目录
70 关系: 埃尔温·布鲁诺·克里斯托费尔,卡尔·诺伊曼,卡爾·弗里德里希·高斯,卡爾·雅可比,千禧年大獎難題,可去奇点,变分法,同調代數,合同 (數學),威廉·金頓·克利福德,尼古拉·布尔巴基,射影几何,巴塞尔问题,希爾伯特第二十二問題,庞加莱半平面模型,亨德里克·洛伦兹,廣義相對論入門,代數曲線,微分几何,微分流形,微积分学,德语姓名译名手册,哥廷根大学,哥德巴赫猜想,几何学家列表,几何化猜想,勒貝格積分,理查德·戴德金,积分,经典统一场论,狄利克雷原理,狄利克雷η函数,西莫恩·德尼·泊松,馬克士威方程組,解析空間,解析数论,调性网络,鲁道夫·利普希茨,路德维希·施莱夫利,路易吉·比安基,黎曼-勒贝格定理,黎曼-西格尔公式,黎曼几何,黎曼环形山,黎曼球面,黎曼积分,黎曼级数定理,黎曼猜想,黎曼ζ函數,黎曼-罗赫定理,... 扩展索引 (20 更多) »
埃尔温·布鲁诺·克里斯托费尔
埃尔温·布鲁诺·克里斯托费尔(Elwin Bruno Christoffel,),19世紀德國數學家。.
卡尔·诺伊曼
卡尔·诺伊曼(Carl Gottfried Neumann,),德国数学家。他就學於柯尼斯堡大學﹐1855年獲博士學位﹐1858年在哈雷大學講授數學﹐1863年為助理教授﹐1865年任蒂賓根大學教授﹐1868~1911年任萊比錫大學教授。 諾伊曼在偏微分方程邊值問題方面有許多貢獻。他首創解狄利克雷問題的算術平均法(1870)﹐對平面凸邊界曲線和空間凸曲面情形證明了狄利克雷問題解的存在性。位勢理論中第二邊值問題一直以他的名字命名。他還引進對數位勢的概念,發展了黎曼的代數函數理論。諾伊曼還與克萊布什於1868年共同創辦了德國數學雜誌《數學年刊》。.
卡爾·弗里德里希·高斯
约翰·卡爾·弗里德里希·高斯(Johann Karl Friedrich Gauß;), 德国数学家、物理学家、天文学家、大地测量学家,生于布伦瑞克,卒于哥廷根。高斯被认为是历史上最重要的数学家之一Dunnington, G. Waldo.
卡爾·雅可比
卡爾·古斯塔夫·雅各布·雅可比(Carl Gustav Jacob Jacobi,)是一位普魯士數學家,被廣泛的認為是歷史上最偉大的數學家之一。.
千禧年大獎難題
千禧年大獎難題(Millennium Prize Problems)是七個由美國克雷數學研究所(Clay Mathematics Institute,CMI)於2000年5月24日公佈的數學難題,解题总奖金700万美元。根據克雷數學研究所制定的規則,這一系列挑戰不限時間,題解必須發表在國際知名的出版物上,並經過各方驗證,只要通過兩年驗證期和专家小组审核,每解破一題可獲獎金100万美元deadurl。 這些難題旨在呼應1900年德國數學家大衛·希爾伯特在巴黎提出的23個歷史性數學難題,經過一百年,约17个難題至少已被部分解答。而千禧年大獎難題的破解,極有可能為密碼學、航天、通訊等領域帶來突破性進展。 迄今为止,在七个问题中,庞加莱猜想是唯一被解决的,2003年,俄罗斯数学家格里戈里·佩雷尔曼证明了它的正确性。而其它六道难题仍有待研究者探索。.
可去奇点
在复分析中,一个全纯函数的可去奇点(removable singularity),有时称为装饰性奇点(cosmetic singularity)是这样的点,在此处函数表面上没有定义,但是通过细致地分析,函数的定义域可以扩大到该奇点,使得延拓后的函数仍然全纯。 例如函数: 对 z ≠ 0 有一个奇点 z.
查看 波恩哈德·黎曼和可去奇点
变分法
变分法是处理泛函的数学领域,和处理函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。 变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。 变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄利克雷原理。 同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,莫尔斯理论,或者辛几何。变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工作,称为普拉托问题。.
查看 波恩哈德·黎曼和变分法
同調代數
同調代數是數學的一個分支,它研究同調與上同調技術的一般框架。.
查看 波恩哈德·黎曼和同調代數
合同 (數學)
在數學中,合同(英文:congruence,符號:≅)做為一個一般性的概念,指的是一組物件之間的等價關係。例如:.
威廉·金頓·克利福德
威廉·金頓·克利福德(William Kingdon Clifford,),英國數學家兼科學哲學家。他和赫爾曼·格拉斯曼發明了現在稱為幾何代數的範疇。數學物理上的克利福德代數以他命名。 先後入讀倫敦大學國王學院、劍橋大學三一學院。1867年,他在年終考試排第二。1871年,成為倫敦大學學院數學和力學教授,1874年成為英國皇家學會院士。1875年和小說家露西·藍恩結婚。1876年,他工作過度,身體幾乎崩潰,因為他白天忙着教學和管理事務,晚上又工作。他往阿爾及尼亞和西班牙度假。後來他到了馬德拉,在那兒因肺結核逝世,終年34歲。11天後,愛因斯坦出生。.
尼古拉·布尔巴基
尼古拉·布尔巴基(Nicolas Bourbaki,法語發音)是20世纪一群法国数学家的笔名。他們由1935年開始撰寫一系列述說對現代高等數學探研所得的書籍。以把整個數學建基於集合论為目的,在過程中,布尔巴基致力於做到最極端的嚴謹和泛化,建立了些新術語和概念。 布尔巴基是个虚构的人物,布尔巴基团体的正式称呼是“尼古拉·布尔巴基合作者协会”,在巴黎的高等师范学校设有办公室。.
射影几何
在數學裡,投影幾何(projective geometry)研究在投影變換下不變的幾何性質。與初等幾何不同,投影幾何有不同的設定、投影空間及一套基本幾何概念。直覺上,在一特定維度上,投影空間比歐氏空間擁有「更多」的點,且允許透過幾何變換將這些額外的點(稱之為無窮遠點)轉換成傳統的點,反之亦然。 投影幾何中有意義的性質均與新的變換概念有關,此一變換比透過變換矩陣或平移(仿射變換)表示的變換更為基礎。對幾何學家來說,第一個問題是要找到一個足以描述這個新的想法的幾何語言。不可能在投影幾何內談論角,如同在歐氏幾何內談論一般,因為角並不是個在投影變換下不變的概念,如在透視圖中所清楚看到的一般。投影幾何的許多想法來源來自於對透視圖的理論研究。另一個與初等幾何不同之處在於,平行線可被認為會在無窮遠點上交會,一旦此一概念被轉換成投影幾何的詞彙之後。這個概念在直觀上,正如同在透視圖上會看到鐵軌在水平線上交會一般。有關投影幾何在二維上的基本說明,請見投影平面。 雖然這些想法很早以前便已存在,但投影幾何的發展主要還是到19世紀才開始。大量的研究使得投影幾何變成那時幾何的代表學科。當使用複數的坐標(齊次坐標)時,即為研究複投影空間之理論。一些更抽象的數學(包括不變量理論、代數幾何義大利學派,以及菲利克斯·克萊因那導致古典群誕生的愛爾蘭根綱領)都建立在投影幾何之上。此一學科亦吸引了許多學者,在綜合幾何的旗幟之下。另一個從投影幾何之公理化研究誕生的領域為有限幾何。 投影幾何的領域又可細分成許多的研究領域,其中的兩個例子為投影代數幾何(研究投影簇)及投影微分幾何(研究投影變換的微分不變量)。.
查看 波恩哈德·黎曼和射影几何
巴塞尔问题
巴塞尔问题是一个著名的数论问题,这个问题首先由在1644年提出,由莱昂哈德·欧拉在1735年解决。由于这个问题难倒了以前许多的数学家,欧拉一解出这个问题马上就出名了,当时他二十八岁。欧拉把这个问题作了一番推广,他的想法后来被黎曼在1859年的论文《论小于给定大数的质数个数》(On the Number of Primes Less Than a Given Magnitude)中所采用,论文中定义了黎曼ζ函数,并证明了它的一些基本的性质。这个问题是以瑞士的第三大城市巴塞尔命名的,它是欧拉和伯努利家族的家乡。 这个问题是精确计算所有平方数的倒数的和,也就是以下级数的和: \sum_^\infin \frac.
希爾伯特第二十二問題
希爾伯特第二十二問題是希爾伯特的23個問題之一,關於以自守函數一致化可解析關係。這問題已在1907年由德國數學家解決。黎曼曲面理論和這問題有一定關係。.
庞加莱半平面模型
在非欧几里得几何中,庞加莱半平面模型(Poincaré half-plane model)是赋有庞加莱度量的上半平面,这是二维双曲几何的一个模型。 它以昂利·庞加莱命名,但最初是贝尔特拉米(Eugenio Beltrami)发现的,他用这个模型与克莱因模型以及庞加莱圆盘模型(属于黎曼)证明了双曲几何与欧几里得几何的相容性等价(equiconsistent)。圆盘模型与半平面模型在共形映射下是等价的。.
亨德里克·洛伦兹
亨德里克·安东·洛伦兹(Hendrik Antoon Lorentz,),荷兰物理学家,曾与彼得·塞曼共同获得1902年诺贝尔物理学奖,并於1881年当选荷蘭皇家藝術與科學學院院士,同时还曾担任多国科学院外籍院士。 洛伦兹以其在电磁学与光学领域的研究工作闻名于世。他通过连续电磁场以及物质中离散电子等概念得到了经典电子理论。这一理论可以在许多问题中派上用场:比如电磁场对运动的带电粒子的作用力(洛伦兹力)、介质的折射率与其密度的关系(洛伦兹-洛伦茨方程)、光色散理论、对于一些磁学现象的解释(比如塞曼效应)以及金属的部分性质。在电子理论的基础上,他还发展了运动介质中的电动力学,其中包括提出了物体在其运动方向上会发生长度收缩的假说(洛伦兹-斐兹杰惹收缩)、引入了“局部时”的概念、获得了质量与速度之间的关系并构造了表述不同惯性系间坐标和时间关系的方程组(洛伦兹变换)。洛伦兹的研究工作后来成为狭义相对论与量子物理的基础。此外,洛伦兹在热力学、分子运动论、广义相对论以及热辐射理论等方面也有建树。.
廣義相對論入門
广义相对论是一种关于引力的理论,它在1907年到1915年由爱因斯坦完成。根据广义相对论,物质之间的引力来自于时空的弯曲。 在广义相对论出现之前的200多年间,牛顿万有引力定律被广泛接受,它成功地解释了物质之间的引力作用。在牛顿的定律中,引力来自大质量物质之间的相互吸引。虽然牛顿也不知道这种力的本质,但它在描述运动时却非常成功。 但是,实验和观测都显示,爱因斯坦对引力的描述能够解释多个由牛顿定律无法解释的现象,比如水星和其他行星轨道的反常的进动。广义相对论还预言了一些关于引力的显著效应,比如引力波和引力透镜,还有引力场引发的时间膨胀。2016年2月11日,LIGO團隊於華盛頓舉行的一場記者會上共同宣布人類對於重力波的首個直接探測結果。所探測到的重力波來源於雙黑洞融合。 广义相对论已经成为现代天体物理学的重要工具。它提供了现在理解黑洞(一个引力强大到使光都无法逃逸的空间区域)的基础。其强大的引力也使一些天体(比如活动星系核和X射线双星)发射出强烈的辐射。广义相对论也是宇宙学的标準大爆炸模型的理论框架中的一部分。 然而,到现在仍然有大量的问题没有解决,其中最根本的是广义相对论如何和量子力学结合而产生一个完整一致的量子引力理论。.
代數曲線
在代數幾何中,一條代數曲線是一維的代數簇。最典型的例子是射影平面\mathbb^2上由一個齊次多項式f(X,Y)定義的零點。.
查看 波恩哈德·黎曼和代數曲線
微分几何
微分幾何研究微分流形的幾何性質,是現代數學中一主流;是廣義相對論的基礎,與拓撲學、代數幾何及理論物理關係密切。 古典微分几何起源于微积分,主要内容为曲线论和曲面论。歐拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。.
查看 波恩哈德·黎曼和微分几何
微分流形
光滑流形(),或称-微分流形()、-可微流形(),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是类的微分流形。可微流形在物理學中非常重要。特殊種類的可微流形構成了經典力學、廣義相對論和楊-米爾斯理論等物理理論的基礎。可以為可微流形開發微積分。可微流形上的微積分研究被稱為微分幾何。.
查看 波恩哈德·黎曼和微分流形
微积分学
微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.
查看 波恩哈德·黎曼和微积分学
德语姓名译名手册
《德语姓名译名手册》 是1999年新华通讯社译名室编商务印书馆发行的翻译参考书。全书共收罗德国、奥地利、瑞士、卢森堡、匈牙利、罗马尼亚等操德语国家的德语姓名、教名的汉译约6万条,按拉丁字母顺序排列。《德语姓名译名手册》和《英语姓名译名手册》是姐妹篇。.
哥廷根大学
哥廷根的格奥尔格·奥古斯特大学(Georg-August-Universität Göttingen),简称哥廷根大学,位于德国西北部下萨克森州南端的大学城哥廷根市,因德国汉诺威公爵兼英国国王格奥尔格二世创建而得名。始建于1734年,于1737年向公众开放。同德国的海德堡大学、佛莱堡大学、圖宾根大学相似,哥廷根大学属于传统的大学城,是“没有校门和围墙的大学”。 哥廷根拥有十分辉煌的历史,名人辈出,蜚声世界。2007年10月至2012年5月期间为德国第二轮“精英大学”所评选的德国九所精英大学之一。.
哥德巴赫猜想
哥德巴赫猜想(Goldbach's conjecture)是數論中存在最久的未解問題之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。用现代的数学语言,哥德巴赫猜想可以陳述為: 这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和等。而將一个給定的偶數分拆成兩個質數之和,则被稱之為此數的哥德巴赫分拆。例如, 換句話說,哥德巴赫猜想主張每個大於等於4的偶數都是哥德巴赫數——可表示成兩個質數之和的數。哥德巴赫猜想也是二十世纪初希爾伯特第八問題中的一個子問題。 其實,也有一部分奇數可以用兩個質數的和表示,大多數的奇數無法用兩個質數的和表示,例如:15.
几何学家列表
几何学家是研究几何学的数学家。 下表列出了一些重要几何学家和他们的主要研究领域,按出生时间顺序排列如下:.
几何化猜想
威廉·瑟斯顿(Thurston)的几何化猜想(geometrization conjecture)指的是,任取一个紧致(可能带边)的三维流形尽量作连通和以使其成为尽可能简单的三维流形的连通和,对于带边流形可能还需要沿着一些圆盘继续切割,有唯一的方法沿着一些环面(如果是带边流形还要加上平环)割开得到尽可能简单的若干小块,这些小块均为八种标准几何结构之一。 八种标准几何结构均为完备的黎曼度量,这些几何结构在某种意义上是比较“好”的,例如体积有限、“直线”都可无限延伸等等。.
勒貝格積分
勒貝格積分(Lebesgue integral)是现代数学中的一个积分概念,它将积分运算扩展到任何测度空间中。在最简单的情况下,对一个非负值的函数的积分可以看作是函数图像与x轴之间的面积。勒贝格积分则将积分运算扩展到更廣的函数(可測函數),并且也扩展了可以进行积分运算的集合(可測空間)。最早的积分运算对于非负值的函数来说,其积分相当于使用求极限的手段来计算一个多边形的面积(也就是黎曼積分),但這過程需要函數足够規則。但是随着对更加不规则的函数的积分运算的需要不断产生(比如为了讨论数学分析的极限过程中導致的函數,或者出于概率论的需求),很快就产生了对更加广义的求极限手段的要求来定义相应的积分运算。 在实分析和在其它许多数学领域中勒貝格積分拥有一席重要的地位。 勒貝格積分是以昂利·勒貝格命名的,他于1904年引入了这个积分定义。 今天勒贝格积分有狭义和广义两种意义。广义地说是对于一个在一般測度空間(的子集合)上的函数积分,在這情況下其測度不必然是勒貝格測度。狭义则是指对于勒贝格测度在實數線或者更高维数的歐幾里得空間的一个子集合上函数的积分。.
理查德·戴德金
查德·戴德金(Julius Wilhelm Richard Dedekind),德國數學家。 戴德金是高斯的學生,一生都以學術為主。他和狄利克雷、黎曼都是好朋友。.
积分
积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.
查看 波恩哈德·黎曼和积分
经典统一场论
经典统一场论(classical unified field theory)是试图在经典物理的框架下建立一个单一自洽的场论模型,从而能够解释自然界中所有基本相互作用的所有这类尝试的总称。经典统一场论可以被认为是统一场论的一个分支,在第一次世界大战和第二次世界大战之间有很多物理学家和数学家都致力于统一引力和电磁理论方面的研究,这些工作促进了微分几何在纯数学领域的发展。爱因斯坦是最被人熟知的尝试建立统一场论的物理学家之一。 本条目意在介绍历史上多种尝试建立一个经典的、相对论性的统一场理论;至于现代物理学中试图建立一个相容於量子理论的引力理论的尝试,请参见量子引力。.
狄利克雷原理
在数学中的位势论里,狄利克雷原理是关于在 \mathbb^n 中的某个区域 \Omega 上的泊松方程 满足边界条件 的解 u(x) 的刻画。原理说明,u(x) 是使得狄利克雷势能 最小的几乎处处二次可导,并且在边界 \partial\Omega 上满足 v.
狄利克雷η函数
在数学的解析数论领域,狄利克雷η函数定义为: 其中 ζ 是黎曼ζ函數。但η函数也用常来定义黎曼ζ函數。 对实部为正数的复数s,也可定义为狄利克雷级数表达式形式: 表达式仅当实部为正数时收敛。对任意复数,该表达式是一个阿贝尔和,可定义为一个整函数,并由此可知ζ函數是一个极点在s.
西莫恩·德尼·泊松
西莫恩·德尼·泊松男爵(Siméon Denis Poisson,法语,),法国数学家、几何学家和物理学家。.
馬克士威方程組
克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.
解析空間
在數學中,解析空間是一類局部上由解析函數定義的局部賦環空間,可理解為解析版本的概形。.
查看 波恩哈德·黎曼和解析空間
解析数论
解析数论(analytic number theory),為數論中的分支,它使用由数学分析中發展出的方法,作为工具,来解决数论中的问题。它首次出現在數學家狄利克雷在1837年導入狄利克雷L函數,來証明狄利克雷定理。解析数论的成果中,較廣為人知的是在質數(例如質數定理及黎曼ζ函數)及(例如哥德巴赫猜想及華林問題)。.
查看 波恩哈德·黎曼和解析数论
调性网络
在律学与和声学中,调性网络,或托内斯(来自于德语“Tonnetz”,“tone-network”的意思)是一种用于表示调性空间的、概念性的,由莱昂哈德·欧拉于1739年提出。调性网络的各种可视化形式可被用于表示欧洲古典音乐的传统和声关系。.
查看 波恩哈德·黎曼和调性网络
鲁道夫·利普希茨
鲁道夫·利普希茨(Rudolf Otto Sigismund Lipschitz,),也译作李普希茨,德国数学家。1847年入柯尼斯堡大学,1853年获柏林大学博士学位,1864年起任波恩大学教授。先后当选为巴黎、柏林、格丁根、罗马等科学院的通讯院士。 李普希茨的数学研究涉及数论、贝塞尔函数论、傅里叶级数论、常微分方程、分析力学、位势理论及黎曼微分几何,其中在微分方程和微分几何方面尤为突出。1873年他对柯西提出的微分方程初值问题解的存在惟一性定理作出改进,提出著名的“李普希茨条件”。存在性定理的证明有力地推进了对微分方程定性理论以及解的近似计算的研究。 李普希茨被认为是黎曼事业的继承者之一。黎曼于1854年系统地阐述了高维流形微分几何的主要内容,并于1868年发表了研究n维流形的度量结构的文章。1869年起李普希茨对黎曼的思想作出进一步阐述和推广,其中对n维黎曼流形的子流形性质以及对微分不变量的研究,取得了开创性的成果。他还是最早使用共变微分研究微分不变量的人,这个概念后来被里奇有效地用于张量分析。.
路德维希·施莱夫利
路德维希·施莱夫利(Ludwig Schläfli,)是瑞士数学家,工作包括几何和複分析(当时称为為函数论)。他是一個發展高维空間概念的重要人物。多维概念后來成為物理学的关键。或因他的观念已普遍接納,很少人记得他,即使数学家亦然。.
路易吉·比安基
路易吉·比安基(Luigi Bianchi,)是一个意大利数学家。他出生于艾米利亚-罗马涅的帕尔马,在比萨去世。 他是十九世纪后期与二十世纪前期繁荣于意大利的几何学派的领头人。 和他的朋友及同事格雷戈里奥·里奇-库尔巴斯托罗一样,比安基于比萨的高等师范学校在恩里科·贝蒂,微分几何的领袖人物,今天最被记住的是他对拓扑学的开创性贡献,以及乌利塞·迪尼,函数理论的带头专家,的下指导学习。比安基也受波恩哈德·黎曼的几何理念与索菲斯·李及菲利克斯·克莱因在变换群方面的著作影响很深。比安基1896年成为比萨高等师范学校的教授,在这里他度过了整个职业生涯。在比萨,他的同事包括天才的里奇。1890年,比安基与迪尼合作指导了后来著名的分析学家与几何学家圭多·富比尼的博士论文。 1898年,比安基成功完成一个(足够对称的)黎曼流形等距的三维李群的九种可能的等距类的比安基分类。比安基已经知道这与,在同构的意义下,三维实李代数的分类在本质上是一回事。这补充了李自己早先的工作,他将复李代数做了分类。 在路德·艾森哈特(Luther P.
黎曼-勒贝格定理
在数学分析中,黎曼-勒贝格定理(或黎曼-勒贝格引理、黎曼-勒贝格积分引理)是一个傅里叶分析方面的结果。这个定理有两种形式,分别是关于周期函数(傅里叶理论中关于傅里叶级数的方面)和关于在一般实数域\mathbb上定义的函数(傅里叶变换的方面)。在任一种形式下,定理都说明了可积函数在傅里叶变换后的结果在无穷远处趋于0。这个结果也可以适用于局部紧致的阿贝尔群。.
黎曼-西格尔公式
在数学中,黎曼-西格尔公式是黎曼ζ函數的近似函数方程误差的渐近公式,前者是ζ函數的近似值,由两个有限狄利克雷级数的和来近似。在波恩哈德·黎曼1850年代一篇未发表的手稿中发现这个公式。西格尔从黎曼-西格尔积分公式中推导出它,这是一个涉及ζ函数围道积分的表达式。该公式通常用于计算黎曼-西格尔公式的值,与欧德里兹科-肖恩哈格算法相结合,可以大大加快算法的速度。当沿着关键线使用时,通常将其变换为关于Z函数的公式比较有用。 如果M和N是非负整数,那么ζ函数等于 其中 是函数方程中出现的因数,且 是一个围道积分,围道的起点和终点在+∞处,并最多绕绝对值奇点圈。近似函数方程给出了误差项大小的估计。和通过将最速下降法应用于该积分,推导出黎曼-西格尔公式,将误差项R(s)渐近展开为Im(s)的负幂次级数。在应用中,s通常位于关键线上,并且选择正整数M和N约为。发现了一个黎曼-西格尔公式误差的较好界限。.
黎曼几何
微分幾何中,黎曼幾何(英語:Riemannian geometry)研究具有黎曼度量的光滑流形,即流形切空間上二次形式的選擇。它特別關注于角度、弧線長度及體積。把每个微小部分加起來而得出整體的數量。 19世紀,波恩哈德·黎曼把這個概念加以推广。 任意平滑流形容許黎曼度量及這個額外結構幫助解決微分拓扑問題。它成為伪黎曼流形複雜結構的入門。其中大部分都是廣義相對論的四維研究对象。 黎曼幾何与以下主題有关:.
查看 波恩哈德·黎曼和黎曼几何
黎曼环形山
黎曼环形山(Riemann)是月球正面北半部位于东侧边沿上的一座古老大撞击坑,约形成于45.5-39.2亿年前的前酒海纪Lunar Impact Crater Database,其名称取自十九世纪德国数学家、机械师暨物理学家"格奥尔格·弗雷德里希·波恩哈德·黎曼"(1826年-1866年),1964年被国际天文学联合会批准接受。.
黎曼球面
数学上,黎曼球面是一种将複數平面加上一个无穷远点的扩张,使得下面这类公式至少在某种意义下有意义 它由19世纪数学家黎曼而得名。也称为.
查看 波恩哈德·黎曼和黎曼球面
黎曼积分
在实分析中,由黎曼创立的黎曼积分(Riemann integral)首次对函数在给定区间上的积分给出了一个精确定义。黎曼积分在技术上的某些不足之处可由后来的黎曼-斯蒂尔杰斯积分和勒贝格积分得到修补。.
查看 波恩哈德·黎曼和黎曼积分
黎曼级数定理
黎曼级数定理(亦称黎曼重排定理),是一个有关於无穷级数性质的数学定理,得名于19世纪德国著名数学家波恩哈德·黎曼。黎曼级数定理说明,如果一个实数项无穷级数若是条件收敛的,它的项在重新排列後,重新排列後的级数收敛的值可能會收斂到任何一个给定的值,甚至发散。 许多有限项级数具有的性質,在一般的无穷级数不一定滿足,例如一般的有限项级数可以重新排列各項,其級數和不會改變,但在无穷级数中,只有绝对收敛的无穷级数才可以重新排列各項而不改變收斂值。.
黎曼猜想
黎曼猜想由德国數學家波恩哈德·黎曼(Bernhard Riemann)於1859年提出。它是數學中一個重要而又著名的未解決的問題(猜想界皇冠)。多年來它吸引了許多出色的數學家為之絞盡腦汁。.
查看 波恩哈德·黎曼和黎曼猜想
黎曼ζ函數
黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.
黎曼-罗赫定理
黎曼–罗赫定理(Riemann–Roch theorem)是数学中的一个重要工具,在复分析和代数几何中的应用尤为广泛。利用该定理,可计算具有指定零点与极点的亚纯函数空间的维数。它将具有纯拓扑亏格 g 的连通紧黎曼曲面上的复分析以某种方式可转换为纯代数设置。 此定理最初是黎曼不等式,对黎曼曲面的确定形式由黎曼早逝的学生古斯塔·罗赫于1850年代证明。随后推广到代数曲面,高维代数簇,等等。.
黎曼ξ函數
數學中,黎曼ξ函數(Riemann Xi function)是黎曼ζ函數的變型,其定義是為了得到一個簡單的泛函方程式。此函數得名於波恩哈德·黎曼。.
黎曼映射定理
在數學中,黎曼映射定理是複分析最深刻的定理之一,此定理分類了\mathbb的單連通開子集。.
黎曼曲面
数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被視为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。 黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函數。 每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个複結構),因为全純函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有複結構,但是莫比乌斯带,克莱因瓶和射影平面没有。 黎曼曲面的几何性质是最妙的,它们也给與其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。.
查看 波恩哈德·黎曼和黎曼曲面
阿尔弗雷德·克莱布什
阿尔弗雷德·克莱布什(Rudolf Friedrich Alfred Clebsch,),德国数学家。19世纪代数几何德国学派的领导者之一。 1854年以流体动力学方面的论文获柯尼斯堡大学博士学位。后专攻射影不变量和代数几何课题。他先后在几所大学任教授。1868年与卡尔·诺伊曼创办了《数学年刊》。他的主要工作是完成了由S·H·阿隆霍尔德(Siegfried Heinrich Aronhold)开创的关于型和不变量的符号演算法;讨论了各种有理曲面,特别是一般三次曲面的平面表示,并得到了第一个代数曲面的双有理不变量,成为代数曲面论研究的开创者之一;与保罗·哥尔丹合作,研究黎曼的代数函数论思想,撰写了《阿贝尔函数理论》(1866),在建立纯代数几何的黎曼理论方面迈出了本质性的一步。.
赫尔曼·汉克尔
赫尔曼·汉克尔(Hermann Hankel,),德国数学家,生于萨克森-安哈尔特州哈雷市。 汉克尔曾与莫比乌斯、黎曼、维尔斯特拉斯和克罗内克等数学家共同学习和工作。.
陈省身
省身(国语罗马字:Shiing-shen Chern,),號辛生,中國旅美数学家,微分几何学家。美国国家科学院院士、中央研究院院士,同时是法国科学院、意大利猞猁之眼国家科学院、英国皇家学会和中国科学院的外籍院士。陈省身是20世纪世界最重要的微分几何学家之一、也是最有影响力的数学家之一,曾长期担任加州大学伯克利分校和芝加哥大学数学教授。 陈省身于1982在伯克利主持创立了美国国家数学科学研究所,并担任研究所的首任所长;该研究所已成为世界最重要的数学研究中心之一。为了纪念陈省身,国际数学联盟于2010年成立了“陈省身奖”,以表彰在数学界做出最重大贡献的个人、是国际数学界最高荣誉之一。.
查看 波恩哈德·黎曼和陈省身
Θ函數
數學中,Θ函數是一種多複變特殊函數。其應用包括阿貝爾簇與模空間、二次形式、孤立子理論;其格拉斯曼代數推廣亦出現於量子場論,尤其於超弦與D-膜理論。 Θ函數最常見於椭圓函數理論。相對於其「z」 變量,Θ函數是拟周期函数(quasiperiodic function),具有「擬周期性」。在一般下降理論(descent theory)中,此來自線叢條件。.
查看 波恩哈德·黎曼和Θ函數
柯西-黎曼方程
复分析中的柯西-黎曼微分方程是提供了可微函数在开集中為全纯函数的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。 在一对实值函数u(x,y)和v(x,y)上的柯西-黎曼方程组包括两个方程: 和 通常,u和v取为一个复函数的实部和虚部:f(x + iy).
恩里科·贝蒂
恩里科·贝蒂(Enrico Betti,),意大利数学家。意大利统一后对数学的复兴起重大作用的人之一。曾在比萨大学学习数学,曾参加意大利独立战争,1865年获比萨大学教授职位,一直到去世。1862年任国会议员,1884年任参议员,1874年任短期教育部副部长。 贝蒂早期工作涉及刚发表不久的伽罗瓦理论,他给当时还不太为人所知的代数方程的根式解的条件以明确的表述和证明。19世纪60年代,他研究椭圆函数论以及数学物理问题。他的重要工作是在拓扑学方面。1871年引进的貝蒂數,是重要的拓扑不变量。在黎曼影响下,研究数学物理,证明贝蒂定理(弹性论互逆定理),并应用格林方法于弹性理论和热学。.
格奥尔格·康托尔
格奥尔格·费迪南德·路德维希·菲利普·康托尔(Georg Ferdinand Ludwig Philipp Cantor,),出生于俄国的德国数学家(波羅的海德國人)。他创立了现代集合论,是實數系以至整个微积分理论体系的基础,還提出了势和良序概念的定義;康托爾確定了在兩個集合中的成員,其間一對一關係的重要性,定義了無限且有序的集合,並證明了實數比自然數更多。康托爾對這個定理所使用的證明方法,事實上暗示了“無限的無窮” 的存在。他定義了基數和序數及其算術。康托爾很清楚地自知自覺他的成果,富有極濃厚的哲學興趣。康托爾提出的超越數,最初被當時數學界同儕認為如此反直覺-甚至令人震驚-因而拒絕接受他的理論,且以利奥波德·克罗内克为首的众多数学家长期攻击。克羅內克反對代數數為可數的,而超越數為不可數的證明。 康托爾本身是一位虔誠的路德派,相信這個理論是經由上帝傳達給他;但一些基督教神學家認為康托爾的理論,是在挑戰神學中只有上帝才具有絕對而唯一的無限性質。康托爾自 1869年任職於德國哈勒大學直到 1918年在哈勒大學附屬精神病院逝世;他的抑鬱症一直再發的病因,被歸咎於當代學界的敵對態度,儘管有人將這些事件解釋為,是他本人所患有的情感雙極障礙的病徵。他所受到的嚴厲攻擊,與後來的讚譽相匹配:在 1904年倫敦皇家學會授予他西爾維斯特獎章,這是皇家學會可授予數學研究者的最高榮譽。 在康托死後數十年,維特根斯坦撰文哀悼昔時學術界指責「集合論是假借通過數學而有害處的方言」的氛圍,他認為那是「可笑」和「錯誤」的「完全無稽之談」。当代数学家绝大多数接受康托尔的理论,并认为这是数学史上一次重要的变革。大卫·希尔伯特說:「沒有人能夠把我們從康托爾建立的樂園中趕出去。」(原文另譯:我們屏息敬畏地自知在康托所鋪展的天堂裡,不會遭逢被驅逐出境的。).
欧拉方程 (流体动力学)
在流體動力學中,歐拉方程是一組支配無黏性流體運動的方程,以萊昂哈德·歐拉命名。方程組各方程分別代表質量守恆(連續性)、動量守恆及能量守恆,對應零黏性及無熱傳導項的納維-斯托克斯方程。歷史上,只有連續性及動量方程是由歐拉所推導的。然而,流體動力學的文獻常把全組方程——包括能量方程——稱為“歐拉方程”。 跟納維-斯托克斯方程一樣,歐拉方程一般有兩種寫法:“守恆形式”及“非守恆形式”。守恆形式強調物理解釋,即方程是通過一空間中某固定體積的守恆定律;而非守恆形式則強調該體積跟流體運動時的變化狀態。 歐拉方程可被用於可壓縮性流體,同時也可被用於非壓縮性流體——這時應使用適當的狀態方程,或假設流速的散度為零。 本條目假設經典力學適用;當可壓縮流的速度接近光速時,詳見相對論性歐拉方程。.
漢斯·馮·曼戈爾特 (數學家)
漢斯·卡爾·弗里德里希·馮·曼戈爾特(Hans Carl Friedrich von Mangoldt,),德國數學家。 出生於圖林根威瑪,1878年在柏林洪堡大學完成哲學博士,其導師為恩尼斯特·庫默爾及卡爾·魏爾施特拉斯。他嚴格證明了波恩哈德·黎曼的論文On the Number of Primes Less Than a Given Magnitude的其中兩個命題,幫助了素数定理的證明。黎曼只給出那兩個命題的部分證明。.
月球環形山列表 (R-S)
这是月球环形山列表的一部份,此表列举出英文名称以字母R及S开头的环形山。.
流形
流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.
查看 波恩哈德·黎曼和流形
数学史
数学史的主要研究对象是历史上的数学发现,以及调查它们的起源,或更广义地说,数学史就是对过去的数学方法与数学符号的探究。 数学起源于人类早期的生产活动,为古中国六艺之一,亦被古希腊学者视为哲学之起点。數學最早用於人們計數、天文、度量甚至是貿易的需要。這些需要可以簡單地被概括為數學對結構、空間以及時間的研究;對結構的研究是從數字開始的,首先是從我們稱之為初等代數的——自然數和整數以及它們的算術關係式開始的。更深層次的研究是數論;對空間的研究則是從幾何學開始的,首先是歐幾里得幾何和類似於三維空間(也適用於多或少維)的三角學。後來產生了非歐幾里得幾何,在相對論中扮演著重要角色。 在进入知识可以向全世界传播的现代社会以前,有记录的新数学发现仅仅在很少几个地区重见天日。目前最古老的数学文本是《普林顿 322》(古巴比伦,约公元前1900年),《莱因德数学纸草书》(古埃及,约公元前2000年-1800年),以及《莫斯科数学纸草书》(古埃及,约公元前1890年)。以上这些文本都涉及到了如今被称为毕达哥拉斯定理的概念,后者可能是继简单算术和几何后,最古老和最广泛传播的数学发现。 在公元前6世纪后,毕达哥拉斯将数学作为一门实证的学科进行研究,他创造了古希腊语单词μάθημα(mathema),意为“(被人们学习的)知识学问”。希腊数学家在相当大的程度上改进了这些数学方法(特别引入了演绎推理和严谨的数学证明),并扩大了数学的主题。中国数学做了早期贡献,包括引入了位值制系统。如今大行于世的印度-阿拉伯数字系统和运算方法,很可能是在公元后1000年的印度逐渐演化,并被伊斯兰数学家通过花拉子米的著作将其传到了西方。伊斯兰数学则将以上这些文明的数学做了进一步的发展贡献。许多古希腊和伊斯兰数学著作随后被翻译成了拉丁文,引领了中世纪欧洲更深入的数学发展。 从16世纪文艺复兴时期的意大利开始,算术、初等代数及三角学等初等数学已大体完备。17世纪变数概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 从古代到中世纪,数学发展的历史时期都伴随着数个世纪的停滞,但从16世纪以来,新的数学发展伴随新的科学发展,让数学不断加速大步前进,直至今日。.
查看 波恩哈德·黎曼和数学史
数学家列表
以下按国籍排列方法列出的数学家列表。 中国、法国、德国、意大利、古希腊、英国、美国、俄罗斯、挪威、瑞典、荷兰、瑞士、比利时、匈牙利、丹麦、印度。.
数学分析
数学分析(mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。出自《数学辞海(第一卷)》 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。.
查看 波恩哈德·黎曼和数学分析
数论
數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.
查看 波恩哈德·黎曼和数论
7月20日
7月20日是阳历年的第201天(闰年是202天),离一年的结束还有164天。.
9月17日
9月17日是阳历年的第260天(闰年是261天),离一年的结束还有105天。.
亦称为 黎曼,黎曼,(G.F.)B.。