徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

晶体

指数 晶体

晶体是原子、离子或分子按照一定的周期性,在结晶过程中,在空间排列形成具有一定规则的几何外形的固体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。 晶体内部原子或分子排列的三维空间周期性结构,是晶体最基本的、最本质的特征,并使晶体具有下面的通性:.

391 关系: 基质 (地质)埃瓦尔德球埃瓦尔德求和埃菲尔铁塔上所刻的72人列表原子原子堆積因子压电电子学压电晶体偉晶岩半导体泵浦固体激光卡西米爾·法揚斯卤素灯泡单质单晶右旋糖酐双(三苯基膦)硼氢化亚铜双相双折射双氢键双氢配合物吸收光谱学同质异形体吉萨尔山脉声子壓電效應多体问题复杂系统大卫·布儒斯特天卫四奥古斯特·布拉菲奥托·雷曼奈尔温度奈米線威廉·劳伦斯·布拉格孪晶宝石学完整晶体安息香寬吻海豚屬密勒指数小油櫛蟲工程学上层建筑希格斯場布利奥环形山七角柱布里渊区七氧化二锰布洛赫波布拉格定律...三硝基甲苯三羟甲基氨基甲烷三氟化锑三氧化二硼三氧化二磷三氧化二锑三氧化硒三氯化铑幡狀雲乌陵与土明乔安·费曼乙醯苯胺乙酸亚硝酸钠亚特兰蒂斯:失落的帝国人造水晶二乙二酸-1,4-苯醌酯二硅烯二極管二氟化氙二溴化钐云母五氧化二鏷事必關己延胡索酸伊西多·拉比弗伦克尔缺陷微晶蠟德哈斯-范阿尔芬效应地球構造化学键化學北大黑斑分子分子对称性分子晶体创神星咔唑優勝美地國家公園冰雪圈冰晶凝固凝集素准矿物准晶体全息存储六氟化鈾六氟砷酸五氮共价键先有鸡还是先有蛋光参量振荡器光子晶体光學史光學現象光弹性克劳修斯-莫索提方程式克爾效应克林顿·戴维孙勒内·茹斯特·阿羽依固体固体物理学固相合成固氧固態反應CrystalCS催淚性毒氣矮壮素石墨烯石英晶体谐振器石棉矿石收音机玻璃玻璃态玻恩-冯·卡门边界条件玛丽·居里獨居石砷化鎵砂岩硝酸鈰銨硝酸钯硝酸铋硫乙醯胺硫胺硫酸硫酸铜硫酸锂硫族化物硬石膏硼的同素異形體硼礦硼酸硼氢化亚铜硼氢化钇硒化汞硒酸铜硅化木碳化物碳纳米管碳纖維碘化銫碘化钠碘酸磁化率磁鐵磁黃鐵礦磷的同素异形体磷灰石磷酸离子晶体科学大纲秋水仙素空穴穆斯堡尔效应立方体堆砌立方烷立方氧化鋯笼形水合物类金刚石碳紧束缚近似綠柱石經典物理術語緊湊緲子線圈红宝石红柱石约翰内斯·贝德诺尔茨纳米晶体线粒体铁蛋白经典力学维生素C维格纳-赛兹原胞结构化学结晶结晶皿结晶水结晶水合物群论眼科学爆炸物病毒瓦尼尔函数甲基红甲基黄甲基橙甲酸铜甘氨酸甘油醛电子电光效应电磁辐射电阻焦硫酸熔化熔化热熔点物理学史物理冶金学物质状态盐 (化学)盐酸盐酸丁二胍相變化記憶體相态列表白云石白铁矿白铅矿DNA纳米技术隕磺礫岩音叉莫桑石菲利普·莱纳德萊納斯·鮑林萘酚非细胞生物非整比化合物表面重构風化作用食糖馬德隆常數馬爾山脈角闪石马克斯·冯·劳厄高分子高氯酸四氨合金高氯酸銣高氯酸铵魏德曼花紋让·卡巴纳诺贝尔物理学奖得主列表费米面超润滑路易·德布罗意車輪礦黄铁矿黄油黄昆輻射下的材料科學辉石近視过氧化氢蜜石范德华半径范霍夫奇点茂金属能带理论赤銅礦閘級驅動器間隙缺陷薔薇輝石藍岩鬣蜥藍光LED鑽石淨度钠长石钻石钼酸铵钛酸钡钛酸银肖特基缺陷蓝宝石蓝铜矿铝酸钠铌酸锂铂化钡锎化合物锁模技术锗酸铋重结晶重铬酸吡啶盐自发对称破缺釹磁鐵臺灣電視公司臘肉金属金属键镁铝合金镍铁电池配位聚合物腐胺鉀-氬年代測定法苦味酸铵苯磺酸苯甲酸胆固醇脂苯酚雷射加熱平台成長電子自旋共振電位移電磁場的動力學理論電磁極化子電磁波譜雅科夫·弗伦克尔透明退火降冰片烷陈创天陈嘉庚科学奖OGameX射线衍射仪X射线衍射法X射线晶体学X光散射技术柿樹屬杜隆-珀蒂定律核磁共振波谱法桉叶醇條痕模拟退火橢圓偏振技術橄榄石次磷酸铵欧姆定律氟化铵氢化物氢氧化钷氢氧化锂氧杂蒽氮化鈉氮化鋁氯化钠氯化铯氯化锌氯化镁氯铬酸吡啶盐氯酸钡氯氧化鉲氰化物水的性質永磁体永斯·贝采利乌斯沸石沃爾夫物理學獎泻利盐液晶化點溴化钠溴酸钾滴滴涕滑石振动最密堆积戴維森-革末實驗戈登·弗里曼流紋岩浸润层斯特拉斯堡大学方解石斜长石无定形体无脊椎动物旋光普林斯顿大学诺贝尔奖得主列表晶体 (消歧义)晶体学晶体学限制定理晶体化学晶体结构晶体材料晶体惯态晶種晶粒边界晶系晶相晶格空位晶洞時間晶體2,4,5-三氯苯氧乙酸2,4-二氯苯氧乙酸2007年美国宠物食品污染事件 扩展索引 (341 更多) »

基质 (地质)

基质(matrix,groundmass)是混杂在较大岩石颗粒和晶体中的细小颗粒。.

新!!: 晶体和基质 (地质) · 查看更多 »

埃瓦尔德球

埃瓦尔德球(Ewald's sphere),或译作厄瓦耳球,是一种用于电子衍射、中子衍射和X射线衍射的几何构图方式,它表示以下物理量的关系: 这个概念是由德国物理学家和晶体学家保罗·彼得·埃瓦尔德提出的,他自己将其称为反射球。 埃瓦尔德球可以用来寻找特定X射线波长和晶胞维度的。它通常被简化为二维的“埃瓦尔德圆”模型,尽管通常仍叫埃瓦尔德球。.

新!!: 晶体和埃瓦尔德球 · 查看更多 »

埃瓦尔德求和

埃瓦尔德求和(Ewald summation),是一种计算中长程力(如静电力)的方法,以德国物理学家保罗·彼得·埃瓦尔德命名。埃瓦尔德求和最初用于计算离子晶体的电势能,现在用于计算化学中计算长程力。埃瓦尔德求和是的特殊形式,用倒空间中的等效求和代替实空间中的总和。埃瓦尔德求和将分为短程力和无奇点的长程力两部分,短程力在实空间中计算,长程力用傅里叶变换计算。与直接求和相比,此方法的优势为能量能够快速收敛,这意味着此方法在计算长程力时具有较高的精度和合理的速度,是计算中长程力的标准方法。此方法需要分子系统的电中性,以准确计算总库仑力。.

新!!: 晶体和埃瓦尔德求和 · 查看更多 »

埃菲尔铁塔上所刻的72人列表

在埃菲尔铁塔上共刻有72个法国科学家、工程师与其他知名人士的名字,居斯塔夫·埃菲尔以此来铭记他们做出的贡献。这些雕刻都位于铁塔第一个平台下方四周的壁面上,每个字母约60厘米高,且只刻有每个人的姓。雕刻最初于20世纪初期完成,不过在1986年至1987年间,负责艾菲尔铁塔运营的新艾菲尔铁塔开发公司(Société Nouvelle d'exploitation de la Tour Eiffel)重修了这些雕刻。.

新!!: 晶体和埃菲尔铁塔上所刻的72人列表 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 晶体和原子 · 查看更多 »

原子堆積因子

在晶體學裡,原子堆積因子(或称APF)是計算一個晶體的體積裡原子體積佔的比例的函數。在計算前,必須假定原子是堅硬的球體,而且有確定的表面(而不是含糊不清的電子雲)。對只有一種元素的晶體來說,原子堆積因子的數學表示方法是: 在這裡,Natoms 是一個晶體裡原子的數量,而Vatom 是每個原子的體積,而而Vcrystal是晶體的體積。目前發現最密的晶體的原子堆積因子值大約是0.74。.

新!!: 晶体和原子堆積因子 · 查看更多 »

压电电子学

压电电子效应 是利用压电电势作为“门”电压对电荷载流子的传输特性进行调整和控制,可以用于制备新型的电子器件。压电电子学的基本原理是由佐治亚理工学院的王中林教授在2007年提出来的。 基于这个效应,已经制备了一系列的电子器件,包括压电电场栅控的场效应晶体管, 压电电场控制的二极管, 应变传感器, 力/流量传感器, 混合 场效应晶体管, 压电 逻辑门电路, 机电 存储器, 等等.

新!!: 晶体和压电电子学 · 查看更多 »

压电晶体

压电晶体是具有压电效应的晶体。一般是绝缘介质。.

新!!: 晶体和压电晶体 · 查看更多 »

偉晶岩

伟晶岩因为其经常含有大粒晶体而得名,具有粗粒或巨粒结构,粒径通常超过50毫米,晶体最大可以达到数米甚至十米以上长,一般颜色较浅,是一种浅成岩,但常产于深成岩的体内或周围,其包含的晶体经常是有价值的矿物,对于其产生的原因,有多种解释,有的理论认为是由于火山残余的溶浆缓慢结晶而成,也有认为是由于高压造成的强烈扩散条件影响,目前尚没有一致公认的理论。 伟晶岩一般由石英,长石和云母组成,含硅的形式与花岗岩类似。 此外,已知含角闪石,钙富集斜长石,辉石,似长石等矿物的镁铁伟晶岩,它们较为罕见,发现于大片层状侵入物的重结晶区和蜕膜中。 根据其成分不同,伟晶岩可以分为:.

新!!: 晶体和偉晶岩 · 查看更多 »

半导体泵浦固体激光

半导体泵浦固体激光(Diode-Pumped Solid-State Laser,缩写为DPSS Laser),通过激光泵送给一个固体增益介质,例如,一个红宝石或晶体,带有激光二极管制成的固态激光器。 半导体泵浦固体激光的激光器利用半导体激光器输出固定波长的激光作为泵浦源,替代了以往用氪灯或氙灯泵浦激光晶体,并且它们通常出现在绿色和其他颜色等的激光笔中。 DPSS激光是一种拥有长寿命、低功耗、高稳定性、光束质量好、能够小型化等多种优势的新一代固体激光器,DPSS激光器已经被运用在光纤通信、空间通讯、环境科学、大气研究、激光打印、医疗器械、光学图象处理等多个高科技领域。 这是一种新型激光器,应用层面比较广,近年在国际上发展很快。它使固体激光有了全新的发展,因此又称为“第二代激光器”。.

新!!: 晶体和半导体泵浦固体激光 · 查看更多 »

卡西米爾·法揚斯

卡西米爾·法揚斯(Kazimierz Fajans,Kasimir Fajans),波蘭猶太裔美國物理化學家,放射性科學先驅。其人生於1887年5月27日,逝于1975年5月18日。.

新!!: 晶体和卡西米爾·法揚斯 · 查看更多 »

卤素灯泡

卤素灯泡(Halogen lamp),又称钨卤灯泡、石英灯泡、卤素灯珠,是白炽灯的一个变种。.

新!!: 晶体和卤素灯泡 · 查看更多 »

单质

单质是由同种元素组成的纯净物。元素在单质中存在时称为元素的游离态。 一般来说,单质的性质与其元素的性质密切相关。比如,很多金属的金属性都很明显,那么它们的单质还原性就很强。不同种类元素的单质,其性质差异在结构上反映得最为突出。 与单质相对,由多种元素组成的物质叫做化合物。.

新!!: 晶体和单质 · 查看更多 »

单晶

单晶是指其内部微粒有规律地排列在一个空间格子内的晶体。其晶体结构是连续的,或者可以说,在宏观尺度范围内单晶不包含晶界。 与单晶相对的,是众多晶粒(Crystallite)组成的多晶(Polycrystal)。 单晶材料是一种应用日益广泛的新材料,由单独的一个晶体组成,其衍射花样为规则的点阵。相对普通的多晶体材料性能特殊,一般采用提拉法制备。 單晶根據晶體生長法製作分為:.

新!!: 晶体和单晶 · 查看更多 »

右旋糖酐

右旋糖酐(瑞典語,英語,德語:Dextran)是一种复合且支链的葡聚糖(由许多葡萄糖分子构成的多糖),构成它的链长度不同(从3到2000千道尔顿不等),是牙菌斑的主要成分。在药用方面,它被作为抗血栓药(抗血小板)以降低血液黏性,并且在贫血症方面用于扩增血容量。 右旋糖酐中的直链部分由经α-1,6糖苷键相连在一起的葡萄糖分子组成,而支链由α-1,3糖苷键引出(若希望查阅葡萄糖中碳原子数量的信息,请见葡萄糖)。一些特定的乳酸菌可以将蔗糖合成为右旋糖酐,其中最为人所知的是肠系膜明串珠菌与变形链球菌这两种乳酸菌。牙菌斑中也富含右旋糖酐。右旋糖酐还可由短乳杆菌(Lactobacillus brevis,一种乳酸菌)在生成太阳菌菇或酸乳酒等发酵饮料晶体时产生,据称这些饮料能促进身体健康。 右旋糖酐是由路易·巴斯德以一种微生物产品的形式首先发现的。.

新!!: 晶体和右旋糖酐 · 查看更多 »

双(三苯基膦)硼氢化亚铜

双(三苯基膦)硼氢化亚铜是硼氢化亚铜的一个配合物。.

新!!: 晶体和双(三苯基膦)硼氢化亚铜 · 查看更多 »

双相

一个双相的(英文:Biphasic)或两相的系统含有两种相态。.

新!!: 晶体和双相 · 查看更多 »

双折射

雙折射現象,光學現象的一種,可以用光的橫波性質來解釋。當光照射到各向異性晶體(單軸晶體,如方解石、石英、紅寶石等)時,發生兩個不同方向的折射;對於單光材料來說,當光偏振方向垂直於光軸時,光所感受到的折射率為尋常光折射率,稱為o光(ordinary ray、尋常光),另一束光的偏振方向平行於光軸則稱為e光(extraordinary ray、非尋常光),這兩束光都是偏振光,當尋常光折射率大於非尋常光折射率時稱之正單光軸材料,反之稱負單光軸材料。光線從一個特殊的角度射入晶體是不會發生雙折射現象,這一角度稱為晶體的光軸。 不能說非尋常光不符合司乃耳定律(Snell's Law),此誤解來自於對於光以及能量的混淆,我們觀察到非尋常光的方向為「能量流(energy flow)的方向」而非「光(k vector)的方向」。 波片是這種現象的一個應用。.

新!!: 晶体和双折射 · 查看更多 »

双氢键

双氢键是氢键的一种,是金属氢化物与OH或NH基团或其它含质子基团的相互作用。Brown 和 Heseltine 首先发现这一现象。 他们发现在(CH3)2NHBH3的红外光谱的3300和3210cm−1处有强烈的吸收峰。能量较高的峰对应普通的N-H键振动,而能量较低的峰则是N-H键与B-H键结合的结果。如果将溶液稀释,3300 cm−1处的吸收峰会增强,而3210 cm−1处的吸收则明显减弱,证明了这是一个分子间的相互作用。 硼烷氨的晶体检测结果,再一次使大家的目光集中在了双氢键。在这个分子中,如同 Brown 和 Hazeltine 研究的那样,氮上的氢带有部分正电荷,表示为Hδ+,而硼上的氢则带有负电荷,表示为Hδ-。 换句话说,该胺是一个质子酸而硼烷端则带有一个负电荷,因此而形成的。B-H...

新!!: 晶体和双氢键 · 查看更多 »

双氢配合物

双氢配合物是包含完整氢分子作为配体的配位化合物。最典型的这类化合物是W(CO)3(PCy3)2(H2)。这类化合物的发现解释了金属元素催化的氢分子参与的化学反应。文献已经报道了数百个双氢配合物,大多数都是过渡金属的离子形成的八面体配合物。 络合以后,通过中子衍射发现H-H键的键长增加到81-82pm,相比自由的氢分子增加了约10%。一些有多个氢配体的配合物,也就是聚合型氢化物 (例如氢化铝),也展现出更弱的H-H作用。科学家建议键长小于100pm意味着明显的双氢特征,而距离大于100pm更应该被认为是氢负离子配合物。.

新!!: 晶体和双氢配合物 · 查看更多 »

吸收光谱学

吸收光谱学是指一门光谱学技术,它通过测量电磁辐射的吸收,形成频率或波长对与试样交互的函数。试样从辐射域吸收能量,如光子。吸收强度的变化与频率构成函数关系,这种变化就是吸收光谱。吸收光谱学也应用于整个电磁波谱。 吸收光谱学被用作分析化学的工具,它可以确定试样中是否存在某种特殊物质,以及在许多情况下量化该物质存在的数量。红外和紫外-可见光光谱学是分析应用中特别常见的。吸收光谱学也被用于分子和原子物理学、天文光谱学和遥感的研究。 测量吸收光谱的实验方法很多。最常见的方法是将产生的无线电波导向试样,并探测透射电波的强度。透射的能量可以用来计算吸收。辐射源、试样布置和探测技术的选择,很大程度上依赖于频率范围和实验目的。.

新!!: 晶体和吸收光谱学 · 查看更多 »

同质异形体

同质异形体(polymorph),又称同质异晶物,是指由化学组成相同的物质,在不同的物理化学条件下形成的不同结构的晶体。相应地,称这种物质具有同质异晶现象(polymorphism)。同质异形体由于结构不同会表现出不同的物理化学性质。例如,氮化硼有六方氮化硼、立方氮化硼等同质异形体。 Category:材料科學.

新!!: 晶体和同质异形体 · 查看更多 »

吉萨尔山脉

吉萨尔山脉是中亚的一座山脉,帕米尔高原西部的一部分,山脉呈东西横贯走向,长约200千米,分割乌兹别克斯坦和塔吉克斯坦的边境线。乌兹别克斯坦的最高峰哈兹拉特苏丹峰就在此山脉中。山脉由晶体、片岩、砂岩等构成。.

新!!: 晶体和吉萨尔山脉 · 查看更多 »

声子

聲子()是晶體中晶體結構集體激發的準粒子,化學勢為零,服從玻色-愛因斯坦統計,是一種玻色子。聲子本身並不具有物理動量,但是攜帶有準動量\hbar \mathbf,並具有能量\hbar \omega(其中\hbar為約化普朗克常數)。根據南部-戈德斯通定理,任何連續性整體對稱性的自發破缺,必然對應一個零質量的玻色子。聲子就是平移對稱性被晶格的點陣結構自發破缺以後對應的玻色子。聲子與電子的相互作用,是導致BCS超導的關鍵機制。.

新!!: 晶体和声子 · 查看更多 »

壓電效應

压电效应(Piezoelectricity),是电介质材料中一种机械能與电能互换的现象。压电效应有两种,正压电效应及逆压电效应。压电效应在声音的产生和侦测,高电压的生成,电频生成,微量天平(microbalance),和光学器件的超细聚焦有着重要的运用。.

新!!: 晶体和壓電效應 · 查看更多 »

多体问题

多體問題為一大類物理問題的通稱。那些問題與大量粒子構成的微觀系統有關,且粒子之間有交互作用。要精確描述這些微觀系統,將會用到量子力學。三體以上的系統即被視為多體系統,不過因為三體和四體可以用特定的方法處理,有時會被歸類為。在這樣的量子系統中,粒子之間不斷交互作用,產生量子相關性以及纏結。因此,系統的波函數很複雜,並含有大量資訊,常常無法進行精確或可分析的計算。所以,多體理論物理學常常必須依賴針對問題的一組近似,並且是最多計算的科學領域之一。.

新!!: 晶体和多体问题 · 查看更多 »

复杂系统

复杂系统(complex system),係指由許多可能相互作用的組成成分所組成的系統。在很多情況下,將這樣的系統表示為網絡是有用的,其節點代表組成成分,鏈結則代表它們的交互作用。複雜系統的範例,例如:地球的全球氣候、生物、人腦、社會和經濟的組織(如城市)、一個生態系統、一個活細胞、以及最終的整個宇宙。 由於其元件之間、或特定系統與其環境之間的依賴性、關係、或相互作用,複雜系統係為行為本質上難以建模的系統。系統之所以「複雜」,係具有來自這些關係所產生的不同特性,例如:非線性、湧現、自發秩序、適應、和回饋循環等等。由於這樣的系統出現在各式各樣的領域,它們之間的共同點,已成為其各自獨立研究領域的主題。.

新!!: 晶体和复杂系统 · 查看更多 »

大卫·布儒斯特

大卫·布儒斯特爵士 KH PRSE FRS FSA FSSA MICE(Sir David Brewster,),蘇格蘭數學家、物理學家、天文學家、發明家及作家。 布儒斯特在光學範疇的貢獻最為顯著。他研究了壓縮所致雙折射現象,並發現了光彈性效應,從而建立了礦物光學。威廉·休厄爾稱其為「現代實驗光學之父」和「光學中的約翰內斯·開普勒」。 他發明了萬花筒,並改良了用於攝影的立體鏡。他稱此為「透鏡立體鏡」,這是首個能隨身攜帶的3D眼鏡。他也發明了雙筒照相機、兩種偏振儀、多區域鏡片以及燈塔照明燈。 布儒斯特一生致力普及科學。他是英國科學聯會的創辦人之一,在1849年成為該會主席。他也是一共18卷《愛丁堡百科全書》的編輯之一。.

新!!: 晶体和大卫·布儒斯特 · 查看更多 »

天卫四

天卫四又稱為奥伯龙(Oberon)是距离天王星最远的大卫星,其体积和质量在天王星所有卫星中均位列次席,同时也是太阳系质量第九大的卫星。英國天文學家威廉·赫歇尔在1787年首次观测到该卫星。天卫四的名稱奥伯龙来自于莎士比亚戏剧《仲夏夜之梦》當中的一個角色。天卫四的公轉轨道有一部分位于天王星磁圈之外。 天卫四由近乎等量的冰体水和岩石构成,其内部可能分化出岩石内核及冰质地幔。此外,在内核和地幔之间可能还存在着一层液态水。天卫四的表面呈暗红色,其主要地形是小行星和彗星撞击后所形成的,並有許多直径达到210公里的撞击坑存在。天卫四表現存在峡谷(地堑)地形,该地形是天体演化初期因内部膨胀而形成的。 旅行者2号于1986年1月近距離飞掠該衛星,也是人类目前对天王星系统进行过唯一一次的近距离观测。旅行者2号拍摄了数张天卫四照片,涵蓋該天体40%的表面。.

新!!: 晶体和天卫四 · 查看更多 »

奥古斯特·布拉菲

奥古斯特·布拉菲(Auguste Bravais,又译布拉伐、布喇菲,),法国物理学家,于1845年得出了三维晶体原子排列的所有14种布拉菲点阵结构,首次将群的概念应用到物理学,为固体物理学做出了奠基性的贡献。除此之外,布拉菲还对磁性、极光、气象、植物地理学、天文学和水文学等方面进行过研究。 B Category:巴黎綜合理工學院校友.

新!!: 晶体和奥古斯特·布拉菲 · 查看更多 »

奥托·雷曼

奥托·雷曼(Otto Lehmann,),德国物理学家,被譽為“液晶之父”。.

新!!: 晶体和奥托·雷曼 · 查看更多 »

奈尔温度

奈尔温度(Néel temperature),TN,指的是反铁磁性材料转变为顺磁性材料所需要达到的温度。在这个温度的时候,晶体内部的原子内能会大到足以破坏材料内部宏观磁性排列,从而发生相变,由反铁磁性转变为顺磁性。 奈尔温度可类比於居-里-温度TC(相对于铁磁性而言)。它是因纪念1970年诺贝尔物理学奖得主、法國物理學者路易·奈尔(1904年-2000年)而得名。 下表為一些物質的奈尔温度:.

新!!: 晶体和奈尔温度 · 查看更多 »

奈米線

纳米线是一种纳米尺度(10−9 米)的线。 换一种说法,纳米线可以被定义为一种具有在横向上被限制在100纳米以下(纵向没有限制)的一维结构。这种尺度上,量子力学效应很重要,因此也被称作"量子线"。根据组成材料的不同,纳米线可分为不同的类型,包括金属纳米线(如:Ni,Pt,Au等),半导体纳米线(如:InP,Si,GaN 等)和绝缘体纳米线(如:SiO2,TiO2等)。分子纳米线由重复的分子元组成,可以是有机的(如:DNA)或者是无机的(如:Mo6S9-xIx)。 作为纳米技术的一个重要组成部分,纳米线可以被用来制作超小电路。.

新!!: 晶体和奈米線 · 查看更多 »

威廉·劳伦斯·布拉格

威廉·劳伦斯·布拉格爵士,CH,OBE,MC,FRS(Sir William Lawrence Bragg,),出生於澳洲的物理学家,他擁有澳洲和英國雙重國籍,因為發現了關於X射線衍射的布拉格定律,1915年与其父威廉·亨利·布拉格一同获得诺贝尔物理学奖。.

新!!: 晶体和威廉·劳伦斯·布拉格 · 查看更多 »

孪晶

孪晶是指:由两个或者两个以上同种晶体构成的﹑非平行的规则连生体。又称双晶。在构成孪晶的两个单晶体间﹐必然会有部分的对应晶面﹑对应晶棱相互平行﹐但不可能全部一一平行﹐然而它们必可通过某一反映﹑旋转180°或者反伸(倒反)的对称操作而达到彼此重合或者完全平行。.

新!!: 晶体和孪晶 · 查看更多 »

宝石学

宝石学是鉴定宝石的一门科学,属于矿物学的一个分支,是宝石行业的理论基础。许多国家的职业学校都有这门专业。 有的宝石学家有专门研究的领域,如专门研究钻石的,专门研究祖母绿的等,在实验室研究的专家可以分辨出某颗宝石的具体产地。由于目前人工制作的仿宝石越来越多,对宝石的鉴定需要也急剧增加 鉴定宝石需要从晶体结构、比重、折光度、多向色性、硬度等多方面综合考虑,即使同样的宝石,产地不同,性质也有差异,价值也不同,如产自缅甸的红宝石和产自泰国的,在光学性质和内部结构上都有一定的差异。 由于宝石产地的地质条件不同,包含的杂质不同,世界上没有两块宝石是完全相同的,所以宝石的鉴定也非常复杂,首先要从外观观察,然后测量比重,如外观颜色相同的,红宝石的比重为4.00,玻璃为3.15-4.20,人造锆石为5.6-5.9,先在空气中测量重量,再在水中测量,可以确定其比重。然后用折光仪测量其折光度,由于宝石一般都是晶体结构,不同晶体对光的折射角度不同。此外用分光仪测量对不同波长光的吸收反射能力,还得用显微镜仔细观察宝石的表面和结构等。.

新!!: 晶体和宝石学 · 查看更多 »

完整晶体

完整晶体(Perfect crystal)指不存在点缺陷,线缺陷和面缺陷等类型晶体缺陷的晶体。由于在结晶时不可能排除造成晶体缺陷的因素,因而在现实中,完整晶体并不存在。但这一假象概念对于热力学定律的表述非常重要。 在晶体学中,其可以被用来指不存在线缺陷和面缺陷的晶体,因为对于不存在其他类型晶体缺陷的晶体,少量的点缺陷是难以测定的。 晶体缺陷可由于重力因素产生。因而在像国际空间站或太空这种零重力环境中,可以制得接近完整晶体的较为理想的晶体。。.

新!!: 晶体和完整晶体 · 查看更多 »

安息香

安息香(英文:Benzoin)又称苯偶姻、二苯乙醇酮、2-羟基-2-苯基苯乙酮或2-羟基-1,2-二苯基乙酮,是一种无色或白色晶体,氣味類似樟腦,可作为药物和润湿剂的原料,还可用作生产聚酯的催化剂。 安息香由两分子苯甲醛在热的氰化钾或氰化钠的乙醇溶液中通过安息香缩合而成。安息香為手性分子,它具有(R)-安息香與(S)-安息香這一對鏡像異構物。.

新!!: 晶体和安息香 · 查看更多 »

寬吻海豚屬

寬吻海豚屬(學名:Tursiops)是海豚科下最為人所知及普遍的一類。分子生物學研究顯示其下有兩個物種:瓶鼻海豚及印太洋瓶鼻海豚,而非只有一種。牠們棲息在溫帶的海域。 寬吻海豚屬會以10-30條的群落生活,有些數量可以少至1條或達至成千條。牠們主要吃魚類。牠們有時會合作捕捉魚群,也有獨自覓食的。牠們主要是靠回聲定位來尋找獵物。牠們會發出聲音及聽其回聲來確定身邊物件(包括獵物)的位置及大小。牠們也會利用聲音及身體語言來溝通。 寬吻海豚屬具有高度的智慧,包括模仿、使用人工語言、物件分類及自我認知等,這促使牠們與人類之間的互動。牠們在水族箱非常受歡迎,也有受訓來進行水雷及敵方蛙人定位。在一些地區,牠們可以與漁民合作將魚群引到漁網中。.

新!!: 晶体和寬吻海豚屬 · 查看更多 »

密勒指数

密勒指数(Miller index)是一种用来确定晶体方向的指数,又称晶面指数。要想计算出一个晶面的密勒指数(hkl)需要:.

新!!: 晶体和密勒指数 · 查看更多 »

小油櫛蟲

小油櫛蟲(學名:Olenellus)是生存於寒武紀海洋中的一屬三葉蟲,是目前發現最古老 (Cambrian Series 2 Stage 4) 的三葉蟲品種之一。這類原始的三葉蟲生活在海底,不怎麼活躍。牠們的尾部較小,頭及眼大,並有眾多長有棘刺的胸節,其中一個比其他的更顯眼。胸部呈錐狀往後逐漸變小。頭甲周圍有一圈窄小的晶體,與頰部棘刺連成一體。外骨骼的護膜很薄。牠們缺乏其他三葉蟲擁有的特徵——背部表面的骨縫。.

新!!: 晶体和小油櫛蟲 · 查看更多 »

工程学

工程学、工程科学或工学,是通过研究与实践应用数学、自然科学、社会学等基础学科的知识,来达到改良各行业中现有建筑、机械、仪器、系统、材料、化學和加工步骤的设计和应用方式一门学科。实践与研究工程学的人叫做工程师。 在高等学府中,将自然科学原理应用至工业、农业、服务业等各个生产部门所形成的诸多工程学科也称为工科和工学。.

新!!: 晶体和工程学 · 查看更多 »

上层建筑

上層建築或上層結構、上部結構均譯自英語「Superstructure」,源自拉丁詞彙詞綴「super-」和「-structure」兩者的合成,有多種意思,可以指:.

新!!: 晶体和上层建筑 · 查看更多 »

希格斯場

希格斯場(Higgs field),以物理學家彼得·希格斯姓氏為名,是一種假定遍佈於全宇宙的量子場。按照標準模型的希格斯機制,某些基本粒子因為與希格斯場之間交互作用而獲得質量。希格斯玻色子是希格斯場的振動。假若能夠尋找到希格斯玻色子,則可以明確地證實希格斯場也存在於宇宙,就好像從觀察海面的波浪可以推論出大海的存在。連帶地,也可確認希格斯機制與標準模型基本無誤。 在標準模型裏,W玻色子與Z玻色子藉著應用希格斯機制於希格斯場而獲得質量,費米子藉著應用希格斯機制於希格斯場與費米子場的湯川耦合而獲得質量。只有希格斯玻色子不倚賴希格斯機制獲得質量。不过儘管希格斯機制已被證實,它仍舊不能給出所有質量,而只能將質量賦予某些基本粒子。例如,像質子、中子一類複合粒子的質量,只有約1%是歸因於將質量賦予夸克的希格斯機制,剩餘約99%是夸克的動能與強交互作用的零質量膠子的能量。.

新!!: 晶体和希格斯場 · 查看更多 »

布利奥环形山

布利奥环形山(Bullialdus)是位于月球正面云海西部一座相对年轻的大撞击坑,也是云海中最大的未被熔岩掩没的陨坑,约形成于38-32亿年前的晚雨海世,但据另外的来源认为,其形成于32-11亿年前的爱拉托逊纪Lunar Impact Crater Database,该陨坑取名自十七世纪法国著名天文学家及数学家、光度学创始人“伊斯梅尔·布利奥”(Ismaël Bullialdus,1605年-1694年),1935年被国际天文学联合会批准接受。.

新!!: 晶体和布利奥环形山 · 查看更多 »

七角柱

在幾何學中,七角柱是一種多面體,是柱體的一種,是指底面是七邊形的柱體。所有七角柱都有9個面,21個邊和14個頂點。所有七角柱都是九面體 如果七角柱每個面都是正多邊形,則它是半正多面體。 正七角柱可以視為一種半正多面體,底面為正七邊形,其施萊夫利符號可以用t或x表示,t是指正七角柱可以藉由七面形透過截角變換構造而來,其在中用2 7 | 2表示。 正七角柱是一種比較特殊的多面體,由於他具有一個非整數的有理數角度,且與正六角柱接近,因此在工程學上有些應用,例如正七角柱可以用在特殊汽缸的設計、正七角柱的稜鏡可以用在干涉濾光器的光信號多路復用器中。除此之外,正七角柱也出現在自然界中,例如碘合氮化硼化鎂(Mg825I)的碘離子為正七角柱的晶體結構,例如伊樂藻,有91%的親本細胞為正七角柱。 此外,也有人設計七角柱形的魔術方塊,或是經過截角變換的七角柱。 七角柱有二種兩面角,其中一個為90度,即頂面(或底面)與側面的夾角,另一個是128\frac度,即兩側面的夾角。.

新!!: 晶体和七角柱 · 查看更多 »

布里渊区

-- 在数学和固体物理学中,第一--区(Brillouin zone)是动量空间中晶体倒易点阵的原胞。第一布里渊区在几何上与布拉菲点阵中的维格纳-赛兹原胞类似。布里渊区的重要性在于:周期性介质中的所有布洛赫波能在此空间中完全确定。 在点阵空间中,作某一个阵点与其所有相邻阵点的垂直平分面,这些平面包围的空间就是包含前述阵点的第一布里渊区;亦可等价地定义为:在k空间(即波矢空间或倒易空间)中,从原点出发,不穿越任何布拉格衍射面所能到达的点的集合,就是第一布里渊区。 在上述定义中,若作的是某阵点和它所有次近邻阵点的垂直平分面,则得到的是第二布里渊区;若作的是某阵点和它次次近邻阵点的垂直平分面,则得到的是第三布里渊区,依此类推。但高阶布里渊区用得很少,因此“布里渊区”常常仅指“第一布里渊区”。 本概念最早由法国物理学家莱昂·布里渊提出。.

新!!: 晶体和布里渊区 · 查看更多 »

七氧化二锰

七氧化二锰是化学式为Mn2O7的化合物。又称“高锰酸酐”。可溶于四氯化碳。为酸性氧化物。这种物质在1860年最先被提出。由于其化学性质极不稳定且易爆,故很少直接制取。.

新!!: 晶体和七氧化二锰 · 查看更多 »

布洛赫波

在固体物理学中,布洛赫波(Bloch wave)是周期性势场(如晶体)中粒子(一般为电子)的波函数,又名布洛赫态(Bloch state)。 布洛赫波因其提出者美籍瑞士裔物理学家菲利克斯·布洛赫而得名。 布洛赫波由一个平面波和一个周期函数 u(\boldsymbol) (布洛赫波包)相乘得到。其中 u(\boldsymbol) 与势场具有相同周期性。布洛赫波的具体形式为: 式中k 为波向量。上式表达的波函数称为布洛赫函数。当势场具有晶格周期性时,其中的粒子所满足的波动方程的解ψ存在性质: 这一结论称为布洛赫定理(Bloch's theorem),其中 \boldsymbol 为晶格周期向量。可以看出,具有上式性质的波函数可以写成布洛赫函数的形式。 平面波波向量 \boldsymbol (又称“布洛赫波向量”,它与约化普朗克常数的乘积即为粒子的晶体动量)表征不同原胞间电子波函数的位相变化,其大小只在一个倒易点阵向量之内才与波函数满足一一对应关系,所以通常只考虑第一布里渊区内的波向量,即所谓“简约波向量”。对一个给定的波矢和势场分布,电子运动的薛定谔方程具有一系列解,称为电子的能带,常用波函数的下标n 以区别。这些能带的能量在 \boldsymbol 的各个单值区分界处存在有限大小的空隙,称为能隙。在第一布里渊区中所有能量本征态的集合构成了电子的能带结构。在单电子近似的框架内,周期性势场中电子运动的宏观性质都可以根据能带结构及相应的波函数计算出。 上述结果的一个推论为:在确定的完整晶体结构中,布洛赫波向量 \boldsymbol 是一个守恒量(以倒易点阵向量为模),即电子波的群速度为守恒量。换言之,在完整晶体中,电子运动可以不被格点散射地传播(所以该模型又称为近自由电子近似),晶态导体的电阻仅仅来自那些破坏了势场周期性的晶体缺陷以及电子与声子的相互作用。 从薛定谔方程出发可以证明,哈密顿算符与平移算符的作用次序满足交换律,所以周期势场中粒子的本征波函数总是可以写成布洛赫函数的形式。更广义地说,本征函数满足的算符作用对称关系是群论中表示理论的一个特例。 布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体的导电性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(1877年),(1883年)和亚历山大·李雅普诺夫(1892年)等独立地提出。因此,类似性质的概念在各个领域有着不同的名称:常微分方程理论中称为弗洛凯理论(也有人称“李雅普诺夫-弗洛凯定理”);一维周期性波动方程则有时被称为希尔方程。.

新!!: 晶体和布洛赫波 · 查看更多 »

布拉格定律

在物理學中,布拉格定律給出晶格的相干及不相干散射角度。當X射線入射於原子時,跟任何電磁波一樣,它們會使電子雲移動。電荷的運動把波動以同樣的頻率再發射出去(會因其他各種效應而變得有點模糊);這種現象叫瑞利散射(或彈性散射)。散射出來的波可以再相互散射,但這種進級散射在這裏是可以忽略的。當中子波與原子核或不成對電子的相干自旋進行相互作用時,會發生一種與上述電磁波相近的過程。這些被重新發射出來的波來相互干涉,可能是相長的,也可能是相消的(重疊的波某程度上會加起來產生更強的波峰,或相互消抵),在探測器或底片上產生繞射圖樣。而所產生的波干涉圖樣就是繞射分析的基本部份。這種解析叫布拉格繞射。 布拉格繞射(又稱X射線繞射的布拉格形式),最早由威廉·勞倫斯·布拉格及威廉·亨利·布拉格於1913年提出,他們早前發現了固體在反射X射線後產生的晶體線(與其他物態不同,例如液體),而這項定律正好解釋了這樣一種效應。他們發現,這些晶體在特定的波長及入射角時,反射出來的輻射會形成集中的波峰(叫布拉格尖峰)。布拉格繞射這個概念同樣適用於中子繞射及電子繞射 。中子及X射線的波長都於原子間距離(~150 pm)相若,因此它們很適合在這種長度作“探針”之用。 威廉·勞倫斯·布拉格使用了一個模型來解釋這個結果,模型中晶體為一組各自分離的平行平面,相鄰平面間的距離皆為一常數d。他的解釋是,如果各平面反射出來的X射線成相長干涉的話,那麼入射的X射線經晶體反射後會產生布拉格尖峰。當相位差為2π及其倍數時,干涉為相長的;這個條件可經由布拉格定律表示: 其中n為整數,λ為入射波的波長,d為原子晶格內的平面間距,而θ則為入射波與散射平面間的夾角。注意移動中的粒子,包括電子、質子和中子,都有對應其速度及質量的德布羅意波長。 布拉格定律由物理學家威廉·勞倫斯·布拉格爵士於1912年推導出來,並於1912年11月11日首度於劍橋哲學會中發表。儘管很簡單,布拉格定律確立了粒子在原子大小下的存在,同時亦為晶體研究了提供了有效的新工具──X射線及中子繞射。威廉·勞倫斯·布拉格及其父,威廉·亨利·布拉格爵士獲授1915年諾貝爾物理學獎,原因為晶體結構測定的研究,他們測定了氯化鈉、硫化鋅及鑽石的結構。 他們是唯一一隊同時獲獎的父子隊伍,而威廉·勞倫斯·布拉格時年25歲,因此成了最年輕的諾貝爾獎得主。.

新!!: 晶体和布拉格定律 · 查看更多 »

三硝基甲苯

2,4,6-三硝基甲苯(英文:Trinitrotoluene,縮寫:TNT)常见炸藥之一,至今仍大量应用在军事和工业领域上。它的IUPAC命名是2-甲基-1,3,5-三硝基苯(2-methyl-1,3,5-trinitrobenzene),由甲苯经过硝化製成,熔點為354 K(80.9°C)。由于呈黄色晶體狀,所以與苦味酸一同被俗稱為「黃色炸藥」。和硝酸銨可成為阿馬托炸藥。 與硝化甘油不同,精煉的三硝基甲苯對於摩擦、震動都十分稳定。即使被枪击,也不易爆炸。它需要雷管引爆。TNT不會與金屬起化學作用或者吸收水份。因此它可以存放多年。但它與鹼強烈反應,生成不穩定的化合物。 TNT爆炸反應式:2C7H5N3O6 → 12CO + 5H2 + 3N2 + 2C 每公斤TNT炸藥可產生4200千焦的能量。虽然三硝基甲苯的能量密度比脂肪(38MJ/kg)和糖(17MJ/kg)小,但它的分子中有三个硝基作为氧化剂,不需要大氣中的氧氣,所以引爆时会产生大量气体,产生爆炸。現今有關爆炸和能量釋放的研究,也常常用「公斤黃色炸藥」或「噸黃色炸藥」作為單位,以比較爆炸、地震、行星撞擊等大型反應時所釋出的能量。.

新!!: 晶体和三硝基甲苯 · 查看更多 »

三羟甲基氨基甲烷

三羟甲基氨基甲烷(Tris(hydroxymethyl)aminomethane,一般简称为Tris)是一种有机化合物,其分子式为(HOCH2)3CNH2。Tris被广泛应用于生物化学和分子生物学实验中的缓冲液的制备。例如,在生物化学实验中常用的TAE和TBE缓冲液(用于核酸的溶解)都需要用到Tris。由于它含有氨基,因此可以与醛发生缩合反应。.

新!!: 晶体和三羟甲基氨基甲烷 · 查看更多 »

三氟化锑

三氟化锑,化学式SbF3,分子量Mr.

新!!: 晶体和三氟化锑 · 查看更多 »

三氧化二硼

三氧化二硼(化学式:B2O3)又称氧化硼,是硼最主要的氧化物。它是一种白色蜡状固体,一般以无定形的状态存在,很难形成晶体,但在高强度退火后也能结晶。它是已知的最难结晶的物质之一。.

新!!: 晶体和三氧化二硼 · 查看更多 »

三氧化二磷

三氧化二磷(化学式:P4O6)是一种由氧和磷组成的化合物,为无色蜡状有大蒜气味的极毒晶体,虽然它的正确名称应该是六氧化四磷,但以前一直以为分子结构是P2O3,因此三氧化二磷的名称一直沿用至今。 三氧化二磷为Td结构,其结构与金刚烷类似,可以看做是金刚烷中的四个叔碳被磷原子替代,而六个仲碳被氧原子替代。.

新!!: 晶体和三氧化二磷 · 查看更多 »

三氧化二锑

三氧化二锑(化学式:Sb2O3)是一种无机化合物。天然产物称锑华,俗称锑白。.

新!!: 晶体和三氧化二锑 · 查看更多 »

三氧化硒

三氧化硒(化学式SeO3)是硒(VI)的氧化物。为无色潮解性晶体。.

新!!: 晶体和三氧化硒 · 查看更多 »

三氯化铑

三氯化铑(化学式:RhCl3),IUPAC名称氯化铑(III),是最常见和最稳定的铑的氯化物,室温下为暗红色的固体。它是从其他铂系元素中分离铑时的产物。 无水三氯化铑为聚合分子,与氯化铝类质同晶,在水中的溶解度随制备方法的不同而有差异。三水合三氯化铑(RhCl3·3H2O)是三氯化铑的水合物,也是三氯化铑最常用的形式,可溶于水,通常用于制备其他铑化合物。无水和三水合三氯化铑有很多不同的性质。.

新!!: 晶体和三氯化铑 · 查看更多 »

幡狀雲

幡狀雲(;桿、棒)是一種從雲中落下的降水,但還沒到地面前就已經蒸發。位於海拔更高處的降水會以冰晶體的型態出現,繼而溶解、蒸發。這是由經壓縮的熱力所造成,而愈靠近地面時氣壓愈大。幡狀雲在沙漠地區極為常見。.

新!!: 晶体和幡狀雲 · 查看更多 »

乌陵与土明

乌陵与土明 (希伯来语:אוּרִים וְתּוּמִים(Urim vəTummim)英语:Urim and Thummim;阿拉伯语:اوريم وتميم, Ūrīm waṮummīm),原意分别为“光”和“完全”,引申为“启示和真理”,是古代希伯来人在遇到问题或难处时,用以显明上帝旨意的一种预言媒介。现代的耶稣基督后期圣徒教会(摩門教會)也用它来翻译古代经书,例如摩尔门经。.

新!!: 晶体和乌陵与土明 · 查看更多 »

乔安·费曼

乔安·费曼(或译约安·费曼,Joan Feynman,)是一名美国天体物理学家,以研究极光的机理而知名。她对有关太阳风的场与粒子作用、日地关系研究和磁层学说都有重要贡献。此外她还创立了一个可预测高能粒子撞击宇宙飞船可能性大小的模型,并提出过一个用于预测太阳周期的方法。 她有一个比自己约大10岁的亲哥哥理查·费曼,后者也是她的科学启蒙老师。理查后来成为了一位享誉世界的理论物理学家。.

新!!: 晶体和乔安·费曼 · 查看更多 »

乙醯苯胺

乙醯苯胺,又名N- Phenylacetamide、Acetanilide,或商標名稱Antifebrin,是一種白色有光泽片状结晶或葉片或鱗片狀的固體化學品。.

新!!: 晶体和乙醯苯胺 · 查看更多 »

乙酸

乙酸,也叫醋酸、冰醋酸,化学式CH3COOH,是一种有机一元酸和短链饱和脂肪酸,为食醋内酸味及刺激性气味的来源。纯正而且无水的乙酸(冰醋酸)是无色的吸湿性固体,凝固点为16.7℃(62℉),凝固后为无色晶体。尽管乙酸是一种弱酸,但是它具有腐蚀性,其蒸汽对眼和鼻有刺激性作用,聞起來有一股刺鼻的酸臭味。 乙酸是一种简单的羧酸,由一個甲基一個羧基組成,是一种重要的化学试剂。在化学工业中,它被用来制造聚对苯二甲酸乙二酯,后者即饮料瓶的主要部分。乙酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维和织物。家庭中,乙酸稀溶液常被用作除垢剂。食品工业方面,在食品添加剂列表E260中,乙酸是规定的一种酸度调节剂。 每年世界范围内的乙酸需求量在650万吨左右。其中大约150万吨是循环再利用的,剩下的500万吨是通过石化原料直接制取或通过生物发酵制取。.

新!!: 晶体和乙酸 · 查看更多 »

亚硝酸钠

亚硝酸钠(NaNO2)常用于鱼类、肉类等食品的染色和防腐。纯净的亚硝酸钠是一种白色至浅黄色晶体。它有非常好的水溶性和吸湿性,水溶液呈弱碱性,pH约为9,易溶于液氨,微溶于乙醇、甲醇、乙醚等有机溶剂。亚硝酸钠有咸味,被用来制造假的食盐。在空气中,亚硝酸钠会被缓慢氧化成硝酸钠(NaNO3),后者是一种强氧化剂。亚硝酸钠遇有机物易发生爆炸。 亚硝酸钠也被用于以下领域:生产重氮化合物染料、亚硝基化合物和其它有机化合物;纤维纺织品的染色和漂白;照相;作实验室中的抗腐蚀剂;作金属涂层中的添加剂;生产橡胶。它的10%水溶液也被用于电镀。亚硝酸钠同样被用于人或动物的血管扩张、支气管扩张药物中,甚至可以用于氰化物的解毒。.

新!!: 晶体和亚硝酸钠 · 查看更多 »

亚特兰蒂斯:失落的帝国

《亚特兰蒂斯:失落的帝国》(Atlantis: The Lost Empire)是一部2001年的美国传统动画动作冒险电影,是历史上的第41部迪士尼经典动画长片,也是其中首部科幻题材作品。影片由泰布·墨菲编剧,加里·特洛斯达勒和柯克·维斯执导,唐·哈恩担任制片人,配音演员包括迈克尔·J·福克斯、克里·萨莫(Cree Summer)、詹姆斯·加纳、伦纳德·尼莫伊、唐·诺韦洛(Don Novello)和吉姆·法尼(Jim Varney),这也是法尼去世前的最后一部作品。电影的时代背景是1914年,讲述了一位年轻人得到一本神圣的古书,他坚信这本书将带领他和其他探险家一起找到传说中的失落城市亚特兰蒂斯。 影片的开发在1996年的动画长片《钟楼怪人》完成后开始,制作团队希望这部作品不再是歌舞片,而是以儒勒·凡尔纳著作为灵感的动作历险电影。影片中采用了漫画主创迈克·米格诺拉(Mike Mignola)的独特视觉风格。电影上映时,其中使用的计算机绘图镜头比例比迪士尼之前任何动画长片都高,并且仍然是为数不多的几部以变形格式摄制的作品。语言学家马克·奥克兰德专门为本片创作了一种语言,电影配乐由詹姆斯·纽顿·霍华德谱写。本片上映时,观众对动画电影的兴趣正逐渐从手绘动画转移到完全由计算机绘图制作的作品。 2001年6月3日,《亚特兰蒂斯:失落的帝国》在好莱坞的埃尔卡皮坦剧院举行首映式,6月15日开始全面上映。华特迪士尼电影公司负责影片的发行,但其票房表现一般。电影的预算约为1亿美元,在北美市场收入约为8400万美元,全球票房约1.86亿美元。由于商业成绩不及预期,迪士尼取消了制作衍生电视剧和迪士尼乐园水下景点的计划。部分评论称赞本片与传统的迪士尼动画长片相比独树一帜,但也有部分人对片中缺少歌曲,并且目标观众群不明感到不满。《亚特兰蒂斯:失落的帝国》获得了包括7项安妮奖在内的多项提名,并获得了2002年金卷轴奖最佳音效剪辑奖。影片于2002年1月29日发布VHS录像带和DVD,后又在2013年6月11日发布蓝光影碟。有看法认为本片属邪典经典,这其中部分是因为米格诺拉独特的艺术感染力。2003年,电影的续集《亚特兰蒂斯2:神秘的水晶》直接通过录影带发行。.

新!!: 晶体和亚特兰蒂斯:失落的帝国 · 查看更多 »

人造水晶

人造水晶,一般指人造石英晶体,广泛应用于光学、电子、化学及耐火材料等工业。 人造石英晶体是二氧化硅的晶体,密度2.65,硬度7。.

新!!: 晶体和人造水晶 · 查看更多 »

二乙二酸-1,4-苯醌酯

二乙二酸-1,4-苯醌酯也称为“二乙二酸四羟基-1,4-苯醌酯”、“二草酸四羟基-1,4-苯醌酯”或“二草酸四羟基对苯醌酯”等,是一种有机碳氧化物,其分子式为C10O10。每分子该化合物都由一分子四羟基-1,4-苯醌(可视为四个氢原子都被羟基取代的对苯醌)与两分子乙二酸酯化的产物。.

新!!: 晶体和二乙二酸-1,4-苯醌酯 · 查看更多 »

二硅烯

二硅烯(英文:Disilene),有时也被称作乙硅烯、硅烯,是一类含有硅—硅双键的有机硅化合物,它们与同族的碳元素形成的烯烃结构相似。.

新!!: 晶体和二硅烯 · 查看更多 »

二極管

二極體(Diode),是一種具有不對稱电导的双電極电子元件。理想的二極體在正向導通时两个电极(陽極和陰極)间拥有零電阻,而反向时则有无穷大电阻,即電流只允許由單一方向流過二極體。 1874年,德国物理学家卡尔·布劳恩在卡爾斯魯厄理工學院发现了晶体的整流能力。因此1906年开发出的第一代二极管——“貓鬚二极管”是由方铅矿等矿物晶体制成的。早期的二極體还包含了真空管,真空管二极管具有两个电极 ,一个阳极和一个热式阴极。在半导体性能被发现后,二极管成为了世界上第一种半导体器件。現如今的二極體大多是使用矽来生产,鍺等其它半导体材料有时也会用到。目前最常见的结构是,一个半导体性能的结晶片通过PN结连接到两个电终端。.

新!!: 晶体和二極管 · 查看更多 »

二氟化氙

二氟化氙(化学式:XeF2)是一种稳定的氙化合物,可长期处放在镍制容器中或干燥的石英和玻璃器皿中而不发生变化。同其他氟化氙相比较,二氟化氙是一种温和的氧化剂和氟化剂,可生成多种氙化合物。.

新!!: 晶体和二氟化氙 · 查看更多 »

二溴化钐

二溴化钐是一种无机化合物,化学式为。它在室温下为棕色晶体。.

新!!: 晶体和二溴化钐 · 查看更多 »

云是大气层中以水為主,包含其他多种較少量化学物质构成的可见液滴或冰晶集合体,这些悬浮的颗粒物也被称作气溶胶。研究雲的科學稱為云物理学,為氣象學的一支。實務上,雲專指距離地面較遠的液滴冰晶集合體,距離地表較近的則稱為霧,不過兩者在化學構成上其實是相同的。在太阳系的其它一些行星和卫星上也观测到云。由于各星球的温度特性不同,构成云的物质也有多种,比如甲烷,氨,硫酸。雲在中華文化中具有重大價值意義,在古典文學中,由於雲的輕、淡、隨風吹送、高舉脫俗,盈溢等現象,常被寄託為作者的的理想、品質、操守、氣節、感悟等。 科學上,雲的主要結構為水,當大氣中的水氣達到飽和蒸汽壓時,便會成雲。在地球上,水氣能達到飽和通常肇於兩種原因:空气的冷却和水氣的增加。当雲的密度超過空氣浮力時,有些雲會落至地面,形成降水;幡状云則不會形成降水,因為所有液態水在到达地表前就先被蒸发了。云是地球上水循环和能量的最好例子。太阳輻射電磁波至地表,提供熱能使地表水蒸发形成水蒸气;最後,雲再藉由降水的方式釋放潛熱並將水回歸至地表。 雲的顏色與外觀成因於水滴或冰晶散射陽光的行為。此外,因为云反射和散射所有波段的电磁波,所以云的颜色成灰度色,云层比较薄时成白色,但是当它们变得太厚或太浓密而使得阳光不能通过的话,它们可以看起来是灰色或黑色的。 虽然地球上大部分的云都形成于对流层,但有时也会在平流层和中间层观测到云。这三个大气层的主要圈层常並稱為「均质层」,均質層中大氣各物質組成比例大致均勻(水除外),不太因地點、時間、高度改變。均質層常與非均質層作為對比,後者由增溫层和散逸层組成屬於外层空间的过度区。.

新!!: 晶体和云 · 查看更多 »

云母

云母是云母族矿物的统称,是钾、铝、镁、铁、锂等金属的铝硅酸盐,都是层状结构,单斜晶系。晶体呈假六方片状或板状,偶见柱状。层状解理非常完全,有玻璃光泽,薄片具有弹性。 英语中“云母”一词来源于拉丁语中的“光亮”(micare)。 云母矿广泛存在于亚洲、非洲和美洲,但在欧洲很少,直到19世纪,云母在欧洲的价值还非常高,随着殖民者在非洲和南美开采云母,价格迅速低落。 云母具有非常高的绝缘、绝热性能,化学稳定性好,具有抗强酸、强碱和抗压能力,所以是制造电气设备的重要原材料,因此也能做為吹風機內的絕緣材料。云母同时具有双折射能力,所以也是制造偏振光片的光学仪器材料。 云母矿主要包括有黑云母、金云母、白云母、锂云母、铁锂云母等,砂金石是云母和石英的混合矿物。工业上应用最多的是白云母和金云母,锂云母是提炼锂的重要矿物原料。 Category:层状硅酸盐.

新!!: 晶体和云母 · 查看更多 »

五氧化二鏷

五氧化二鏷是一種鏷的氧化物,化學式為,是白色不透明晶體,外觀和另一個鏷氧化物——二氧化鏷有很大的不同,五氧化二鏷是白色而二氧化鏷是黑色。五氧化二鏷与氢气反应产生二氧化鏷。.

新!!: 晶体和五氧化二鏷 · 查看更多 »

事必關己

《事必關己》(英文:Infolink)是香港電視廣播有限公司的一個資訊節目。宣傳口號為「一個緊貼大眾,事事關心的通識增值節目」。該節目由2008年1月2日起於高清翡翠台以高清格式,與翡翠台同步廣播。.

新!!: 晶体和事必關己 · 查看更多 »

延胡索酸

延胡索酸(Fumaric Acid),又名富馬酸、紫堇酸或地衣酸,即反丁烯二酸(IUPAC名為(E)-丁烯二酸),是一種無色、易燃的晶體,由丁烯衍生出的羧酸。它的化學式是C4H4O4。燃燒延胡索酸會釋出帶有刺激性的順丁烯二酐煙燻。它是檸檬酸循環的參與物質之一,具有水果氣味,並在延胡索屬、牛肝菌屬、地衣及冰島海苔中可以發現。 延胡索酸用于製造聚酯樹脂及多元醇,以及作為染料的媒染劑或是調味料。它是一種普遍的食物添加劑及膳食補充劑,且有時在飲料或發酵粉中作為酒石酸的代用物。.

新!!: 晶体和延胡索酸 · 查看更多 »

伊西多·拉比

伊西多·艾薩克·拉比(Isidor Isaac Rabi,出生名為以色列·拉比,),美國猶太人物理學家,因發現核磁共振(NMR)而獲得1944年的諾貝爾物理學獎,而核磁共振成像(MRI)就是基於核磁共振技術的。他也是其中一個最早研究多腔磁控管的美國科學家,多腔磁腔管可用於微波雷達和微波爐。.

新!!: 晶体和伊西多·拉比 · 查看更多 »

弗伦克尔缺陷

弗伦克尔缺陷(英文 Frenkel defect 或 Frenkel disorder )是指晶体结构中由于原先占据一个格点的原子(或离子)离开格点位置,成为間隙原子(或离子),并在其原先占据的格点处留下一个空位(晶格空位),这样的晶格空位-間隙缺陷对就称为弗伦克尔缺陷。此种點缺陷因苏联物理学家雅科夫·弗伦克尔得名。 譬如,一个由X和M两种元素组成的离子晶体,倘若M离子受到某种外界激发离开了它所在的M离子亚点阵格点,但X离子亚点阵未发生改变,此时引起的离子晶格空位数和間隙缺陷数应相等。 下图是氯化钠(NaCl)晶体结构中的弗伦克尔缺陷示意图,图中示出的是二维情况。.

新!!: 晶体和弗伦克尔缺陷 · 查看更多 »

微晶蠟

微晶蠟是熔點約在攝氏75度以上之石蠟,含碳量於40 - 80之間,分子量約在500 - 800左右,含異構碳氫化合物量高達50-80%時,會形成微細晶體稱為微晶蠟。與一般石蠟比較,具有較高之熔點與較佳之韌性。.

新!!: 晶体和微晶蠟 · 查看更多 »

德哈斯-范阿尔芬效应

德哈斯-范阿尔芬效应(英文: De Haas-van Alphen effect);是指纯金属晶体的磁化强度随外加磁场的增加而发生振荡的现象。它是一种量子力学效应。产生这种效应的物理原因是由于金属晶体的电子能态的“朗道量子化”引起的。此时金属的电子在磁场中,只能以一系列轨道量子化状态存在;由于电子占有朗道量子化状态的数目随磁场而改变,因此,移动磁场,就可观察到金属晶体的磁化强度随磁场倒数而周期振荡。 德哈斯-范阿尔芬效应是由约翰·德哈斯和他的学生范阿尔芬于1930年发现的。 要在高磁场强度和低温下,金属才会出现德哈斯-范阿尔芬效应。在这样的条件下,金属的其它一些性能,如电阻(称为舒伯尼科夫-德哈斯效应)和比热等也发生振荡。.

新!!: 晶体和德哈斯-范阿尔芬效应 · 查看更多 »

地球構造

地球的结构同其他类地行星相似,是层状的,它們可以通过化学和流变学特性區分。地球拥有一層富含硅的地壳、一層溶融狀的地幔、一層液体的外核和一个固体的-内核-。这些对地球内部结构的认识来源自物理学证据和一些推断,这些证据包括火山喷出的物质和地震波。.

新!!: 晶体和地球構造 · 查看更多 »

化学键

化學鍵(Chemical Bond)是一種粒子間的吸引力,其中粒子可以是原子或分子。透過化學鍵,粒子可組成多原子的化學物質。鍵由兩相反電荷間的電磁力引起,電荷可能來自電子和原子核,或由偶極子造成。化學鍵種類繁多,其能量大小、鍵長亦有所不同。 在原子中,帶負電、繞原子核運行的電子與核內帶正電的質子互相吸引,而位於兩原子核之間的電子則皆受兩方吸引。因此,原子核和電子間最穩定的組態,是當電子位處兩原子核間之時。這些電子使原子核能夠彼此相吸,形成所謂的化學鍵。然而,化學鍵並不能減少個別粒子所構成的體積。由於電子的質量較小且具有物質波性質,它們相較於原子核而言佔據了極大部分的體積,使原子核之間距離較遠。 一般而言,強化學鍵的形成伴隨著原子間電子的共用或轉移。分子、晶體、金屬和雙原子氣體,事實上幾乎生活中所有外在環境,都是由化學鍵所維繫而來;它決定了物質的結構。.

新!!: 晶体和化学键 · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

新!!: 晶体和化學 · 查看更多 »

北大黑斑

北大黑斑(Northern Great Dark Spot)是哈勃太空望远镜20世纪90年代所在海王星北极观测到的黑斑。 北大黑斑已被观测到持续了数年之久,与旅行者2号在1989年所观测到的大黑斑几乎一摸一样。自旅行者2号飞越以来,哈勃望远镜显示海王星上已经出现巨大变化。这意味着海王星大气有着非凡的动力,能够让它的外观在短短几星期内完全改变。 目前仍不清楚北大黑斑的本质,但有可能与1989年观测到的大黑斑一样,是海王星大气云层中的一个空洞。北大黑斑伴随着高海拔的明亮白云。有人认为它们是海王星大气底部的气体通过黑斑来到大气上层、冷却后,形成的甲烷冰晶体云。 海王星所释放出的能量是它从太阳那里所获得的能量的2倍,驱动了大气活动。由于云层的底部被内部的强大内热加热,使得海王星的大气十分活跃(比天王星更有生气,而天王星几乎没有多余的能量被释放出)。只要从云层底部至云层顶端的温度略有变化,就会在海王星大气中引起快与大规模的变化。.

新!!: 晶体和北大黑斑 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

新!!: 晶体和分子 · 查看更多 »

分子对称性

分子對稱性描述分子的對稱性表現並根據分子的對稱性對分子作分類。分子對稱性在化學中是一項基礎概念,因為它可以預測或解釋許多分子的化學性質,例如分子振動、分子的偶極矩和它的光譜学数据(以拉波特规则之類的选择定则為基礎)。在大學程度的物理化學、量子化學與無機化學教科書中,都有關於對稱性的章節。 在各種不同的分子對稱性研究架構中,群論是一項主流。這個架構在分子軌域的對稱性研究中也很有用,例如應用Hückel分子轨道法、配位場理論和Woodward-Hoffmann规则等。另一個規模較大的架構,是利用晶體系統來描述材料的晶體對稱性。 實際测定分子的對稱性有許多技術,包括X射線晶體學和各種形式的光譜。光谱学符号是以各種對稱條件為基礎。.

新!!: 晶体和分子对称性 · 查看更多 »

分子晶体

分子晶体指的是物质内部由范德华力(又称作范德瓦耳斯力或分子间作用力)将分子结合起来的固体物质。.

新!!: 晶体和分子晶体 · 查看更多 »

创神星

創神星,正式名称为50000 Quaoar,中文音譯為--欧尔,是由美国加州理工学院的两位天文学家布朗和特鲁希略于2002年10月7日发现的柯伊伯带天体。“--欧尔”(Quaoar)一词,源自美国原住民通格瓦部族(Tongva)神话的创世之神,所以中文的正式译名為創神星。国际天文联会之前给予这颗天体临时编号为,也叫小行星50000。 天文學家对創神星的了解甚少,根据天文學家估計,創神星直径介於800至1300公里之間,約相等于地球的十分之一。根據天文學家初步计算,創神星距离地球约41至45天文单位,公轉一周需时286年。.

新!!: 晶体和创神星 · 查看更多 »

咔唑

咔唑(分子式C12H9N)是一个多环含氮杂环有机物,其结构式类似芴,将芴的一个碳原子替换为氮,因此又稱氮芴。咔唑为无色晶体,源自煤焦油,也可人工合成。它是極弱的鹼,可溶於丙酮、苯或醇,難溶於水,是合成染料(如硫化还原蓝RX)、塑料(如聚N-乙烯咔唑)等的原料。 咔唑暴露在紫外線會呈現強螢光和長時間的磷光,可用作木質素、糖和甲醛的試劑。.

新!!: 晶体和咔唑 · 查看更多 »

(chrysene),又名1,2-苯并菲(1,2-benzophenanthrene)。.

新!!: 晶体和䓛 · 查看更多 »

優勝美地國家公園

優勝美地国家公园(Yosemite National Park、 )是美国加州中东部横跨图奥勒米县、马里波萨县和马德拉县东部部分地区的国家公园,, 全国公共广播电台, 26 August 2013。该公园占地并延伸到了横跨内华达山脉西坡。优胜美地国家公园每年大约有三百八十多万游客:大部分人在七平方英里(约合十八平方公里)的约塞米蒂山谷逗留。1984年,优胜美地被选定为世界遗产,其壮观的花崗岩峭壁、瀑布、清澈的溪流、巨型红杉林和生物多樣性为国际所公认。该公园大约95%的地方被指定为。约塞米蒂虽然不是第一个指定的国家公园,但它对国家公园这个概念的发展起到了支配作用。这主要是由于像和约翰·缪尔等人的工作所起的作用。 优胜美地是内华达山脉最大而且最不分散的栖息地之一。该公园还拥有植物和动物的多样性。该公园海拔从不等,还包括五个主要植被区:/橡树林地,低山地森林,高山地森林,亚高山植物和高山植物。加州7000种植物物种中,内华达山脉占了 约50%,而约塞米蒂公园内占了20%多。该公园内记载的160多种稀有植物有着合适的栖息之地,以及以这些植物中的许多植物所占据的有限范围为特征的罕见的当地地质岩层和特有的土壤。 是以花岗岩和更老的岩石残留物为特点。大约一千万年前,内华达山脉隆起而后偏斜形成西部相对平缓的山丘以及令人着迷的东部山丘。这些隆起增加了溪流和河床的陡峭程度,产生了又深又窄的峡谷岩层。约一百万年前,雪和冰积累而形成了将那些河谷往里移动的较高的高山草甸上的冰川。早期冰川时期,约塞米蒂山谷的冰的厚度可达。大块冰的下坡运动切割并雕刻了如今吸引如此之多的游客到其风景优美的U形山谷观光。 2014年被用來命名Apple電腦作業系統OS X Yosemite。.

新!!: 晶体和優勝美地國家公園 · 查看更多 »

冰雪圈

冰雪圈(cryosphere),這個名詞來自於希臘文中的κρύος(cryos),指"寒冷"、"霜"或是"冰";以及σφαῖρα(sphaira),指"球體"。冰雪圈是用來描述在地表上,水以固態形式出現的區域,包括了:海冰、湖冰、河冰、積雪、冰河、冰帽、冰蓋和凍土。 因此,冰雪圈與水圈有很大的重疊。 冰凍圈是全球氣候系統的組成部分,通過對地表能量、水分通量、雲、降水、水文、大氣和海洋循環的影響,產生重要的聯繫和回饋。 這些回饋過程使得冰凍圈對全球氣候和全球变化中的反應起著重要作用。冰消學(deglaciation)描述冰雪圈特徵的衰退。冰雪學(cryology)則是對冰雪圈的研究。.

新!!: 晶体和冰雪圈 · 查看更多 »

冰晶

冰晶(ice crystal)是冰的宏观晶体形式。冰晶在光学及电学等物理性质方面有各向异性,并且具有较高的介电常数。冰晶常呈六角柱状、六角板状、枝状、针状等形状,由于大气中的冰晶一般由水蒸气凝華产生,因此具有非常對稱的外型。在不同的環境溫度和濕度中,可以產生不同的對稱外形。当环境因素改变时,冰晶的形成方式也可能会改变,因此最终形成的晶体可能是多种样式混合而成的,例如冠柱晶。空中的冰晶下落时倾向以其侧棱平行于地平线,因此能以增强的差动反射率在偏振天气雷达信号(polarimetric weather radar)中被发现。冰晶带电后,下落的方向便不再平行于地平线。带电的冰晶也很较容易被偏振天气雷达检测出来。.

新!!: 晶体和冰晶 · 查看更多 »

凝固

凝固是指在溫度降低時,物質由液態變為固態的過程,物質凝固時的溫度稱為凝固點。目前已知的液體幾乎都可以在低溫時凝固成為固體,氦是唯一的例外,常壓下在絕對零度時仍為液體(液態氦),需加壓才能凝固為固體。 大多數的物質其凝固點和熔點溫度相同。但有些物質的凝固點和熔點會不一様。例如洋菜膠有熱遲滯現象:在85 °C會熔化,而凝固點在31 °C至40 °C之間。.

新!!: 晶体和凝固 · 查看更多 »

凝集素

凝集素(Lectins)是一種對醣蛋白上的醣類具有高度特異性的结合蛋白。在實驗室中,經常被用來分離、純化醣蛋白。 Lectin的名字的由來是來自於拉丁文中的legere,代表選擇的意思。儘管它們最初是在一百多年前於植物中發現,但是如今認為它們在自然界中普遍存在。一般普遍認為最早關於血球凝集素的敘述,來自於1888年彼得·赫曼·斯蒂尔马克在塔尔图大学(專制時期的俄國最老的大學之一)发表的博士論文。血球凝集素,也具有高度毒性,由斯蒂尔马克自蓖麻的種子純化出來(Ricinus communis)而命名為蓖麻毒素(Ricin)。然而大部分的凝集素基本上在作用時不具有酵素活性以及不造成免疫反應。凝集素在自然中到處存在,它們可以結合游離溶液中的醣類,或者特定蛋白質結構的某一部分上。它們凝集細胞并(或者)參與糖结合(glycoconjugate)作用。 雖然人們認為在植物中凝集素的功能是結合細胞表面上的醣蛋白,然而在動物中它的功能也包括結合可溶性的細胞外或細胞內醣蛋白。舉例來說,有一種凝集素被發現在哺乳類动物肝細胞的表面上,能夠專一性的識別乳糖殘基。人們相信這些細胞表面上的接受器是負責將循環系統中的特定醣蛋白移除。另一個例子是甘露糖-6-磷酸接受器能夠識別含有此種殘基的水解酵素,隨後標定這些蛋白將其送至溶小體。它們提供許多不同的生物功能——從細胞附著的調控,到醣蛋白合成,以及血液中蛋白質的濃度。凝集素也能夠藉由識別僅在病原中發現或是無法進入宿主細胞的的醣類而在免疫系統中扮演重要的角色。 純化的凝集素對於臨床应用非常重要,因為它能夠用來鑑定血型。有些存在人類紅血球上的醣脂質以及醣蛋白能夠經通过凝集素來鑑定。一種來自於雙花扁豆(Dolichos biflorus)的凝集素,經鑑定後发现可识别A1血型。來自於植物Ulex europaeus的凝集素,經鑑定後发现可识别H血型抗原,而來自於植物Vicia graminea的凝集素则可识别N血型抗原。 凝集素在植物中的真正功能還有待研究,而是否僅具細胞附著功能依然還有疑問。凝集素在種子中大量表現(通常自種子中純化),并且隨著植物生長而減少,这顯示其在植物發芽或種子自我生存中扮演了重要角色。 凝集素被視為免疫系統中的直接演化前身,而且它們至今依然在此扮演重要角色 - lectin complement activation pathway, Mannose binding lectin, S,P,E lectins, etc.

新!!: 晶体和凝集素 · 查看更多 »

准矿物

琥珀是一种常见的准矿物。上图为包含蜘蛛化石的琥珀标本 准矿物(mineraloid)是指形似矿物但却不具有晶体结构的物质。准矿物都是天然形成的,常常有类似于矿物的外观和色泽,但是其微观结构缺乏有序的原子排列(即晶体结构)。多数时候,准矿物也缺少成为矿物所要求的确定的化学成分。准矿物有时会含有一些通常不被认为是矿物的化学成分,譬如有机物。例如,黑曜石是一种无定形的火山玻璃,而非晶体;煤精是由腐化的木头在极端的压力下变质而成的;蛋白石是由无定形的非晶态二氧化硅所构成;珍珠被一些人认为是矿物,因为它的结构中含有碳酸钙,但是比较科学的分类应将其列入准矿物,因为其晶体是被有机化合物键合而成,并且其缺少固定的成分比例。.

新!!: 晶体和准矿物 · 查看更多 »

准晶体

準晶体,亦称为“准晶”或“拟晶”,是一种介于晶体和非晶体之间的固体。准晶体具有与晶体相似的长程有序的原子排列;但是准晶体不具备晶体的平移对称性。根据晶体局限定理(crystallographic restriction theorem),普通晶体只能具有二次、三次、四次或六次旋转对称性,但是准晶的布拉格衍射图具有其他的对称性,例如五次对称性或者更高的如六次以上的对称性。 数学家在20世纪60年代就发现了这种非周期平铺(aperiodic tilings)图形。但是直到快20年后这种理论上的结构才和准晶的研究联系起来。自然界中非周期图形的发现在结晶学领域造成了典范转移。虽然准晶体在此前就已被观察到并被研究,但由于它们违背了人们之前对于晶体结构的认识,所以直至20世纪80年代在开始受到重视。 获得2011年诺贝尔化学奖的丹·舍特曼是第一个正式报道发现了准晶的人。1984年他和以色列理工学院的同事们在快速冷却的铝锰合金中发现了一种新的金属相,其电子衍射斑具有明显的五次对称性。这篇文章发表于物理评论快报(Physical Review Letters)上。.

新!!: 晶体和准晶体 · 查看更多 »

全息存储

光全息存储技术是一种利用激光全息摄影原理将图文等信息记录在感光介质上的大容量信息存储技术,它有可能取代磁存储和光学存储技术,成为下一代的高容量数据存储技术。传统的存储方式将每一个比特都记为记录介质表面磁或光的变化,而全息存储中将信息记录在介质的体积内,而且利用不同角度的光线可以在同样的区域内记录多个信息图像。 另外,磁存储和光存储每次都只能读写一个比特的信息,而全息存储可以并行的读写数百万比特,这样可以使信号的传输速率大大超过目前光存储的速度 。.

新!!: 晶体和全息存储 · 查看更多 »

六氟化鈾

六氟化鈾(uranium hexafluoride)是一种铀的化合物,其化学式为。六氟化铀被用于制取浓缩铀,因此在核工业中有很重要的价值。标准状况下,六氟化铀为灰色的晶体。六氟化铀有很强的毒性,可与水剧烈反应,并且能腐蚀大多数金属。它與鋁反應溫和,在鋁的表面形成致密的氟化铝薄膜,阻止反應進一步進行。.

新!!: 晶体和六氟化鈾 · 查看更多 »

六氟砷酸五氮

六氟砷酸五氮,化学式\rm \ N_5^+^-,白色晶体,极易爆炸,爆炸时,分解出大量氮气。室温下不稳定,需在 −78°C 保存。含 \rm \ N_5^+ 离子,该离子结构是五个氮原子呈V字型排列,由5个氮原子形成两个三键和两个单键构成。其中一个氮原子最外层只带4个电子,所以整个分子显正一价。 1999年,Christe 等利用如下反应首次制得 \rm \ N_5^+^-:.

新!!: 晶体和六氟砷酸五氮 · 查看更多 »

共价键

共价键(Covalent Bond),是化学键的一种。两个或多个非金屬原子共同使用它们的外层电子(砷化鎵為例外),在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做共价键。与离子键不同的是进入共价键的原子向外不显示电荷,因为它们并没有获得或损失电子。共价键的强度比氢键要强,比离子键小。 同一種元素的原子或不同元素的原子都可以通過共​​價鍵結合,一般共價鍵結合的產物是分子,在少數情況下也可以形成晶體。 吉爾伯特·路易斯于1916年最先提出共价键。 在简单的原子轨道模型中进入共价键的原子互相提供单一的电子形成电子对,这些电子对围绕进入共价键的原子而属它们共有。 在量子力学中,最早的共价键形成的解释是由电子的复合而构成完整的轨道来解释的。第一个量子力学的共价键模型是1927年提出的,当时人们还只能计算最简单的共价键:氢气分子的共价键。今天的计算表明,当原子相互之间的距离非常近时,它们的电子轨道会互相之间相互作用而形成整个分子共用的电子轨道。.

新!!: 晶体和共价键 · 查看更多 »

先有鸡还是先有蛋

先有鸡还是先有蛋这个因果困境想要表达的是一个“到底是先有蛋,还是先有鸡”的问题。这个鸡与蛋的问题也常常激起古代的哲学家们去探索并讨论生命与宇宙的起源问题。 在一般情况下,人们往往会认为要得到“先有鸡还是先有蛋”这类循环因果的问题的答案是徒劳的,人们会认为这是自然界中最基本的问题。当然,关于这个问题的字面答案是简单并显而易见的:卵生动物在鸡出现前很长的一段时间中就一直存在了。然而,这个简单问题背后的隐喻却带来了一个形而上学层面上的困境问题。为了更好的理解这个困境问题,该问题也会被改写成“X得到了Y,Y得到了X,那么是先有X还是先有Y”。 这个问题也往往会等效运用在工程及其他学科的“一个需要计算自己本身才能得到的参数”这类循环引用问题上。此类情况的范例有范德华方程及著名的。.

新!!: 晶体和先有鸡还是先有蛋 · 查看更多 »

光参量振荡器

光参量振荡器(Optical Parametric Oscillator)是一个振荡在光学频率的参量振荡器。它将输入的频率为\omega_p的激光(所谓的),通过二阶非线性光学相互作用,转换成两个的频率较低的输出光(信号光\omega_s和闲频光\omega_i),两个输出光的频率之和等于输入光频率:\omega_s+\omega_i.

新!!: 晶体和光参量振荡器 · 查看更多 »

光子晶体

光子晶体是由周期性排列的不同折射率的介质制造的规则光学结构。这种材料因为具有光子带隙而能够阻断特定频率的光子,从而影响光子运动的。这种影响类似于半导体晶体对于电子行为的影响。由半导体在电子方面的应用,人们推想可以通过光子晶体制造的器件来控制光子运动,例如制造光子计算机。另外,光子晶体也在自然界中发现。.

新!!: 晶体和光子晶体 · 查看更多 »

光學史

人类对光學(optics)的研究开始于古代。最晚于公元前700年,古埃及人與美索不達米亞人便开始磨製與使用透鏡;之后前6~5世纪时古希臘哲學家與古印度哲學家提出了很多關於視覺與光線的理論;在,幾何光學開始萌芽。光学「optics」一词源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 中世紀時,穆斯林世界對早期光學做出许多貢獻,在幾何光學與生理光學(physiological optics)方面都有很大的進展。在文藝復興時期與科學革命時期,光學開始出現戲劇性的突破,以衍射光学的出现为标志。這些與之前發展出的光學被稱為「經典光學」。二十世紀发展的光學研究領域,如光譜學與量子光學,一般被稱為「現代光學」。.

新!!: 晶体和光學史 · 查看更多 »

光學現象

光學現象是來自光和物質之間互動結果可以觀察到的事件。一般常見的光學現象通常是由來自太陽或月球的光與大氣、雲、水、灰塵和其他粒子相互作用,在大氣層中表现出的光學特性。其它現象可以是人為的光學效果或我們的眼睛产生的內眼學現象(幻影已經被排除)。 有許多現象肇因於光是粒子或波的本性。有些非常微妙,只有通過科學儀器的精密測量才能觀察到。一個著名的觀測是日食期間觀察到星光的偏折,這證明了相對論理論預測的空間彎曲。.

新!!: 晶体和光學現象 · 查看更多 »

光弹性

光弹性(Photoelasticity)是某些透明材料(主要是塑料、玻璃、环氧树脂等非晶体)在承受载荷出现应变的状态下由各向同性变成各向异性并展现出对光的双折射的现象。基于这种材料性质发展出的描绘物体应力应变分布的试验物理学方法称为光测弹性学。相比于应力-应变的分析学方法(数学方法)的局限,光弹性法对于描绘复杂几何结构以及复杂载荷下的物体的应力应变尤其有效,即使对于材料的突然断裂处也能够给出相对准确的应力分布图像,是用于检测临界应力点和应力集中的重要方法。.

新!!: 晶体和光弹性 · 查看更多 »

克劳修斯-莫索提方程式

克劳修斯-莫索提方程式(Clausius-Mossotti equation)表達了線性介電質的極化性和相對電容率之間的關係,是因義大利物理學者莫索提(Ottaviano-Fabrizio Mossotti)和德國物理學者魯道夫·克勞修斯而命名。這方程式也可以更改為表達極化性和折射率之間的關係,此時稱為洛倫茲-洛倫茨方程式(Lorentz-Lorenz equation)。 極化性是一種微觀屬性,而相對電容率則是在介電質內部的一種巨觀屬性,所以,這方程式式連結了介電質關於電極化的微觀屬性與巨觀屬性。.

新!!: 晶体和克劳修斯-莫索提方程式 · 查看更多 »

克爾效应

克爾效應(Kerr effect),也稱「二次電光效應」,是物質因響應外電場的作用而改變其折射率的一種效應。克爾效應與泡克耳斯效應不同,前者感應出的折射率改變與外電場平方成正比,後者則與外電場成線性關係;前者可以在液體或非晶物質出現,後者只出現於沒有對稱中心的晶體物質。克爾效應或多或少會出現在每一種物質,但在某些液體會比較顯著。這效應最先由蘇格蘭科学家約翰·克爾(John Kerr)在1878年發現。 克爾效應又分為克爾電光效應與克爾光學效應。.

新!!: 晶体和克爾效应 · 查看更多 »

克林顿·戴维孙

柯林頓·戴維森(Clinton Davisson,),美国物理学家,曾在贝尔实验室長期工作。他與雷斯特·革末,在戴維森-革末實驗裏,共同合作發現電子繞射現象。因此,戴維森和喬治·湯姆森於 1937 年一起榮获诺贝尔物理学奖。湯姆森也在同時獨立地發現電子繞射現象。.

新!!: 晶体和克林顿·戴维孙 · 查看更多 »

勒内·茹斯特·阿羽依

勒内·茹斯特·阿羽依(René Just Haüy,),法国晶体学家、矿物学家,通常又被称作阿贝·阿羽依(Abbé Haüy),此名源于他为巴黎圣母院铸造的一门礼炮。 阿羽依最大的贡献是通过对方解石完全解理的研究提出了晶体的微观几何模型——晶胞学说;以及关于晶面的阿羽依定律——任何晶面在晶胞轴上的截距之比为整数比。这两个发现,尽管有待进一步修正,但仍为后世晶体学的发展起到了奠基作用。.

新!!: 晶体和勒内·茹斯特·阿羽依 · 查看更多 »

固体

固體是物質存在的一種狀態,是四種基本物质状态之一。與液體和氣體相比,固體有固定的體積及形狀,形狀也不會隨著容器形狀而改變。固體的質地較液體及氣體堅硬,固體的原子之間有緊密的結合。固體可能是晶体,其空間排列是有規則的晶格排列(例如金屬及冰),也可能是無定形體,在空間上是不規則的排列(例如玻璃)。一般而言,固体是宏观物体,一个物体要达到一定的大小才能夠被称为固体,但是对其大小無明确的规定。 物理學中研究固體的分支稱為固体物理学,是凝聚态物理学的主要分支之一。材料科学探討各種常見固體的物理及化學特性。固體化學研究固體結構、性質、合成、表徵等的一門化學分支,也和一些固體材料的化學合成有關。.

新!!: 晶体和固体 · 查看更多 »

固体物理学

固体物理学是凝聚态物理学中最大的分支。它研究的对象是固体,特别是原子排列具有周期性结构的晶体。固体物理学的基本任务是从微观上解释固体材料的宏观物理性质,主要理论基础是非相对论性的量子力学,还会使用到电动力学、统计物理中的理论。主要方法是应用薛定谔方程来描述固体物质的电子态,并使用布洛赫波函数表达晶体周期性势场中的电子态。在此基础上,发展了固体的能带论,预言了半导体的存在,并且为晶体管的制造提供理论基础。.

新!!: 晶体和固体物理学 · 查看更多 »

固相合成

固相合成是指一类在固体表面上进行的化学合成,本意指有机固相合成,广义的固相合成也包括无机固相合成。无机固相合成一般用来合成有特定晶型的无机晶体。有机固相合成中,采用固相有机高分子作为载体,整个反应均在这个高分子上进行。这类反应通过多步完成,中间形成的产物一直连接在高分子载体之上。反应中的小分子试剂与低分子副产物均能用过滤除去,十分方便。 多肽固相合成是由美国化学家罗伯特·布鲁斯·梅里菲尔德于1963年报道,梅里菲尔德也因此于1984年获得诺贝尔化学奖。当时他仅用8天就合成了过去用液相合成法要花一年才能合成的舒缓激肽。这种方法不但广泛运用于多肽合成,还能用在寡糖、寡核苷酸的合成上,极大的促进了合成化学的发展。.

新!!: 晶体和固相合成 · 查看更多 »

固氧

固氧、固态氧形成于正常大气压的54.36K(-218.79°C)以下。固态的氧气由于吸收红色光,像液氧一样,是浅蓝色透明物质。 氧分子因它在分子磁化(molecular magnetization)上与晶体结构、电子排布、超导电性的关系而受到关注。氧分子是能承载磁矩的唯一的简单双原子分子(通常情况下纵使所有分子也只有少数能够如此)。它被认为是“受自旋控制(spin-controlled)”的晶体,并因此展现出不寻常的磁性规律。在极高压下,固氧从热绝缘材料变成金属的形态;而在极低温下,它甚至能变成超导体。对固氧的结构研究始于19世纪20年代,目前,已确定六种泾渭分明的晶体相。 固氧的密度从α相的约21 cm3/mol,到γ相的约 23.5 cm3/mol 。.

新!!: 晶体和固氧 · 查看更多 »

固態反應

固態反應不同於液體和氣體的反應(以分子大小的粒子相混合),而是取決於固體的形狀、運輸性質等。簡單來說,就是物質在晶體中流動、反應。可以分為均勻固態反應、單相分均勻固態反應、非均勻固態反應等。.

新!!: 晶体和固態反應 · 查看更多 »

Crystal

Crystal可以指:.

新!!: 晶体和Crystal · 查看更多 »

CS催淚性毒氣

CS催淚性毒氣(CS gas)是化学武器的一种,学名为邻-氯代苯亚甲基丙二腈(2-chlorobenzalmalononitrile),化学分子式为C10H5ClN2。.

新!!: 晶体和CS催淚性毒氣 · 查看更多 »

矮壮素

壮素是一种农药,又名稻麦立。.

新!!: 晶体和矮壮素 · 查看更多 »

石墨烯

石墨烯(Graphene)是一種由碳原子以sp2杂化轨道組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料。石墨烯一直被認為是假設性的結構,無法單獨穩定存在,直至2004年,英国曼彻斯特大学物理學家安德烈·海姆和康斯坦丁·諾沃肖洛夫,成功地在實驗中從石墨中分離出石墨烯,而證實它可以單獨存在,兩人也因「在二维石墨烯材料的開創性實驗」為由,共同獲得2010年诺贝尔物理学奖。 石墨烯目前是世上最薄卻也是最堅硬的纳米材料,它幾乎是完全透明的,只吸收2.3%的光;導熱系數高達5300 W/m·K,高於碳纳米管和金刚石,常溫下其電子遷移率超過15000 cm2/V·s,又比纳米碳管或矽晶體(monocrystalline silicon)高,而電阻率只約10-6 Ω·cm,比銅或銀更低,為目前世上電阻率最小的材料 。因為它的電阻率極低,電子的移动速度極快,因此被期待可用來發展出更薄、導電速度更快的新一代電子元件或電晶體。由於石墨烯實質上是一種透明、良好的導體,也適合用來製造透明觸控螢幕、光板、甚至是太陽能電池。 石墨烯另一個特性,是能夠在常溫下觀察到量子霍爾效應。.

新!!: 晶体和石墨烯 · 查看更多 »

石英晶体谐振器

石英晶体谐振器(英文:quartz crystal unit或quartz crystal resonator,常簡寫成Xtal),简称石英晶体或晶振,是利用石英晶體(又稱水晶)的壓電效應,用來產生高精度振盪頻率的一種電子元件,屬於被動元件。該元件主要由石英晶--片、基座、外壳、银胶、银等成分组成。根据引线状况可分为直插(有引线)与表面贴装(无引线)两种类型。現在常見的主要封装型号有HC-49U、HC-49/S、GLASS、UM-1、UM-4、UM-5与SMD。.

新!!: 晶体和石英晶体谐振器 · 查看更多 »

石棉

石棉,又稱石綿,是天然的纤维-zh-hans:晶体;zh-hant:結晶;-状的6大硅酸盐类矿物质的总称;(Asbestos,5.5FeO,1.5MgO,8SiO2,H2O)成分中含有一定数量的水;分裂成絮时呈白色;丝绢光滑,富有弹性。 最常見的有3種:(白石棉、蛇纹石石棉)、鐵石棉(褐石棉)及青石棉(藍石棉、角閃石石棉、陽起石石棉、透閃石石棉、直閃石石棉...)。 由於石棉的纖維柔軟,具有絕緣、絕熱、隔音、耐高溫、耐酸鹼、耐腐蝕和耐磨等特性,在商業、公共事業和工業設施中有相當多的用途,例如耐火的石棉紡織品、輸水管、絕緣板等石棉水泥製品,及各種絕熱材料等广泛的应用于建築、电器、汽车、家庭用品等。 塵狀的石棉可以對健康造成嚴重的影響,极其微小的石棉纤维飞散到空中,被吸入到人体的肺后,经过20到40年的潜伏期,很容易诱发肺塵病、肺癌等肺部疾病。这就是在世界各国受到不同程度关注的石棉公害问题。在欧洲,据预测到2020年因石棉公害引发的肺癌而致死的患者将达到50万人。而在日本,预测到2040年将有10万人因此死亡。.

新!!: 晶体和石棉 · 查看更多 »

矿石收音机

矿石收音机,简称矿石机,是利用天然矿石或晶体二极管作为检波元件,加上天线、地线、调谐电路和耳机等制成的收音机。.

新!!: 晶体和矿石收音机 · 查看更多 »

玻璃

玻璃是一種呈玻璃態的无定形体,熔解的玻璃經過迅速冷卻(過冷)而成形,雖為固態,但各分子因沒有足夠時間形成晶體,仍凍結在液態的分子排布狀態。 玻璃一般而言是透明、脆性、不透氣、並具一定硬度的物料。最常見的玻璃是,包括75%的二氧化硅(SiO2)、由碳酸鈉中製備的氧化鈉(Na2O)以及氧化鈣(CaO)及其他添加物。玻璃在日常环境中呈化学惰性,亦不會與生物起作用。玻璃一般不溶于酸(例外:氢氟酸与玻璃反应生成SiF4,从而导致玻璃的腐蚀);但溶于强碱,例如氫氧化銫。 因為玻璃透明的特性,因此有許多不同的應用,其中一個主要應用是作建築中的透光材料,一般是在牆上窗戶的開口安裝小片的玻璃(玻璃窗),但二十世紀的許多大樓會用玻璃為其側面的包覆,即玻璃幕牆大樓,這種現代的玻璃已經具有防破裂的能力而被廣為應用,更新款的加入防鳥類撞擊的設計。玻璃可以反射及折射光線,而且藉由切割或是拋光,可以提昇其反射或折射的能力,因此可以作透鏡、三棱鏡、其至高速傳輸用的光纖。玻璃中若加入金屬鹽類,其顏色會改變,玻璃本身也可以上色,因此可以用玻璃製作藝術品,包括著名的花窗玻璃。 玻璃雖然容易脆斷,但非常的耐用,在早期的文化遺址中都發現許多玻璃的碎片。因為玻璃可以形成或模製成任何的形狀,而且本身是無菌的,因此常用來作為容器,包括碗、花瓶、瓶子、玻璃杯,尤其成本低廉,適合大量生產。堅硬的玻璃也常作為紙鎮、彈珠等。若將玻璃嵌入有機塑料中,是複合玻璃纤维中的重要的加固材料。 在科學上,玻璃的定義較為廣泛,是指加熱到液態時會出現玻璃轉化的无定形固體。有許多材料都符合這類玻璃的條件,包括一些金屬合金、離子鹽類、水溶液及聚合物。在包括瓶子及眼鏡的許多應用中,聚合物玻璃(如壓克力、聚碳酸酯及PET)的重量較輕,可以取代傳統的矽玻璃。 玻璃在中國古代亦稱琉璃,日語漢字以硝子代表。.

新!!: 晶体和玻璃 · 查看更多 »

玻璃态

玻璃态是由于物质在从液态冷却的时候由于冷却速度太快或者结晶速度太慢等动力学原因,或者由于分子自身不存在重复单元而无法形成晶体,而被冻结在液态的分子排布状态的一种形态。.

新!!: 晶体和玻璃态 · 查看更多 »

玻恩-冯·卡门边界条件

在固体物理学中,玻恩-冯·卡门边界条件(Born-von Karman boundary condition,又译“玻恩-卡曼边界条件”)是布拉菲点阵上给定函数的空间周期性边界条件。该条件常在固体物理学中用于描述理想晶体的性质。 玻恩-冯·卡门边界条件可描述为 式中i 表示布拉菲点阵的任意维度方向,ai 为晶格基矢,Ni 表示任意整数(假设晶格无限大)。上述定义表明,对于任意平移矢量T,均有: 其中: 玻恩-冯·卡门边界条件是固体物理学中分析许多晶体性质,如布拉格衍射和带隙结构的重要条件。将晶体势能函数写成满足该条件的周期函数,并带入薛定谔方程,即得到晶体能带结构中重要的布洛赫定理的证明。.

新!!: 晶体和玻恩-冯·卡门边界条件 · 查看更多 »

玛丽·居里

玛丽亚·斯克沃多夫斯卡-居里(Maria Skłodowska-Curie,),通常稱為玛丽·居里(Marie Curie)或居里夫人(Madame Curie),波兰裔法国籍物理学家、化学家。她是放射性研究的先驱者,是首位获得诺贝尔奖的女性,获得两次诺贝尔奖(獲得物理学奖及化学奖)的第一人(另一位為鲍林,獲得化學奖及和平奖)及唯一的女性,是唯一獲得二種不同科學類诺贝尔奖的人。她是巴黎大学第一位女教授。1995年,她与丈夫皮埃尔·居里一起移葬先贤祠,成为第一位凭自身成就入葬先贤祠的女性。 玛丽·居里原名玛丽亚·斯克沃多夫斯卡(Maria Salomea Skłodowska),生于当时俄罗斯帝国统治下的波兰会议王国的华沙,即现在波兰的首都。她在华沙地下读书,并开始接受真正的科学训练。她在华沙生活至24岁,1891年追随姊姊布洛尼斯拉娃至巴黎读书。她在巴黎取得学位并在毕业后留在巴黎从事科学研究。1903年她和丈夫皮埃尔·居里及亨利·贝可勒尔共同獲得了诺贝尔物理学奖,1911年又因放射化学方面的成就获得诺贝尔化学奖。 玛丽·居里的成就包括开创了放射性理论,放射性的英文Radioactivity是她造的词,她发明了分离放射性同位素的技术,以及发现两种新元素釙(Po)和镭(Ra)。在她的指导下,人们第一次将放射性同位素用于治疗肿瘤。她在巴黎和华沙各创办了一座居里研究所,这两个研究所至今仍是重要的医学研究中心。在第一次世界大战期间,她创办了第一批战地放射中心。 雖然玛丽·居里是法國公民,人身在異國,但也从未忘记她的祖国波兰。她教女兒波蘭文,多次帶她們去波蘭。她以祖国波兰的名字命名她所发现的第一种元素釙。 第一次世界大战時期,瑪麗·居里利用她本人发明的流動式X光機協助外科醫生。1934年病逝於法國上薩瓦省療養院,享年66岁。.

新!!: 晶体和玛丽·居里 · 查看更多 »

獨居石

居石(Monazite),也称磷铈镧矿,化学成分为(Ce,Y,La,Th)PO4,单斜晶系,晶体常呈板状、板柱状或楔状,黄褐色、棕色或红色,树脂或玻璃光泽,硬度5-5.5,比重4.9-5.5。是提取稀土元素和钍的矿物原料。 早先發現這種礦物會放射釷-232,之後會吸收慢中子而變成鈾-233,而鈾-233可作核燃料之用。1940合成又發現該礦石,可合成鈽-239。而鈽-239常被用在核子反應爐及核武器中 獨居石主要产出于花岗岩、花岗片麻岩、伟晶岩及岩浆成因的碳酸盐岩中,常形成矿砂,產區以巴西,印度,斯里兰卡,澳大利亚,南非,中國東北為主。其中,巴西,印度等國已禁採。.

新!!: 晶体和獨居石 · 查看更多 »

砷化鎵

砷化鎵(化學式:GaAs)是鎵和砷兩種元素所合成的化合物,也是重要的IIIA族、VA族化合物半导体材料,用來製作微波積體電路、紅外線發光二極體、半导体激光器和太陽電池等元件。.

新!!: 晶体和砷化鎵 · 查看更多 »

砂岩

岩是一种沉积岩,主要由砂粒胶结而成的,其中砂粒含量大于50%。絕大部分砂岩是由石英或长石组成的,石英和长石是组成地壳最常见的成分。砂岩的颜色和成分有關,可以是任何颜色,最常见的是棕色、黄色、红色、灰色和白色。 有的砂岩可以抵御风化,但又容易切割,所以经常被用于做建筑材料和铺路材料。例如石英砂岩中的颗粒比较均匀坚硬,所以砂岩也被经常用来做磨削工具。 砂岩由于透水性较好,表面含水层可以过滤掉污染物,比其他石材如石灰石更能抵御污染。.

新!!: 晶体和砂岩 · 查看更多 »

硝酸鈰銨

硝酸鈰銨是化學物質的一種,外觀为呈现橘紅色的晶體,分子式為 (NH4)2Ce(NO3)6,通常在有機合成中作为氧化剂及生产其它含铈化合物。硝酸铈铵溶于水时,完全电离,生成、和三种离子。 硝酸铈铵固体中含有两种离子:NH4+ 和 2−。六硝酸根合铈(IV)离子中,硝酸根作为双齿配体与Ce螯合。.

新!!: 晶体和硝酸鈰銨 · 查看更多 »

硝酸钯

硝酸钯是一种无机化合物,化学式为Pd(NO3)2,是钯形成的硝酸盐之一。该物质存在无水物和二水合物,这两种物质都是褐色的固体。《无机化学丛书》.第九卷 锰分族 铁系 铂系.

新!!: 晶体和硝酸钯 · 查看更多 »

硝酸铋

硝酸铋是一种无机化合物,为无色或白色有硝酸气味的固体,易潮解,其分子式为Bi(NO3)3·5H2O,不含结晶水的硝酸铋尚未制得。.

新!!: 晶体和硝酸铋 · 查看更多 »

硫是一种化学元素,在元素周期表中它的化学符号是S,原子序数是16。硫是一种非常常见的无味无臭的非金属,纯的硫是黄色的晶体,又稱做硫黄、硫磺。硫有许多不同的化合价,常見的有-2, 0, +4, +6等。在自然界中常以硫化物或硫酸盐的形式出现,尤其在火山地区纯的硫也在自然界出现。硫单质难溶于水,微溶于乙醇,易溶于二硫化碳。对所有的生物来说,硫都是一种重要的必不可少的元素,它是多种氨基酸的组成部分,尤其是大多数蛋白质的组成部分。它主要被用在肥料中,也廣泛地被用在火药、潤滑劑、殺蟲劑和抗真菌剂中。.

新!!: 晶体和硫 · 查看更多 »

硫乙醯胺

硫乙醯胺(化学式:C2H5NS),是一種有機硫化合物。白色晶體,可溶於水。它可作為有機或無機化學合成反應中硫離子之提供來源。是一種典型的硫代醯胺。硫乙醯胺具惡臭,為致癌物質。.

新!!: 晶体和硫乙醯胺 · 查看更多 »

硫胺

硫胺(Thiamine),又称维生素B1、維他命B1,命名為「thio-vitamine」(含硫維生素)。分子式C12H17N4OS+。它是人体必需的13种维生素之一,是一种水溶性维生素,属于维生素B族,它最終被指定了通用描述名稱維生素B1。其磷酸鹽衍生物參與許多細胞過程。最好形式是焦磷酸硫胺素(TPP),是糖和氨基酸的分解代謝的輔酶。在酵母中,TPP中也是酒精發酵的第一步驟。有保护神经系统的作用,还可以促进肠胃蠕动,提高食欲。穩定且非吸濕性硝酸硫胺鹽是用於麵粉和食品的營養強化同效維生素。硫胺是列在世界衛生組織基本藥物的名單中,這是基本醫療衛生制度中最重要的藥物名單。 硫胺主要是扮演食物中的糖與醣類(澱粉)在消化過程中的處理角色,最後產生能量;同時作為肌肉協調及維持神經傳導之需。維生素B1亦有中度的利尿作用。硫胺不够稳定,遇热、紫外线、氧气都会发生化学反应,分解或变质。硫胺可以溶于水,不溶于醇等有机溶剂。常温下在pH为3.5的水溶液中稳定,而在中性和碱性溶液中会发生分解。通常会被制作为盐酸盐(C12H18Cl2N4OS,CAS No.67-03-8)、硝酸盐(C12H17N5O4S,CAS No.532-43-4)等较稳定的形式来使用。.

新!!: 晶体和硫胺 · 查看更多 »

硫酸

硫酸(化学分子式為)是一种具有高腐蚀性的强矿物酸,一般為透明至微黄色,在任何浓度下都能与水混溶并且放热。有时,在工业製造过程中,硫酸也可能被染成暗褐色以提高人们对它的警惕性。 作為二元酸的硫酸在不同浓度下有不同的特性,而其对不同物质,如金属、生物组织、甚至岩石等的腐蚀性,都归根于它的强酸性,以及它在高浓度下的强烈脱水性(化学性质)、吸水性(物理性质)与氧化性。硫酸能对皮肉造成极大的伤害,因为它除了会透过酸性水解反应分解蛋白质及脂肪造成化学烧伤外,还会与碳水化合物发生脱水反应并造成二级火焰性灼伤;若不慎入眼,更会破坏视网膜造成永久失明。故在使用时,应做足安全措施。另外,硫酸的吸水性可以用来干燥非碱性气体 。 正因為硫酸有不同的特性,它也有不同的应用,如家用强酸通渠剂、铅酸蓄电池的电解质、肥料、炼油厂材料及化学合成剂等。 硫酸被广泛生產,最常用的工业方法為接触法。.

新!!: 晶体和硫酸 · 查看更多 »

硫酸铜

硫酸铜,又稱藍礬,化学式CuSO4,無水為白色粉末,含水为藍色粉末,或因不纯而呈淡灰绿色,是可溶性铜盐。硫酸铜常见的形态为其结晶体,一水合硫酸四水合铜([Cu(H2O)4]SO4·H2O,五水合硫酸铜),为蓝色固体。其水溶液因水合铜离子的缘故而呈现出蓝色,故在实验室里无水硫酸铜常被用于检验水的存在。在现实生产生活中,硫酸铜常用于炼制精铜,與熟石灰混合可製农药波尔多液。硫酸铜属于重金属盐,有毒,成人致死剂量0.9g/kg。若误食,应立即大量食用或飲用牛奶、鸡蛋清等富含蛋白质食品,或者使用EDTA钙钠盐解毒。.

新!!: 晶体和硫酸铜 · 查看更多 »

硫酸锂

硫酸锂是一种无机化合物,化学式为Li2SO4,固体存在无水物与一水合物。硫酸锂不形成矾类。.

新!!: 晶体和硫酸锂 · 查看更多 »

硫族化物

硫族化物或硫属化物(chalcogenide)是指至少含有一個硫族元素(氧族元素中除了氧以外的元素)離子及一個电负性較小元素的化合物。一般硫族元素是指硫、硒、碲、釙及𫟷等元素,而电负性較小元素一般是指砷、鍺、磷、銻、銻、鉛、硼、铝、鎵、鎵、銦、鈦、鈉等元素。 及電視中都有用到具有光电导性的。 雪梨大學開發了用硫族化物作為光偵測器的光學處理晶片,可能可以提昇光纖網路和電腦之間的傳輸速度。 許多以離子鍵鍵結的硫族化物(例如硫化鐵或硫化镉)存在含硫的礦石中,也常作為顏料使用,例如硃砂(硫化汞)、鎘黃(硫化鎘)、鎘紅(硒化鎘)及可用作白色顏料的硫化鋅。 硫族化物常溫下為氣體或固體,若是固體,一般會以離子鍵或共價鍵的方式鍵結。硫族化物一般會形成晶體,但也可以形成无定形体的玻璃狀結構。.

新!!: 晶体和硫族化物 · 查看更多 »

硬石膏

無水硫酸鈣,又称硬石膏或无水石膏,一种矿物,化学成分为CaSO4。正交晶系。晶体呈柱状或厚板状,集合体呈块状或纤维状产出。无色透明或白色,常因含杂质而呈浅灰色,有时微带浅蓝色或浅红色,有玻璃光泽。产于沉积岩层,形成于湖和内陆盐湖中,常与石膏、石盐和钾石盐等伴生。暴露在地表时易水化而成石膏。可用作水泥配料、改良土壤等。.

新!!: 晶体和硬石膏 · 查看更多 »

硼的同素異形體

有多種同素異形體,包括晶体和无定形体。現已知(已製備)的結晶狀硼有α菱面体硼晶、β菱面体硼晶以及β四方硼晶;此外,在某些特定情況下,α四方硼晶、γ正交硼晶等同素異形體結構也能被製備出來。非結晶體的形式有兩種已知,一種為精細粉末,另外一種為玻璃狀的固體。雖然有至少14種甚至更多的硼同素異形體被發表出來,但是這些被發現的組成卻是根據不足的證據、沒有經過實驗確認、被認為是混合的同素異形體或是含有雜質來穩定其硼的結構。而硼以β菱面体硼晶形式存在者是最穩定的,其餘次之,所以在室溫下的轉化率低下,也因此五個不同型態能夠在室溫下共存。非結晶粉末狀硼和多晶體的β菱面体硼晶最為相似,後者是一種堅硬的維氏硬度試驗 comparable to that of cubic 氮化硼灰料,重量卻比鋁還要輕上十個百分點,其熔點(2080 °C)比鋼高幾百度。 元素態的硼能在星塵及隕石找到,但卻不存在於地球上含氧量高的環境。因為它不容易從其化合物中被萃取出來。早先的萃取方法包含將三氧化二硼以如鎂 或 鋁的晶屬還原。但是,此方法產物容易混雜其餘金屬硼化物。現今硼純化是在高溫下以氫還原揮發性鹵化硼。而半導體產業是用之非常純的硼之製備,是在高溫下以區熔或是柴可拉斯基法分解乙硼烷。從純硼中製備硼單晶則更加困難,原因是多態现象以及硼傾向與杂质反應;典型的晶體大小為~0.1 mm。.

新!!: 晶体和硼的同素異形體 · 查看更多 »

硼礦

不是一種金屬元素,在地殼中分散狀態的硼礦非常多,而且是地表水、地下水、岩漿噴氣、礦泉水和所有岩層的氣液包中所具有的元素,硼礦物幾乎在地質裡的所有階段都可以形成,從岩漿到表生作用,硼礦是一種用途廣泛的化工原料礦物,硼在玻璃、冶金、醫藥、搪瓷、油漆、日用化工、農業以及國防尖端工業等部門都是不可缺少的。因此,硼資源的開發、利用,對於現代工業的發展,具有越來越重要的作用。.

新!!: 晶体和硼礦 · 查看更多 »

硼酸

酸(分子式:H3BO3)是无机酸,主要用于消毒、殺蟲、防腐,在核電站控制鈾核分裂的速度,以及制取其他硼化合物。其為白色粉末或透明結晶,可溶於水;有時也會以礦物的形式存在,常存在溶解於某些礦物、火山湖水或溫泉。.

新!!: 晶体和硼酸 · 查看更多 »

硼氢化亚铜

氢化亚铜,又称硼氢化铜(I),是一种无机化合物,分子式为CuBH4。.

新!!: 晶体和硼氢化亚铜 · 查看更多 »

硼氢化钇

氢化钇是一种无机化合物,化学式为Y(BH4)3,为黄色晶体。.

新!!: 晶体和硼氢化钇 · 查看更多 »

硒化汞

化汞 (HgSe)是汞和硒的化合物。它是一种灰黑色的类金属固体,晶体结构为立方晶体。其晶格常数为0.608nm。 汞与硒还能形成其他化合物:HgSe2和HgSe8。因此,严格地说HgSe应该被称作硒化汞(Ⅱ)。 硒化汞通常出现在灰硒汞矿中。.

新!!: 晶体和硒化汞 · 查看更多 »

硒酸铜

酸铜的五水物是一种浅蓝色晶体,易溶于水。.

新!!: 晶体和硒酸铜 · 查看更多 »

硅化木

硅化木,又称木变石,是远古树木的遗骸经过长期的化学元素替换过程(特指硅化过程)而形成的化石。生物以木质树的植物形式在地球上出现已久,遍及世界各角落,在世界六大陆都能发现。其中以松柏目的硅化木为多。.

新!!: 晶体和硅化木 · 查看更多 »

碳化物

碳化物是碳与电负性比它低的或和它相近元素化合生成的化合物,在工业上有很多用途。碳化物一般按以下标准分类:.

新!!: 晶体和碳化物 · 查看更多 »

碳纳米管

--(Carbon Nanotube,縮寫CNT)是在1991年1月由日本筑波NEC实验室的物理学家饭岛澄男使用高分辨透射电子显微镜从电弧法生产的碳纤维中发现的。它是一种管状的碳分子,管上每个碳原子采取sp2杂化,相互之间以碳-碳σ键结合起来,形成由六边形组成的蜂窝状结构作为碳纳米管的骨架。每个碳原子上未参与杂化的一对p电子相互之间形成跨越整个碳纳米管的共轭π电子云。按照管子的层数不同,分为单壁碳纳米管和多壁碳纳米管。管子的半径方向非常细,只有纳米尺度,几万根碳纳米管并起来也只有一根头发丝宽,碳纳米管的名称也因此而来。而在轴向则可长达数十到数百微米。 碳纳米管不总是笔直的,局部可能出现凹凸的现象,这是由于在六边形结构中混杂了五边形和七边形。出现五边形的地方,由于张力的关系导致碳纳米管向外凸出。如果五边形恰好出现在碳纳米管的顶端,就形成碳纳米管的封口。出现七边形的地方碳纳米管则向内凹进。.

新!!: 晶体和碳纳米管 · 查看更多 »

碳纖維

没有描述。

新!!: 晶体和碳纖維 · 查看更多 »

是卤族化学元素,化学符号是I,原子序数是53。.

新!!: 晶体和碘 · 查看更多 »

碘化銫

化銫(化學式:CsI)是一種無機離子化合物,通常作為X-射線影像倍增管等螢光顯示設備之輸入熒光劑。碘化銫陰極管對於強紫外線波段有很高的偵測效率。 碘化銫晶體常用於粒子物理學實驗中電磁量能器的閃爍體材料。純碘化銫是一種快速,高密度的閃爍體材料,具有相對較高的發光量。發出的光線有兩個主要成分:位在近紫外線區的波長310 nm和460 nm 兩個波段。碘化銫的缺點是高溫度影響梯度和輕微吸濕性。 碘化銫可用於傅立葉變換光譜(FT-IR)的光譜儀作為分光鏡。碘化銫相對於更常用的溴化鉀分光鏡,有更廣泛的透光範圍,使用波段可以延伸到遠紅外線。但是有一個問題,光學的碘化銫晶體的都非常柔軟,無解理,因此很難製作出一個平坦的拋光面。此外,碘化銫光學晶體必須存放在乾燥容器中,以防止水與碘化銫反應。在碘化銫的表面鍍上一層鍺,可以盡量減少在交換分光器時,接觸到空氣中溼氣的影響。.

新!!: 晶体和碘化銫 · 查看更多 »

碘化钠

化鈉是一種白色晶体,實驗式為NaI,用於輻射偵測、治療碘缺乏症及作為Finkelstein反應的反應物。 无臭,味咸而微苦。有潮解性。在空气和水溶液中逐渐析出碘而变黄或棕。1g溶于0.5ml水,约2ml 乙醇,1ml 甘油,溶于 丙酮。加热到64.3℃能溶于自身的结晶水中。有刺激性。.

新!!: 晶体和碘化钠 · 查看更多 »

碘酸

碘酸(化学式:HIO3)比溴酸和氯酸稳定,可以呈晶体状态存在,110℃分解同时有一部分脱水形成三碘酸(HI3O8),195℃脱水成五氧化二碘(I2O5),易溶于水,为强氧化剂及强酸。 Category:无机酸 * Category:腐蝕性化學品 Category:缺少物质图片的化学品条目.

新!!: 晶体和碘酸 · 查看更多 »

磁化率

在電磁學中,磁化率(magnetic susceptibility)是表徵物質在外磁場中被磁化程度的物理量。.

新!!: 晶体和磁化率 · 查看更多 »

磁鐵

磁鐵或稱磁石,是可以吸引鐵並於其外產生磁場的物體。狭义的磁铁指磁铁矿石的制品,广义的磁铁指的是用途为产生磁场的物体或装置。磁铁作為磁偶極子,能夠吸引鐵磁性物質,例如铁、镍及钴等金属。磁極的判定是以細線懸掛一磁鐵,指向北方的磁極稱為指北極或N極,指向南方的磁極為指南極或S極。(如果將地球想成一大磁鐵,則目前地球的地磁北極是S極,地磁南極則是N極。)磁鐵異极则相吸,同极则排斥。指南极與指北极相吸,指南极與指南极相斥,指北极與指北极相斥。 磁鐵分作永久磁鐵與非永久磁鐵。天然的永久磁鐵又稱為天然磁石,永久磁鐵也可以由人工製造(最強的磁鐵是釹磁鐵)。非永久性磁鐵只有在某些條件下會有磁性,通常是以電磁鐵的形式產生,也就是利用電流來強化其磁場。 未磁化的磁石內部磁分子(分子磁鐵學說)是無規則排列的,經過磁化的過程後磁分子會有規則的排列。此時,磁分子的N極和S極會朝向相同方向使磁石具有磁性而成為磁鐵。同時,同一磁鐵上存在相反兩極且兩極之磁量相等。.

新!!: 晶体和磁鐵 · 查看更多 »

磁黃鐵礦

磁黄铁矿的成分为Fe1-xS ,其中x为0.1 - 0.2,硫的含量为39%-40%,有时也含有微量的铜、镍和钴。晶体为六方板状、柱状或桶状,通常为致密的块状结构,表面为暗褐色,条痕为灰黑色,有金属光泽,性脆,解理不完全,具有磁性,是良导电体。 磁黄铁矿的硬度为4,比重4.6-4.7,分布于岩浆矿床和热液光窗中,在氧化带常被分解成为褐铁矿。 磁黄铁矿也可以提炼镍和钴。.

新!!: 晶体和磁黃鐵礦 · 查看更多 »

磷的同素异形体

磷的同素异形体有许多种,其中白磷和红磷最为常见。另外还存在紫磷和黑磷。气态磷单质中有P2分子与磷原子。.

新!!: 晶体和磷的同素异形体 · 查看更多 »

磷灰石

磷灰石是一类含钙的磷酸盐矿物总称,其化学成分为Ca5(PO4)3(F,Cl,OH),其中含CaO为55.38%,含P2O5为42.06%,含F为1.25%,含Cl为2.33%,含H2O为0.56%。最常见的磷灰石矿物种是氟磷灰石Ca5(PO4)3F,其次是氯磷灰石Ca5(PO4)3Cl、羟磷灰石Ca5(PO4)3(OH)、氧硅磷灰石Ca53(O,OH,F)和锶磷灰石Sr5(PO4)3F等。 磷灰石有三种生成方式,分别生成于火成岩、沉积岩和变质岩中,生成于火成岩中的为内生磷灰石,一般作为副产物在基性或碱性岩石中富集;在沉积岩中为外生磷灰石,是由生物沉积或生物化学沉积形成的,一般为结核状;在变质岩中生成的是经区域变质生成的。 磷灰石为六方晶系,晶体呈六方柱状,集合体有块状、粒状、结核状等多种,颜色多样,有灰色、黄色、褐色、绿色等,有玻璃光泽,硬度为5,比重为2.9-3.2,断口有贝壳状,有油脂光泽,有许多种磷灰石具有荧光。通常多种磷灰石含有杂质,如氟、碳、氯、铀、锰和其他稀有元素等。 磷灰石是提取磷和制造农用磷肥的重要原料,颜色好结晶好的磷灰石可作为宝石或装饰材料。伴生元素多的磷灰石可以综合利用。.

新!!: 晶体和磷灰石 · 查看更多 »

磷酸

磷酸(phosphoric acid)或稱為正磷酸(orthophosphoric acid),化學式H3PO4,是一种常见的无机酸,不易挥发,不易分解,几乎没有氧化性。具有酸的通性,是三元中强酸,其酸性比盐酸、硫酸、硝酸弱,但比醋酸、硼酸等强。由五氧化二磷溶于热水中即可得到。正磷酸工业上用硫酸处理磷灰石即得。用硝酸使磷氧化,可以得到较纯的磷酸;一般是83%-98%的稠厚溶液,如果再浓缩,可以得到无色晶体。磷酸在空气中容易潮解;加热会逐渐失水得到焦磷酸,进一步失水得到偏磷酸。磷酸容易自行結合成多種化合物如焦磷酸(pyrophosphoric acid)或三聚磷酸(triphosphoric acid)等。 除了用作化学试剂之外,磷酸也可主要用于制药、鐵銹轉化劑、食品添加物、溶劑、電解液、肥料、冶金、飼料等,也有在醫學美容及牙科的用途。 磷酸為三元酸,可解離出三個氫離子,因此可形成三種不同的酸根,分別是:磷酸二氫根、磷酸氫根以及磷酸根。.

新!!: 晶体和磷酸 · 查看更多 »

离子晶体

离子晶体指的是内部的离子由离子键互相结合的固态物质。.

新!!: 晶体和离子晶体 · 查看更多 »

科学大纲

以下大綱是科學的主題概述: 科学(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.

新!!: 晶体和科学大纲 · 查看更多 »

秋水仙素

秋水仙素()是最初萃取于百合科植物秋水仙的种子和球茎的一种植物碱。它是白色或淡黄色的粉末或针状晶体,有剧毒。最先用于治癒风湿病和痛風,但其具瀉藥及促進嘔吐的功能也成為醫師開處方的原因之一。現今主要用於治療痛風上。.

新!!: 晶体和秋水仙素 · 查看更多 »

空穴

空穴又称--(Electron hole),在固体物理学中指共價鍵上流失一个电子,最後在共價鍵上留下空位的現象。 一個呈電中性的原子,其正電的質子和負電的電子的數量是相等的。現在由於少了一個負電的電子,所以那裡就會呈現出一個正電性的空位——電洞。當有外面一個電子進來掉進了電洞,就會發出電磁波——光子。 電洞不是正電子,電子與正電子相遇湮滅時,所發出來的光子是非常高能的。那是兩粒子的質量所完全轉化出來的電磁波(通常會轉出一對光子)。而電子掉入電洞所發出來的光子,其能量通常只有幾個電子伏特。 半导体由于禁带较窄,电子只需不多的能量就能从价带激发到导带,从而在价带中留下空穴。周围电子可以填补这个空穴,同时在原位置产生一个新的空穴,因此实际上的电子运动看起来就如同是空穴在移动。 在半导体的制备中,要在4价的本征半导体(纯硅、锗等的晶体)的基础上掺杂。若掺入3价元素杂质(如硼、镓、铟、铝等),则可产生大量空穴,获得P型半导体,又称空穴型半导体。空穴是P型半导体中的多數载流子。 E E Category:准粒子.

新!!: 晶体和空穴 · 查看更多 »

穆斯堡尔效应

斯堡尔效应,即原子核辐射的无反冲共振吸收。这个效应首先是由德国物理学家穆斯堡尔于1958年首次在实验中实现的,因此被命名为穆斯堡尔效应。应用穆斯堡尔效应可以研究原子核与周围环境的超精细相互作用,是一种非常精确的测量手段,其能量分辨率可高达10-13,并且抗干扰能力强、实验设备和技术相对简单、对样品无破坏。由于这些特点,穆斯堡尔效应一经发现,就迅速在物理学、化学、生物学、地质学、冶金学、矿物学、地质学等领域得到广泛应用。近年来穆斯堡尔效应也在一些新兴学科,如材料科学和表面科学开拓了应用前景。 理论上,当一个原子核由激发态跃迁到基态,发出一个γ射线光子。当这个光子遇到另一个同样的原子核时,就能够被共振吸收。但是实际情况中,处于自由状态的原子核要实现上述过程是困难的。因为原子核在放出一个光子的时候,自身也具有了一个反冲动量,这个反冲动量会使光子的能量减少。同样原理,吸收光子的原子核光子由于反冲效应,吸收的光子能量会有所增大。这样造成相同原子核的发射谱和吸收谱有一定差异,所以自由的原子核很难实现共振吸收。迄今为止,人们还没有在气体和不太粘稠的液体中观察到穆斯堡尔效应。 1957年底,穆斯堡尔提出实现γ射线共振吸收的关键在于消除反冲效应。如果在实验中把发射和吸收光子的原子核置于固体晶格中,那么出现反冲效应的就不再是单一的原子核,而是整个晶体。由于晶体的质量远远大于单一的原子核的质量,反冲能量就减少到可以忽略不计的程度,这样就可以实现穆斯堡尔效应。实验中原子核在发射或吸收光子时无反冲的概率叫做无反冲分数f,无反冲分数与光子能量、晶格的性质以及环境的温度有关。 穆斯堡尔使用191Os(锇)晶体作γ射线放射源,用191Ir(铱)晶体作吸收体,于1958年首次在实验上实现了原子核的无反冲共振吸收。为减少热运动对结果的影响,放射源和吸收源都冷却到88K。放射源安装在一个转盘上,可以相对吸收体作前后运动,用多普勒效应调节γ射线的能量。191Os经过β-衰变成为191Ir的激发态,191Ir的激发态可以发出能量为129 keV的γ射线,被吸收体吸收。实验发现,当转盘不动,即相对速度为0时共振吸收最强,并且吸收谱线的宽度很窄,每秒几厘米的速度就足以破坏共振。除了191Ir外,穆斯堡尔还观察到了187Re、177Hf、166Er等原子核的无反冲共振吸收。由于这些工作,穆斯堡尔被授予1961年的诺贝尔物理学奖。 截至2005年上半年,人们已经在固体和粘稠液体中实现了穆斯堡尔效应,样品的形态可以是晶体、非晶体、薄膜、固体表层、粉末、颗粒、冷冻溶液等等,涉及40余种元素90余种同位素的110余个跃迁。然而大部分同位素只能在低温下才能实现穆斯堡尔效应,有的需要使用液氮甚至液氦对样品进行冷却。在室温下只有57Fe、119Sn、151Eu三种同位素能够实现穆斯堡尔效应。其中57Fe的 14.4 keV 跃迁是人们最常用的、也是研究最多的谱线。 穆斯堡尔效应对环境的依赖性很高。细微的环境条件差异会对穆斯堡尔效应产生显著的影响。在实验中,为减少环境带来的影响,需要利用多普勒效应对γ射线光子的能量进行细微的调制。具体做法是令γ射线辐射源和吸收体之间具有一定的相对速度,通过调整v的大小来略微调整γ射线的能量,使其达到共振吸收,即吸收率达到最大,透射率达到最小。透射率与相对速度之间的变化曲线叫做穆斯堡尔谱。应用穆斯堡尔谱可以清楚地检查到原子核能级的移动和分裂,进而得到原子核的超精细场、原子的价态和对称性等方面的信息。应用穆斯堡尔谱研究原子核与核外环境的超精细相互作用的学科叫做穆斯堡尔谱学。 穆斯堡尔谱的宽度非常窄,因此具有极高的能量分辨本领。例如57Fe的 14.4 keV 跃迁,穆斯堡尔谱宽度与γ射线的能量之比ΔE/E~10-13,67Zn的 93.3 keV 跃迁ΔE/E~10-15,107Ag的93 keV 跃迁ΔE/E~10-22。因此穆斯堡尔效应一经发现就在各种精密频差测量中得到广泛应用。例如:.

新!!: 晶体和穆斯堡尔效应 · 查看更多 »

立方体堆砌

立方体堆砌(Cubic Honeycomb)是三维空间内唯一的正密铺,也是28个半正密铺之一,由立方体堆砌而成,其縮寫為chon。它亦可被看作是四维空间中由无穷多个立方体胞组成的二胞角为180°的四维正无穷胞体,因此在许多情况下它被算作是四维的多胞体。 立方形家族里的多胞形二胞角总是90°,因此总能独自完成超平面密铺,这些密铺又构成了另一家族“立方形堆砌”,具有_n对称性,有施莱夫利符号形式。.

新!!: 晶体和立方体堆砌 · 查看更多 »

立方烷

立方烷(C8H8)为人工合成的烷烃,又稱為五環辛烷,外观为有光泽的晶体。八个碳原子对称地排列在立方体的八个角上。此烷烃属于柏拉图烃的一种。立方烷于1964年由芝加哥大学的Dr. Philip Eaton与Thomas W. Cole首先合成。Cubaneand Thomas W. Cole.

新!!: 晶体和立方烷 · 查看更多 »

立方氧化鋯

立方氧化鋯(Cubic Zirconia,簡稱CZ),亦稱作鋯立晶、方晶鋯石、高碳鑽、俄羅斯鑽、碳鑽、Sona鑽、蘇聯鑽或蘇聯石,是二氧化鋯(Zirconia,ZrO2)晶體的一種。氧化鋯天然存在時大部份為單斜晶體(mono-clinic),主要以礦物(Baddeleyite)存在。以立方單晶體存在的氧化鋯在天然中極為罕有,但現時經常以人工方法合成,被廣泛用作鑽石的代替品。因為這種人工合成方法在蘇聯發明及最先使用,故此立方氧化鋯亦被稱為「蘇聯鑽」或「蘇聯石」。立方氧化鋯有時被稱作「方晶鋯石」,但這名稱並不完全正確;因為鋯石(Zircon)是天然存在寶石的一種,其化學成份為矽酸鋯(Zirconium Silicate,ZrSiO4),與合成的立方氧化鋯為兩種不相同的物質;而氧化鋯的方晶相其實還分為立方晶(Cubic)及正方晶(Tetragonal)兩種。 人工合成的立方氧化鋯是一種堅硬、無色及光學上無瑕的結晶。因為其成本低廉,耐用而外觀與鑽石相似,故此在1976年起至今都是最主要的鑽石的代替品。 近年亦開始使用性質更為接近鑽石的碳化矽和RZ人造鑽石(ROSELLE ZIRCONIA)與立方氧化鋯競爭代替鑽石。.

新!!: 晶体和立方氧化鋯 · 查看更多 »

笼形水合物

形水合物(Clathrate hydrate)又称气体水合物(gas hydrates),是一类水性固态晶体,其物理性质类似于冰,其中体积较小的气体疏水分子被水分子组成的笼形结构包围,通过氢键连接。换言之,笼形水合物属于,其中主体分子为水分子,客体分子一般为气体。若没有客体分子的支撑作用,这类化合物的晶体结构便会坍塌为冰或水的结构。绝大多数相对分子质量较低的气体都能形成笼形水合物,比如O2、H2、N2、CO2, CH4、H2S、Ar、Kr、Xe等。一些高级烃类以及氟利昂也能形成笼形水合物。.

新!!: 晶体和笼形水合物 · 查看更多 »

类金刚石碳

类金刚石碳(Diamond-like carbon,DLC)是存在有七种不同的形式,却表现出一些金刚石特性的无定形碳。由于它的一些特性,它通常被用作其它材料的涂层材料。所有的七种形式都拥有大量sp3杂化的碳原子。它们属于不同类型的原因是,即使是金刚石也被发现有两种晶型:其中最常见的一种是立方晶体,而最不常见的一种(蓝丝黛尔石)是六方晶体。通过在纳米尺度结构的不同方法混合这些晶型,类金刚石涂层可以同时拥有非晶、有弹性,且是纯sp3杂化连接的"金刚石"。其中最硬、最强、最光滑的是被称为 四面体非晶碳(ta-C)的一种混合物。例如,仅仅2微米厚度的ta-C涂层可以增加常规 (例如304型) 不锈钢针对磨料磨损的抵抗力,从而增加其在这类使用中的寿命从1周到85年不等。这种ta-C可以被认为是"纯"形式的类金刚石碳,因为它仅仅由sp3连接的碳原子组成。一些填料例如氢,石墨sp2杂化碳,以及金属,被用在其它六种类金刚石碳中,以减少生产费用或者增加其它的一些性能。 这些种类的类金刚石几乎可以用在任何具有兼容真空环境的材料中。在2006年,欧盟内的外包类金刚石涂层市场估计市值达约三千万欧元。2011年11月,每日科学杂质报告说斯坦福大学的研究人员已经在超高压的条件下制造出了一种超硬的非晶金刚石,它并没有金刚石的晶体结构,却拥有碳的轻质量。.

新!!: 晶体和类金刚石碳 · 查看更多 »

紧束缚近似

在固体物理学中,紧束缚近似是将在一个原子附近的电子看作受该原子势场的作用为主,其他原子势场的作用看作微扰,从而可以得到电子的原子能级和晶体中能带之间的相互关系的一种近似计算手段。在此近似中,由于我们假定能带是由各个孤立原子的波函数叠加而来的,因此能带的电子波函数可以写成布洛赫波函数之和的形式:\psi^i_k.

新!!: 晶体和紧束缚近似 · 查看更多 »

綠柱石

绿柱石(Beryl),又称为“绿宝石”,化学式为Be3Al2(SiO3)6,其中含有氧化铍(BeO)14.1%,氧化铝(Al2O3)19%,氧化硅(SiO2)66.9%。六方晶系,晶体呈六方柱形,柱面有纵纹,晶体可能非常小,但也可能长达几米。硬度为7.5-8,比重为2.63-2.80。纯净的绿柱石是无色的,甚至可以是透明的。但大部分为绿色,也有浅蓝色、黄色、白色和玫瑰色的,有玻璃光泽。英语绿柱石(Beryl)一词来源于希腊语“海水般的蓝绿色”(beryllos)。.

新!!: 晶体和綠柱石 · 查看更多 »

經典物理術語

這一篇詞彙收集了經典物理內所有最常用的術語,並且簡單地表述了它們的定義。.

新!!: 晶体和經典物理術語 · 查看更多 »

緊湊緲子線圈

緊湊緲子線圈(CMS,Compact Muon Solenoid),瑞士歐洲核子研究組織CERN的大型強子對撞機計劃的兩大通用型粒子偵測器中的一個。直至2006年,已有約2300位來自159個不同的研究機構的科學家,共同參與建設。CMS將建在法國的Cessy的地下洞穴中,剛好跨過瑞士日內瓦的邊境。完成後的偵測器將是一個長約21公尺,直徑約16公尺的筒狀的結構,重量達12500公噸(這也是其名稱的由來)。.

新!!: 晶体和緊湊緲子線圈 · 查看更多 »

红宝石

红宝石,是剛玉的一种,主要成分是氧化铝(Al2O3),红色来自铬(Cr)。自然没有铬的宝石是蓝色的蓝宝石。 天然红宝石大多来自亚洲(缅甸、泰国和斯里兰卡)、非洲和澳大利亚,美国蒙大拿州和南卡羅莱納州也有部分生产。天然红宝石非常少见且珍贵,但是人造并非太难,所以工业用红宝石都是人造的。.

新!!: 晶体和红宝石 · 查看更多 »

红柱石

红柱石(英文:andalusite)是一种硅酸铝矿物,其化学成分为Al2SiO5。其中含Al2O3为63.1%,含SiO2为36.9%,有时也含有锰、铁等杂质。 红柱石晶体为斜方晶系,呈柱状,横截面接近正方形,集合体为粒状或放射状,也有形似菊花的为菊花石,颜色一般为灰白色、肉红色或褐色,具有玻璃光泽,硬度为6.5-7.5,比重为3.13-3.16。 红柱石为变质岩产物,多存在于片岩中。 红柱石在1380℃时会分解为富铝红柱石,是一种高级的耐火材料,色泽透明艳丽的红柱石可作为饰品,是一种宝石。 红柱石在1789年第一次在西班牙的安达露西亚正式公开发布,所以在欧洲文字中被称为“安达露西亚石”。.

新!!: 晶体和红柱石 · 查看更多 »

约翰内斯·贝德诺尔茨

约翰内斯·贝德诺尔茨(Johannes Bednorz,),德国物理学家,因在发现陶瓷材料中的超导电性(高温超导)所作的重大突破,与卡尔·米勒共同获得1987年的诺贝尔物理学奖。.

新!!: 晶体和约翰内斯·贝德诺尔茨 · 查看更多 »

纳米晶体

纳米晶体指晶粒为纳米尺寸的晶体材料,或具有晶体结构的纳米颗粒。一般晶粒尺寸小于100nm的材料才称为纳米晶体。纳米晶体具有很重要的研究价值。纳米晶体的电学和热力学性质显现出很强的尺寸依赖性,从而可以通过细致的制造过程来控制这些性质。纳米晶体能够提供单体的晶体结构,通过研究这些单体的晶体结构可以提供信息来解释相似材料的宏观样品的行为,而不用考虑复杂的晶界和其他晶体缺陷。尺寸小于10纳米的半导体纳米晶体通常被称为量子点。 用沸石制成的纳米晶体可以用作把原油转换成柴油的过滤器,比传统炼油方法要便宜。 纳米晶体制作的光电池具有便宜高效的特点。.

新!!: 晶体和纳米晶体 · 查看更多 »

线粒体铁蛋白

线粒体铁蛋白是一种存在于线粒体内的亚铁氧化酶。这种氧化还原酶与细胞质基质中的铁蛋白在结构与功能上高度同源,两者理化性质和结构极为相似,都具有铁摄取、结合和储存功能。人类的线粒体铁蛋白由FTMT基因编码。.

新!!: 晶体和线粒体铁蛋白 · 查看更多 »

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

新!!: 晶体和经典力学 · 查看更多 »

维生素C

維生素C(Vitamin C/ascorbic acid,又稱L-抗壞血酸,又譯維他命C)是高等靈長類動物與其他少數生物的必需營養素。是一種存在於食物中的維他命,可作為營養補充品。維生素C在大多数生物體内可藉由新陳代謝製造出來,但是有许多例外,比如人類,缺乏維生素C會造成壞血病。 維他命C可作營養補充劑以預防或治療壞血病,目前並無證據顯示可預防感冒。維他命C可藉由口服或注射來攝取。 維生素C的藥效基團是抗壞血酸離子。在生物體內,維生素C是一種抗氧化劑,因為它能夠保護身體免於氧化劑的威脅,維生素C同時也是一種輔酶。 一般而言,維他命C的耐受性很好,大劑量服用可能導致腸胃不適、頭痛、睡眠困難以及肌膚泛紅。懷孕期間攝取正常劑量通常是安全無虞的,維他命C為一種基本營養成分,有助於組織修復。含有維他命C的食物包含柑橘類水果、番茄以及馬鈴薯。當它作為食品添加劑。 維生素C也是一種抗氧化劑和防腐劑的酸度調節劑。多個E字首的數字(E number)收錄維生素C,不同的數字取決於它的化學結構,像是E300是抗壞血酸,E301為抗壞血酸鈉鹽,E302為抗壞血酸鈣鹽,E303為抗壞血酸鉀鹽,E304為酯類抗壞血酸棕櫚和抗壞血酸硬脂酸,E315為異抗壞血酸除蟲菊酯。 維他命C最早發現於1912年,在1928年首次被分離出來,在1933年首次被製造出來,於世界衛生組織基本藥物標準清單上名列有案,是建立照護系統時相當重要的必備基礎藥物之一。維他命C已經是通用名藥物,也是成藥。在發展中國家的批發價約在每月0.19到0.54美元之間,有些國家將抗壞血酸加入食物,像是營養麥片。3 g mol-1,熔点是190~192℃。在1 M水溶液中的旋光性是20.5-21.5度。pK1是4.17,pK2是11.57。在5mg/ml的水溶液中,pH值是3。氧化还原电位是0.166V(pH.

新!!: 晶体和维生素C · 查看更多 »

维格纳-赛兹原胞

维格纳-赛兹原胞(以尤金·維格納和弗雷德里克·赛兹命名)是一种几何构造,可帮助研究固体物理学中的晶体材料。晶体的独特性质是它的原子排列成一个规则的、三维的阵列,称为晶格。所有归因于晶体材料的性质都来源于这个高度有序的结构。这样的结构展示出离散平移对称。为了研究这样的周期系统,我们需要一个数学“把柄”来描述对称性,从而得出关于这个对称的结果的结论。维格纳-赛兹原胞就是实现这个目的的一种方法。.

新!!: 晶体和维格纳-赛兹原胞 · 查看更多 »

结构化学

结构化学是研究原子、分子和晶体结构以及结构与性能之间关系的学科。近几十年,这门学科获得迅速发展,结构化学观点不仅渗透到化学各个分支学科领域,同时在生物、材料、矿冶、地质等技术科学中也得到应用。 Category:物理化学.

新!!: 晶体和结构化学 · 查看更多 »

结晶

结晶,是指从饱和溶液中凝結,或從氣體凝華出具有一定的几何形状的固体(晶體)的过程。在自然環境下,氣溫的下降壓力的作用,都會造成結晶。結晶的過程一般可分為兩個階段(包括成核和晶體生長期),时间也有所不同。 結晶亦是一種分離固態和液態物質的技術,其中溶質由溶液中轉移至純淨的晶體裡。不少自然過程都涉及結晶.

新!!: 晶体和结晶 · 查看更多 »

结晶皿

结晶皿(Crystallizing dishes with spout)是一种在有机化学中常用的玻璃器皿之一。.

新!!: 晶体和结晶皿 · 查看更多 »

结晶水

结晶水是以中性水分子形式参加到晶体结构中去的一定量的水;在晶格中占有一定的位置,水分子数量与矿物的其他成分之间常呈简单比例。 不同的含水化合物有特定的脱水温度,绝大部分伴有显著的吸热效应;土壤中土粒所含的结晶水,不能直接参加土壤中进行的物理作用,也不能被植物直接吸收。 晶体从溶液当中结晶时所析出时结合一定的数目的水分子,它原本是和其他化合物以分子的型態接和在一起的水,因此不具有水的特性,這類的晶體有水合氧化鐵、氯化亞鈷、硫酸銅晶體等。.

新!!: 晶体和结晶水 · 查看更多 »

结晶水合物

结晶水合物(Crystalline Hydrate)是指含有结晶水的物质。其中的水分子属于组成结晶水合物化学性质固定的一部分。 許多物質從水溶液裡析出晶體時,晶體裡常含有一定數目的水分子,這樣的水分子叫做結晶水。含有結晶水的物質叫做結晶水合物。 結晶水合物裡的水分子屬於結晶水合物化學固定組成的一部分。 水合物含一定量水分子的固體化合物。水合物中的水是以確定的量存在的,例如天水硫酸銅CuSO4的水合物的組成為CuSO4·5H2O。水合物中的水有幾種不同的結合方式:一種是作為配體,配位在金屬離子上,稱為配位結晶水;另一種則結合在陰離子上,稱為陰離子結晶水。例如CuSO4·5H2O加熱到113℃時,只失去四分子水。只有加熱到258℃以上,才能脫去最後一分子水。由此可見,4個水分子是作為配體配位在銅離子上的,即2+;另一個水分子則結合在硫酸根上。一般認為,一個水分子通過氫鍵與中的氧原子相連接的。CuSO4·5H2O按水分子的結合方式,其結構式可寫成4。許多其他水合硫酸鹽晶體如FeSO4·7H2O、NiSO4·7H2O、ZnSO4·7H2O等,均有相同的結合方式。 在過渡金屬的水合物中,相同組成的水合物往往由於其中的水分子的結合方式不同而使其性質發生變化。例如無水三氯化鉻呈紅紫色;其水合物為暗綠色晶體,實驗式為CrCl3·6H2O。經實驗證明,6個水分子中只有4個水分子和2個氯離子作為配體與鉻離子結合在內界〔Cr(H2O)4Cl2+,不論在晶態或在水溶液中均穩定存在,因此,這種水合物的結構式可寫成Cl·2H2O。如將暗綠色晶體的溶液冷卻至0℃以下並通入氯化氫氣體,則析出紫色晶體,其結構式為Cl3。將紫色晶體的溶液用乙醚處理並通以氯化氫氣體,就析出一種淡綠色晶體,其結構式為〔Cr(H2O)5ClCl2·H2O。 水也可以不直接與陽離子或陰離子結合而依一定比例存在於晶體內,在晶格中佔據一定的部位。這種結合形式的水稱為晶格水,一般含有12個水分子。有些晶形化合物也含水,但無一定比例。例如沸石和其他矽酸鹽礦物。一些難溶的金屬氫氧化物實際上也是水合物。.

新!!: 晶体和结晶水合物 · 查看更多 »

群论

在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.

新!!: 晶体和群论 · 查看更多 »

眼科学

科学是醫學上研究眼部疾患一個分支,研究发生在视觉系统,包括可侵犯眼部的病理及眼內科和外科處理,眼球及与其相关联的组织有关疾病皆含括在內。 1851年,德国的赫爾曼·馮·亥姆霍茲发明了检眼镜,眼科学才真正独立成为一门学科。.

新!!: 晶体和眼科学 · 查看更多 »

爆炸物

物是在一定的外界能量的作用下,由自身能量发生爆炸的物质。一般情況下,炸药的化學及物理性質穩定,但不論環境是否密封,藥量多少,甚至在外界零供氧的情況下,只要有較強的能量(包括但不限于由起爆药所提供)激發,炸药就會對外界進行穩定的爆轟式作功。炸药爆炸时,能释放出大量的热能并产生高温高压气体,对周围物质起破坏、抛掷、压缩等作用。.

新!!: 晶体和爆炸物 · 查看更多 »

病毒

病毒(virus,中文舊稱“濾過性病毒”)是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态,靠寄生生活的介於生命体及非生命體之間的有機物種,它既不是生物亦不是非生物,目前不把它歸於五界(原核生物、原生生物、真菌、植物和動物)之中。它是由一个保护性外壳包裹的一段DNA或者RNA,藉由感染的機制,这些简单的有機体可以利用宿主的细胞系统进行自我复制,但无法独立生长和复制。病毒可以感染几乎所有具有细胞结构的生命体。第一个已知的病毒是烟草花叶病毒,由马丁乌斯·贝杰林克于1899年发现并命名,迄今已有超过5000种类型的病毒得到鉴定。研究病毒的科学称为病毒学,是微生物学的一个分支。 病毒由两到三个成份组成:病毒都含有遺傳物質(RNA或DNA,只由蛋白质组成的朊毒體并不属于病毒);所有的病毒也都有由蛋白质形成的衣壳,用来包裹和保护其中的遗传物质;此外,部分病毒在到达细胞表面时能够形成脂质包膜环绕在外。病毒的形态各异,从简单的螺旋形和正二十面體形到複合型结构。病毒颗粒大约是细菌大小的百分之一。Collier pp.

新!!: 晶体和病毒 · 查看更多 »

瓦尼尔函数

尼尔函数(Wannier function,或沃尼埃函数),是固体物理学中的一个正交函数的完备集,由提出"The structure of electronic excitation levels in insulating crystals," G. H. Wannier, Phys.。瓦尼尔函数在晶系中对应着局域化分子轨道。 晶体中不同晶位的瓦尼尔函数所具有的正交性,使得对特定区域中的电子态进行展开时可以构造出便于计算的基组。瓦尼尔函数的应用极其广泛,例如对电子结合能的分析,在对激子以及的分析中也有其特定的应用。.

新!!: 晶体和瓦尼尔函数 · 查看更多 »

甲基红

基红(methyl red),是一种常用的酸碱指示剂,為IMViC測試的其中一項目。.

新!!: 晶体和甲基红 · 查看更多 »

甲基黄

基黄(Methyl yellow、C.I. 11020、二甲基黃)是一种酸碱指示剂、工業用油溶性染色劑。.

新!!: 晶体和甲基黄 · 查看更多 »

甲基橙

基橙是一种常用的酸碱指示剂或pH指示剂。.

新!!: 晶体和甲基橙 · 查看更多 »

甲酸铜

酸铜是铜(II)的甲酸盐,化学式为Cu(HCOO)2。可以以无水物Motomichi Inoue, Masaji Kubo.

新!!: 晶体和甲酸铜 · 查看更多 »

甘氨酸

氨酸(glycine,简写为Gly或G),即胺基乙酸,是20个蛋白氨基酸中分子量最小的一个。它是白色或浅黄色晶体,易溶于水,有甜味。甘氨酸的侧键是一个氢原子。甘氨酸的α碳连接两个氢原子,故不是旋光异构体。由于甘氨酸的侧键非常小,它可以占据其它氨基酸无法占据的空间,比如作为胶原螺旋内的氨基酸。 在一些蛋白质中(比如细胞色素、肌红蛋白和血红蛋白)它随着进化的演变变化相当小,因为假如一个比较大的氨基酸取代它的话整个蛋白质的结构就会变化。 大多数蛋白质只含少量甘氨酸,膠原蛋白是一个重要的例外,它含三分之一的甘氨酸。.

新!!: 晶体和甘氨酸 · 查看更多 »

甘油醛

油醛(glyceraldehyde (glyceral))是一个丙糖,化学式为C3H6O3,是最简单的醛糖。它是有甜味的无色晶体,作为糖类代谢的中间产物,同时也在D-/L-标记中作为标准物。.

新!!: 晶体和甘油醛 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 晶体和电子 · 查看更多 »

电光效应

电光效应是在外加电场作用下,物体的光学性质所发生的各种变化的统称。与光的频率相比,通常这一外加电场随时间的变化非常缓慢。这些不同的电光效应可分为两类:.

新!!: 晶体和电光效应 · 查看更多 »

电磁辐射

電磁辐射,又稱電磁波,是由同相振盪且互相垂直的電場與磁場在空間中以波的形式傳遞能量和動量,其傳播方向垂直於電場與磁場構成的平面。 電磁輻射的載體為光子,不需要依靠介質傳播,在真空中的傳播速度为光速。電磁輻射可按照頻率分類,從低頻率到高頻率,主要包括無線電波、微波、紅外線、可見光、紫外線、X射線和伽馬射線。人眼可接收到的電磁輻射,波長大約在380至780nm之間,稱為可見光。只要是本身溫度大於絕對零度的物體,除了暗物質以外,都可以發射電磁輻射,而世界上並不存在温度等於或低於絕對零度的物體,因此,人們周邊所有的物體時刻都在進行電磁輻射。儘管如此,只有處於可見光频域以内的電磁波,才可以被人們肉眼看到,對於不同的生物,各種電磁波頻段的感知能力也有所不同。.

新!!: 晶体和电磁辐射 · 查看更多 »

电阻

在電磁學裏,電阻是一個物體對於電流通過的阻礙能力,以方程式定義為 其中,R為電阻,V為物體兩端的電壓,I為通過物體的電流。 假設這物體具有均勻截面面積,則其電阻與電阻率、長度成正比,與截面面積成反比。 採用國際單位制,電阻的單位為歐姆(Ω,Ohm)。電阻的倒數為電導,單位為西門子(S)。 假設溫度不變,則很多種物質會遵守歐姆定律,即這些物質所組成的物體,其電阻為常數,不跟電流或電壓有關。稱這些物質為「歐姆物質」;不遵守歐姆定律的物質為「非歐姆物質」。 電路符號常常用R來表示,例: R1、R02、R100等。.

新!!: 晶体和电阻 · 查看更多 »

焦硫酸

硫酸是一種硫的含氧酸,通常情况下为无色晶体(当冷却发烟硫酸时,可以析出焦硫酸的晶体),其熔点为308K。.

新!!: 晶体和焦硫酸 · 查看更多 »

熔化

化是指物質由固態轉變為液態的一個過程(又称熔解,其中冰的熔化又写作融化、融解)。固態物質中的內能增加(通常藉由加熱或加壓)至一特定的溫度(稱之為熔点),在該溫度下(或對於非純物質,在某溫度區段內),會轉變為液態。 一般物質因溫度升高而熔化時,其黏度會下降,唯一的例外是元素硫,隨著溫度升高,因為聚合使其黏度會上昇到一定程度,溫度再上昇時其黏度又會下降。 有些有機物質熔化時會出現,是一種介於固態及液態之間的相。.

新!!: 晶体和熔化 · 查看更多 »

熔化热

化热,亦称熔解热,是单位质量物质由固态转化为液态时,物体吸收的热量。物体熔化时的温度称为熔点。 熔化热是一种潜热,在熔化的过程中,物质不断吸收热量而温度不变,因此不能通过温度的变化直接探测到这一热量。每种物质具有不同的熔化热。晶体在一定压强下具有固定的熔点,也具有固定的熔化热;非晶体,比如玻璃和塑料,不具有固定的熔点,因而也不具有固定的熔化热。 同一种物质中,液态比固态拥有更高的内能,因此,在熔化的过程中,固态物质要吸收热量来转变为液态。同样,物质由液态转变为固态时,也要释放相同的能量。液体中的物质微粒与固体中的相比,受到更小的分子间作用力,因此拥有更高的内能。 熔化热的数值在大多数情况下是大于0的,表示物体在熔化时吸热,在凝固时放热,而氦是唯一的例外。氦-3在温度为0.3开尔文以下时,熔化热小于0。氦-4在温度为0.8开尔文以下是也轻微地显示出这种效应。这说明,在一定的恒定压强下,这些物质凝固时会吸收热量。.

新!!: 晶体和熔化热 · 查看更多 »

熔点

點、液化點(M.P.)是在大氣壓下晶体將其物態由固態轉變為液態的过程中固液共存状态的溫度;各种晶体的熔点不同,对同一种晶体,熔点又与所受压强有关,壓強越大,熔點越高。不過,與沸點不同,熔點受壓强的影響很小,因爲由固態轉變(熔化)為液態的过程中,物質的體積幾乎不變化。 進行相反動作(即由液態轉為固態)的溫度,稱之為凝固点、結晶點(對水而言也称為冰点),在一定大氣壓下,任何晶体的凝固点和熔点相同。習慣上,根據常溫(25℃)時物質的狀態使用凝固点或熔点稱呼這一個溫度:對於常溫下為固態的物質,這個溫度稱爲凝固点;對於常溫下為液態的物質,這個溫度稱爲熔点。 一般的,非晶体并没有固定的熔点和凝固点。.

新!!: 晶体和熔点 · 查看更多 »

物理学史

物理学主要是研究物质、能量及它們彼此之間的關係。它是最早形成的自然科学学科之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理學》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比伦和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德的学说以及其后的经院哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自於这些哲学传统,并在中世纪时由当时的哲学家、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。.

新!!: 晶体和物理学史 · 查看更多 »

物理冶金学

物理冶金學(Physical Metallurgy)指的是利用物理學原理,例如熱力學(Thermodynamics)、電學(electricity)等,非化學的方法來達到提煉金屬或是改變金屬材料性能的學門,歸屬在材料科學領域,其主要探討的主題為晶體結構與缺陷(Crystal Structure and defect)、退火(Anneal)、擴散(Diffusion)、相變化(Phase Transformation)等冶金過程的原理。.

新!!: 晶体和物理冶金学 · 查看更多 »

物质状态

物質狀態是指一種物質出現不同的相。早期來說,物質狀態是以它的體積性質來分辨。在固態時,物質擁有固定的形狀和容量;而在液態時,物質維持固定的容量但形狀會隨容器的形狀而改變;氣態時,物質不論有沒有容量都會膨漲以進行擴散。近期,科學家以分子之間的相互關係作分類。固態是指因分子之間因為相互的吸力因而只會在固定位置震動。而在液體的時候,分子之間距離仍然比較近,分子之間仍有一定的吸引力,因此只能在有限的範圍中活動。至於在氣態,分子之間的距離較遠,因此分子之間的吸引力並不顯著,所以分子可以隨意活動。電漿態,是在高溫之下出現的高度離化氣體。而由於相互之間的吸力是離子力,因而出現與氣體不同的性質,所以電漿態被認為是第四種物質狀態。假如有一種物質狀態不是由分子組成而是由不同力所組成,我們會考慮成一種新的物質狀態。例如:費米凝聚和夸克-膠子漿。 物質狀態亦可用相的轉變來表達。相的轉變可以是結構上的轉變又或者是出現一些獨特的性質。根據這個定義,每一種相都可以其他的相中透過相的轉變分離出來。例如水數種固體的相。超導電性便是由相的轉變引伸出來,因此便有超導電性的狀態。同樣,液晶體狀態和鐵磁性狀態都是用相的轉變所劃分出來並同時擁有不一樣的性質。.

新!!: 晶体和物质状态 · 查看更多 »

盐 (化学)

在化学中,是指一类金属离子或銨根離子(NH)与酸根离子或非金屬離子结合的化合物,如硫酸钙,氯化铜,醋酸钠,一般来说盐是複分解反应的生成物,如硫酸与氢氧化钠生成硫酸钠和水,也有其他的反应可生成盐,例如置换反应。 盐分为單盐和合盐,單盐分為正盐、酸式盐、碱式盐,合盐分為複盐和錯盐。其中酸式盐除含有金属离子与酸根离子外还含有氢离子,碱式盐除含有金属离子与酸根离子外还含有氢氧根离子,複盐溶於水時,可生成與原盐相同离子的合盐;络盐溶於水時,可生成與原盐不相同的複雜离子的合盐-絡合物。 通常在標準狀況下,不可溶的盐會是固態,但也有例外,例如及离子液体。可溶盐的溶液及有导电性,因此可作為電解質。包括細胞的細胞質、血液、尿液及礦泉水中都含有許多不同的盐類。 强碱弱酸盐是强碱和弱酸反应的盐,溶于水显碱性,如碳酸钠。而强酸弱碱盐是强酸和弱碱反应的盐,溶于水显酸性,如氯化铁。.

新!!: 晶体和盐 (化学) · 查看更多 »

盐酸

酸,學名氢氯酸(hydrochloric acid),是氯化氢(化学式:HCl)的水溶液,属于一元无机强酸,工业用途广泛。盐酸为无色透明液体,有强烈的刺鼻味,具有较高的腐蚀性。浓盐酸(质量百分濃度约为37%)具有极强的挥发性,因此盛有浓盐酸的容器打开后氯化氢气体会挥发,与空气中的水蒸气结合产生盐酸小液滴,使瓶口上方出现酸雾。盐酸是胃酸的主要成分,它能够促进食物消化、抵御微生物感染。 16世纪,利巴菲乌斯正式记载了纯净盐酸的制备方法:将浓硫酸与食盐混合加热。之后格劳勃、普利斯特里、戴维等化学家也在他们的研究中使用了盐酸。 工业革命期间,盐酸开始大量生产。化学工业中,盐酸有许多重要应用,对产品的质量起决定性作用。盐酸可用于酸洗钢材,也是大规模制备许多无机、有机化合物所需的化学试剂,例如聚氯乙烯的前体氯乙烯。盐酸还有许多小规模的用途,比如用于家务清洁、生产明胶及其他食品添加剂、除水垢试剂、皮革加工。全球每年生产约两千万吨的盐酸。.

新!!: 晶体和盐酸 · 查看更多 »

盐酸丁二胍

丁二胍,又名丁双胍,药品名丁福明,是一种口服降血糖药,於1957年被合成,主要用于二型糖尿病的治疗,与二甲双胍、苯乙双胍同属于双胍类口服降血糖药。.

新!!: 晶体和盐酸丁二胍 · 查看更多 »

相變化記憶體

變化記憶體(Phase-change memory,Ovonic Unified Memory,Chalcogenide RAM,簡稱PCM, PRAM, PCRAM, CRAM),又譯為相變位記憶體,是一種非易失性存储器裝置。PRAM 使用含一種或多種硫族化物的(Chalcogenide glass)製成,目前的主流為GeSbTe系合金。的特性是,經由加熱可以改變它的狀態,成為晶體(Crystalline)或非晶體(Amorphous)。這些不同狀態具有相應的電阻值。因此 PRAM 可以用來存儲不同的數值。 它是未來可能取代快閃記憶體的技術之一。.

新!!: 晶体和相變化記憶體 · 查看更多 »

相态列表

态列表是关于各种常见(固态,液态,气态,等离子态)和不常见的相态(物质在一定温度压强下所处的相对稳定的状态)的列表,列表是根据能量密度由低到高排列。.

新!!: 晶体和相态列表 · 查看更多 »

白云石

白云石化学成分为CaMg(CO3)2,晶体属三方晶系的碳酸盐矿物。白云石的晶体结构与方解石类似,晶形为菱面体,晶面常弯曲成马鞍状,聚片双晶常见,多呈块状、粒状集合体。纯白云石为白色,因含其他元素和杂质有时呈灰绿、灰黄、粉红等色,玻璃光泽。三组菱面体解理完全,性脆。摩氏硬度3.5-4,比重2.8-2.9。矿物粉末在冷稀盐酸中反应缓慢。.

新!!: 晶体和白云石 · 查看更多 »

白铁矿

白铁矿与黄铁矿(FeS2)同是同质多象变体,晶体常呈板状,集合体为矛头状或鸡冠状。 产于热液脉状矿床和沉积岩中,有时用于制造硫酸。 Category:含铁矿物 Category:硫化物矿物.

新!!: 晶体和白铁矿 · 查看更多 »

白铅矿

白铅矿是一种矿物名。 晶体常呈假六方双堆状、板状及棒状,集合体为粒状或致密块状。产于铅锌硫化物矿床的氧化带,通常是有方铅矿氧化成铅矾,再由铅矾受碳酸溶液作用而成的表生矿物,量多时可作提炼铅的矿物原料。 Category:含铅矿物 Category:碳酸盐矿物.

新!!: 晶体和白铅矿 · 查看更多 »

DNA纳米技术

DNA纳米技术專門研究利用脫氧核糖核酸或其他核酸的分子性質(如自組裝的特性),來建構出可操控的新型纳米尺度結構或機械。在这个领域,核酸被用作非生物的材料而不是在活细胞中那样作为遗传信息的载体。严格的核酸碱基配对法则(使链上特定的碱基列相互连接以形成牢固的双螺旋结构)使这一技术成为可能。这一技术允许合理的碱基链设计,从而严格地组合形成具有精密控制的纳米级特性的复杂的目标结构。脫氧核糖核酸是常使用的优势材料,但包括其他核酸如核糖核酸和肽核酸也被用来构造结构,所以偶尔也用“核酸纳米技术”来概括这个领域。 DNA纳米技术概念的基础最先由纳德里安·西曼(Nadrian Seeman)在1980年代早期阐述,在2000年后开始引起广泛的关注。这一领域的研究者已经构建了静止结构如二维和三维晶体结构、毫微管、多面体和其他任意的造型;和功能结构如纳米机器和DNA運算。一些组建方法被用来构建拼装结构、折叠结构和动态可重构结构。现在,这种科技开始被用作解决在结构生物学和生物物理学中基础科学问题的工具;同时也被应用在结晶学和光谱学中来测定蛋白质结构。这项技术在分子电子学(molecular scale electronics)和纳米医学中的应用仍在研究中。.

新!!: 晶体和DNA纳米技术 · 查看更多 »

芘(pyrene,读音bǐ,Unicode代码8298)是一種四環多環芳香烃類,分子式为C16H10,分子量202.26。.

新!!: 晶体和芘 · 查看更多 »

隕磺礫岩

隕磺礫岩(Suevite)是一種包含有已熔融的礦物質的岩石,屬於撞擊石的一種。一般來說,這些隕磺礫岩都包含有由玻璃、晶體或岩屑組成的角礫岩,形成於撞擊發生時。有「鑽石城」美譽的德國小鎮諾德林根就是建築在一個隕磺礫岩的隕石坑上。.

新!!: 晶体和隕磺礫岩 · 查看更多 »

音叉

音叉由彈性金屬(多為鋼)製成,末有一柄,兩端分叉,型如拉丁字母‘U’。音叉擁有一固定的共振頻率,受到敲擊時則震動,在等待初始時的泛音列過去後,音叉發出的音響就具有固定的音高。一個音叉所發出的音高由它分叉部分的長度決定。.

新!!: 晶体和音叉 · 查看更多 »

莫桑石

莫桑石(或稱摩星石)是天然碳化硅晶体的别称,1893年由法国化学家亨利·莫桑发现,因而得名。天然碳化硅只在一些陨石中发现过,在自然界中极其罕见,开采到的尺寸和数量也不足以用作珠宝,因此现今市面上的莫桑石基本上都是实验室中生产的。 碳化硅属于超硬材料,硬度為9.5,略低于钻石。折射率略高於鑽石(2.648~2.691),色散也佳(0.104)。相较于其他材料,它的導熱係數2.3-4.9 watt/K-cm,接近鑽石的26 watt/K-cm,價格卻為鑽石的十分之一,因此,被認為是鑽石的最佳替代品。碳化硅晶体和薄膜有许多工业用途。大颗粒的碳化硅单晶可用于生产珠宝(仿钻石)。.

新!!: 晶体和莫桑石 · 查看更多 »

菲利普·莱纳德

菲利普·冯·莱纳德(Philipp von Lenard,),德国物理学家,1905年诺贝尔物理学奖获得者。 莱纳德在研究阴极射线时曾获得卓越成果,为此获得诺贝尔奖;他用实验发现了光电效应的重要规律;他也提出过一种原子结构设想。.

新!!: 晶体和菲利普·莱纳德 · 查看更多 »

萊納斯·鮑林

萊納斯·卡爾·鮑林(Linus Carl Pauling,),美國化学家,量子化學和結構生物學的先驱者之一。1954年因在化學鍵方面的工作取得诺贝尔化学奖,1963年因反對核彈在地面測試的行動获得1962年度的诺贝尔和平奖,成為获得不同诺贝尔奖项的兩人之一(另一人為居里夫人);也是唯一的一位每次都是独立地获得诺贝尔奖的获奖人。其後他主要的行動為支持維他命C在醫學的功用。鮑林被认为是20世纪对化学科学影响最大的人之一,他所撰写的《化学键的本质》被认为是化学史上最重要的著作之一。他以量子力學入手分析化學問題,結論卻以直觀、淺白的概念重新闡述,即便未受量子力學訓練的化學家亦可利用準確的直觀圖像研究化學問題,影響至為深遠,比如他所提出的許多概念:电负度、共振論、价键理论、混成軌域、蛋白质二級結構等概念和理论,如今已成為化学領域最基础和最广泛使用的觀念。 他晚年过度吹捧营养补充品的药用价值,并提倡使用高剂量的维生素C治疗感冒,给自己的声誉带来了负面影响。.

新!!: 晶体和萊納斯·鮑林 · 查看更多 »

萘酚

萘酚有α-和β-两种异构体,都是无色晶体,难溶于水,溶于碱液中成盐,遇三氯化铁水溶液生成有色沉淀。 主要由萘合成,少量由煤焦油获得,α-萘酚有毒,β-萘酚可用作防腐药,这两种萘酚大量用作合成染料。.

新!!: 晶体和萘酚 · 查看更多 »

非细胞生物

非细胞生物(Non-cellular life)是没有细胞结构存在的生命。这个词的一般指的是系统进化中科学的分类的病毒这一类生命形式。 那些假设的人工生命,自我复制机器,最简单的能够自我复制的分子,如晶体,通常不被认为是生命。 一些生物学家也指那些“无细胞”的合胞体生物,因为它们的含有多个细胞核,核之间没有细胞膜,但这些细胞结合的生物体不在本文的范围。.

新!!: 晶体和非细胞生物 · 查看更多 »

非整比化合物

非整比化合物(Non-stoichiometric compound,又譯非化学计量化合物),又稱贝多莱体(berthollides),指的是组成中各类原子的相对数目不能用几个小的整数比表示的化合物。.

新!!: 晶体和非整比化合物 · 查看更多 »

表面重构

表面重构(surface reconstruction)指的是晶体表层原子的排布结构与晶体内部原子的排列方式不一致的现象。对表面重构的研究可以帮助理解不同材料表面上的化学特性。表面重构既可以发生在单一化学组分的晶体表面(例如Si(111)7×7表面重构);当另一种材料吸附在晶体表面(例如银原子吸附在Si(111)7×7表面),吸附原子也可以引起新的重构。.

新!!: 晶体和表面重构 · 查看更多 »

風化作用

化作用為岩石、土壤及其礦物等與地球大氣層接觸而分解。風化作用發生在當地或無包含物體移動,所以不能和侵蝕作用互相混淆。侵蝕作用包括岩石和礦物經由媒介如水、冰、風及重力等引起其移動與瓦解。不是風對地表的侵蝕力量 風化作用可以分為兩種。機械性或物理性的風化作用包括因為大氣情況如熱力、水、冰及壓力导致岩石及土壤的分解。化學性的風化作用包括與大氣化學物的直接反應,或與生物產生的化學物反應,最終令岩石、土壤及礦物分解。 岩石分解後的物質與有機物質結合製成土壤。土壤的礦物成分取決於母質,所以由一種岩石形成的土壤常常會缺乏一種或多種肥沃土壤所需的礦物質,而由多種岩石混合形成的土壤(如冰川、風成或沖積沉積物)常常會形成肥沃土壤。.

新!!: 晶体和風化作用 · 查看更多 »

食糖

糖(sugar)泛指各種可食用的帶有甜味的晶體,有甜味、短鏈、可溶於水的有機化合物,許多會用在食品中。糖在有機化學中屬於醣類,由碳、氫及氧三種原子組成。單醣是結構較簡單的糖,包括葡萄糖、果糖及半乳糖。日常用的蔗糖則屬於雙醣,在人體中會分解成葡萄糖及果糖。其他的雙醣有麥芽糖及乳糖。較長鏈的糖稱為寡醣。有些化學結構不同的物質也有甜味,但不會歸類為糖,有些會用來代替食物中的糖,稱為甜味劑,一般俗稱代糖。 大部份植物的組織中都有糖分,但只有在甘蔗及糖用甜菜中才有夠高的濃度。依全球性的生產比例來看,蔗糖約占七成,甜菜糖約占三成。自古在南亞及東南亞等熱帶氣候地區都有種植甘蔗,在18世紀在西印度群島及美洲開始開設製糖工廠,其產量大幅增加。這是首次使糖成为普通民众的日常消费品,之前只能靠蜂蜜使食物有甜味。糖用甜菜是甜菜的一個栽培品种,在較寒冷的氣候中成長,在十九世紀發現萃取糖的技術後,也成為糖的主要來源。糖的生產及交易在許多方面都改變了人類歷史,包括殖民的形成、奴隶制度的出現、契約勞工的產生、19世紀時因為糖交易控制國家而產生的人民遷徙及戰爭,以及新大陸的民族組成及政治結構。 全世界在2011年消耗了1.68億噸的糖,每人每年平均消耗24公斤的糖(若在工業化國家中,每人年均消耗量則為33.1公斤),相當每人每天從糖攝取了260卡路里。在二十世紀後期開始質疑高糖分(特別是精製糖分)的飲食到底對人類是否有益。食糖已確定和肥胖有關,也懷疑和糖尿病、心血管疾病、癡呆、黃斑變性及蛀牙有關。許多研究都試著找出其中的關係,但結果各有不同,原因是很難找到完全不攝取糖,或是幾乎不攝取糖的控制組族群。.

新!!: 晶体和食糖 · 查看更多 »

馬德隆常數

在一個晶體內,其中一個離子的總電勢能,可表示為它與距離最近的另一個離子的電勢能的M倍,E.

新!!: 晶体和馬德隆常數 · 查看更多 »

馬爾山脈

山脈 - Britannica.com.

新!!: 晶体和馬爾山脈 · 查看更多 »

角闪石

角闪石是角闪石系列矿物的总称,根据其晶体结构可以被分为斜方角闪石和单斜角闪石两种。角闪石是含有氢氧根的链状结构硅酸盐。.

新!!: 晶体和角闪石 · 查看更多 »

马克斯·冯·劳厄

克斯·冯·劳厄(Max von Laue,),德国物理学家,因发现晶体中X射线的衍射现象而获得1914年诺贝尔物理学奖。.

新!!: 晶体和马克斯·冯·劳厄 · 查看更多 »

高分子

分子(Macromolecule)化合物是一個非常大的分子,如蛋白質,通常由較小的亞基(單體)的聚合產生。它們一般由數千或更多的原子組成。通过一定形式的聚合反应生成具有非常高的分子量的大分子,一般指聚合物和结构上包括聚合物的分子。在生物化学中,这个术语被应用于三个传统的生物聚合物(核酸、蛋白质、和碳水化合物),以及具有大分子量的非聚合分子,例如脂类和。这些分子有时也被称为生物大分子。 聚合物高分子的各个构成分子被称为单体。 人工合成的高分子包括塑料。金属和晶体虽然也是由许多原子组成的,其内部通过类似分子的键联合在一起,但是它们一般不被认为是高分子。有时不同的高分子之间通过分子间力(但不是通过化学键)组合到一起,尤其是假如这样的组合是自然发生的,而且其组成部分一般不单独出现的话,那么这样的混合物也会被称为高分子。实际上这样的混合物更应该被称为高分子复合物。在这种情况下组成这个复合物的单个高分子往往被称为下单位。由高分子组成的物质往往有不寻常的物理特性。液晶和橡胶就是很好的例子。许多高分子在水中需要特殊的小分子帮助才能溶解。许多需要盐或者特殊的离子来溶解。.

新!!: 晶体和高分子 · 查看更多 »

高氯酸四氨合金

氯酸四氨合金是一种无机化合物,化学式为(ClO4)3。无色晶体,遇光变暗分解。.

新!!: 晶体和高氯酸四氨合金 · 查看更多 »

高氯酸銣

氯酸銣是一種無機化合物,屬於高氯酸鹽,其化學式為RbClO4。高氯酸銣是一種氧化劑。 它有兩種晶型。其中,低於279°C為斜方晶系晶體,晶格常數 a.

新!!: 晶体和高氯酸銣 · 查看更多 »

高氯酸铵

氯酸銨,或稱過氯酸銨,是一種白色的晶體,分子式為 NH4ClO4,有潮解性。它通常可以用來制造炸藥、烟火,由于分解产生大量气体,过去也用作火箭燃料,并用作分析试剂。.

新!!: 晶体和高氯酸铵 · 查看更多 »

魏德曼花紋

魏德曼花紋也稱為湯姆森結構,是在八面體隕鐵的鐵隕石和一些橄欖隕鐵中發現獨特的長鎳-鐵結晶,它們包括一些交織的錐紋石和鎳紋石形成的帶狀物,稱為lamellæ。通常,在殼層的空隙中會發現由錐紋石和鎳紋石混合構成,稱為合紋石的微小顆粒。.

新!!: 晶体和魏德曼花紋 · 查看更多 »

让·卡巴纳

让·卡巴纳(Jean Cabannes,1885年8月12日-1959年10月31日)是法国一位从事光学研究的物理学家。.

新!!: 晶体和让·卡巴纳 · 查看更多 »

诺贝尔物理学奖得主列表

诺贝尔物理学奖是诺贝尔奖的六个奖项之一,由瑞典皇家科学院每年颁发给在物理科学领域做出杰出贡献的科学家。 根据阿尔弗雷德·诺贝尔的遗愿,该奖由诺贝尔基金会管理,由瑞典皇家科学院选出5名成员组成一个委员会来评选出获奖者。 诺贝尔物理学奖於1901年第一次頒發,由德国的威廉·伦琴獲得。每个获奖者会得到一块奖牌,一份获奖证书,以及一笔不菲的奖金,奖金的数额每年会有变化。1901年,伦琴得到150,782瑞典克朗,相当于2007年12月的7,731,004瑞典克朗。2008年,三位获奖者(小林诚、益川敏英和南部阳一郎)分享了总额为1千万瑞典克朗的奖金(略多于100万欧元,或140万美元)。该奖每年于12月10日,即阿尔弗雷德·诺贝尔逝世周年纪念日,以隆重的仪式在斯德哥尔摩音乐厅颁发。 约翰·巴丁是唯一两次获得该奖的得主,他于1956年和1972年獲獎。威廉·劳伦斯·布拉格是至今最年轻的诺贝尔物理学奖奖得主,也是诺贝尔三项科学奖项中的最年轻得主,他在1915年获奖时仅有25岁。 至今共有两位女性获得过该奖,分别是玛丽·居里(1903年)和玛丽亚·格佩特-梅耶(1963年)。在六个诺贝尔奖项中,这是女性获奖人次第二少的奖项(只多於僅一位女性得主的諾貝爾經濟學獎)。 截至2016年10月,共有203人获得过该奖。诺贝尔物理学奖有6年因故停发(1916、1931、1934、1940至1942)。.

新!!: 晶体和诺贝尔物理学奖得主列表 · 查看更多 »

费米面

费米面是固体物理学中一种抽象的边界或界面,可以用来方便地表征或预测金属、半金属和半导体的热能、电能、磁能和光等的性质。 费米面的存在是泡利不相容原理的直接结论,它允许每个量子态最多有一个电子。.

新!!: 晶体和费米面 · 查看更多 »

超润滑

超润滑(Superlubricity)是指发生相对运动的物体间的摩擦力几乎为零甚至完全消失的现象。 即使在干摩擦条件下,当两个晶体表面间处于非公度(共度)态接触时,超润滑也可能发生,因此也称为结构超润滑。结构超润滑概念在1991年被提出,2004年在纳米石墨片之间获得实验证实。石墨中的碳原子以六边形的方式周期性排列,形成原子尺度的“峰-谷”景观,看上去就像生活中的鸡蛋托盘。当两个石墨表面处于公度态接触时(每旋转60度),两石墨表面间的摩擦力最大,当两石墨表面间发生相对旋转至非公度态接触时,摩擦力会极大地降低。这就像两个相互接触的鸡蛋托盘,当旋转使得它们不能互相“咬合”时,更容易发生相对滑动。 2012年,微米尺度的石墨超润滑现象通过微米石墨片的自缩回运动获得实验证实。最初对超润滑的研究受限于苛刻的实验条件,而通过自缩回运动研究石墨超润滑现象即使在微米尺度以及大气环境下也能稳定地、重复地实现,这使得超润滑现象有望在微机电系统(纳机电系统)中获得应用。 当一根针尖在平坦的表面滑行,并且所施加的载荷低于某一阈值时,也能实现超低摩擦状态。根据Tomlinson模型,该“超润滑”阈值与针尖-表面间的相互作用以及材料间的接触刚度密切相关。并且该阈值可以通过激发滑动系统的共振频率而显著降低,这揭示了一种可减少纳机电系统中磨损的方法。 需要指出的是,“超润滑”一词与“超导”,“超流”等名词的类似性具有一定的误导,因为其他能量耗散机制也可能导致有限的(通常很小)摩擦力。.

新!!: 晶体和超润滑 · 查看更多 »

路易·德布罗意

路易·维克多·德布罗意,第七代布罗意公爵(Louis Victor de Broglie, prince, puis duc de Broglie,),简称路易·德布罗意(Louis de Broglie),法國物理學家,法國外交和政治世家布羅意公爵家族的後代。从1928年到1962年在索邦大學擔任理論物理學教授,1929年因發現了電子的波動性,以及他對量子理論的研究而獲諾貝爾物理學獎。1952年獲聯合國教科文組織頒發的。 於1944年,德布羅意膺選為法蘭西學術院第一席位的院士,是第十六位得到此殊榮的人士。他也是法國科學院的永久秘書。.

新!!: 晶体和路易·德布罗意 · 查看更多 »

車輪礦

車輪礦(Bournonite),是一種常見的硫化物礦石,含有豐富的重金屬元素。因為大部分的晶體都是環狀雙晶,而顏色都是黑色或灰色,形狀近似車輪,因而稱之為「車輪礦」。而其拉丁文名稱係為紀念法國礦物學家和晶體學家賈可斯·路易斯·康姆特·迪·波農(Jacques Louis, Comte de Bournon,1751-1825年)而命名。.

新!!: 晶体和車輪礦 · 查看更多 »

黄铁矿

铁矿,主要成分是二硫化亚铁FeS2,是提取硫、制造硫酸的主要矿物原料。其特殊的形态色泽,有观赏价值。一些黄铁矿磨制成宝石也很受欢迎。 黃鐵礦可經由岩漿分結作用、熱水溶液或昇華作用中生成,也可於火成岩、沉積岩中生成。在工業上,黃鐵礦用作硫和二氧化硫生成的原料。.

新!!: 晶体和黄铁矿 · 查看更多 »

黄油

--(--,吳語音譯英文butter发音为白脫),是由新鲜或者发酵的-zh-cn:鲜奶油;zh-tw:鮮奶油;zh-hk:鮮忌廉;-或牛奶通过搅乳提制的奶制品。牛油可直接作为调味品涂抹在食品上食用,以及在烹饪中使用,例如烘焙、製作醬料和煎炸食品等,是製作蛋糕及曲奇的常用材料。 一般來說,牛油是由分散在乳脂中的微小液滴組成的,而這些微小液滴大多是由水和乳蛋白形成的。最常見的牛油原料是牛奶,某些牛油則採用其他哺乳動物的奶,包括羊、山羊、水牛和牦牛,甚或完全沒有奶的成分而只有植物油(見西西里黃油)。牛油的生產過程中有時候會加入食鹽成為有鹽牛油。有部分會加入調味劑,純度較高的牛油,大部分水分會在生產過程被分離,由於水分含量低,只要保持冷藏及包裝良好,一般不需使用防腐劑。經過提煉的牛油製造出淨化牛油或幾乎全是牛奶脂肪的酥油。 冷藏的牛油是固體,但會在室溫軟化至可供塗抹的程度,並在32至35攝氏度(90至95華氏度)融化成稀薄的液體。牛油的顏色主要是淡黃色,也可以是非常深的黃色或接近白色的淺黃。顏色取決於動物的飼料,或添加的食用色素如胭脂樹紅或胡蘿蔔素。.

新!!: 晶体和黄油 · 查看更多 »

黄昆

昆(),中国著名物理学家、中国固体物理学和半导体物理学的奠基人之一、中国科学院院士、第三世界科学院院士,北京大学教授。2001年度中華人民共和國國家最高科學技術獎获得者。.

新!!: 晶体和黄昆 · 查看更多 »

輻射下的材料科學

輻射下的材料科學描述了輻射和物質之間的相互作用:它是涵蓋了輻射作用对物質所產生的各種形態的影響的非常寬廣的領域。.

新!!: 晶体和輻射下的材料科學 · 查看更多 »

辉石

辉石是一种重要的硅酸盐矿物,是辉石类矿物的总称,常在火成岩和变质岩中被发现。根据晶体结构的不同,辉石可被分为单斜辉石和斜方辉石两个亚族,前者属于单斜晶系,后者属于斜方晶系。辉石类矿物的共同特点是其晶体中含有硅氧四面体形成的单链结构。.

新!!: 晶体和辉石 · 查看更多 »

近視

所謂近视(myopia),就是指眼睛看近处清楚而看远处不清楚的一种病理状态。有近视的人在看远处时,平行於視軸的平行光線通過眼球屈光系統的折射,彙聚在視網膜前,不能在視網膜上形成清晰的成像,因此无法看清,屬於一種屈光不正;而在看近處的物體時,像会后移到视网膜上,从而可以看清。近視的人,通過眯起眼睛可以限制光線的入射,從而減小像差,使自己可以看得更清楚一些,myopia原來的意思是眯著眼睛。近視后的远视力可以--凹透鏡來矯正,通常用屈光度來衡量屈光不正的程度,0到-3.00D屬於輕度近視,-3.00到-6.00D屬於中度近視,高於-6.00D的則是高度近視。高度近視眼的人因為眼軸過長而屬於一些眼病的高危人群,例如視網膜脱落和青光眼。 從表現上來看:.

新!!: 晶体和近視 · 查看更多 »

过氧化氢

过氧化氢,分子式H2O2,是除水外的另一种氢的氧化物。粘性比水稍微高,化学性质不稳定,一般以30%或60%的水溶液形式存放,其水溶液俗称双氧水。过氧化氢有很强的氧化性,且具弱酸性。.

新!!: 晶体和过氧化氢 · 查看更多 »

是水蒸氣(也就是氣態的水)在溫度很低時,一種凝华現象,跟雪很類似。嚴寒的冬天清晨,戶外植物上通常會結霜,這是因為夜間植物散熱的慢、地表的溫度又特別低、水蒸氣散發不快,還聚集在植物表面時就結凍了,因此形成霜。 科學上,霜是由冰晶組成,和露的出現過程是雷同的,都是空氣中的相對濕度到達100%時,水分從空氣中析出的現象,它們的差別只在於露點(水蒸氣液化成露的溫度)高於冰點,而霜點(水蒸氣凝华成霜的溫度)低於冰點,因此只有近地表的溫度低於攝氏零度時,才會結霜。 在寒帶地區、高山地區的農業災害中,霜害是常見的名詞,為了避免蔬菜結霜之後被凍壞,多需倚賴溫室栽培的技術來增加農產量。 在中國節氣中,每年阳曆10月23-24日之间是霜降。.

新!!: 晶体和霜 · 查看更多 »

蜜石

蜜石是一种矿物质,化学成分为铝的苯六甲酸盐,化学式为  Al2C6(COO)6·16H2O.

新!!: 晶体和蜜石 · 查看更多 »

范德华半径

--半径,在晶体中,相鄰的兩原子沒有鍵結,而是以分子间-zh-hans:范德华;zh-hk:范德華;zh-tw:凡得瓦;-力互相吸引,加上原子間本身的排斥力交互作用,其核間最適距離可用來指定該元素半徑,如氖之相鄰兩原子核间平均距離為320pm,其值的一半160pm即為--半徑。.

新!!: 晶体和范德华半径 · 查看更多 »

范霍夫奇点

范霍夫奇点(Van Hove singularity),或范霍夫奇异点,指的是在晶态固体的态密度(Density of State,“DOS”)中的一个奇点(不光滑点)。范霍夫奇点处的波矢通常和布里渊区的临界点有关(不同于相图中的“临界点”)。对于三维晶体,范霍夫奇点以扭结(态密度函数不可微)的形式存在。范霍夫奇点的概念最常见的应用是在光学吸收光谱的分析中。1953年,比利时物理学家就声子的状态密度的情况对这种奇点的出现作出了第一次分析。.

新!!: 晶体和范霍夫奇点 · 查看更多 »

茂金属

茂金属是一类有机金属化合物,典型的是由两个环戊二烯阴离子(茂基,简写为Cp,即C5H5-)和二价氧化态金属中心连接而成,通式为(C5H5)2M。与茂金属密切相关的为茂金属衍生物,如二氯二茂钛、二氯二茂钒等。某些茂金属及其衍生物表现出催化剂的性质,尽管在工业生产中很少用到。如+相关的第四族元素阳离子茂衍生物,可以催化烯烃聚合。茂金属属于夹心型配合物中的一类。 右侧的茂金属结构示意图中,两个五边形表示两个环戊二烯离子,五边形中的圆圈表示这个结构稳定且具有芳香性。图中所示的构象为交错式构象。.

新!!: 晶体和茂金属 · 查看更多 »

能带理论

能带理论(Energy band theory)是用量子力学的方法研究固体内部电子运动的理论。是于20世纪初期,在量子力学确立以后发展起来的一种近似理论。它曾经定性地阐明了晶体中电子运动的普遍特点,并进而说明了导体与绝缘体、半导体的区别所在,解释了晶体中电子的平均自由程问题。 自20世纪六十年代,电子计算机得到广泛应用以后,使用电子计算机依据第一性原理做复杂能带结构计算成为可能,能带理论由定性发展为一门定量的精确科学。.

新!!: 晶体和能带理论 · 查看更多 »

赤銅礦

赤銅礦,是一種化學成份為氧化亞銅(Cu2O)的氧化物礦物,顏色為胭脂紅或者暗红色,擁有金剛光澤至半金屬光澤。其硬度不高,但質量較重。赤銅礦是因銅的硫化物風化而成,因此屬於次生礦物。赤銅礦的銅含量達到88.82%之高,但因其分佈凋零,所以只會作次要銅礦使用。.

新!!: 晶体和赤銅礦 · 查看更多 »

薁(Azulene)(在化学中读音ào,Unicode代码8581),IUPAC名双环癸五烯,又名蓝烃,分子式C10H8,分子量128.17。為青蓝色片状晶体。熔点99℃,沸点242℃(分解)。不溶于水,溶于60%硫酸或盐酸中。可起某些典型的芳香烃亲电取代反应。在较高温度下异构化成萘。由环戊烷并环庚烷在铂作用下去氢制得。其同系物存在于香料中。.

新!!: 晶体和薁 · 查看更多 »

閘級驅動器

級驅動器(gate driver)是一種,可以讓控制集成电路產生的小功率訊號來驅動功率晶體(例如IGBT或是)的閘極。閘級驅動器可能是附在功率晶體上,也有可能是獨立的元件。閘級驅動器會包括位準轉換器以及放大器電路。.

新!!: 晶体和閘級驅動器 · 查看更多 »

間隙缺陷

間隙缺陷是點缺陷的一種,指代的是一個原子佔據了晶體晶格中本不應該存在原子的位置,或是兩個或者更多的原子共同分享一個或者多個晶格格位,但這些原子的數量總是大於其所佔的晶格格位數。間隙缺陷一般屬於晶體中高能量的構型。P.

新!!: 晶体和間隙缺陷 · 查看更多 »

薔薇輝石

薔薇輝石(學名:Rhodonite),是錳鏈矽酸鹽,(錳、鐵、鎂、鈣)SiO3與礦物質的準輝石組的成員,在結晶的三斜晶系。它通常發生是由於可解理緊湊成塊與玫瑰紅的顏色(這個名字來源於希臘ῥόδος rhodos,白裡透紅),往往傾向於表面氧化的褐色。 薔薇輝石的晶體通常有一個厚厚的板狀常態,但均少見。它有一個完美的棱柱形乳溝,幾乎成直角。硬度為5.5-6.5,和比重3.4-3.7;光澤為玻璃,即不常珠光的解理面。錳通常是部分地由鐵、鎂、鈣、鋅,時有可能存在相當多的取代;含有高達20%氧化鈣的灰棕色多種被稱為鈣薔薇輝石; 鋅薔薇輝石含有氧化鋅7%的含鋅品種。 薔薇輝石的鏈矽酸鹽(鏈狀矽酸鹽)結構有五個二氧化矽四面體的重複單元。罕見的多晶型物三斜錳輝石,形成在壓力與溫度條件不同,具有相同的化學成分,但為7個四面體的重複單元。.

新!!: 晶体和薔薇輝石 · 查看更多 »

藍岩鬣蜥

藍岩鬣蜥(學名:Cyclura lewisi)是大開曼特有的一種瀕危蜥蜴。牠們以往被列為古巴鬣蜥的亞種,後來於2004年因其遺傳基因的差異而被重新分類為獨立物種。藍岩鬣蜥是最長壽的蜥蜴之一,可以生存達69歲。 藍岩鬣蜥棲息於乾旱森林或近岸的岩石及遼闊地區,雌蜥會於6月至7月期間在沙上挖穴生蛋。到了9月可能會生第二窩。藍岩鬣蜥是草食性的,主要吃植物、果實及花朵。牠們呈黃褐色至灰色,而雄蜥在繁殖季節則披上一層藍色。牠們體型龐,體重驚人,由頸底至尾巴端的背冠上均有短棘。 藍岩鬣蜥的化石紀錄顯示牠們於歐洲殖民時代前廣泛分佈,但到了2003年野外卻只餘下少於15隻,於21世紀初普遍人更相信牠們將面臨滅絕。牠們的衰落主因是被野放的寵物(貓和狗)掠食及棲息地的失去。藍岩鬣蜥從1996年至2004年間均被均被世界自然保護聯盟列為極危物種,但成功的圈養繁殖令牠們的種群的數目得以趨向穩定,免除滅絕的危機。目前至少有5個非政府組織與開曼群島有關當局通力合作以確保此物種的存活。.

新!!: 晶体和藍岩鬣蜥 · 查看更多 »

藍光LED

藍光LED是能發出藍光的LED(發光二極體)燈,其發明獲譽為「愛迪生之後的第二次照明革命」。2014年,天野浩与赤崎勇、中村修二因「發明高亮度藍色發光二極體,帶來了節能明亮的白色光源」共同获得诺贝尔物理学奖。藍光LED的發明,使得人類湊齊能發出三原色光的LED,得以用LED湊出足夠亮的白光。而發白光的LED燈的發明,大幅提高人類的照明效率。。.

新!!: 晶体和藍光LED · 查看更多 »

鑽石淨度

鑽石淨度為鑽石視覺上的潔淨程度,為鑽石4C標準之一。影響其等級的瑕疵分為二者,內部的瑕疵稱為內含物(英語:inclusion ),表面的缺陷稱為表面瑕疵(英語:blemish )。評鑑鑽石淨度的準則,包括了上述瑕疵的數量、大小、種類、位置、明顯度等對鑽石整體外觀的影響程度。鑽石淨度的評級必須在十倍放大鏡(Triplet lens)檢視下進行。 內含物可能為包覆在鑽石內的其他礦物晶體,或者本生的晶體缺陷呈現霧狀白色。而大部分的鑽石都含有極細微的內含物,不影響鑽石本身的美感,也無法由肉眼觀察。但較大的內含物會阻礙光線在鑽石內穿透,影響鑽石的閃耀程度。靠近或延伸至表面的裂紋有可能受應力而加長增深,甚至崩裂。 淨度等級越高,鑽石的價格也就隨之增高。此外,內含物記載鑽石形成時的地質環境,並可作為分辨真偽、天然或合成鑽石的依據。.

新!!: 晶体和鑽石淨度 · 查看更多 »

钠长石

钠长石(Albite)是钠的铝硅酸盐(NaAlSi3O8),为三斜晶系的玻璃状晶体,一般为无色、白色、黄色、红色或黑色,是长石的一类。钠长石为架状硅酸盐结构,比重2.62,莫氏硬度为6 - 6.5,其中钙长石的含量少于10%。 钠长石是斜长石固溶体系列的钠质矿物,在伟晶岩和花岗岩中最为常见,1815年首先於瑞典发现。.

新!!: 晶体和钠长石 · 查看更多 »

钻石

鑽石(古希腊文:ἀδάμας;法文、德文:Diamant;英文:Diamond),化学和工业中称为金剛石。鑽石是碳元素组成的無色晶体,為目前已知的自然存在的最硬物質。.

新!!: 晶体和钻石 · 查看更多 »

钼酸铵

钼酸铵为白色或淡绿色晶体。 工业上一般用辉钼矿(MoS2)焙烧脱硫,用氨水浸出而制得。 一般有两种:.

新!!: 晶体和钼酸铵 · 查看更多 »

(Anthracene),俗称绿油脑,一种稠环芳香烃,分子式C14H10,分子量178.22。无色棱柱状晶体,有蓝紫色荧光,有升华性,有毒。不溶于水,微溶于乙醇,溶于乙醚、苯、甲苯、氯仿、丙酮、四氯化碳。.

新!!: 晶体和蒽 · 查看更多 »

钛酸钡

钛酸钡是钡和钛的混合氧化物,也称偏钛酸钡,化学式为BaTiO3。钛酸钡是一个鐵電陶瓷材料,有光折射效应及壓電性质。其固态时可有五种晶体结构,温度从高到低依次为:六方、等軸、四方、斜方及三方晶系。除等軸外,其余的结构都呈现铁电性。.

新!!: 晶体和钛酸钡 · 查看更多 »

钛酸银

钛酸银是一种无机化合物,化学式为Ag2TiO3。.

新!!: 晶体和钛酸银 · 查看更多 »

肖特基缺陷

肖特基缺陷(Schottky defect)是晶体结构中的一种因原子或离子离开原来所在的格点位置而形成的空位式的点缺陷。每一个空位都是一个独立的肖特基缺陷。在离子晶体中,各种离子形成的肖特基缺陷数目符合晶体的元素构成比例,因为只有这样形成缺陷后的晶体才是电中性的。形成后的空位可以在其所处的亚点阵中自由运动。通常晶体的密度会由于肖特基缺陷的存在而减小。 该缺陷以德国物理学家沃尔特·肖特基的名字命名。 下图是氯化钠(NaCl)晶体结构中的肖特基缺陷示意图,图中示出的是二维情况。.

新!!: 晶体和肖特基缺陷 · 查看更多 »

鉈(;thallium)是一種化學元素,符號為Tl,原子序為81。鉈是一種質軟的灰色貧金屬,在自然界中並不以單質存在。鉈金屬外表和錫相似,但會在空氣中失去光澤。兩位化學家威廉·克魯克斯和克洛德-奧古斯特·拉米在1861年獨立發現了這一元素。他們都是在硫酸反應殘留物中發現了鉈,並運用了當時新發明的火焰光譜法對其進行了鑑定,觀測到鉈會產生明顯的綠色譜線。其名稱「Thallium」由克魯克斯提出,來自希臘文中的「θαλλός」(thallos),即「綠芽」之意。翌年,拉米用電解法成功分離出鉈金屬。 鉈在氧化後,一般擁有+3或+1氧化態,形成離子鹽。其中+3態與同樣屬於硼族的硼、鋁、鎵和銦相似;但是鉈的+1態則比其他同族元素顯著得多,而且和鹼金屬的+1態相近。鉈(I)離子在自然界中大部份出現在含鉀礦石中。生物細胞的離子泵處理鉈(I)離子的方式也和鉀(I)類似。 在商業開採方面,鉈是硫化重金屬礦提煉過程的副產品之一。總產量的60至70%應用在電子工業,其餘則用於製藥工業和玻璃產業。鉈還被用在紅外線探測器中。放射性同位素鉈-201(以水溶氯化鉈的形態),在核醫學掃描中可用作示蹤劑,例如用於心臟負荷測試。 水溶鉈鹽大部份幾乎無味,且都是劇毒物,曾被用作殺鼠劑和殺蟲劑以及謀殺工具。這類化合物的使用已經被多國禁止或限制。鉈中毒會造成脫髮。.

新!!: 晶体和铊 · 查看更多 »

蓝宝石

蓝宝石是宝石级刚玉中除红色的红宝石之外,其它颜色刚玉宝石的通称,主要成分是氧化铝(Al2O3)。 蓝宝石的莫氏硬度为9,仅次于金刚石。25℃时的电阻率为1×1011Ω·cm,电绝缘性能优良。此外蓝宝石还具有良好的光学透过性、热传导性以及优良的机械性能,主要应用在耐磨原件、窗口材料以及电子器件领域。.

新!!: 晶体和蓝宝石 · 查看更多 »

蓝铜矿

蓝铜矿又名石青,是一种含铜的矿物,深蓝色或浅蓝色,有玻璃光泽,其化学成分为 Cu3(CO3)2(OH)2,单斜晶系,晶体呈矩柱状或板状,集合体为簇状、放射状、钟乳状或粒状,硬度为3.5-4,比重为3.77-3.89。 蓝铜矿在各种语言中都是用蓝色来命名,希腊语为kuanos,拉丁语为caeruleum,英语为azurite,则是来源于阿拉伯语中的蓝色lazhward。 蓝铜矿常与孔雀石共生,数量多时可以作为铜矿,提炼铜,经研磨成粉末可以做蓝色颜料,是中国画中常用的一种颜料,根据其研磨的细腻程度,颜色略有差异,在中国画中分为头青、二青等。大而鲜艳的晶体也可作为宝石或观赏石,但因其质地软,易风化,不易保存。.

新!!: 晶体和蓝铜矿 · 查看更多 »

铝酸钠

铝酸钠,又称偏铝酸钠,是一种无机化合物,也是一种重要的化学商品。它是生产广泛用于工业和科技领域的氢氧化铝的高效原料。纯的铝酸钠(无水合)是白色的晶体,可以用多种不同的分子式来表示,如NaAlO2、Na2O·Al2O3或Na2Al2O4或Na。 铝酸钠通过氢氧化铝在烧碱溶液中溶解获得。三价氢氧化铝(水铝矿)可以在含水 20-25% 的烧碱溶液,接近沸点的温度下溶解。使用更高浓度的烧碱溶液可产生半固体的产品,其反应过程必须在蒸汽加热的镍或者钢容器中进行,同时氢氧化铝应该和 50% 的烧碱一同沸腾,直至纸浆状物质产生,最终的混合物倒入槽中冷却,这样,含有浓度70%的 NaAlO2 固体物质便形成了。在碾碎之后,置于加热的旋转烤箱中内脱水,直接或间接用燃烧的氢加热,最终生成物包含90%的 NaAlO2 和 1% 的水,以及 1% 的自由烧碱。 铝酸钠有不同的用途:在水处理方面,它是用于水软化系统的附件,作为辅助凝结剂而改善絮凝作用,并分离硅石;在建筑工程中,铝酸钠被应用于加速混凝土的凝固,主要用于在寒冷气候下的凝固。它还被用作于造纸工业,用于难熔的砖状产品、氧化铝产品等等。.

新!!: 晶体和铝酸钠 · 查看更多 »

铌酸锂

铌酸锂(化学式:LiNbO3)是一种偏铌酸盐。其单晶是光波导,移动电话,压电传感器,光学调制器和各种其它线性和非线性光学应用的重要材料。.

新!!: 晶体和铌酸锂 · 查看更多 »

铂化钡

铂化钡是一种离子化合物,化学式为BaPt,其中含有罕见的负氧化态的铂离子(Pt2-)。.

新!!: 晶体和铂化钡 · 查看更多 »

锎化合物

锎化合物是锎元素形成的化合物,只有很少一些有所研究。三氯化锎是最先发现的锎化合物,由伯里斯·坎宁安于1960年在劳伦斯伯克利国家实验室制备出来。唯一能在水溶液稳定的离子是三价的锎离子,而二价的具有强还原性,四价的具有强氧化性。锎的氯化物、硝酸盐、硫酸盐和高氯酸盐都是可溶的,而氟化物、氢氧化物和草酸盐是难溶的。 锎的+3价态的代表的(黄绿色固体)、三氟化锎(亮绿色固体)和三碘化锎(柠檬黄色固体)。其它+3价的还有硫化物和环戊二烯配合物。+4价的典型化合物有二氧化锎(棕褐色固体)和四氟化锎(绿色固体)。+2价的有二溴化锎(黄色固体)和二碘化锎(暗紫色固体)。.

新!!: 晶体和锎化合物 · 查看更多 »

锁模技术

锁模是光学里一种用于产生极短时间激光脉冲的技术,脉冲的长度通常在皮秒(10-12秒)甚至飞秒(10-15秒)。 该技术的理论基础是在激光共振腔中的不同模式间引入固定的相位关系,这样产生的激光被称为锁相激光或锁模激光。这些模式之间的干涉会使激光产生一系列的脉冲。根据激光的性质,这些脉冲可能会有极短的持续时间,甚至可以达到飞秒的量级。.

新!!: 晶体和锁模技术 · 查看更多 »

锝(--)是一種化學元素,其原子序數是43,化學符號是Tc。其所有同位素都具有放射性,是原子序最小的非穩定元素。地球上現存的大部分鍀都是人工製造的,自然界中僅有極少量存在。在鈾礦中,鍀是一種自發裂變產物;在鉬礦石中,鉬經中子俘獲后可以生成鍀。鍀是一種銀灰色的金屬晶體,其化學性質介於錳和錸之間。 在鍀發現以前,德米特里·門捷列夫就已經預測了它的許多性質。在他的周期表中,門捷列夫把這種尚未發現的元素叫做“類錳”,符號為Em。1937年,鍀(準確的說是鍀-97)成為第一個大部分由人工製造的元素。它的英文名來自希腊語τεχνητός,意為“人造”。 鍀的短壽命同位素鍀-99m具有γ放射性,廣泛用於核醫學。鍀-99僅具有β放射性。商業上,鍀的長壽命同位素是反應堆中鈾-235裂變的副產物,可以從乏燃料中提取得到。鍀最長壽命的同位素是鍀-98(半衰期為420萬年)。1952年,有人在壽命超過十億年的紅巨星中發現了鍀-98,讓人們認識到恆星可以製造重元素。.

新!!: 晶体和锝 · 查看更多 »

锡是一种化学元素,其化学符号是Sn(拉丁语Stannum的缩写),它的原子序数是50。它是一种主族金属。纯的锡有银灰色的金属光泽,它拥有良好的伸展性能,它在空气中不易氧化,它的多种合金有防腐蚀的性能,因此它常被用来作为其它金属的防腐层。锡的主要来源是它的一种氧化物矿物锡石(SnO2),盛產於中國雲南、馬來西亞等地。.

新!!: 晶体和锡 · 查看更多 »

锗酸铋

锗酸铋(Bismuth Germanate 或 Bismuth Germanium Oxide,简称BGO)是-系化合物的总称,最常见的两种锗酸铋化合物的化学式为(CAS:12233-56-6)和(CAS:12233-73-7)。由于应用最为广泛、研究最为深入,“锗酸铋”或“BGO”通常被用来特指(本条目亦遵从此习惯),这是一种立方晶系的无色透明晶体,在高能粒子或高能射线(γ射线、X射线)的作用下能发出峰值波长为480 nm的绿色荧光,利用其闪烁性能可探测高能粒子和高能射线。.

新!!: 晶体和锗酸铋 · 查看更多 »

重结晶

重结晶(Recrystallization),再结晶,晶种结晶法,也称之為優先結晶法;是一种物理过程,在化学、冶金学和地质学中有很不同的用途。.

新!!: 晶体和重结晶 · 查看更多 »

重铬酸吡啶盐

重铬酸吡啶盐(Pyridinium dichromate,PDC),分子式C5H4N·H2Cr2O7,类似PCC一样的温和氧化剂,室温下为橙黄色晶体,用来把醇有限度地氧化为醛。它由E.J.Corey发明。试剂本身呈弱酸性,所以常跟缓冲剂比如乙酸钠配合使用。.

新!!: 晶体和重铬酸吡啶盐 · 查看更多 »

自发对称破缺

自發對稱破缺(spontaneous symmetry breaking)是某些物理系統實現對稱性破缺的模式。當物理系統所遵守的自然定律具有某種對稱性,而物理系統本身並不具有這種對稱性,則稱此現象為自發對稱破缺。這是一種自發性過程(spontaneous process),由於這過程,本來具有這種對稱性的物理系統,最終變得不再具有這種對稱性,或不再表現出這種對稱性,因此這種對稱性被隱藏。因為自發對稱破缺,有些物理系統的運動方程式或拉格朗日量遵守這種對稱性,但是最低能量解答不具有這種對稱性。從描述物理現象的拉格朗日量或運動方程式,可以對於這現象做分析研究。 對稱性破缺主要分為自發對稱破缺與明顯對稱性破缺兩種。假若在物理系統的拉格朗日量裏存在著一個或多個違反某種對稱性的項目,因此導致系統的物理行為不具備這種對稱性,則稱此為明顯對稱性破缺。 如右圖所示,假設在墨西哥帽(sombrero)的帽頂有一個圓球。这個圓球是處於旋轉對稱性狀態,對於繞著帽子中心軸的旋轉,圓球的位置不變。這圓球也處於局部最大引力勢的狀態,極不稳定,稍加微擾,就可以促使圓球滾落至帽子谷底的任意位置,因此降低至最小引力勢位置,使得旋轉對稱性被打破。儘管這圓球在帽子谷底的所有可能位置因旋轉對稱性而相互關聯,圓球實際實現的帽子谷底位置不具有旋轉對稱性──對於繞著帽子中心軸的旋轉,圓球的位置會改變。 大多數物質的簡單相態或相變,例如晶體、磁鐵、一般超導體等等,可以從自發對稱破缺的觀點來了解。像分數量子霍爾效應(fractional quantum Hall effect)一類的拓扑相(topological phase)物質是值得注意的例外。.

新!!: 晶体和自发对称破缺 · 查看更多 »

釹磁鐵

釹磁鐵(Neodymium magnet)也稱為釹鐵硼磁鐵(NdFeB magnet),是由釹、鐵、硼(Nd2Fe14B)形成的四方晶系晶體。於1982年,住友特殊金屬的佐川真人發現釹磁鐵。這種磁鐵的磁能積(BHmax)大於釤鈷磁鐵,是當時全世界磁能積最大的物質。後來,住友特殊金屬成功發展粉末冶金法(powder metallurgy process),通用汽車公司成功發展旋噴熔煉法(melt-spinning process),能夠製備釹鐵硼磁鐵。這種磁鐵是現今磁性最強的永久磁鐵,也是最常使用的稀土磁鐵。釹鐵硼磁鐵被廣泛地應用於電子產品,例如硬碟、手機、耳機以及用電池供電的工具等。 为了避免腐蚀的损害,使用时需要在永磁材料表面做保护处理,例如用金、镍、锌、锡进行电镀,以及表面喷涂环氧树脂等。.

新!!: 晶体和釹磁鐵 · 查看更多 »

臺灣電視公司

臺灣電視公司(簡稱台視、TTV)是中華民國第一家電視台,為臺灣五家無線電視台之一,成立於1962年4月28日,同年10月3日開始試播、10月10日正式開播。與中國電視公司、中華電視公司合稱為「老三臺」。.

新!!: 晶体和臺灣電視公司 · 查看更多 »

臘肉

臘肉是中國醃肉的一种,主要流行于四川、湖南、重庆、江西和广东一带,但在南方其他地区也有制作,由于通常是在农历的腊月进行腌制,所以称作“腊肉”。.

新!!: 晶体和臘肉 · 查看更多 »

金属

金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由於金屬的電子傾向脫離,因此具有良好的導電性,且金属元素在化合物中通常帶正价電,但當溫度越高時,因為受到了原子核的熱震盪阻礙,電阻將會變大。金屬分子之間的連結是金屬鍵,因此隨意更換位置都可再重新建立連結,這也是金屬伸展性良好的原因之一。 在自然界中,絶大多數金屬以化合態存在,少數金屬例如金、銀、鉑、鉍可以游離態存在。金屬礦物多數是氧化物及硫化物。其他存在形式有氯化物、硫酸鹽、碳酸鹽及矽酸鹽。 屬於金屬的物質有金、銀、銅、鐵、鋁、錫、錳、鋅等。在一大氣壓及25攝氏度的常温下,只有汞不是固體(液態),其他金属都是固體。大部分的純金屬是銀色,只有少數不是,例如金為黄色,銅為暗紅色。 在一些個別的領域中,金屬的定義會有些不同。例如因為恆星的主要成份是氫和氦,天文學中,就把所有其他密度較高的元素都統稱為「金屬」。因此天文學和物理宇宙學中的金屬量是指其他元素的總含量。此外,有許多一般不會分類為金屬的元素或化合物,在高壓下會有類似金屬的特質,稱為「金屬性的同素異形體」。.

新!!: 晶体和金属 · 查看更多 »

金属键

金屬鍵是化學鍵中的一种,主要在金属中存在,一些原子簇化合物中也存在金属键。由離域電子及排列成晶格状的金屬離子之间的静电吸引力组合而成。由于电子的自由运动,金屬鍵没有固定的方向,因而是非极性鍵。 金屬鍵決定了金屬許多物理特性,如強度、可塑性、延展性、傳導熱量、导电性、和光澤。例如一般金属的熔点、沸点随金屬鍵的强度而升高。离子半径越小,金属键越强。 金屬之間的鍵結除了金屬鍵以外,也有其他的鍵結方式,甚至是純物質也不例外。例如元素態的鎵在固態及液態下有共價的原子對鍵結,這些原子對形成晶格,和其他的金屬仍以金屬鍵鍵結。另一個金屬-金屬共價鍵的例子是。.

新!!: 晶体和金属键 · 查看更多 »

镁铝合金

鎂鋁合金是一種在鋁合金中加入鎂金屬的合金,在鋁合金編號中獲編53xx的號碼序列。鎂鋁合金的優點,在於它有跟鋼一樣的強度和硬度,但重量卻比鋼輕得多,跟塑膠很接近。因此,因其質量輕,具有良好熱傳導能力,故常用於需重視散熱的電子器材。它普遍用於手提電腦的外殼。 鎂鋁合金由鎂錠和鋁錠在保護氣體中高溫熔融而成,其組成有:簡單的物理混合與已改變晶體結構的物理混合兩種說法。 Category:镁 Category:铝合金 Category:可循環再造物料.

新!!: 晶体和镁铝合金 · 查看更多 »

镍铁电池

镍铁电池是众多充电电池中的一种,它的阳极是氢氧化镍,阴极是铁,电解质(电解液)是氢氧化钾。这种电池的电压通常是1.2V。它很耐用,能够经受一定程度的使用事故(包括过度充电、过度放电、短路、过热),而且经受上述损害后仍能保持很长的寿命。David Linden, Thomas B. Reddy (ed).

新!!: 晶体和镍铁电池 · 查看更多 »

在有机化学中,酚类化合物(phenol)是一类通式为ArOH,结构为芳烃环上的氢被羟基(—OH)取代的一类芳香族化合物。酚类化合物中最简单的酚为苯酚(,亦稱石炭酸)。 虽然结构与醇类似,但酚的性质相对独特而与醇不属同类化合物,这主要因为酚羟基连接于不饱和碳原子上。由于酚类的芳香环紧密的与羟基氧原子结合,而相对使羟基的氧原子与氢原子之间的化学键不是那么牢固,因此酚比起醇类化合物具有更强的酸性。酚上的羟基酸性通常间于脂肪醇与羧酸之间(它们的pKa通常在10-12之间)。 当酚类化合物的羟基失去一个质子(H+),就会形成相应的负离子形态的酚负离子或称为芳基氧负离子,而相应形成的盐称为酚盐或芳基氧盐。 酚化合物还允许一个芳香环上连接两个或数个羟基,其中最简单的是苯二酚,它的结构是两个羟基连接在一个苯环上。一些酚类化合物具有杀菌效果,可制成消毒剂。另外一些具有雌激素作用或内分泌干扰素的活性。.

新!!: 晶体和酚 · 查看更多 »

配位聚合物

配位聚合物是無機或含有金屬陽離子中心金屬有機聚合物藉由有機配體相連的結構。更正式的配位聚合物說法是具有重複的1,2或3個維度上延伸的配位實體。 配位聚合物的重複單元是配合物。配位聚合物包含子類的配位網絡就是配位化合物的延伸,為1個維度上透過配位實體重複,與具有兩個或更多個單獨的鏈、環、螺形鏈接或透過配位實體在2或3維度上延伸在配位化合物之間的交叉連接。這些含有空洞的有機配體所產生的配位網絡有潛力應用在金屬-有機骨架材料方面。 配位聚合物與許多領域相關,例如有機和無機化學,生物化學,材料學,電化學,和藥理學,都有很大應用潛力。這個跨學科性質,使其在過去的幾十年裡一直被廣泛的研究。 配位聚合物可以根據它們的結構和組成分成許多不同的方法。一個重要的分類被稱為維度。一個結構可以被決定為一維,二維或三維是取決於在空間中其延伸方向的排列。一維結構以直線延伸(沿著x軸);二維結構在平面中延伸(兩個方向為X和Y軸);而三維結構向三個方向延伸(X,Y,和Z軸)。敘述於右圖:.

新!!: 晶体和配位聚合物 · 查看更多 »

腐胺

腐胺(putrescine),又称1,4-丁二胺(1,4-diaminobutane)、1,4-二氨基丁烷(1,4-butanediamine)、四亚甲基二胺(Tetramethylenediamine)或腐肉碱,是一种有机化合物,常温下为无色晶体或无色至微黄色液体。腐胺的分子式为NH2(CH2)4NH2 。 腐胺与尸胺一样,都是生物活体或尸体中蛋白质的氨基酸降解产生。这两种化合物是腐败物质散发的恶臭气体的主要成分,是口气、细菌性阴道炎等疾病病变部位产生的气味的原因。腐胺、尸胺及其它一些如精胺、亚精胺分子也被在精液和一些微生物如微藻中发现。.

新!!: 晶体和腐胺 · 查看更多 »

鉀-氬年代測定法

鉀 - 氬年代測定法,簡稱K-Ar測年,是在地質年代學和考古學中,利用放射性來測定年代的方法。它是利用鉀(K)的同位素會經由放射性衰變變成氬(Ar)的性質來測量。鉀是一種常見的元素,存在於在許多物質中,如雲母,粘土礦物,火山灰。40Ar存在於液態的岩石時,會穩定的存在其中而無法逃脫,但當岩石凝固(再結晶)時,40Ar便會開始衰變。通過測量40K剩餘量的比例來計算從結晶到現在的時間長度。40K有很長半衰期,使用的方法能計算年齡長達幾千年的樣本。 在快速冷卻的熔岩中,由於冷卻過程很快的降低到鐵的居里溫度以下,使得鉀 - 氬年代測定法能夠以其為十分理想的樣品求出當時的磁場的方向和強度。由於這個方法十分理想,地磁極性的時間和尺度主要使用K-Ar測年來進行校準。.

新!!: 晶体和鉀-氬年代測定法 · 查看更多 »

苦味酸铵

苦味酸铵是一種黄色晶体。分子式C6H2(NO2)3ONH4,密度1.60 g/mL,加熱至265~271℃分解,到423℃爆炸。苦味酸铵在1841年由化學家馬爾昌德制得,但是一直都沒有用途,直到1869年它才和硝酸鉀混合在一起當作火箭的燃料。目前苦味酸铵可用於制造穿甲弹的爆破药。它可用苦味酸的水溶液经氨水中和而成。.

新!!: 晶体和苦味酸铵 · 查看更多 »

苯磺酸

苯磺酸(benzenesulfonic acid、besylate),化学式C6H5SO3H,是一种芳香强酸。它可以由苯在浓硫酸作用下发生磺化反应制得。用于制取苯酚、间苯二酚,也用作酯化反应和脱水反应中的催化剂。.

新!!: 晶体和苯磺酸 · 查看更多 »

苯甲酸胆固醇脂

苯甲酸胆固醇脂(),又称安息香酸胆固醇脂及胆甾醇苯甲酸酯,系統命名5-膽甾烯-3β-醇苯甲酸酯(5-cholesten-3β-yl benzoatec或5-cholesten-3-yl benzoatec),是一種有機化合物,由苯甲酸(安息香酸)与胆固醇形成的酯类化合物。常溫下為白色結晶固體 basechem.org 。 苯甲酸胆固醇脂可以用來作為用於液晶顯示器的液晶之組成成分,但由於熔點非室溫無法單獨製作液晶顯示器;也可熱致變色液晶的成分之一、或用在一些化妝品製劑中。 该物质为人类最早发现的具有液晶特性的化合物。该物质在145 °C至178.5 °C之间为液晶态。1888年,弗里德里希·莱尼泽发现该材料具有液晶特性。.

新!!: 晶体和苯甲酸胆固醇脂 · 查看更多 »

苯酚

苯酚(化学式:65,PhOH),又名石炭酸、羟基苯,是最简单的酚类有机物,常温下为一种无色晶体。有毒。 苯酚是一种常见的化学品,是生产某些树脂、杀菌剂、防腐剂以及药物(如阿司匹林)的重要原料。.

新!!: 晶体和苯酚 · 查看更多 »

雪是降水形式的一种,是从云中降落的结晶状固体冰,常以雪花的形式存在。雪是由小的冰颗粒物构成,是一种,它的结构开放,因此显得柔软。因为气温和湿度不同,形成的雪花有多种的形状和大小。如果在降落过程中,雪融化后又重新冻结會形成球状降雪,此类降雪有霙、霰、冰雹。.

新!!: 晶体和雪 · 查看更多 »

雷射加熱平台成長

雷射加熱平台成長(Laser-heated pedestal growth,縮寫簡稱LHPG)或雷射浮區法(laser floating zone,縮寫簡稱LFZ))是一種晶體成長技術。 該技術可以被視為一種精簡版的區域熔煉,只不過熱源改成了功率強大的二氧化碳雷射或者釔鋁柘榴石雷射。在現代眾多液體/固體相變化的晶體成長技術中,雷射加熱平台成長已成為材料科學研究中的重要技術。 雷射加熱平台成長技術具有兩大優勢,其一為高拉取速率(高達傳統柴氏拉晶法的60倍快),其二為可以生長熔點較高的材料。 除此之外,雷射加熱平台成長不需要用到坩堝,意味著該技術可以成長幾乎不受雜質及應力影響的單晶。.

新!!: 晶体和雷射加熱平台成長 · 查看更多 »

電是靜止或移動的電荷所產生的物理現象。在大自然裏,電的機制給出了很多眾所熟知的效應,例如閃電、摩擦起電、靜電感應、電磁感應等等。 很久以前,就有許多術士致力於研究電的現象,但所得到的結果乏善可陳。直到十七和十八世紀,才出現了一些在科學方面重要的發展和突破,不過在那時,電的實際用途並不多。十九世紀末,由於電機工程學的進步,電才進入了工業和家庭裡。從那時開始,日新月異、突飛猛進的快速發展帶給了工業和社會巨大的改變。作為能源的一種供給方式,電有許多優點,這意味著電的用途幾乎是無可限量。例如,交通、取暖、照明、電訊、計算等等,都必須以電為主要能源。進入二十一世紀,現代工業社會的骨幹仍是電能。.

新!!: 晶体和電 · 查看更多 »

電子自旋共振

電子順磁共振(electron paramagnetic resonance,EPR),又称電子自旋共振(electron spin resonance,ESR),是屬於自旋1/2粒子的電子在靜磁場下发生的磁共振現象。因为類似靜磁場下自旋1/2原子核核磁共振的現象,又因利用到電子的順磁性,故曾稱作“電子順磁共振”。 由於分子中的電子多數是成對存在,根據泡利不相容原理,每个電子对中的两个电子必為一個自旋向上,另一個自旋向下,所以磁性互相抵消。因此只有拥有不成對電子存在的粒子(例如過渡元素中重金屬原子或自由基),才能表現磁共振。 雖然电子自旋共振的原理与核磁共振的类似,但由於電子的質量遠輕於原子核的质量,所以电子有较大的磁矩。以氫原子核(質子)為例,電子磁矩強度是其659.59倍。因此對於電子,磁共振所在的拉莫頻率通常需要透過減弱主磁場強度來使之降低。但即使如此,拉莫頻率通常所在波段仍比核磁共振拉莫頻率所在的射頻範圍還要高(通常是在微波的波段),因此有穿透力以及對帶有水分子的樣品有加熱可能的潛在問題,在進行人體造影時則需要改變方法。舉例而言,0.3T的主磁場下,電子共振頻率發生在8.41GHz,而對於常用的核磁共振核種——質子而言,在這樣強度的磁場下,其共振頻率仅為12.77MHz。.

新!!: 晶体和電子自旋共振 · 查看更多 »

電位移

在電磁學裏,電位移是出現於馬克士威方程組的一種向量場,可以用來解釋電介質內自由電荷所產生的效應。電位移\mathbf以方程式定義為 其中,\varepsilon_是電常數,\mathbf是電場,\mathbf是電極化強度。.

新!!: 晶体和電位移 · 查看更多 »

電磁場的動力學理論

《電磁場的動力學理論》(A Dynamical Theory of the Electromagnetic Field)是一篇詹姆斯·馬克士威發於1864年的論文,這篇論文是他所寫的第三篇關於電磁學的論文。在這篇論文裏,他首次系統性地陳列出馬克士威方程組。馬克士威又應用了先前在他的1861年論文《論物理力線》裏提出的位移電流的概念,來推導出電磁波方程式。由於這導引將電學、磁學和光學聯結成一個統一理論。這創舉現在已被物理學術界公認為物理學史的重大里程碑。 這篇論文明確地闡明,能量儲存於電磁場內。因此,它在歷史上首先建立了場論的基礎概念。.

新!!: 晶体和電磁場的動力學理論 · 查看更多 »

電磁極化子

電磁極化子是一種準粒子。它是由電磁波之間的強烈耦合以及帶有電偶極子或磁偶極子的激發作用中誕生。這現象體現了物理學上「反交叉」的原理(見)。 電磁極化子的形成也可看為一顆受激的光子,它能解釋在共振中色散的光的交叉。.

新!!: 晶体和電磁極化子 · 查看更多 »

電磁波譜

在電磁學裏,電磁波譜包括電磁輻射所有可能的頻率。一個物體的電磁波譜專指的是這物體所發射或吸收的電磁輻射(又稱電磁波)的特徵頻率分佈。 电磁波谱频率从低到高分別列为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。可见光只是电磁波谱中一个很小的部分。電磁波譜波長有長到數千公里,也有短到只有原子的一小段。短波長的極限被認為,幾乎等於普朗克長度,長波長的極限被認為,等於整個宇宙的大小,雖然原則上,電磁波譜是無限的,而且連續的。.

新!!: 晶体和電磁波譜 · 查看更多 »

雅科夫·弗伦克尔

雅科夫·伊里奇·弗伦克尔(Яков Ильич Френкель,)是一位苏联物理学家,以其在凝聚体物理学领域的成就闻名于世。.

新!!: 晶体和雅科夫·弗伦克尔 · 查看更多 »

透明

在光学中,透明是允许光穿透的属性。透明材料可以被透视;即它们允许明晰的图像穿过。相反的属性被称为不透明性。半透明材料只允许光散射穿透,即材料会扭曲图像。在矿物学中常用的术语也称透明度。.

新!!: 晶体和透明 · 查看更多 »

退火

退火(Annealing)在冶金學或材料工程中,是一種改變材料微結構且進而改變如硬度和強度等機械性質的熱處理。 過程為將金屬加溫到某個高於再結晶溫度的某一温度並維持此溫度一段時間,再將其緩慢冷卻。退火的功用在於恢復该金属因冷加工而降低的性質,增加柔軟性、延性和韌性,並釋放內部殘留應力、以及產生特定的顯微結構。退火過程中,多以原子或晶格空位的移動来釋放內部殘留應力,透過這些原子排列重組的過程來消除金屬或陶瓷中的差排,這項改變也讓金屬中的差排更易移動,增加了它們的延性。 在銅、鋼鐵、銀、黃銅的案例中,退火需要歷經很高的温度,通常都要将金屬加熱到熾熱並維持一段時間再冷卻。不像其它含鐵的合金需要緩慢冷卻,銅、銀和黃銅它們可以在空氣中緩慢冷卻,也可以快速在水中淬火。退火過後的金屬可以再進一步加工,如沖壓、塑造、成形等。.

新!!: 晶体和退火 · 查看更多 »

降冰片烷

降冰片烷 (系统命名为双环庚烷)是一种有机化合物。它是一种饱和的桥环化合物,化学式为C7H12。它是一种熔点为88°C的晶体。它是由环己烷的碳骨架在1,4位桥连一个亚甲基形成的。 这种物质可以由相关的化合物降冰片烯和降冰片二烯的催化氢化来制备。降冰片基碳正离子(C7H11+)是一种很吸引人的非经典碳正离子。.

新!!: 晶体和降冰片烷 · 查看更多 »

陈创天

创天,国际知名晶体材料学家,中科院理化所人工晶体研究发展中心主任,中国科学院院士(2003年),第三世界科学院院士(1990年)。浙江奉化人。.

新!!: 晶体和陈创天 · 查看更多 »

陈嘉庚科学奖

嘉庚科学奖是中华人民共和国的一项科学技术奖,以著名侨领陈嘉庚的名字命名,奖励获得重大原始创新性成果的中国科学家。该奖创立于1988年,原名为陈嘉庚奖。1988-1991年以奖励科研成果为主,1993-1999年则改为奖励科学家个人成就,直至2001年因资金问题而中断评奖。2003年中国科学院与中国银行一同成立陈嘉庚科学奖基金会,并于2006年起恢复评奖。 截至2016年,陈嘉庚科学奖共设有六个奖项,分别为数理科学奖、化学科学奖、生命科学奖、地球科学奖、信息技术科学奖、技术科学奖,每两年评选一次。2011年起又增设陈嘉庚青年科学奖。.

新!!: 晶体和陈嘉庚科学奖 · 查看更多 »

OGame

《OGame銀河帝國》是一款使用网页浏览器進行的战争游戏,德國公司於2002年10月3日在德國首次運行,目前已在27個國家發行。.

新!!: 晶体和OGame · 查看更多 »

X射线衍射仪

X射线繞射儀(X-ray diffractometer,XRD)是利用X射线繞射原理研究物质内部结构的一种大型分析仪器。令一束X射线和样品交互,用生成的衍射图谱来分析物质结构。它是在X射线晶体学领域中在原子尺度范围内研究材料结构的主要仪器,也可用于研究非晶体。.

新!!: 晶体和X射线衍射仪 · 查看更多 »

X射线衍射法

X射线衍射法,是指使用X射线探测某些分子或晶体结构的科研方法。.

新!!: 晶体和X射线衍射法 · 查看更多 »

X射线晶体学

X射線晶體學是一門利用X射線來研究晶體中原子排列的學科。更準確地說,利用電子對X射線的散射作用,X射線晶體學可以獲得晶體中電子密度的分佈情況,再從中分析獲得关于原子位置和化学键的資訊,即晶體結構。 由于包括盐类、金属、矿物、半导体在内的许多物质都可以形成晶体,X射线晶体学已经是许多学科的基本技术。在前十年这项技术主要被用于测量原子大小、化学键的类型和键长,以及其他的许多物质,尤其是矿物和合金。X射线晶体学也揭示了许多生物分子的结构和功能,例如维生素、药物、蛋白质以及脱氧核糖核酸(DNA)。X射线晶体学如今仍然是从原子尺度研究物质结构的主要方法。.

新!!: 晶体和X射线晶体学 · 查看更多 »

X光散射技术

X光散射技术或X射线衍射技术(X-ray scattering techniques)是一系列常用的非破壞性分析技術,可用於揭示物質的晶體結構、化學組成以及物理性質。这些技术都是以观测X射线穿过样品后的散射强度为基础,并根据散射角度、极化度和入射X光波长对实验结果进行分析。X光散射技术可在許多不同的條件下進行分析,例如不同的溫度或壓力。.

新!!: 晶体和X光散射技术 · 查看更多 »

柿樹屬

柿树是柿树属(学名:Diospyros)植物的统称。果實稱為柿,而最常見的品種是-zh-cn:柿子; zh-tw:柿子; zh-hk:林柿-。 柿树树冠优美,可以作为防护林的绿化树种。秋季柿树叶子经霜变红,非常美观。一般种植柿树要以同一属的黑枣做砧木,黑枣又名“猴枣”,果实比柿子要小得多。.

新!!: 晶体和柿樹屬 · 查看更多 »

杜隆-珀蒂定律

杜隆-珀蒂定律(Dulong-Petit law)是物理学中描述结晶态固体由于晶格振动而具有的比热容的经典定律,由法国化学家皮埃尔·路易·杜隆(Pierre Louis Dulong)和(Alexis Thérèse Petit)于1819年提出。 定律的内容为:许多固体其摩尔比热容(单位焦耳/(开尔文·千克))均为3R/M,其中R为普适气体常数(单位焦耳/(开尔文·摩尔))M为摩尔质量(单位千克/摩尔)。换言之,晶体的无量纲热容C^*.

新!!: 晶体和杜隆-珀蒂定律 · 查看更多 »

核磁共振波谱法

-- 核磁共振波谱法(Nuclear Magnetic Resonance spectroscopy,简称 NMR spectroscopy 或 NMR ),又称核磁共振波谱,是将核磁共振现象应用于测定分子结构的一种谱学技术。目前,核磁共振波谱的研究主要集中在1H(氢谱)和13C(碳谱)两类原子核的波谱。 人们可以从核磁共振波谱上获取很多信息,正如同红外光谱一样,核磁共振波谱也可以提供分子中化学官能团的数目和种类,但除此之外,它还可以提供许多红外光谱无法提供的信息。核磁共振波谱对自然科学研究有着深远的影响,人们不仅可以借助它来研究反应机理,还可以用来研究蛋白质和核酸的结构与功能。供研究的核磁样品可为液体或固体。 波谱这一译名是科学家丁渝提出的。.

新!!: 晶体和核磁共振波谱法 · 查看更多 »

桉叶醇

桉叶醇(英文:Eudesmol)是一种具有特殊气味的浅米色晶体,可以由桉树的枝叶提取,可以在香精生产中用作定香剂。 桉叶醇是α-桉叶醇和β-桉叶醇的混合物,右表分别列出了它们的基本化学结构(左为α-桉叶醇,右为β-桉叶醇)。 Category:醇.

新!!: 晶体和桉叶醇 · 查看更多 »

條痕

条痕(streak)是指矿物划过粗糙表面而留下的,或磨成的细小粉末之颜色。 一种矿石表面的颜色常有很大的变化空间,而其不同样品的条痕色却变化很少,因此条痕对矿物的辨别和分类十分重要,特别是不透明或有色矿物。如果当矿石划过条痕板时无明显条痕可见,那么其条痕将会被称为白色或无色。对于硅酸盐矿物来说条痕却并不很重要,因为这类矿物中多数条痕为白色,并且硬度高而难以被打成粉末。 矿物外观颜色因含有杂质或被扰乱的宏观晶体结构而变化。某些杂质吸收某特定波长光波的能力极强,就算含量很少也可能从根本上改变该矿石总体反射的光波长度,因此有颜色上的变化。但当矿物标本在条痕板上拉过而产生条痕时,样本被细分成极小的晶体,此时少量杂质对光的吸收影响不大。 用来产生条痕的板被称为条痕板(streak plate),一般是表面粗糙的无釉瓷砖。在没有专业条痕板的情况下,也可以用普通瓷器没有上釉的部分代替,如瓷碗、瓷花瓶底部或上釉瓷砖的背面。 因为条痕是矿物留下的小颗粒,所以只有硬度比条痕板(摩氏硬度约为7)低的矿物才能在上面划出条痕。如果矿石硬度比条痕板高,那么一小部分矿石样本将会被榔头之类的工具砸碎来辨别其条痕色。通常硬度高的矿物之条痕为白色。 部分矿物的条痕与其本色相近,如朱砂和蓝铜矿;其他矿物则有与本色明显不同的条痕色,如萤石(外观颜色可能是紫、蓝、黄或绿色,但只有白色条痕)。赤铁矿外观呈黑色却有红色条痕,因此得名;而方铅矿,一种与赤铁矿外观相近的矿石,因其灰色的条痕而和赤铁矿区分开来。.

新!!: 晶体和條痕 · 查看更多 »

模拟退火

模擬退火是一種通用概率演算法,常用來在一定時間內尋找在一個很大搜尋空間中的近似最優解。模擬退火是S.

新!!: 晶体和模拟退火 · 查看更多 »

橢圓偏振技術

橢圓偏振技術(ellipsometry)是一種多功能和強大的光學技術,可用以取得薄膜的介電性質(複數折射率或介電常數)。它已被應用在許多不同的領域,從基礎研究到工業應用,如半導體物理研究、微電子學和生物學。橢圓偏振是一個很敏感的薄膜性質測量技術,且具有非破壞性和非接觸之優點。 分析自樣品反射之偏振光的改變,橢圓偏振技術可得到膜厚比探測光本身波長更短的薄膜資訊,小至一個單原子層,甚至更小。橢圓儀可測得複數折射率或介電函數張量,可以此獲得基本的物理參數,並且這與各種樣品的性質,包括形態、晶體質量、化學成分或導電性,有所關聯。它常被用來鑑定單層或多層堆疊的薄膜厚度,可量測厚度由數埃(Angstrom)或數奈米到幾微米皆有極佳的準確性。 之所以命名為橢圓偏振,是因為一般大部分的偏振多是橢圓的。此技術已發展近百年,現在已有許多標準化的應用。然而,橢圓偏振技術對於在其他學科如生物學和醫學領域引起研究人員的興趣,並帶來新的挑戰。例如以此測量不穩定的液體表面和顯微成像。.

新!!: 晶体和橢圓偏振技術 · 查看更多 »

橄榄石

橄榄石是一种镁与铁的硅酸盐,其化学式为(Mg,Fe)2SiO4.

新!!: 晶体和橄榄石 · 查看更多 »

次磷酸铵

次磷酸銨一種白色的晶體,分子式為NH4H2PO2 ,容易潮解,加熱至240℃分解,釋放出磷化氫,可以用黄磷、石灰乳、氨水经两次反应制得。通常作生产聚酰胺的催化剂和制造软焊剂(焊接剛鐵用)等。.

新!!: 晶体和次磷酸铵 · 查看更多 »

欧姆定律

在電路學裏,欧姆定律(Ohm's law)表明,导电体两端的电压与通过导电体的电流成正比,以方程式表示, 其中,V是電壓(也可以標記為U,方程式表示為U.

新!!: 晶体和欧姆定律 · 查看更多 »

氟化铵

氟化銨是一種白色的晶體,分子式為NH4F,易潮解,受热或遇热水分解为氨与氟化氢。能腐蚀玻璃。氟化铵可通过氢氟酸和氨水中和后浓缩结晶製得。.

新!!: 晶体和氟化铵 · 查看更多 »

氢化物

氢化物是一类氢的化合物。严格意义上讲,氢化物只包含氢同金属相互结合的化合物,但由于概念的扩大,有时它也包含水、氨和碳氢化合物等物质。.

新!!: 晶体和氢化物 · 查看更多 »

氢氧化钷

氢氧化钷是一种无机化合物,化学式为Pm(OH)3,具有放射性。.

新!!: 晶体和氢氧化钷 · 查看更多 »

氢氧化锂

氢氧化锂(分子式:LiOH)是锂的氢氧化物,具腐蚀性,室温下为白色潮解性晶体。易溶于水,溶液呈较强碱性,微溶于乙醇,存在无水和一水合物两种状态。.

新!!: 晶体和氢氧化锂 · 查看更多 »

氧杂蒽

氧雜蒽(英語:xanthene)也稱為「呫噸」,是一種有機化合物,其分子式為C13H10O。 呫吨(xanthene).

新!!: 晶体和氧杂蒽 · 查看更多 »

氩(Argon)是一种化学元素,在希臘語有「不活潑」的意思,由它的特性而來。Hiebert, E. N. Historical Remarks on the Discovery of Argon: The First Noble Gas.

新!!: 晶体和氩 · 查看更多 »

氪是一种化学元素,化学符号是Kr,原子序数是36,是一种无色、无臭、无味的惰性气体,把它放电时呈橙红色,在大气中含有痕量,可通过分馏从液态空气中分离,常用于制作荧光灯。氪正如其他惰性气体一样,不易与其他物质产生化学作用,已知的化合物有二氟化氪(KrF2)。 正如其他惰性气体,氪可用于照明和摄影。氪发出的光有大量谱线,并大量以等离子体的形态释出,这使氪成为制造高功率气体激光器的重要材料,另外也有特制的氟化氪激光。氪放电管功率高、操作容易,因此在1960年至1983年间,一米的定义是用氪86發出的橙色谱线作为基准的。.

新!!: 晶体和氪 · 查看更多 »

氮化鈉

氮化鈉 (Na3N)是一種非常不穩定的鹼金屬氮化物。氮化鈉是2002年由馬克斯-普朗克學會的Dieter Fischer及Martin Jansen所合成。合成時,用鈉及氮的原子束在低溫的藍寶石上沈積出氮化鈉。 氮化鈉在室溫為晶體。在低於室溫時會變成非晶體。在攝氏75度以上就會分解為元素鈉及氮氣。.

新!!: 晶体和氮化鈉 · 查看更多 »

氮化鋁

氮化鋁(Aluminium Nitride,AlN)是鋁的氮化物。纖鋅礦狀態的氮化鋁(w-AlN)是一種寬帶隙(Wide-bandgap Semiconductor)的半導體材料(6.2 eV)。故也是可應用於深紫外線光電子學的半導體物料。.

新!!: 晶体和氮化鋁 · 查看更多 »

氯化钠

氯化钠(化学式:NaCl),是一种离子化合物。钠离子和氯离子的原子质量分别为22.99和35.45g/mol。也就是说100g的氯化钠中含有39.34 g的钠和 60.66 g的氯。氯化钠是海水中盐分的主要组成部分,它的存在也使得海水有其特有的咸味苦味。氯化钠也是细胞外液的主要盐类,0.9%的氯化鈉水溶液俗称为生理盐水。其可食用的形态是食盐的主要成分,多用于食物的调味和保存。 在工業中,主要用于制造氢氧化钠和氯以及应用于聚氯乙烯、塑料、木浆(紙漿)等許多其他產品的生产过程。由于它可以降低水的冰点,偶尔也用于解冻冰冻的路面。.

新!!: 晶体和氯化钠 · 查看更多 »

氯化铯

氯化铯是一种无机盐,分子式为CsCl。氯化铯型结构是一种很重要的晶体结构。.

新!!: 晶体和氯化铯 · 查看更多 »

氯化锌

氯化锌(ZnCl2)是氯和锌的化合物,该名称亦用来称呼它的水合物。无色或白色,有极强的水溶性和吸湿性,甚至会潮解,应在干燥处密封储存,避免与空气中的水蒸气接触。 在纺织加工、焊接、化学合成等方面,氯化锌有着广泛应用。.

新!!: 晶体和氯化锌 · 查看更多 »

氯化镁

氯化镁是一种氯化物,化学式MgCl2。无色而易潮解晶体。這些鹽是典型的離子鹵化物,高度易溶於水。水合氯化鎂可以從鹽水或海水中提取。通常带有6分子的结晶水。但加热至95℃时失去结晶水。135℃以上时开始分解,并释放出氯化氢(HCl)气体。工业上生产镁的原料。在海水和盐卤中找到。水合氯化鎂是處方口服鎂補充劑通常使用的物質。.

新!!: 晶体和氯化镁 · 查看更多 »

氯铬酸吡啶盐

氯铬酸吡啶盐,分子式C5H4N·HCrO3Cl,简称PCC,即Pyridinium chlorochromate的缩写。一种温和的氧化剂,橙黄色晶体。用来把醇有限度地氧化为醛,使用PCC的缺點為反應時間太過冗長和PCC具有毒性。 由E.J.Corey发明。试剂本身呈弱酸性,所以常跟缓冲剂比如乙酸钠配合使用。.

新!!: 晶体和氯铬酸吡啶盐 · 查看更多 »

氯酸钡

氯酸钡是一种无机化合物,为白色晶体,有毒。其化学式为Ba(ClO3)2。.

新!!: 晶体和氯酸钡 · 查看更多 »

氯氧化鉲

氯氧化鉲是一種具有放射性的無機化合物,其化學式為CfOCl,是锎元素的氯氧化物。氯氧化鉲可由三氯化鉲的水合物在280-320℃的温度下发生水解制备。.

新!!: 晶体和氯氧化鉲 · 查看更多 »

氰化物

--是特指带有氰离子(CN−)或氰基(-CN)的化合物,其中的碳原子和氮原子通过參键相连接。这一參键给予氰基以相当高的稳定性,使之在通常的化学反应中都以一个整体存在。因该基团具有和卤素类似的化学性质,常被称为拟卤素。通常为人所了解的氰化物都是无机氰化物,俗稱山奈或山埃(來自英語音譯“Cyanide”),是指包含有氰根离子(CN−)的无机盐,可认为是氢氰酸(HCN)的盐,常见的有氰化钾和氰化钠。它们多有剧毒,故而为世人熟知。另有有机氰化物,是由氰基通过单键与另外的碳原子结合而成。视结合方式的不同,有机氰化物可分类为腈(-CN)和异腈(-NC),相应的,氰基可被称为腈基(-CN)或异腈基(-NC)。.

新!!: 晶体和氰化物 · 查看更多 »

水的性質

水分子(化学式:H2O)是地球表面上最多的分子,除了以气体形式存在于大气中,其液体和固体形式占据了地面70-75%的组成部分。标准状况下,水分子在液体和气体之间保持动态平衡。室温下,它是无色,无味,透明的液体。作为通用溶剂之一,水可以溶解许多物质。因此,自然界极少有水的纯净物。.

新!!: 晶体和水的性質 · 查看更多 »

永磁体

永久磁体是指能够长期保持其磁性的磁体。如天然的磁石(磁铁矿)和人造磁鐵(鋁鎳鈷合金)等。磁鐵中除永久磁鐵外,也有需通電才有磁性的電磁鐵。永久磁体也叫硬磁体,不易失磁,也不易被磁化。但若永久磁体加熱超過居里溫度,或位於反向高磁場強度的環境下中,其磁性也會減少或消失。 所有的永磁体均具有鐵磁性或亞鐵磁性,鐵磁性的物質(例如鐵)具有自發性的磁化現象,而亞鐵磁性的物質,因其中的亞晶格是由不同的材料或不同價態的鐵組成,不同亞晶格的原子磁矩相反但不相等,無法完全抵消,因此也有磁性,如磁鐵礦(鐵(II,III)氧化物;Fe3O4)即為一例。.

新!!: 晶体和永磁体 · 查看更多 »

永斯·贝采利乌斯

永斯·雅各布·貝采利烏斯男爵(Jöns Jacob Berzelius,),又譯--、柏濟力阿斯、貝齊里烏斯、白則里,瑞典化學家。他就讀烏普薩拉大學,獲得後投身於研究工作,並先後在醫學外科學院(卡羅琳學院前身)擔任教師(無薪)和教授(有薪)。貝采利烏斯發現了鈰、硒、矽和釷這四種化學元素,成功測定幾乎所有已知化學元素的原子量,提出了同分異構物、聚合物、同素異形體和催化這些重要化學術語,提出了近似現制的元素符號系統,還在化學教育、學術機構管理、礦物學、分析化學作出貢獻;但是,他主張和活力論後來被確認是錯誤的。貝采利烏斯在1848年逝世,他被譽為現代化學發展的關鍵人物之一、以及「瑞典化學之父」,在生前以至死後均獲享多種榮譽及紀念。.

新!!: 晶体和永斯·贝采利乌斯 · 查看更多 »

沸石

沸石是一种含有水架状结构的铝硅酸盐矿物,最早发现于1756年。瑞典的矿物学家克朗斯提(Cronstedt)发现有一类天然铝硅酸盐矿石在灼烧时会产生沸腾现象,因此命名为沸石(瑞典文:zeolit)。在希腊文中意为“沸腾的石头”。此后人们对沸石的研究不断深入。 沸石因成分不同分为方沸石(Na·H2O)和钙沸石(Ca·3H2O)。其含水量与外界温度及水蒸气的压力有关,加热时水分可慢慢逸出,但并不破坏其结晶构造。 晶体结构中有许多空腔(笼)和连接空腔的通道,水分子位于其中,可由通道运输。晶体和集合体形态及解理随着晶体结构的不同而异,一般呈浅色,玻璃光泽,硬度3-3.5,比重2.0-2.4。 沸石族矿物由低温热液作用形成,见于喷出岩,特别是玄武岩的孔隙中,也见于沉积岩、变质岩及热液矿床和某些近代温泉沉积中。 1932年,McBain提出了“分子筛”(Molecular sieve)的概念。表示可以在分子水平上筛分物质的多孔材料。沸石用作分子筛,可以吸取或过滤其他物质的分子。虽然沸石只是分子筛的一种,但是沸石在其中最具代表性,因此“沸石”和“分子筛”这两个词经常被混用。 除了天然产品外,也可由人工合成,人造沸石是:磺酸化聚苯乙烯,天然沸石:铝硅酸钠。.

新!!: 晶体和沸石 · 查看更多 »

沃爾夫物理學獎

沃爾夫物理學獎(Wolf Prize in Physics)是以色列沃爾夫基金會每年一次(雖然有些年度並無獲獎者)授予傑出物理人士的一個獎項,是沃爾夫獎六個獎項之一,自1978年以來開始頒發。沃爾夫物理學獎經常被認為是諾貝爾物理學獎以外,物理學界最重要的獎項之一。許多沃爾夫物理學獎得主也曾經獲得諾貝爾物理學獎。直到目前為止,吳健雄為唯一一位女性得主,也是唯一一位華裔得主。.

新!!: 晶体和沃爾夫物理學獎 · 查看更多 »

泻利盐

泻利盐,又名七水鎂礬是一种常见的矿物,它属于不含异样正离子的水合硫酸盐。它的化学成分是七水硫酸镁(MgSO4·7H2O)。结晶时它呈斜方晶系,往往形成粒状或者皮状的晶体,很少也形成细小的针状或者纤维状的晶体。晶体的颜色是白色的,稍微带有黄色、绿色或者粉色。也有无色的泻利盐。.

新!!: 晶体和泻利盐 · 查看更多 »

液晶化點

液晶化點,通常稱為熔點,是某些具液晶態之晶體熔化時的溫度,但其溶化並非呈液態,而是液晶態,即將其物態由固態轉變為液晶態時的溫度。 該過程中固態與液晶態共存,直到全部固態已經轉換為液晶態時,呈現光彩的混濁物狀態,若繼續加熱達到清晰點才會轉變為液態。 液晶化點會因為共晶體、物質的混合而改變,例如MBBA的液晶化點(熔點)為22度,與EBBA混合後降低至0度。.

新!!: 晶体和液晶化點 · 查看更多 »

溴化钠

溴化钠,化学式 NaBr 或 NaBr·2H2O。无色晶体(或粉末),溶于水,微溶于酒精。与氯化钠十分相似。口服毒性低。其无水形式(NaBr)的熔点为747 °C,沸点为1390 °C。可製溴化银感光剂。医疗上可用作镇定剂、催眠剂、或抗惊厥药物。工业上,溴化钠可用来製溴。.

新!!: 晶体和溴化钠 · 查看更多 »

溴酸钾

溴酸钾是一个无机盐,室温下为无色晶体,分子式为KBrO3。 其在发酵、醒发及焙烤工艺过程中起到一种氧化剂的作用,使用了溴酸钾后的面粉更白,制作的面包能快速膨胀,更具有弹性和韧性,在焙烤业被认为是最好的面粉改良剂之一。溴酸钾有致癌性,现在已被許多國家(如欧盟)禁用,但在美国仍允许使用。溴酸钾在足够长的烘烤时间和温度下会耗尽,但是如果在面粉中添加的太多就会有残留。 中华人民共和国卫生部于2005年5月30日发布《2005年第9号公告》称,根据溴酸钾危险性评估结果,决定自2005年7月1日起,取消溴酸钾作为面粉处理剂在小麦粉中使用。在此之前按照《食品添加剂使用卫生标准》(GB2760-1996)使用溴酸钾的食品可以在产品保质期内继续销售。.

新!!: 晶体和溴酸钾 · 查看更多 »

滴滴涕

DDT,中文又作DDT,别名DDT,学名雙對氯苯基三氯乙烷(Dichloro-Diphenyl-Trichloroethane),化学式:(ClC6H4)2CH(CCl3)。白色晶體,不溶于水,溶于煤油,可制成乳劑,对人类毒性低,曾经是最著名的合成农药和杀虫剂。后来人们发现DDT不易降解,积累下来对鱼类和鸟类生存繁殖不利,破坏生态平衡,在世界大部分地区已经停止使用DDT,只有少数地区還继续使用以对抗疟疾。.

新!!: 晶体和滴滴涕 · 查看更多 »

滑石

滑石(talc)是已知最软的矿物,其莫氏硬度标为1。用指甲可以在滑石上留下划痕。滑石一般为白色,略带青色或绿色。.

新!!: 晶体和滑石 · 查看更多 »

振动

振动(vibration),指一个物体相对于静止参照物或处于平衡状态的物体的往复运动。一般来说振动的基础是一个系统在两个能量形式间的能量转换,振动可以是周期性的(如单摆)或随机性的(如轮胎在碎石路上的运动)。.

新!!: 晶体和振动 · 查看更多 »

最密堆积

在幾何上,最密堆积()或球堆疊,是指在一定範圍內放入最多不重疊球體的方式,通常這些球的大小視為相同。堆積的範圍通常是三維歐幾里得空間,不過有時也會對超過三維的歐式空間或非歐幾何空間進行討論。 常見的最密堆積問題通常是要求在一空間內放入最多的球體。此時,球體總體積占空間大小的比例稱為密度,科學家會利用演算法找出能使密度儘可能增大的方法。理論上,在三維空間內由相同球體所形成的最密堆積密度能到74%。相較之下,隨機排列(例如隨意將幾顆球丟進箱子裡)的密度平均只有64%。.

新!!: 晶体和最密堆积 · 查看更多 »

戴維森-革末實驗

戴維森-革末實驗是柯林頓·戴維森與雷斯特·革末設計與研究成功的一個量子力學實驗。他們用低速電子入射於鎳晶體,取得電子的繞射圖案。發表於 1927 年,這實驗為德布羅意假說(所有物質都具有波的性質,即波粒二象性),提供了不可否定的證據。因此,戴維森獲得了諾貝爾物理學獎。在量子力學的發展史上,這實驗證實了其正確性,使得那時剛創立的量子力學,獲得了物理學家的廣泛接受。.

新!!: 晶体和戴維森-革末實驗 · 查看更多 »

戈登·弗里曼

登·弗里曼博士(Dr.)是第一人稱射擊類型《戰慄時空》系列遊戲的主角。他是一個理論物理學家,但是突然而來的變故讓他不得不拿起武器對抗那些充滿敵意的外星人,以及一些危險試驗出錯後產生的變異生物。他還是一個典型的電子遊戲中的“靜寂主角”,也就是從來不和其他人物進行口頭交流的主角。.

新!!: 晶体和戈登·弗里曼 · 查看更多 »

流紋岩

流紋岩是一种噴出岩,是火山的酸性喷出岩石,其化学成分与花岗岩相同,由於形成時冷卻速度較快使礦物來不及結晶,二氧化硅含量大于69%,其斑晶主要为正长石和石英组成,晶体形状为方形板状,有玻璃光泽,但有解理。岩石为灰色、粉红色或砖红色,有斑状结构和流紋状结构。在中国,主要分布在东南沿海一带。 英文术语rhyolite,其中rhyo为希腊语rhuax气流的前缀化,lite为石头。中文术语中“流纹”指岩浆凝固前的流动产生的纹理。.

新!!: 晶体和流紋岩 · 查看更多 »

浸润层

凝聚态实验物理学中的浸润层(或润湿层)是指外延成长的衬底表面上最早生长出的二维薄层晶体;这里的外延成长往往和自组装的量子点或薄膜生长有关。组成浸润层的原子既可以是半金属的元素或化合物(例如自组装的量子点所用的InAs)或金属合金(对于薄膜生长)。因为浸润层的生长可以控制量子点的人工原子态(artificial atomic state),浸润层的概念也常常出现在量子信息与量子计算机领域。.

新!!: 晶体和浸润层 · 查看更多 »

斯特拉斯堡大学

斯特拉斯堡大学(,,简称:Unistra或UDS)坐落于法国阿尔萨斯大区首府斯特拉斯堡。斯特拉斯堡大学最早成立于1538年,前身为德意志,后者于1566年升为学术院,1621年改建为大学。1681年,随着斯特拉斯堡市的主权由神圣罗马帝国移交给法兰西王国,斯特拉斯堡大学开始由法兰西管辖。在法国大革命、普法战争、第一次世界大战后,斯特拉斯堡大学的管辖权曾多次变更。第二次世界大战结束后,斯特拉斯堡大学管辖权被重新交还给法兰西共和国。受1968年“五月风暴”运动影响,斯特拉斯堡大学在1971年拆分为斯特拉斯堡第一大学、斯特拉斯堡第二大学、斯特拉斯堡第三大学等三所大学。2009年1月1日,三所大学重新合并为斯特拉斯堡大学。 斯特拉斯堡大学是一所多学科综合性公立大学:在校学生约48011人(其中20%为留学生),教师和研究人员2727人,下设36个部门机构(学院、培训研究单位、学校、研究院)以及72个研究单位。斯特拉斯堡大学是法国第一批自治大学之一,也是法国最先设立基金会的大学之一。斯特拉斯堡大学是欧洲研究型大学联盟(LERU)成员,也是历史悠久的欧洲学院联盟的创始学校之一。 斯特拉斯堡大学的校友和教师中,有18位诺贝尔奖获得者,1位菲尔兹数学奖获得者,1位法兰西学院院士,12名法兰西科学院院士,4名法兰西文学院院士。另外,法國國家科學研究中心(CNRS)3位、17位、铜奖37位。 在2016年路透社《全球最具创新力大学Top100》排名中,斯特拉斯堡大学全球排名98位。在2013-2015年《世界大学学术排名》中,斯特拉斯堡大学连续3年进入全球前100名。.

新!!: 晶体和斯特拉斯堡大学 · 查看更多 »

方解石

方解石(calcite)是碳酸鈣(化学式:CaCO3)的穩定形態,呈现菱面体或偏三角面体,聚形呈钉头或犬牙状。其中,菱面体有双折射性。 方解石晶体属三方晶系的碳酸鹽礦物,在地球的表面廣泛分佈,石灰岩和大理岩中含有方解石。 在溫泉區中也可以找到方解石,它是溫泉區的礦脈礦物, 在地洞穴中鐘乳石和石筍也可以找到方解石, 方解石還是海洋生物外殼組成的成份,浮游生物,有孔蟲類,紅色海藻的堅硬部份,一些海綿、棘皮動物、苔蘚蟲門,和牡蠣殼的主要成份。霰石加熱到470°C會變成碳酸鈣。.

新!!: 晶体和方解石 · 查看更多 »

斜长石

斜长石(Plagioclase)是长石的一种,是一种在地球上很常见且很重要的硅酸盐矿物。斜长石并没有特定的化学成分,而是由钠长石和钙长石按不同比例形成的固溶体系列。“斜长石”这个名称来源于希腊语中的“倾斜的切面”,指其二向完全解理的两个不同夹角。斜长石是两种矿物的固溶体这一性质首先是由德国矿物学家(Johann F. C. Hessel)于1826年发现的。在斜长石中,钠原子和钙原子可以在晶格中相互替代,按此两种原子的比例可将斜长石继续划分成从钠长石到钙长石的不同子类。在地质样品中,斜长石常因其易形成孪晶,以及表面由于解理形成类似唱片表面刻痕的性质被识别出来。.

新!!: 晶体和斜长石 · 查看更多 »

无定形体

无定形体,或称非晶体、非晶形固體,是其中的原子不按照一定空间顺序排列的固体,与晶体相对应。常见的无定形体包括玻璃和很多高分子化合物如聚苯乙烯等。只要冷却速度足够快,任何液体都会过冷,生成无定形体。其中,原子尚未排好在热力学上有利的晶态中的晶格或骨架便已失去运动速度,但仍保留有液态时原子的大致分布。 由于熵的缘故,即使冷却速度很慢,很多聚合物仍会生成无定形体。.

新!!: 晶体和无定形体 · 查看更多 »

无脊椎动物

无脊椎动物(Invertebrate)是背侧没有脊柱的动物,包括棘皮动物、软体动物、腔肠动物、节肢动物、海绵动物、线形动物以及脊索動物門的頭索動物及尾索動物等。其种类数占动物总种类数的95%,是动物的原始形式。无脊椎动物多数体型小,但软体动物门头足纲大王乌贼属的动物体长可达18米,体重约2吨。.

新!!: 晶体和无脊椎动物 · 查看更多 »

旋光

光通过某些物质,偏振面发生了旋转,这个现象称为旋光现象。这些物质所具有的这种性质成为旋光效应或旋光性。旋光角度与晶体的旋光率有关,旋光率越大,角度越大。旋光角度还与晶体的厚度成正比。旋光效应满足光路可逆性。.

新!!: 晶体和旋光 · 查看更多 »

普林斯顿大学诺贝尔奖得主列表

诺贝尔奖由瑞典皇家科学院、瑞典学院、卡罗琳学院和挪威诺贝尔委员会每年颁发一次,分别授予在化学、物理学、文学、和平、生理学或医学和经济学领域作出杰出贡献的人士。除经济学奖外,其他五个奖项都是于1895年根据阿尔弗雷德·诺贝尔的遗嘱设立,这五个奖项也就都是由诺贝尔基金会进行管理。诺贝尔经济学奖又名“瑞典国家银行纪念阿尔弗雷德·诺贝尔经济学奖”,由瑞典中央银行于1968年设立,旨在奖励在经济学领域作出杰出贡献的人士。每个奖都是由独立的委员会颁发,瑞典皇家科学院颁奖物理学、化学和经济学奖,瑞典学院颁奖文学奖,卡罗琳学院颁奖生理学或医学奖,挪威诺贝尔委员会颁奖和平奖。每位获奖者都将获得一枚奖牌,一份证书以及不同数额的奖金。1901年,首批诺贝尔奖获得者拿到了15万零782瑞典克朗的奖金,相当于2007年12月的773万1004瑞典克朗。2008年,获奖者的奖金数额为一千万瑞典克朗。除和平奖是在奥斯陆颁发外,另外五个奖都是在斯德哥尔摩举行的仪式上颁发,颁奖日期为每年的12月10日,这天是诺贝尔的忌日。 2008年10月时,普林斯顿大学有11位在职教师或研究人员是诺贝尔奖得主。截至2015年,累计有39位诺贝尔奖得主和该校存在某种程度的关联。根据普林斯顿大学的标准,这些人包括曾在该校就读的学生,或是获奖时是该校雇员,还可以是在该校聘用期间从事了导致最终获奖的研究。曾担任普林斯顿大学校长的美国前总统伍德罗·威尔逊于1919年获诺贝尔和平奖,是与该校相关的首位诺贝尔奖得主。还有八位普林斯顿大学的诺贝尔奖得主一起分享了四座奖项,分别是:詹姆斯·克罗宁和瓦尔·菲奇一起获得1980年诺贝尔物理学奖,拉塞尔·赫尔斯和约瑟夫·泰勒一起赢得了1993年诺贝尔物理学奖,戴维·格娄斯和弗朗克·韦尔切克一起获得了2004年诺贝尔物理学奖,托马斯·萨金特和克里斯托弗·西姆斯赢得了2011年诺贝尔经济学奖。所有普林斯顿大学诺贝尔奖得主中有18位是获物理学奖,超过其它任何奖项,有22位获奖者是该校教师,12位在该校获得了哲学博士学位,另外伍德罗·威尔逊、尤金·奥尼尔、盖瑞·贝克和迈克尔·斯彭斯曾是该校的本科生。.

新!!: 晶体和普林斯顿大学诺贝尔奖得主列表 · 查看更多 »

晶体 (消歧义)

晶体可以指:.

新!!: 晶体和晶体 (消歧义) · 查看更多 »

晶体学

晶体学,又称结晶学,是一门以确定固体中原子(或离子)排列方式为目的的实验科学。“晶体学”(crystallography)一词原先仅指对各种晶体性质的研究,但随着人们对物质在微观尺度上认识的加深,其词义已大大扩充。 在X射线衍射晶体学提出之前(介绍见下文),人们对晶体的研究主要集中于晶体的点阵几何上,包括测量各晶面相对于理论参考坐标系(晶体坐标轴)的夹角,以及建立晶体点阵的对称关系等等。夹角的测量用测角仪完成。每个晶面在三维空间中的位置用它们在一个立体球面坐标“网”上的投影点(一般称为投影“极”)表示。坐标网的又根据不同取法分为Wolff网和Lambert网。将一个晶体的各个晶面对应的极点在坐标网上画出,并标出晶面相应的密勒指数,最终便可确定晶体的对称性关系。 现代晶体学研究主要通过分析晶体对各种电磁波束或粒子束的衍射图像来进行。辐射源除了最常用的X射线外,还包括电子束和中子束(根据德布罗意理论,这些基本粒子都具有波动性,参见条目波粒二象性),可以表现出和光波类似的性质)。晶体学家直接用辐射源的名字命名各种标定方法,如X射线衍射(常用英文缩写XRD),中子衍射和电子衍射。 以上三种辐射源与晶体学试样的作用方式有很大区别:X射线主要被原子(或离子)的最外层价电子所散射;电子由于带负电,会与包括原子核和核外电子在内的整个空间电荷分布场发生相互作用;中子不带电且质量较大,主要在与原子核发生碰撞时(碰撞的概率非常低)受到来自原子核的作用力;与此同时,由于中子自身的自旋磁矩不为零,它还会与原子(或离子)磁场相互作用。这三种不同的作用方式适应晶体学中不同方面的研究。.

新!!: 晶体和晶体学 · 查看更多 »

晶体学限制定理

晶体学限制定理的基本形式是基于对晶体的旋转对称性通常被限制为2重,3重,4重,6重的观察后得出的。然而,准晶体中可能存在着其他种类的衍射对称性,例如5重对称;这种晶体是由丹·谢赫特曼于1982年发现的,他也凭此获得了2011年诺贝尔化学奖。 晶体模型是由离散的晶格通过一系列独立有限的平移建立的。因为离散性要求格点间的间距有一个下限值,所以该晶格对于空间中任意一点的旋转对称群必须是有限群。这个理论的重点在于,并不是所有的有限群都能兼容一个离散的晶格;在任何一个维度上,可兼容群的数量都是有限的。.

新!!: 晶体和晶体学限制定理 · 查看更多 »

晶体化学

晶体化学(Crystal Chemistry)是物理化学中的結晶學的一個分支科學。晶體化學研究晶體礦物的化學組成、內部結構、物理性質之間的關係,並且按化學成分,對於各種礦物作出分類。 Category:物理化学.

新!!: 晶体和晶体化学 · 查看更多 »

晶体结构

晶体结构是指晶体的周期性结构。固体材料可以分为晶体、准晶体和非晶体三大类,其中,晶体内部原子的排列具有周期性,外部具有规则外形,比如钻石(图)。 Hauy最早提出晶体的規則外型是因为晶體内部原子分子呈規則排列,比如鑽石所具有的完美外形和優良光学性質就可以歸結為其内部原子的規則排列。20世紀初期,勞厄發明X射線衍射法,從此人們可以使用X射线來研究晶體内部的原子排列,其研究结果進而證實了Hauy的判斷。 晶體内部原子排列的具体形式一般稱之为晶格,不同的晶体内部原子排列稱為具有不同的晶格結構。各種晶格結構又可以歸納為七大晶系,各種晶系分别与十四種空間格(稱作布拉维晶格)相對應,在宏观上又可以归结为三十二种空间点群,在微观上可进一步细分为230个空间群。 对于晶体结构的研究是研究固体材料的宏观性质及各种微观过程的基础。專門研究分子結晶結構的科學稱為晶體學,經常應用在化學、生物化學與分子生物學。.

新!!: 晶体和晶体结构 · 查看更多 »

晶体材料

晶体材料是完全由晶体或大部分由晶体構成的工業材料。晶体材料是利用晶体的特性来针对不同的方面及用途设计的,有關各种晶体的特性及用途,详见晶体学。 晶体材料被广泛的应用在电子技术和航天技术当中,几乎在任何高科技作品当中,都可以找到它的影子。.

新!!: 晶体和晶体材料 · 查看更多 »

晶体惯态

晶体惯态,又称晶体习性,结晶习性,简称晶习,指矿物晶体趋向于某一种特定外形的特性。这种外形可以指单晶,也可以指晶簇的形态。晶体惯态主要取决于晶体本性,但有时也与生长条件有关。.

新!!: 晶体和晶体惯态 · 查看更多 »

晶種

晶種是一小塊單晶或多晶(通常是單晶),像種子般用來成長與自身相同材料、相同晶體結構的大晶體。無論把晶種浸入過飽和溶液,或使晶種與熔融材料接觸並冷卻,或者讓材料蒸氣在晶種表面沉積,皆能成長出大晶體。 晶種效果背後的理論,從化合物與過飽和溶液(或與蒸氣)的分子間物理交互作用衍生而來。在溶液中,自由的可溶分子(溶質)在隨機流動中自由移動。此隨機流動允許兩個或更多的化合物分子有機會交互作用。這種交互作用可以強化分離的分子之間的分子間作用力並形成晶格的基礎。然而將晶種置入溶液會使隨機分子間的碰撞與交互作用減少,促進再結晶過程。 藉由引入已有秩序的晶體,分子間不用太仰賴隨機流動就可以很容易地進行交互作用。在溶液中這種溶質發展出晶格的相變化被稱為成核。簡言之,晶種效果就是縮短了再結晶過程中的成核時間。 在半導體產業中,常用的柴可拉斯基法與布里奇曼-史托巴格法就是用小晶種長出大人造胚晶或的運用實例。.

新!!: 晶体和晶種 · 查看更多 »

晶粒边界

晶粒边界(grain boundary),简称晶界,指多晶材料中晶粒之间的接合区域。在结晶学中晶粒边界是一种二维的晶体缺陷。晶粒边界出现在结构相同方向不同的微晶区域里,通过化学腐蚀可以使之在晶体表面显现。晶粒边界有小角度晶界和大角度晶界之分。当两个微晶区域之间的角度差值大于15度时,我们称之为大角度晶界。大角度晶界阻碍了位错的形成,从而影响了相邻晶粒。因此大角度晶界对金属材料的机械特性影响显著。在大多数情况下,晶粒边界会导致强度的提高,也就是说细粒度晶体更加坚固,但是析出物(特别是在容易在晶粒边界聚集的氧化物)同时也会削弱晶体强度。.

新!!: 晶体和晶粒边界 · 查看更多 »

晶系

晶体通常可以分为七个不同的晶系,即立方晶系、六方晶系、四方晶系、三方晶系、正交晶系、单斜晶系、三斜晶系。其中的立方晶系具有各向同性,属于高级晶族。 晶系的特徵與細分關係如下表.

新!!: 晶体和晶系 · 查看更多 »

晶相

#重定向 晶体.

新!!: 晶体和晶相 · 查看更多 »

晶格空位

在晶體學中, 一個晶格空位是晶體的點缺陷之一。 P. Ehrhart, Properties and interactions of atomic defects in metals and alloys, volume 25 of Landolt-Börnstein, New Series III, chapter 2, page 88, Springer, Berlin, 1991, 當一個晶格格位上缺失了一個粒子(原子,離子甚至分子),這種缺陷既為晶格空位。除了被稱為晶質的缺陷的晶體本質上具有的不完整性外,晶格空位有時是由於溫度改變或受到輻射等外部因素造成的。 晶格空位自然存在於所有晶體。對於每一個小於該物質熔點的溫度,都存在一個晶格空位平衡濃度(具有空位的格位和其他格位的比率)。一些金屬在熔點溫度具有大約為0.1%的平衡濃度。.

新!!: 晶体和晶格空位 · 查看更多 »

晶洞

晶洞,或称晶球,是一种在美国、巴西和墨西哥比较常见的地质构成,其实质上是岩石内部的气泡晶体构成,一般内部含有石英晶体和/或玉髓沉积,晶球的外部为石灰石或相关岩石。其他完全由晶体填充的被称作矿瘤。 地质学家目前为止对晶洞形成还没有广泛认同的理论,但相信晶洞可以在任何埋藏的空腔内形成。这些空腔可以是火成岩中的气泡、树根下的空穴,甚至动物挖的地洞。经过漫长时间,空腔的外壁变硬,溶解的硅酸盐和/或方解石沉积到内壁。再经过漫长的时间,缓慢渗入的矿物使得晶体在空腔内部结晶。随后,经过数百万年,晶球随着地质运动回到地质表层。 多样的晶体大小、形状和颜色深浅使得每个晶洞都较为独特。一些是纯净的石英晶体,另一些则是深紫色的紫水晶。其他的可能是玛瑙、玉髓或碧玉等等。只有切开或打碎晶球才能确定它是否实心和到底含有什么晶体。 Category:地质学.

新!!: 晶体和晶洞 · 查看更多 »

時間晶體

時間晶體(Time crystal)乃一開放系統,其與周圍環境保持非平衡態,呈現時間平移對稱破缺(time translation symmetry breaking)的特性。2017年3月的科學報導指出,此一理論概念已在實驗上獲得證實;隨著時間演進,時間晶體仍無法與環境達到熱平衡。 時間晶體的概念首先由諾貝爾物理學獎得主弗朗克·韋爾切克於2012年提出。與尋常晶體相比,尋常晶體在空間上呈週期性重複,而時間晶體則在時間上呈週期性重複;這使得時間晶體呈現永動狀態。時間晶體在時間平移對稱上具有自發對稱破缺現象。時間晶體也與零點能量和動態卡西米爾效應有關。 2016年,姚穎(Norman Y. Yao)與加州大學柏克萊分校物理系的同僚提出在實驗室建構時間晶體的藍圖。姚穎的藍圖隨後經兩組人馬採用,包括馬里蘭大學的Christopher Monroe,以及哈佛大學的Mikhail Lukin。兩團隊皆成功創造出時間晶體,實驗成果於2017年3月發表在《自然》期刊。.

新!!: 晶体和時間晶體 · 查看更多 »

2,4,5-三氯苯氧乙酸

2,4,5-三氯苯氧乙酸,也称2,4,5-涕或2,4,5-T,可用作植物的生长调节剂、除草剂。纯品为白色无臭晶体,难溶于水,对人体有一定危害。根据不同植物施用适当计量,可以防止植物落花落果,但用量不当会使植物受到严重伤害。 2,4,5-三氯苯氧乙酸具有一定的毒性,對老鼠的LD50是389mg/kg ,而大鼠是500 mg/kg。 美軍在越戰時於越南所噴灑的橙劑之中,即含有2,4,5-T。.

新!!: 晶体和2,4,5-三氯苯氧乙酸 · 查看更多 »

2,4-二氯苯氧乙酸

2,4-二氯苯氧乙酸(),也称2,4-二氯苯氧基乙酸,通稱2,4-滴或2,4-D。植物生长调节剂和除草剂。纯的2,4-D为白色无臭晶体,难溶于水,易溶于有机溶剂。按植物种类的不同施用不同的剂量,可以促进插条生根,果实早熟,防止落花落果等作用。但是如果剂量使用不当,也会使植物受到严重伤害。 在越南战争中被美军作为落叶剂和除草剂所广泛使用的橙剂,它的的主要成分就是2,4-D和与其化学性质类似的2,4,5-三氯苯氧乙酸。.

新!!: 晶体和2,4-二氯苯氧乙酸 · 查看更多 »

2007年美国宠物食品污染事件

2007年美国宠物食品污染事件是指2007年3月16日至今,总部位于加拿大的宠物食品厂家菜单食品(“Menu Foods”)因其原料涉嫌污染导致猫狗宠物死亡,而紧急回收产品的事件。 此次事件的原因、经过、污染范围等均在调查之中。中毒宠物的主要死亡原因是肾衰竭。美国食品药品管理局的初步调查结果认为,涉嫌污染产品使用了2006年末从中国大陆进口的小麦蛋白粉和大米蛋白粉,其中含有三聚氰胺和三聚氰酸。在中毒宠物的肾脏中也发现了含这两种物质的晶体。但具体的中毒机制目前还未有定论。.

新!!: 晶体和2007年美国宠物食品污染事件 · 查看更多 »

重定向到这里:

晶體

传出传入
嘿!我们在Facebook上吧! »