。因體內負責製造α-galactosidase(a-GAL)酵素的基因缺陷,造成體內醣神經胺醇脂質(glycosphingolipid)無法代謝,不斷堆積在細胞質及溶體中,而引發多處器官病變,嚴重時可能造成死亡。它的命名來自於它的發現者之一,喬納斯·法布瑞(Johannes Fabry)。.

新!!: 溶酶体和法布瑞氏症 · 查看更多 »

泛素

泛素(ubiquitin)是一种存在于大多数真核细胞中的小蛋白。它的主要功能是标记需要分解掉的蛋白质,使其水解。当附有泛素的蛋白质移动到桶状的蛋白酶的时候,蛋白酶就会将该蛋白质水解。泛素也可以标记跨膜蛋白,如受体,将其从细胞膜上除去。 1974年,G.格鲁斯坦第一次从小牛胸腺中提取8.5kd的多肽(胸腺生成素),后来在哺乳类的组织、鱼类、昆虫等均有发现。 泛素由76个氨基酸组成,分子量大约8500道尔顿。它在真核生物中具有高度保守性,人类和酵母的泛素有96%的相似性。 人类基因组约有1万9千个编码基因,蛋白转录后经剪接、修饰,可达几十万种,包括细胞的结构蛋白、激素、酶、转录因子等,有序的调节生命活动。蛋白酶降解,如胰蛋白酶将小肠内的食物蛋白消化成小肽、氨基酸,被小肠吸收;细胞内吞作用将外来蛋白吞入细胞,在食物泡内被溶酶体的消化酶吸收,不耗能量。.

新!!: 溶酶体和泛素 · 查看更多 »

消化作用

消化作用是指將食物(大分子)分解成足夠小的水溶性分子(小分子),可以溶解在血漿,讓身體能夠吸收利用的過程。有些生物體會透過小腸吸收小分子,帶到血液系統中。消化作用是生物异化作用(分解代謝)的一環,可以分為兩個階段,首先藉由機械性的作用(機械消化,mechanical digestion)將食物碎裂成小裂片,其次是化學性的作用(化學消化,chemical digestion),經由酵素的催化,將大分子水解成小分子單體。而無法消化的殘渣則會再排出體外。 大多數食物中所含的有機物包括蛋白質、脂肪和碳水化合物。由於這些大分子聚合物無法穿過細胞膜進入細胞內,而且動物需要用單體來合成自身身體所需的聚合物,因此動物需要藉由消化作用將食物中的大分子分解成單體。例如將蛋白質分解為胺基酸,多醣及雙醣分解為單醣,脂肪分解為甘油及脂肪酸等。.

新!!: 溶酶体和消化作用 · 查看更多 »

消化酶

消化酶(digestive enzymes)是将聚合的高分子降解为他们的构建单元的酶类,以促进他们被身体吸收。消化酶类可在动物(及人)的消化管内找到,在那里帮助食物的消化,他们也存在于细胞中,特别是在其溶酶体中发挥作用,以维护细胞中的残留物。消化酶类多种多样,他们存在于:由唾腺分泌的唾液之中、由胃内壁细胞分泌的胃液之中、由胰腺外分泌细胞分泌的胰液之中以及在肠(大与小)胃分泌物之中。.

新!!: 溶酶体和消化酶 · 查看更多 »

浆细胞

浆细胞(Plasma cell),亦称为效应B细胞(effector B cell),是免疫系统中释放大量抗体的细胞。直径10-20μm,细胞核较小,占细胞的一半以下,多偏于一侧,偶尔可有双核。浆细胞的染色质粗密、 聚集成堆、常呈紫丁香色、不均匀,在近核处一边常伸出半月状淡染区;浆中偶见有空泡或有泡沫感。 浆细胞系统包括原始浆细胞、幼浆细胞、Russell小体、Dutcher小体和火焰状细胞等部分。 浆细胞是由B细胞对于CD4+淋巴细胞的刺激异化而来,因此也称浆B细胞(Plasma B cell)。抗原入侵后,B细胞起到一个APC(抗原呈递细胞)的作用,吞噬了相应的抗原。此抗原被B细胞的吞噬作用(phagocytosis)吸收后,在吞噬体(phagosomes)中因和溶酶體(lysosomes)结合而分解,释放出付着在抗原上的蛋白酶。此酶分解了抗原后,抗原的碎片就付着在MHC II(主要组织相容性复合体 II)分子上,并出现在其外表面。一旦出现在MHC II分子外表面,CD4+輔助型T細胞就和MHC II/抗原分子结合,并激活B细胞。该激活过程包括B细胞异化为浆细胞以及紧接下来的抗体生成过程以消灭抗原。 Category:免疫学.

新!!: 溶酶体和浆细胞 · 查看更多 »

重定向到这里:

LysosomeLysosomes溶小體溶體溶酶體

传出传入
嘿!我们在Facebook上吧! »