徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

分子

指数 分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

646 关系: 动物基因组计划基质辅助激光解吸/电离埃瓦尔德求和原子原子分子与光物理学原子和分子物理學研究所原子团原子理論原子數原生質絲原恆星垂直顯像SMI偏振偶然對消偶極子半乳糖激酶华人诺贝尔奖得主列表卡尔斯鲁厄会议卤代烷烃卧倒并掩护南美長吻海豚单位单体单分子亲核取代反应单质反式脂肪反應動態學台灣生態叶绿体双原子分子取向力取代反应吡哆醛4-脱氢酶吸血鬼騎士吸收光譜吸收光谱学同分異構均方根速度壯麗細尾鷯鶯多元不飽和脂肪多元酸多糖多酸多腺苷酸化复合粒子大隅良典大氣光學天干天冬氨酸...天空漫射天體光譜學头孢唑肟外层空间外部引导序列奥托·施特恩奈米獵殺奈米線奇異原子奇茲米勒訴多佛學區案姐妹分體交換始鬚鯨定量构效关系宏观安培定律寡醣对苯醌四甲酸二酐富勒烯密度涨落導體封閉系統山蝰居量反轉工程學分支列表巴巴里獅巴克明斯特富勒烯不可逆性中心科學中國中獸中国学科分类国家标准/140中生动物门帶電粒子万有理论帕眼蝶三乙二酸苯六酯三碳酸苯六酯三磷酸腺苷三聚体三角锥形分子构型三氢阳离子一元酸一的法则一级和二级抗体一氧化二氢恶作剧一氧化二氮平均自由程平面三角形分子构型乙烯二酮乙烯四甲酸二酐乙烷乙酸亞佛加厥 (消歧義)交叉分子束方法交沙霉素亲和色谱法亲电体人類免疫缺陷病毒人馬座A人體冷凍技術二十烷二乙二酸-1,4-苯醌酯二硫化碳二碳酸-1,4-苯醌酯二碘苯丙酮酸还原酶二磷酸腺苷二氧化四碳二氧化氮二氧杂环丁烷二酮库仑矩阵五氧化碳今鳥類廣義相對論入門价层电子对互斥理论价键理论介電質传热弹道输运弗兰克·舍伍德·罗兰弗朗西斯·克里克异柠檬酸脱氢酶 (NAD+)异柠檬酸脱氢酶 (NADP+)引力探测器B低維固體位阻效应侧链循环小数微波後鰓類保守力念力化合物化学家化学工程化学年表化学哲学化学物理学化学键化学标记语言化學化學反應速率化學相似性化學捕捉圆二色性包克雲球刚体分子力学分子对接分子人类学分子建模分子储能方式分子筛分子结构分子生物学分子电子跃迁分子物理学分子遺傳學分子轨道分子运动论分子间作用力分子育种分子量分子機器分子振動分子挖掘分子擴散分子晶体呼吸作用催化剂傅里叶变换离子回旋共振质谱法哈特里-福克方程冷阴极计数管内酯凹嘴鵎鵼准分子激光全同粒子八隅體規則八面体形分子构型八氮立方烷兰纳-琼斯势共价键共轭体系共振 (化学)共振增強多光子離子化共晶体元系统跃迁光合作用光學頻譜光導纖維光化学光分解離子成像光致游離光離子化檢測儀光造形术克劳修斯-莫索提方程式克莱森酯缩合反应前寒武纪固体固体分散物固氮酶固態反應国际单位制噝蝰屬BOINCCAS号ChemSpiderCPK配色状态方程矛尾魚环腺苷酸玻璃玻璃态玻色–爱因斯坦凝聚火三角現代物理學球棒模型理想气体状态方程硝化反应硼酸硼氢化铀碰撞碱金属碳的同素異形體碳酸酯磁場磁化学磁矩磷酸二酯鍵磷酸化磺化神奇四俠:銀魔現身神经递质禁線福井谦一离子离子阱离子晶体科学可视化科学大纲科學素養稀有气体穹窿体空气簇射竞争立体效应笼效应等电子体等电点等電位聚焦等温过程简化分子线性输入规范简正坐标米勒-尤里实验精油粒子加速器粒子列表糖化紫外-可见分光光度法累积二烯烃經典物理學經典物理術語線粒體縮合反應纳米颗粒纳米技术纳机电系统线粒体基质线粒体外膜线粒体膜转运蛋白线粒体膜间隙线粒体核糖体线粒体拟核线性二色性统计力学经典力学绝对零度结构化学结构模体细胞细胞生物学缩合聚合物缺电子分子群体感应群速度羧酸酯羅塞塔號真空蒸馏热力学温度热传导热运动烷基化疏水性病毒性生命延續生命元素生命演化历程生命是什么生物力学生物大分子生物学生物地球化学循环生物分子生态学甲酸男孩和他的原子甘露糖电子电子亲合能电子排布电子效应电化学电磁学电离电离平衡电离度电离能电离氢区电荷转移配合物無線電波源焦耳-湯姆孫效應熱絲極離子真空計熱量燃料乙醇燕鷗番茄紅素異丙苯法物理变化物理学物理化学物质状态物质的量牛津通识读本瀉流發酵 (葡萄酒)發色團白大角羊百分比D2sp2杂化D2sp3杂化D3sp杂化DNA纳米技术DNA聚合酶Dsp2杂化隧穿电离芳香烃銻化鎵銜尾蛇音速螳䗛鎓内盐聚合聚合物聚烯烃聚氯乙烯人造革遗传学入门道尔顿分压定律菊粉菱形動物門鐵蛋白非绝热耦合非诚勿扰 (节目)非金属性非苯芳烃非洲獸總目非游離輻射非整比化合物靶向治疗順磁性衣索比亞狼表面增强拉曼光谱顯微鏡行星適居性血小板衍生生長因子血红蛋白血腦屏障被动运输袋狸目食品容器西北太平洋国家实验室親水性馬丁·羅德貝爾香港膠災解离常数角形分子構型视觉系统諸熊奎治高分子高分子支载催化剂高斯定律譜線變種天賦计算化学鯨偶蹄目诱导效应诺贝尔奖豚足袋狸豚鼠小目象鼩質子交換膜燃料電池質子自遷移反應质子化质谱法质量加权坐标费米悖论超价分子超分子超固体超精细结构跨膜运输路德维希·玻尔兹曼路易斯結構踝節目鹵化麦克斯韦-玻尔兹曼分布點群黄眼企鹅软硬酸碱理论载体蛋白轉移酶龍捲風辐射输运现象辅酶近蹄類过三氧化氢过二硫酸过冷茶红素范德华力蜘蛛絲胡克定律部分分式积分法胺化都卜勒增寬胃育蛙阿伏伽德罗常数阿蘭德-羅蘭彗星阿梅代奥·阿伏伽德罗薛定谔方程闪烁体探测器關聯性磁振頻譜钨合金蒸腾作用蒸氣壓還原糖键级键能脫氨作用脱烷基脈絡猿脉冲激光沉积膜间隙重排反应重氮化合物1,3-偶极环加成反应重水量子量子化学量子穿隧效應量子纏結量子生物学自发发射自由基取代反應自然自然-中国臭氧层臭氧层空洞金属键金属性金屬硼球烯釋氣长生不老腎功能配合物结构配體酯膜結構酰氯酶底物 (生物学)酶抑制剂酸碱电子理论酸碱质子理论色散力苯丙氨酸雞雁總目離域電子離子交換雷射冷卻電子伏特電子轉移電子自旋共振電傳導電動勢電磁力電磁波譜蛇鷲蛋白二聚体蛋白質一級結構蛋白质亚基蛙壺菌雙光子吸收雙縫實驗雙電子偶素連接酶進動FOXM1IUPAC命名法Σ鍵Μ子KAtomicL-艾杜糖醇2-脱氢酶Leiden ClassicalMBBAMolyModNEEDLESS角色列表PyMOLSirius可视化软件Sp2d杂化Sp2杂化Sp3d2杂化Sp3杂化Sp杂化U (消歧义)X射線吸收光譜X射线衍射法X光散射技术抗氧化剂柏拉图烃极性极性表面积构效关系恢复系数恩赐奖 (日本学士院)恆星分子李遠哲東部深層海水創新研發中心核磁共振核磁共振氢谱核膜标准氢电极桥环化合物極化性構相異構構造原理欧洲南方天文台歐歌鶇毒理学比熱容比较分子场方法毛細管電泳氢键氣味氣體擴散法氧化态氧的同素异形体氧气氨基酸合成氫原子光譜氫化電子偶素氮4氯化镁氯化氢水島三一郎水島公一气体气凝胶气相色谱法河北农业大学沸石沉降波粒二象性波音藝廊泛甲殼動物洪德最大多重度规则液態核磁共振量子電腦混成軌域淺島誠游離輻射滲流力學滿月周期漸近巨星分支漂白濾過裂隙激发态激光光谱学激光诱导击穿光谱激素木星有蹄類有機半導體有機發光二極體最大簡約法最简分数惠普尔陨石坑成体干细胞星際分子列表星際雲星际物质流变学流體動力學斯塔克效应新大陸禿鷲新界南總區總部及行動基地无机化学命名法无机纳米管无机酸列表日本人諾貝爾獎得主摩尔 (单位)摩擦力操縱子感情纽带應變 (化學)数量级 (能量)数量级 (长度)数量级 (数)数量级 (数据)扁球面坐標系拍號拉曼光譜學替代医学晶体晶体生长晶格空位16S 核糖体RNA2,3,4,5,6,7,8,9-八羥基壬醛2-磷酸甘油酸2004年1月72法則 扩展索引 (596 更多) »

动物

動物是多細胞真核生命體中的一大類群,統稱為動物界。動物身體的基本形態會隨著其發育而變得固定,通常是在其胚胎發育時,但也有些動物會在其生命中有變態的過程。 大多數動物能自發且獨立地移動探索,只有極少數的動物(如珊瑚)是固定在一點無法移動。動物行為學是研究動物行為的科學,較著名的行為理論為康納德·洛倫茨提出的本能理論。 已發現的動物化石,多是在五億四千萬年前的寒武紀大爆發時的海洋物種。.

新!!: 分子和动物 · 查看更多 »

基因组计划

基因组计划是科学努力,最终旨在确定生物(无论是动物,植物,真菌,细菌,古细菌,原生生物或病毒)的完整基因组序列,并注释蛋白质编码基因等 重要的基因组编码特征。生物体的基因组序列包括在生物体中每个染色体的集体的DNA序列。 对于含有单个染色体的细菌,基因组计划将瞄准该染色体的序列。 对于其基因组包含22对常染色体和2个性染色体的人类,完整的基因组序列将涉及46个单独的染色体序列。 人类基因组计划是一项具有里程碑意义的基因组计划,它已经对生命科学研究产生了重大影响,有可能刺激许多医疗和商业发展。.

新!!: 分子和基因组计划 · 查看更多 »

基质辅助激光解吸/电离

基质辅助激光脫附电离(Matrix-assisted laser desorption/ionization ,MALDI)是一种用于质谱法的溫和离子化技术,可以得到用常规离子化方法容易解离為碎片的一些完整大分子质谱信息,比如生物分子类的DNA,生物高分子、蛋白质、多肽和糖,以及其他大分子量的有机分子,如高分子、树状分子和其他高分子。在这方面类似于同样是软离子化方法的(ESI),不过MALDI更容易得单电荷的离子峰。 MALDI方法过程分为三个步骤。首先,将样品溶液與合适的基质水溶液混合,並取微量混合液體滴置於金属樣品板等待乾燥。第二步,将脉冲激光照射到样本,引发样品和基质材料的電離和脫附。最后,分析物分子與電離後的基質在脫附過程中進行電荷轉移反應,將分析物分子電離。在大多數的生物分子分析上,例如蛋白质及多肽,分析物通常都是以质子化或去质子化形式產生。在MALDI反應之後,所有產生的離子即被金屬樣品板上的電壓加速进入质谱仪来分析。.

新!!: 分子和基质辅助激光解吸/电离 · 查看更多 »

埃瓦尔德求和

埃瓦尔德求和(Ewald summation),是一种计算中长程力(如静电力)的方法,以德国物理学家保罗·彼得·埃瓦尔德命名。埃瓦尔德求和最初用于计算离子晶体的电势能,现在用于计算化学中计算长程力。埃瓦尔德求和是的特殊形式,用倒空间中的等效求和代替实空间中的总和。埃瓦尔德求和将分为短程力和无奇点的长程力两部分,短程力在实空间中计算,长程力用傅里叶变换计算。与直接求和相比,此方法的优势为能量能够快速收敛,这意味着此方法在计算长程力时具有较高的精度和合理的速度,是计算中长程力的标准方法。此方法需要分子系统的电中性,以准确计算总库仑力。.

新!!: 分子和埃瓦尔德求和 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 分子和原子 · 查看更多 »

原子分子与光物理学

原子分子与光物理學是研究物质之间,或光与物质的相互作用, 其研究尺度約一至數個原子,能量尺度約幾個電子伏特。 这三个物理学的领域研究通常是紧密关联的。 原子分子与光物理學使用经典物理学、半经典物理学、与量子物理学的研究方法。 通常情況下,此理論的應用包含原子发射或吸收光子、激发态原子和分子的电磁辐射和散射,光谱分析,激光和激微波的产生,以及对物质光学性质的研究。.

新!!: 分子和原子分子与光物理学 · 查看更多 »

原子和分子物理學研究所

原子和分子物理學研究所(Institute for Atomic and Molecular Physics)俗稱AMOLF,是由荷兰基础物质研究基金会( Foundation for Fundamental Research on Matter,also known as FOM)运行的三个研究所之一。该研究所是欧洲物理与生物物理领域领先的研究所之一。它现今主要关注两个研究主题:生物物理和纳米光子学。原子和分子物理學研究所位在荷蘭的阿姆斯特丹,專門研究複雜原子和分子系統。.

新!!: 分子和原子和分子物理學研究所 · 查看更多 »

原子团

在許多化学反应裡,有一些物质,比如Ca(OH)2、CaCO3、H2SO4等,它们当中有一些原子集团:比如OH-、CO32-、SO42-等,常常作为一个整体参加反应,就好像单独的原子一样,这样的原子集团叫做原子团(atomic group),又称为根或者基团。.

新!!: 分子和原子团 · 查看更多 »

原子理論

原子理论(Atomic theory)是物理学与化学中有关物质本质的科学理论。与物质无限可分的概念相反,依据原子理论,物质是由一个个离散单元原子所构成。 原子起初是自然哲学中的概念。西方对于原子的称呼来自于古希腊语的ατομος(意为“不可分割的”)。而中文中,原子早前的译名“莫破”也来源于此 。原子这一概念由于与基督教教义抵触一度被弃置,直到近代才被重拾。 18世纪末,在化学领域里,人們发现物质在化学变化过程中一系列可確切描述的规律。這为原子理论成为一个科学理论提供了实验依据。19世纪初,道尔顿提出了他的原子理论来解释化学中的现象。而有关原子是否真实存在的争论,直到20世纪初爱因斯坦从分子运动论角度解释布朗运动,并得到实验验证后,才真正得到肯定答案。 19世纪末至20世纪初,物理学家通过一系列与电磁学和放射性有关的实验发现,原本认为“不可分割”的原子实际上是由一系列的亚原子粒子(主要有电子、质子和中子)构成的,而这些粒子可以各自独立存在。由于原子被发现是可分的,物理学家随即引入了一个新术语“基本粒子”以描述原子各个组分。20世纪上半叶,伴随着对于原子结构认识的深入以及物理学界的量子革命,现代原子理论模型被逐步建立起来。.

新!!: 分子和原子理論 · 查看更多 »

原子數

原子數或原子數目、原子個數(Number of Atoms),為分子中某种原子的數目,在化學式中寫在元素符號的右下標。.

新!!: 分子和原子數 · 查看更多 »

原生質絲

原生質絲(Plasmodesmata)為植物細胞和部分藻類細胞壁間貫穿細胞壁的特有孔道,可以讓相鄰細胞的細胞質相互流通。Oparka, K. J. (2005) Plasmodesmata. Blackwell Pub Professional.

新!!: 分子和原生質絲 · 查看更多 »

原恆星

原恆星是在星際介質中的巨分子雲收縮下出現的天體,是恆星形成過程中的早期階段。對一個太陽質量的恆星而言,這個階段至少持續大約100,000年。它開始於分子雲核心的密度增加,結束於金牛T星的形成,然後就發展進入主序帶。這個階段由金牛T風-一種恆星風的開始宣告結束,標誌著恆星從質量的吸積進入能量的輻射。 觀測顯示巨型分子雲總體上近似在維里平衡的狀態,星雲中的重力束縛能被星雲中構成分子的動能平衡。任何對雲氣的干擾都可能擾亂它的平衡狀態,干擾的例子可以是來自超新星的震波;星系內旋臂的密度波,或是與其他雲氣的接近或碰撞。無論擾動的來源是何種,只要夠大就可能在雲氣內特定的地區造成重力大於熱動能的重力變化。 英國的物理學家詹姆士·金斯曾詳細的討論過上述的现象。他能顯示,在適當的情況下,一團雲氣或其中的一部分,將開始如上所述的收縮。他導出了一條公式可以計算雲氣所需要的大小和質量,以及在重力收縮開始前的溫度和密度。這個臨界質量就是所知的金斯質量,可以由下式得到: 此處 n是特定區域的密度,m是在雲氣內氣體平均的質量,而T是氣體的溫度。.

新!!: 分子和原恆星 · 查看更多 »

垂直顯像SMI

垂直顯像SMI是1996年在SMI與SPDM的基礎上開發出來的,能在奈米等級上最快分析完整的3D細胞結構的光學顯微鏡,有效的奈米級光學解析度,在解析2D圖像能達到5 nm,而在解析3D圖像能達到40 nm,所以比起以Abbe定律所算出來的物理極限200 nm還要更佳。 Abbe在1873年提出理論上光學顯微鏡的解析度限制假說。 垂直顯像SMI光學顯微鏡是由海德堡大學光學應用與資訊處理博士克里斯托夫克勒梅所開發出來,集結了定位光學顯微鏡(光學間距精密顯微鏡SPDM, Spectral Precision Distance Microscopy)結構照明設備(空間調整照明設備SMI, Spatially Modulated Illumination)的科技。 自從2008年3月起,許多標準的螢光染劑像是绿色荧光蛋白(GFP)與Alexa螢光染劑可以應用在SPDMphymod (可物理修飾螢光團physically modifiable fluorophores)定位光學顯微鏡上,這種顯微鏡只有單一雷射波長才有適合的光強度能用在奈米圖解上。.

新!!: 分子和垂直顯像SMI · 查看更多 »

偏振

偏振(polarization)指的是横波能夠朝著不同方向振盪的性質。例如電磁波、引力波都會展示出偏振現象。纵波则不會展示出偏振現象,例如傳播於氣體或液體的聲波,其只會朝著傳播方向振盪。如右圖所示,緊拉的細線可以展示出線偏振現象與圓偏振現象。 電磁波的電場與磁場彼此相互垂直。按照常規,電磁波的偏振方向指的是電場的偏振方向。在自由空間裏,電磁波是以橫波方式傳播,即電場與磁場又都垂直於電磁波的傳播方向。理論而言,只要垂直於傳播方向的方向,振盪的電場可以呈任意方向。假若電場的振盪只朝著單獨一個方向,則稱此為「線偏振」或「平面偏振」;假若電場的振盪方向是以電磁波的波頻率進行旋轉動作,並且電場向量的矢端隨著時間流意勾繪出圓型,則稱此為「圓偏振」;假若勾繪出橢圓型,則稱此為「橢圓偏振」;對於這兩個案例,又可按照在任意位置朝著源頭望去,電場隨時間流易而旋轉的順時針方向、逆時針方向,將圓偏振細分為「右旋圓偏振」、「左旋圓偏振」,將橢圓偏振細分為「右旋橢圓偏振」、「左旋橢圓偏振」;這性質稱為手徵性。 光波是一種電磁波。很多常見的光學物質都具有各向同性,例如玻璃。這些物質會維持波的偏振態不變,不會因偏振態的不同而展現出不同的物理行為。可是,有些重要的雙折射物質或光學活性物質具有各向異性。因此,偏振方向的不同,波的傳播狀況也不同,或者,波的偏振方向會被改變。起偏器是一種光學濾波器,只能讓朝著某特定方向偏振的光波通過,因此,可以將非偏振光變為偏振光。 在涉及到橫波傳播的科學領域,例如光學、地震學、無線電學、微波學等等,偏振是很重要的參數。激光、光纖通信、無線通信、雷達等等應用科技,都需要完善處理偏振問題。 極化的英文原文也是「polarization」,在英文文獻裏,偏振與極化兩個術語通用,都是使用同一個詞彙來表達,只有在中文文獻裏,才有不同的用法。一般來說,偏振指的是任何波動朝著某特定方向振盪的性質,而極化指的是各個帶電粒子因正負電荷在空間裡分離而產生的現象。.

新!!: 分子和偏振 · 查看更多 »

偶然對消

偶然對消或異常對消是指算術上不正確的處理,但其結果恰好是正確的。例如在化簡分數時直接將分子和分母各位數中相同的數字刪除,這不是正確的約分方法,大部份情形下得到的答案是錯的,但偶爾這樣的運算會出現正確的結果 以下是一些偶然對消的例子,十進制下分子及分母都是二位數,分子及分母不相等,可以偶然對消的分數只有以下這些以及其倒數: 博厄斯(Ralph P. Boas, Jr)分析了其他進制下的偶然對消,例如4進制下,分子及分母不相等的二位數分數,偶然對消的例子只有32/13.

新!!: 分子和偶然對消 · 查看更多 »

偶極子

在電磁學裏,有兩種偶極子(dipole):電偶極子是兩個分隔一段距離,電量相等,正負相反的電荷。磁偶極子是一圈封閉循環的電流,例如一個有常定電流運行的線圈,稱為載流迴路。偶極子的性質可以用它的偶極矩描述。 電偶極矩(\mathbf)由負電荷指向正電荷,大小等於正電荷量乘以正負電荷之間的距離。磁偶極矩(\mathbf)的方向,根據右手法則,是大拇指從載流迴路的平面指出的方向,而其它手指則指向電流運行方向,磁偶極矩的大小等於電流乘以線圈面積。 除了載流迴路以外,電子和許多基本粒子都擁有磁偶極矩。它們都會產生磁場,與一個非常小的載流迴路產生的磁場完全相同。但是,現時大多數的科學觀點認為這個磁偶極矩是電子的自然性質,而非由載流迴路生成。 永久磁鐵的磁偶極矩來自於電子內稟的磁偶極矩。長條形的永久磁鐵稱為條形磁鐵,其兩端稱為指北極和指南極,其磁偶極矩的方向是由指南極朝向指北極。這常規與地球的磁偶極矩恰巧相反:地球的磁偶極矩的方向是從地球的地磁北極指向地磁南極。地磁北極位於北極附近,實際上是指南極,會吸引磁鐵的指北極;而地磁南極位於南極附近,實際上是指北極,會吸引磁鐵的指南極。羅盤磁針的指北極會指向地磁北極;條形磁鐵可以當作羅盤使用,條形磁鐵的指北極會指向地磁北極。 根據當前的觀察結果,磁偶極子產生的機制只有兩種,載流迴路和量子力學自旋。科學家從未在實驗裏找到任何磁單極子存在的證據。.

新!!: 分子和偶極子 · 查看更多 »

半乳糖激酶

半乳糖激酶(Galactokinase)是一种催化α-D-半乳糖磷酸化为半乳糖-1-磷酸的磷酸转移酶,在此过程中消耗一分子ATP。半乳糖激酶催化Leloir途径(有机体中将α-D-半乳糖转化为葡萄糖-1-磷酸的代謝途徑)的第二步反应,最早在哺乳动物的肝臟中发现, 后来在酵母、古菌、植物和人类中都有发现。.

新!!: 分子和半乳糖激酶 · 查看更多 »

华人诺贝尔奖得主列表

華人界諾貝爾獎得主列表,列举了不同意义上的華人,海外華人,在中國出生者或持有/曾經持有中華民國/中華人民共和國國籍的諾貝爾獎得主列表。.

新!!: 分子和华人诺贝尔奖得主列表 · 查看更多 »

卡尔斯鲁厄会议

卡尔斯鲁厄会议是1860年9月3日-9月6日在德国工业城市卡尔斯鲁厄的博物馆大厅召开的一次国际化学科学会议,是历史上第一次国际化学科学会议,也是世界上第一次国际科学会议,在化学史上有着重要地位 。卡尔斯鲁厄会议是由德国化学家凯库勒、维尔菜因、法国化学家武尔茨等人提议召开的,在这次会议上,来自欧洲大陆15个国家的一百四十余位化学家就原子与分子的概念、化学命名法、化学反应当量、化学符号等化学科学的基础性问题达成一致。卡尔斯鲁厄会议之后,世界性的化学科学共同体开始形成,会议的一些共识沿用至今,而另一些共识则随着化学科学的发展而逐渐淘汰。.

新!!: 分子和卡尔斯鲁厄会议 · 查看更多 »

卤代烷烃

鹵烷烴,鹵代烯烴,鹵代芳族:從上到下不同類別的鹵代烴的結構。鹵素原子標記為藍色。 卤代烷烃或称卤代烷,是指烷烃分子中的一个或多个氢原子被卤素原子(氟、氯、溴、碘)取代的有机化合物,属于卤代烃。.

新!!: 分子和卤代烷烃 · 查看更多 »

卧倒并掩护

《卧倒并掩护》(英文:Duck and Cover)是一部1951年由美国联邦政府民防管理局制作,用以教导民众应对原子弹攻击的民防社会指导影片,片长约9分钟。这一影片制作于苏联开始核试验后。影片剧本由雷蒙德·J·莫尔撰写并由安东尼·雷佐导演。这一影片告诉公众,核战争随时可能在毫无告知的情况下发生,每个美国公民应牢记这一点并随时做好准备。.

新!!: 分子和卧倒并掩护 · 查看更多 »

南美長吻海豚

南美長吻海豚(学名:Sotalia fluviatilis),又名亞馬遜白海豚、土庫海豚、河喙豚、河棲吻海豚、侏型海豚或河口海豚,是分佈在亞馬遜盆地的一種海豚。雖然牠們分佈在近亞馬遜河豚的地點,但與之並非近親。相反,牠們更是屬於海豚,而非淡水豚。牠們的外觀像寬吻海豚屬,但其分別卻足以成立自的屬。在海岸及海口的生活,以往被稱為土庫海豚的現已被確認為另一物種,稱為圭亞那長吻海豚。.

新!!: 分子和南美長吻海豚 · 查看更多 »

单位

单位可以指:.

新!!: 分子和单位 · 查看更多 »

单体

在高分子化学中,单体是可与同种或他种分子通过共价键连接生成聚合物的小分子。英文的“单体”(monomer)一词来源于希腊语的“一”(mono)和“部分”(meros)。.

新!!: 分子和单体 · 查看更多 »

单分子亲核取代反应

SN1反应(单分子亲核取代反应)是有机化学中亲核取代反应的一类,其中S代表取代(Substitution),N代表亲核(Nucleophilic),1代表反应的速控步只涉及一种分子。 J. March, Advanced Organic Chemistry, 4th ed., Wiley, New York, 1992.

新!!: 分子和单分子亲核取代反应 · 查看更多 »

单质

单质是由同种元素组成的纯净物。元素在单质中存在时称为元素的游离态。 一般来说,单质的性质与其元素的性质密切相关。比如,很多金属的金属性都很明显,那么它们的单质还原性就很强。不同种类元素的单质,其性质差异在结构上反映得最为突出。 与单质相对,由多种元素组成的物质叫做化合物。.

新!!: 分子和单质 · 查看更多 »

反式脂肪

反式脂肪,又稱為反式脂肪酸、逆態脂肪酸,属于不飽和脂肪酸(單元不飽和或多元不飽和)。 動物的肉品或乳製品中的脂肪酸多为饱和脂肪酸和顺式脂肪酸,雖有反式脂肪酸但含量低;人類食用的反式脂肪主要來自經過氫化程序所生產的部份氫化植物油。「植物油氫化」是在20世紀初期發明的食品工業技術,並於1911年被食用油品牌「Crisco」首次使用。氫化過程會改變脂肪酸的分子結構(讓油更耐高溫、不易變質,並且增加保存期限),如果將脂肪酸完全氫化並無反式與順式脂肪酸差異, 但不完全氫化時,部份的脂肪酸結構會變成反式結構,產生反式脂肪。由於能增添食品酥脆口感、易於長期保存等優點,此類部分氫化植物油被大量運用於市售包裝食品、餐廳的煎炸食品中。动物油在精製去味過程時,会生成少量的反式脂肪,反覆煎炸也會產生反式脂肪。 反式脂肪酸属于不飽和脂肪酸,曾被认为是較飽和脂肪酸更健康,加之部分氫化植物油价格低,耐储藏,用它油炸过的食品口感好,在食品工业大量使用。許多速食連鎖店也因此由原來的含有飽和脂肪酸的油脂改用部分氫化植物油。 現代認為人造的反式脂肪酸是比飽和脂肪酸更不健康的脂肪酸,一些國家和地区已经禁止在食品中使用部分氫化植物油,许多國家要求食品製造商必須在產品上標注反式脂肪含量。如美國加工食品內的反式脂肪已經幾乎消失(因為法令規定一定要誠實標示、而公眾也知道反式脂肪比飽和脂肪危險許多),並即將正式全面禁用部分氫化植物油,而也有多起因反式脂肪而引起的法律訴訟正在進行(主要是針對速食店進行的訴訟)。許多食品公司已經主動的停止在產品中使用部分氫化植物油,或是增加不含反式脂肪的產品線。.

新!!: 分子和反式脂肪 · 查看更多 »

反應動態學

反應動態學 (Reaction dynamics), 亦有譯稱反應動力學,是一門在物理化學和化學物理領域,研究基元化學反應的學問。有別於化學動力學 (chemical kinetics),反應動態學是研究在分子階層、非常短時間內的過程。反應動態學的研究目的是在研究為甚麼化學反應會發生、如何去預測乃至控制一個基元反應的發生。實驗研究通常需要與光譜學及量子化學理論計算配合才能有全盤的了解。 在1986年,達德利·赫施巴赫,李遠哲與約翰·波拉尼,因為他們在化學基元反應的動態學研究,特別是在交叉分子束與紅外化學發光,的卓著貢獻,而受頒諾貝爾化學獎。 反應動態學的實驗技術是在獲取反應物在碰撞後,散射的產物之平动能分佈與角分佈,以及內能 (電子態、振動態與轉動態)的分佈。也有用光譜的方法來了解反應的過渡態、用飛秒雷射及其他方法來研究化學反應動態學。另外一個相關的領域是光分解動態學 (photodissociation dynamics,參考光分解離子成像),光分解反應也可以稱作半反應。.

新!!: 分子和反應動態學 · 查看更多 »

台灣生態

台灣的生態類型豐富多樣:氣候、地形、土壤等種種環境因素影響了動植物的分布,造就了台灣獨特的生態環境。台灣有很高的物種歧異度;台灣現有約4,077種原生維管束植物,脊椎動物約800餘種,昆蟲近2萬種被記錄。.

新!!: 分子和台灣生態 · 查看更多 »

叶绿体

-- 葉綠體(chloroplast)是绿色植物和藻类等真核自养生物细胞中专业化亚单元的细胞器。其主要作用是进行光合作用,其中含有的光合色素叶绿素从太阳光捕获能量,并将其存储在能量储存分子ATP和NADPH,同时从水中释放氧气。然后,它们使用ATP和NADPH,在被称为卡尔文循环的过程中从二氧化碳制造有机分子。叶绿体实施许多其它功能,包括植物的脂肪酸合成,很多氨基酸的合成,和免疫反应。 叶绿体是三种类型的质体(plastid)之一,其特点是其高浓度的叶绿素。(其他两个质体类型是白色体和有色体,含有少量叶绿素并且不能进行光合作用。)叶绿体是高度动态的,它们循环并在植物细胞内四处移动,并且偶尔分裂成两个来生殖。它们的行为受到环境因素如光的颜色和强度的强烈影响。叶绿体和线粒体类似,拥有自身的遗传物质DNA,但因其基因组大小有限,是一种半自主细胞器。这DNA被认为是从已被古代真核生物的细胞吞没的有光合作用的蓝菌门祖先继承下来。叶绿体不能由植物细胞产生,且必须在植物细胞分裂期间由每个子细胞继承叶绿体。 英文中的“叶绿体”(chloroplast)一词来源于希腊语中的“χλωροπλάστης”,该词由“绿”(“chloros”或“χλωρός”)和“成型”(“plastis”或“πλάστης”)组合而成。.

新!!: 分子和叶绿体 · 查看更多 »

双原子分子

雙原子分子指所有由兩個原子組成的分子。雙原子分子內的化學鍵通常是共價鍵。 很多非金屬元素(包括氫、氮、氧、氟、氯、溴、碘等)的單質均是雙原子分子。其他元素(如磷)也可能以雙原子分子構成單質,但這些雙原子分子並不穩定。這些構成單質的雙原子分子稱為同核雙原子分子。其中,氮和氧的同核雙原子分子佔地球大氣層成份的 99%。 以雙原子分子存在的化合物包括一氧化碳、一氧化氮、氯化氫等。這些雙原子分子稱為異核雙原子分子。.

新!!: 分子和双原子分子 · 查看更多 »

取向力

极性分子相互靠近时,因分子的固有偶极之间同极相斥异极相吸,使分子在空间按一定取向排列,使体系处于更稳定状态。这种固有的偶极间的作用力称为取向力,又称作偶极-偶极作用力(Dipole-dipole interactions)。其实质是静电力。 Category:分子间作用力.

新!!: 分子和取向力 · 查看更多 »

取代反应

取代反應(Substitution reaction)是一種重要的有機化學反應,其定義是分子中的一個原子或原子團被其他原子或原子團取代。而取代反應主要依照反應中所使用的試劑分為親核取代反應與親電取代反應兩大類,但也有不屬於前面兩種類型的取代反應,將會在下文提及。 有機的取代反應會依以下的特點,被歸類到若干個有機取代反應類別中:.

新!!: 分子和取代反应 · 查看更多 »

吡哆醛4-脱氢酶

吡哆醛4-脱氢酶(pyridoxal 4-dehydrogenase,EC )也称为“吡哆醛脱氢酶”,是一种以NAD+或NADP+为受体、作用于供体CH-OH基团上的氧化还原酶。这种酶能催化以下酶促反应: 吡哆醛4-脱氢酶分子由4个亚基构成,每个亚基的相对分子质量为26,000±1,000D。这种酶主要参与维生素B6的代谢过程。已有学者提出可利用完整细胞生物转化技术(whole-cell biotransformation),以吡哆醇为原料、吡哆醇-4-氧化酶和吡哆醛4-脱氢酶为催化剂,来生产4-吡哆醇酮(4-pyridoxolactone,PAL)。.

新!!: 分子和吡哆醛4-脱氢酶 · 查看更多 »

吸血鬼騎士

| 《吸血鬼騎士》(ヴァンパイア騎士、Vampire Knight),是一部漫畫家樋野茉理所作的少女漫畫以及由此改編的電視動畫、輕小說與少女遊戲。 由漫畫所改編的電視動畫共分兩季,第一季共13話於2008年4月至2008年6月間在日本播放,第二季於2008年10月6日起播放至2008年12月29日。台灣2010年1月19日於緯來日本台播送。香港由2010年11月6日起,於無綫電視J2台播送。2013年結束,2016年於LaLa DX開始新章連載。.

新!!: 分子和吸血鬼騎士 · 查看更多 »

吸收光譜

吸收光譜是材料在某一些頻率上對電磁輻射的吸收事件所呈現的比率。實際上,吸收光譜是與發射光譜相對的。 每一種化學元素都會在幾個對應於能階軌道的特定波長上產生吸收線,因此吸收譜線可以用來鑑定氣體或液體中所含的元素。這種方法也可以用在不可能直接去測量的恆星和其他的氣體上出現的現象。.

新!!: 分子和吸收光譜 · 查看更多 »

吸收光谱学

吸收光谱学是指一门光谱学技术,它通过测量电磁辐射的吸收,形成频率或波长对与试样交互的函数。试样从辐射域吸收能量,如光子。吸收强度的变化与频率构成函数关系,这种变化就是吸收光谱。吸收光谱学也应用于整个电磁波谱。 吸收光谱学被用作分析化学的工具,它可以确定试样中是否存在某种特殊物质,以及在许多情况下量化该物质存在的数量。红外和紫外-可见光光谱学是分析应用中特别常见的。吸收光谱学也被用于分子和原子物理学、天文光谱学和遥感的研究。 测量吸收光谱的实验方法很多。最常见的方法是将产生的无线电波导向试样,并探测透射电波的强度。透射的能量可以用来计算吸收。辐射源、试样布置和探测技术的选择,很大程度上依赖于频率范围和实验目的。.

新!!: 分子和吸收光谱学 · 查看更多 »

同分異構

同分异构体又稱同分異構物,英文為Isomer。同分異構物指的是擁有相同分子式,但結構式卻不相同的多種分子。同分異構物之間並不擁有相同的化學性質,除非它們擁有相同的官能团(functional groups)。化學中常見的兩種主要的種類為結構異構(structural isomerism)以及立體異構(stereoisomerism)。.

新!!: 分子和同分異構 · 查看更多 »

均方根速度

均方根速度是氣體粒子速度的一個量度。其公式為 其中vrms為均方根速度,Mm為氣體的摩爾質量,R為摩爾氣體常數,及T為以開爾文為單位的溫度。這公式對像氦的理想氣體及像雙原子的氧那樣的分子氣體都很有效。這是由於儘管很多分子中的內能較大(相對於一原子的),其平均平移動能依然是3RT/2。 這公式亦能用波茲曼常數(k)寫成 其中m為氣體質量。 同時公式能夠用能量方法導出: 其中K.E.為動能。 已知v2跟方向無關,故假設公式能延伸至整個樣本是合邏輯的,用整個樣本的重量(即摩爾質量與摩爾數的積,nM)來取代m,得 因此 跟原式等價。.

新!!: 分子和均方根速度 · 查看更多 »

壯麗細尾鷯鶯

壯麗細尾鷯鶯(學名:Malurus cyaneus),又名華麗細尾鷯鶯,是細尾鷯鶯科的一種雀,分佈在澳洲東南部。牠們是留鳥及地盤性的,且有高度的兩性異形:雄雀繁殖時前額、耳底、上背及尾巴呈鮮藍色,面部黑色,喉嚨黑色或深藍色;非繁殖期的雄雀、雌雀及雛鳥主要是灰褐色的。現已知有兩個亞種:塔斯曼尼亞較為大及深色的cyaneus亞種及主島的cyanochlamys亞種。 壯麗細尾鷯鶯擁有一些特殊的行為特徵,包括社會性一夫一妻制但濫交,雖然牠們會一雌一雄組成一對,會雙方都會與其他雀交配及餵哺其幼鳥。雄雀會送黃色花瓣給雌雀來示愛。 差不多只要有一些下層灌木層作為遮蔭,就可以見到壯麗細尾鷯鶯的蹤跡。牠們可以棲息在有稀疏叢林的草原、森林、林地及花園。牠們已適應了城市環境,在悉尼、坎培拉及墨爾本的郊區十分普遍。牠們主要吃昆蟲及以種子扶助。.

新!!: 分子和壯麗細尾鷯鶯 · 查看更多 »

多元不飽和脂肪

多元不飽和脂肪是兩類不飽和脂肪之一,分子中有多於一個雙鍵,相比之下單元不飽和脂肪則只有一個雙鍵,其餘為單鍵。它必須從食物中攝取。常見的這類脂肪包括亞麻油酸及次亞麻油酸。紅花籽油、粟米油、大豆油、葵花籽油及果仁均相對含有較多這類脂肪。這類脂肪在室溫下呈液體狀。 現代醫學普遍認為,多元不飽和脂肪會降低低密度脂蛋白膽固醇(壞膽固醇,LDL),並提升高密度脂蛋白膽固醇(好膽固醇,HDL),相對比飽和脂肪健康,但容易令細胞老化。.

新!!: 分子和多元不飽和脂肪 · 查看更多 »

多元酸

多元酸,通常指在一個分子中可能放出多個質子(H+)的酸。 如無機酸中的硫酸(H2SO4)、磷酸(H3PO4)等。 在有機化合物中主要指每一個分子含多個羧基的羧酸,如草酸(HOOCCOOH)、蘋果酸(HOOCCH2CHOHCOOH)、順丁烯二酸(HOOCCH.

新!!: 分子和多元酸 · 查看更多 »

多糖

多醣(Polysaccharide)由多個單醣分子脫水聚合,以糖苷键连接而成,可形成直鏈或者有分支的長鏈,水解后得到相应的單醣和寡糖。例如用来储存能量的淀粉和糖原,以及用来组成生物结构的纤维素和甲壳素。 多糖常常由略带修饰的重复单元构成。由于结构不同,多糖高分子和构成它的单糖分子性质迥异,可能无定形,甚至不溶于水。 自然界中存在的糖类(如葡萄糖、果糖和甘油醛)一般为单糖,通式为(CH2O)n,其中 n\ge 3。与此相对,多糖的通式为为CxH2O)y,其中x通常在200到2500之间。鉴于多糖通常由六碳糖构成,多糖的通式也可写作(C6H10O5)n,其中 40\le n\le 3000,不过多糖和寡糖的分界见仁见智。 多糖是一种重要的生物高分子,在生物中有储存能量和组成结构的作用。淀粉(包括直链淀粉和支链淀粉)是葡萄糖的聚合物,在植物中用来储存能量。动物将能量储存在糖原(也叫动物淀粉)中。糖原也是由葡萄糖聚合而成,但分子中支链更多。动物更活跃,所以利用的是代谢更快的糖原。 纤维素和甲壳素是两种组成生物结构的多糖。纤维素构成植物的细胞壁,可谓地球上数量最多的有机分子。纤维素应用广泛,不仅在造纸业和纺织业中举足轻重,而且是生产人造丝、醋酸纤维素、赛璐珞、硝化纤维等的原料。甲壳素结构和纤维素类似,但支链中含有氮,所以强度更高。其存在于节肢动物的外骨骼和真菌的细胞壁中。甲壳素也有很多作用,比如可用作手术缝合线。.

新!!: 分子和多糖 · 查看更多 »

多酸

多酸是指多个金属含氧酸分子,如钼酸、钒酸等,通过脱水缩合成含氧酸簇状化合物。其中心元素以5族元素/6族元素为主,比如钼、钨、钒、铌、钽等,每个金属原子和氧元素形成配位多面体(以六配位八面体为常见),然后各多面体通过公用氧原子形成较大的堆砌结构,即多酸类化合物。上述金属原子的配位多面体有很强的缩聚倾向,因此可以形成非常庞大的无机阴离子,例如分子、分子(如图)。 正因为这些金属原子的配位多面体有很强的缩聚倾向,多酸可以容纳个别的其它含氧酸多面体,形成其它复杂多酸结构(杂多酸)。元素周期表中大部分元素均可作为杂原子与前过渡元素组成杂多酸,如PO4-3四面体被12个钼氧六面体包裹形成如磷钼酸铵等分子。 多酸结构的稳定性也使得部分多面体被水解脱离,而其它原子仍然保持原有骨架,形成缺位多酸。缺位多酸有一个或多个空位,有较强的配位能力,能够与多种金属离子形成配位化合物。 杂多酸具有分子量大、体积大和笼状结构等结构特性。由于其笼状结构的稳定性,多酸通常具有强酸性。.

新!!: 分子和多酸 · 查看更多 »

多腺苷酸化

多腺苷酸化(Polyadenylation)是指多聚腺苷酸與信使RNA(mRNA)分子的共價鏈結。在蛋白質生物合成的過程中,這是產生準備作翻譯的成熟mRNA的方式的一部份。在真核生物中,多聚腺苷酸化是一種機制,令mRNA分子於它們的3'端中斷。多聚腺苷酸尾(Poly-A Tail)保護mRNA,免受核酸外切酶攻擊,並且對轉錄終結、將mRNA從細胞核輸出及進行翻譯都十分重要。一些原核生物的mRNA都會被多聚腺苷酸化,但多聚腺苷酸尾的功能則與真核生物有所不同。 當脱氧核糖核酸(DNA)在細胞核內轉錄成核糖核酸(RNA)的過程中及完成後,多聚腺苷酸化就會出現。當轉錄停止後,mRNA鏈會由核酸外切酶及RNA聚合酶切開。切開位點的附近有著AAUAAA序列。當mRNA被切開後,會加入50-250個腺苷到切開位點的3'端上。這個反應是由多聚腺苷酸聚合酶完成的。.

新!!: 分子和多腺苷酸化 · 查看更多 »

复合粒子

复合粒子是由基本粒子结合成的亚原子粒子-强子,包括重子和介子,以及其它的包括原子核、原子、奇异原子-电子偶素、分子。.

新!!: 分子和复合粒子 · 查看更多 »

大隅良典

大隅良典(,),日本分子細胞生物学家。現任東京工業大学前沿研究機構特聘教授、第6位東京大學特別榮譽教授等職。文化勳章表彰。文化功勞者。 大隅教授曾獲得京都獎、蓋爾德納國際獎及威利獎。2016年他因「對細胞自噬機制的發現」成為21世紀第2位諾貝爾生理學或醫學獎的單人得主,中央社,2016年10月3日,中央社,2016年10月3日,中央社,2016年10月3日。.

新!!: 分子和大隅良典 · 查看更多 »

大氣光學

大氣光學是地球大氣層獨特的光學性質所造成大範圍且壯觀的光學現象。美麗的藍色天空是瑞利散射的直接結果,它重新定向了高頻(藍色光)的陽光,使它們重新回到觀測者的視野。由於藍色光比紅色光容易散射,當日出和日落時的陽光必須穿透濃厚的大氣層時,太陽看起來就呈現偏紅的色調。在天空中額外的顆粒會以不同的角度色散不同的顏色的光,在黎明和黃昏創造出多采多姿的發光天空。冰晶和其它顆粒將在大氣層中的光線散射,造成暈、晚霞餘暉、華 (光象)、雲隙光和幻日。這些種現象的變化是由於粒子大小和不同的幾何形狀。 海市蜃樓是光線受到大氣層的溫度變化而產生偏折彎曲的光學現象,會使遠方的影像流離失所或是嚴重的扭曲。與此相關的其它光學現象包括新地島效應,會使視太陽比預測的提早升起或是延後落下,並且造成形狀的扭曲。一種稱為複雜蜃景的壯觀形式是由溫度反演造成的,會將地平線上,甚至地平線下的物件,像是島嶼、崖、船舶或冰山拉長且升高,就像"童話城堡"。 彩虹是光線在雨滴內部反射和色散光的折色組合造成的結果。因為彩虹總是出現在天空中背向太陽的那一端,而且因為兩者相距遙遠的距離,太陽越接近地平面,彩虹越是突出和壯觀Chapter 34。.

新!!: 分子和大氣光學 · 查看更多 »

天干

天干,是中国古代的一种文字计序符号,共10个字: 甲、乙、丙、丁、戊、己、庚、辛、壬、癸,循环使用。 中国等漢字文化圈國家古代常以之来命名、排序、纪时。.

新!!: 分子和天干 · 查看更多 »

天冬氨酸

天冬氨酸(aspartic acid,可簡寫為Asp或D)是一种α-氨基酸,其化學式為HOOCCH2CH(NH2)COOH。天冬氨酸的L-異構物是20种蛋白胺基酸之一,即蛋白質的构造单位。它的密碼子是GAU和GAC。它与谷氨酸同為酸性氨基酸。天冬氨酸普遍存在于生物合成作用中。.

新!!: 分子和天冬氨酸 · 查看更多 »

天空漫射

天空漫射(Diffuse sky radiation)是陽光直接被地球大氣層中的分子或懸浮粒子散射而改變了行進方向之後,經過才抵達地球表面的太陽輻射,這些以光子為主的輻射很可能經過不只一次的散射、反射,最終以疊加的型態進入觀測者的眼中,是天空會有顏色變化的主因,其變化就是隨著「輻射入射角」(時間)及「最短路徑上的阻礙」(天候狀況、空氣污染程度)造成顏色變化。它也被稱為天光(skylight)、 漫射天光(diffuse skylight)、或天空輻射(sky radiation)。來自太陽的陽光大約有總量的三分之二(根據在大氣層中的灰塵和煙霧含量,在太陽高懸時大約為有25%的入射輻射直接被散射)會在大氣層中被散射,最終成為彌散的天空輻射抵達地球表面。 在大氣層中的重要過程是瑞利散射和米氏散射的彈性過程,光線的波長不變,沒有被吸收,但從原有的路徑偏折。.

新!!: 分子和天空漫射 · 查看更多 »

天體光譜學

天體光譜學是天文學使用的光譜學技術。研究天體的電磁輻射光譜,包括可見光,是來自恆星和其它天體的輻射。光譜學可以用來推導出遠距離恆星和星系的許多性質,像是它們的化學組成,但也可以從都卜勒頻移測量它們的運動。.

新!!: 分子和天體光譜學 · 查看更多 »

头孢唑肟

没有描述。

新!!: 分子和头孢唑肟 · 查看更多 »

外层空间

-- --(outer space),於中國大陸稱外層空間,指的是地球大氣層及其他天體之外的虛空區域。 與真空有所不同的是,外太空含有密度很低的物質,以等離子態的氫為主。其中還有電磁輻射、磁場等。理論上,外層空間可能還包含暗物質和暗能量。 外太空與地球大气层並沒有明確的界線,因為大氣隨著海拔增加而逐漸變薄。假設大氣層温度固定,大氣壓會由海平面的大約1013毫巴,隨著高度增加而呈指數化減少至零為止。 国际航空联合会定義在100公里的高度為卡門線,為現行大氣層和太空的界線定義。美國認定到達海拔80公里的人為太空人,在太空船重返地球的過程中,120公里是空氣阻力開始發生作用的界線。.

新!!: 分子和外层空间 · 查看更多 »

外部引导序列

外部引导序列(External guide sequence),同mRNAs结合形成类似tRNA前体3D结构的短RNA序列。核糖酶是一种RNA分子,它可以像蛋白酶那样催化化学反应,外部引导序列是核糖酶的一个功能分支,于1990年被首次发现,很可能成为一种完全不同的药物试剂。.

新!!: 分子和外部引导序列 · 查看更多 »

奥托·施特恩

奧托·斯特恩(Otto Stern,),德國裔美國核物理學家及實驗物理學家,1943年諾貝爾物理學獎獲得者。他發展了核物理研究中的分子束方法並發現了質子磁矩,獲得了1943年的諾貝爾物理學獎。.

新!!: 分子和奥托·施特恩 · 查看更多 »

奈米獵殺

《--》(Prey),--,是美國作家麥可·克萊頓發表的「科技驚悚小說」。這部小說由哈潑‧柯林斯出版社(HarperCollins)於2002年11月以精裝本首發。如同《侏羅紀公園》,這部小說也有意作為科技發展的警世題材,這回的茅頭轉向奈米科技。這部小說的特色在於描述了電腦科學共同體的新發展,像人工生命、突現行為、基因演算法和代理電腦人。.

新!!: 分子和奈米獵殺 · 查看更多 »

奈米線

纳米线是一种纳米尺度(10−9 米)的线。 换一种说法,纳米线可以被定义为一种具有在横向上被限制在100纳米以下(纵向没有限制)的一维结构。这种尺度上,量子力学效应很重要,因此也被称作"量子线"。根据组成材料的不同,纳米线可分为不同的类型,包括金属纳米线(如:Ni,Pt,Au等),半导体纳米线(如:InP,Si,GaN 等)和绝缘体纳米线(如:SiO2,TiO2等)。分子纳米线由重复的分子元组成,可以是有机的(如:DNA)或者是无机的(如:Mo6S9-xIx)。 作为纳米技术的一个重要组成部分,纳米线可以被用来制作超小电路。.

新!!: 分子和奈米線 · 查看更多 »

奇異原子

奇異原子通常是指與一般原子構成不同的原子,普通的原子是由電子e、質子p和中子n這三種長壽的粒子構成,但奇異原子卻是以其他的粒子代替這三種稳定粒子中的一个或多个,通过电磁相互作用構成。.

新!!: 分子和奇異原子 · 查看更多 »

奇茲米勒訴多佛學區案

泰咪·奇茲米勒等人訴多佛學區等團體(Tammy Kitzmiller, et al.

新!!: 分子和奇茲米勒訴多佛學區案 · 查看更多 »

姐妹分體交換

姐妹分體交換(Sister chromatid exchange, 縮寫 SCE),是兩個同卵姐妹染色單體之間的基因材料交換。.

新!!: 分子和姐妹分體交換 · 查看更多 »

始鬚鯨

始鬚鯨(Eobalaenoptera)是已滅絕的鬚鯨。牠最初是由美國維吉尼亞自然歷史博物館的研究員於2004年描述。 始鬚鯨的化石是一個部份骨骼,於1990年在美國維吉尼亞州加羅林縣的中新世中期卡爾弗特地層發現。始鬚鯨長11米,與包含現今鬚鯨科及灰鯨科的鯨魚分支有相似的形態特徵。 化石估計是屬於1400萬年前,故始鬚鯨是最古老的分支成員,較其他的要老300-500萬年。始鬚鯨亦填充了最早已知的化石紀錄及估計分支的時間之間存在了的空檔期。分子分析認為這個分支時間約為2500萬年前。 始鬚鯨的模式種是哈里遜始鬚鯨,是為紀念博物館內的一名義工Carter Harrison。.

新!!: 分子和始鬚鯨 · 查看更多 »

定量构效关系

定量构效关系(QSAR)是一种借助分子的理化性质参数或结构参数,以数学和统计学手段定量研究有机小分子与生物大分子相互作用、有机小分子在生物体内吸收、分布、代谢、排泄等生理相关性质的方法。这种方法广泛应用于药物、农药、化学毒剂等生物活性分子的合理设计,在早期的药物设计中,定量构效关系方法占据主导地位,1990年代以来随着计算机计算能力的提高和众多生物大分子三维结构的准确测定,基于结构的药物设计逐渐取代了定量构效关系在药物设计领域的主导地位,但是QSAR在药学研究中仍然发挥着非常重要的作用。.

新!!: 分子和定量构效关系 · 查看更多 »

宏观

宏观这名词,通常用来描述,那些可以被肉眼测量与观察的物体。当用在现象或抽象物体(abstract object)时,则是描述,我们所能理解,存在于这世界上的。通常被认为是宏观的长度尺度,大致在1毫米至1公里之间。 宏观这词语也可指引为大尺度观点;那就是,只有从大尺度才能得着的观点。一个宏观的立场可以被认为是一副大图画。.

新!!: 分子和宏观 · 查看更多 »

安培定律

安培定律(Ampère's circuital law),又稱安培環路定律,是由安德烈-瑪麗·安培於1826年提出的一條靜磁學基本定律。安培定律表明,載流導線所載有的電流,與磁場沿著環繞導線的閉合迴路的路徑積分,兩者之間的關係為 其中,\mathbb是環繞著導線的閉合迴路,\mathbf是磁場(又稱為B場),d\boldsymbol是微小線元素向量,\mu_0是磁常數,I_是閉合迴路\mathbb所圍住的電流。 1861年,詹姆斯·馬克士威又將這方程式重新推導一遍,使得符合電動力學條件,並且發表結果於論文《論物理力線》內。馬克士威認為,含時電場會生成磁場,假若電場含時間,則前述安培定律方程式不成立,必須加以修正。經過修正後,新的方程式稱為馬克士威-安培方程式,是馬克士威方程組中的一個方程式,以積分形式表示為 其中,\mathbb是邊緣為\mathbb的任意曲面,\mathbf是穿過曲面\mathbb的電流的電流密度,\mathbf是電位移,d\mathbf是微小面元素向量。.

新!!: 分子和安培定律 · 查看更多 »

寡醣

寡醣又稱低聚醣,為普遍由3-10個單醣分子聚合而成的碳水化合物。寡糖普遍存在於動物細胞的細胞膜,並有著辨別其他細胞的功能。.

新!!: 分子和寡醣 · 查看更多 »

对苯醌四甲酸二酐

对苯醌四甲酸二酐也称为“1,4-苯醌四甲酸二酐”、“对苯醌四羧酸二酐”或“1,4-苯醌四羧酸二酐”是一种 有机碳氧化物,其分子式为C10O8。这种化合物可视为每分子对苯醌四甲酸脱去两分子水后得到的酸酐。 常态下,对苯醌四甲酸二酐是一种红色的固体,在140℃以下的干燥空气中可保持稳定。 对苯醌四甲酸二酐不溶于乙醚、四氯化碳、二氯甲烷或二硫化碳等溶剂,能与水、乙醇、丙酮、乙酸乙酯以及四氢呋喃等物质发生反应。对苯醌四甲酸二酐能溶解在苯的甲基化衍生物中,并赋予溶液橘黄至紫红的颜色,暴露在潮湿空气中可使该溶液变蓝。.

新!!: 分子和对苯醌四甲酸二酐 · 查看更多 »

富勒烯

富勒烯(Fullerene)是一種完全由碳组成的中空分子,形狀呈球型、椭球型、柱型或管状。富勒烯在结构上与石墨很相似,石墨是由六元环组成的石墨烯层堆积而成,而富勒烯不仅含有六元环还有五元环,偶尔还有七元环。 1985年英国化学家哈罗德·沃特尔·克罗托博士和美国科学家理查德·斯莫利在萊斯大學制备出了第一种富勒烯,即「C60分子」或「富勒烯」,因为这个分子与建筑学家巴克明斯特·富勒的建筑作品很相似,为了表达对他的敬意,将其命名为「巴克明斯特·富勒烯」(巴克球)。饭岛澄男早在1980年之前就在透射电子显微镜下观察到这样洋葱状的结构。自然界也是存在富勒烯分子的,2010年科学家们通过史匹哲太空望远镜发现在外太空中也存在富勒烯。 “也许外太空的富勒烯为地球提供了生命的种子”。 在富勒烯发现之前,碳的同素异形体的只有石墨、钻石、无定形碳(如炭黑和炭),它的发现极大地拓展了碳的同素异形体的数目。富勒烯和碳纳米管独特的化学和物理性质以及在技术方面潜在的应用,引起了科学家们强烈的兴趣,尤其是在材料科学、电子学和纳米技术方面。 Biosphère Montréal.jpg|建筑学家理查德·巴克明斯特·富勒设计的加拿大1967年世界博覽會球形圆顶薄壳建筑 Buckminsterfullerene-perspective-3D-balls.png|拥有60个碳原子的巴克明斯特·富勒烯C60 Football (soccer ball).svg|现代足球与C60有着非常类似结构.

新!!: 分子和富勒烯 · 查看更多 »

密度涨落

密度涨落(density fluctuation)是指分子不断地在某个地方较为集中一下子,然后又散开,接着又在其他地方集中的现象。 Category:物理学.

新!!: 分子和密度涨落 · 查看更多 »

導體

導體(conductor)為能夠讓電流通過的材料,依其導電性,能夠細分為超導體、導體、半導體及絕緣體。在科學及工程上常用利用歐姆來定義某材料的導電程度。它们使電力極容易地通过它们。例如:金属、人体、大地、石墨、食鹽水溶液等都是導電體。 當電流在導體內流過時,事實上是因為導體內的自由电荷(在金属中的自由电荷是电子,而在溶液中的自由电荷则为阴、阳產生漂移而造成的,根據材料的不同,自由电荷的漂移方式也不相同:在超導體中,電子幾乎不受原子核的干擾而能夠快速移動;而在導體內電子的移動受限於該材料所造成的電子海的能階大小;而在半導體內,電子能夠移動是因為電子-空穴效應;而絕緣體則是電子受限於分子所構成的共價鍵,使得電子要脫離原子是非常困難的事。因此,沒有絕對絕緣的絕緣體,只要有足夠大的能量就可以使電子得以通過某絕緣體。 Category:材料 Category:熱力學 Category:電學.

新!!: 分子和導體 · 查看更多 »

封閉系統

在熱力學之中,封閉系統是指一個只與外界交換能量(作功或熱量)而不交換質量的系統。 假如一個只擁有一種粒子(原子或分子)的系統進行化學反應時,過程中所有種類的粒子都可以被生成或破壞。但是,封閉系統內的元素原子數目將會守恒。數學上可以寫成:.

新!!: 分子和封閉系統 · 查看更多 »

山蝰

山蝰屬(學名:Daboia,俗稱「七步紅」、「鎖鏈蛇」)是蛇亞目蝰蛇科蝰亞科下的一個單型屬,屬下只有山蝰(D.

新!!: 分子和山蝰 · 查看更多 »

居量反轉

居量反轉(Population inversion),又譯為群數反轉、密數反轉、粒子數反轉、反轉分布,為一個物理學名詞,在統計力學中經常被使用。居量反轉即在一個系統(例如一群原子或分子)中,處在激發狀態的成員數量比起處於較低能階狀態的成員更多。讓標準雷射進入能夠運作的狀態的過程中,產生居量反轉是一個必要的步驟,因此在雷射科學中,居量反轉是很重要的研究主題之一。值得注意的是居量反轉不可能是熱平衡的穩態解,如二能階系統中,溫度極高或外場極大時的平衡態也只允許激發態與基態粒子數目相等。.

新!!: 分子和居量反轉 · 查看更多 »

工程學分支列表

工程學是運用科學理論、數學方法和來設計、創造和分析安全、人為因素、物理法則、實踐性和成本的技術解決方案的學科和專業。當代的工程學一般認為是由化學工程、土木工程、電機工程和機械工程等主要基礎學科所組成。此外,還有許多其他工程學分支學科和跨學科學科發源於主要工程學分支的濃縮、組合或擴展。.

新!!: 分子和工程學分支列表 · 查看更多 »

巴巴里獅

巴巴里獅(Panthera leo leo)是獅子的一個亞種,但已於野外灭绝。現時在歐洲只有少於40隻飼養的巴巴里獅,全球則少於一百隻。 巴巴里獅以往分佈在北非,由摩洛哥至埃及。野外最後的巴巴里獅是於1922年在阿特拉斯山脈被射殺。相信牠們不單在野外滅絕,連同飼養的也都已經消失。不過,在一些動物園或馬戲團內可能仍有巴巴里獅的存在。 巴巴里獅通常被認為是獅子亞種中最重的。雄獅重180-272公斤,雌獅則重130-180公斤,約有孟加拉虎的重量。一些歷史悠久的帳目指一些雄性巴巴里獅可重達270公斤,一些學者卻指牠們的重量被誇大了,即便是圈養的巴巴里獅的樣本太小也未必能夠達到這大小,無法斷定是最大的獅子亞種,可能只有如東非獅子的大小。.

新!!: 分子和巴巴里獅 · 查看更多 »

巴克明斯特富勒烯

巴克明斯特富勒烯(Buckminsterfullerene),分子式C60,是富勒烯家族的一種,球狀分子,是最容易制备的一種,1985年英國化學家哈羅德·沃特爾·克羅托博士和美國科學家理察·斯莫利在萊斯大學製備出了第一種富勒烯。.

新!!: 分子和巴克明斯特富勒烯 · 查看更多 »

不可逆性

在热力学领域中,不可逆过程(Irreversible process)是相对可逆过程而言的,指的是在时间反演变换下只能单向进行的热力学过程,这种热力学过程所具有的性质被称作不可逆性。从热力学角度而言,自然界中所有复杂的热力学过程都具有宏观上的不可逆性。宏观上不可逆性现象产生的原因在于,当一个热力学系统复杂到足够的程度,组成其系统的分子之间的相互作用使系统在不同的热力学态之间演化;而由于大量分子运动的高度随机性,分子和原子的组成结构和排列的变化方式是非常难于预测的。热力学状态的演化过程需要分子之间彼此做功,在做功的过程中也伴随有能量转换以及由分子间摩擦和碰撞引起的一定热量的流失和耗散,这些能量损失是不可复原的。.

新!!: 分子和不可逆性 · 查看更多 »

中心科學

化學通常被稱作中心科學是因為它連結了自然科學(其中包含化學)與生命科學和應用科學(如醫學和工程學)。這一關係的本質是化學哲學和科學計量學的核心話題之一。化學這一用語因在《化學:中心科學》這本教科書中的使用得到普及。此書由 Theodore L. Brown 和 H. Eugene LeMay 所著,於1977年第一次出版,2014年第13次再版。 化學的中心地位可見於 Auguste Comte 對科學的系統化和層級化的劃分,其中每個學科為其後面的學科提供更加全面的框架(數學 → 天文學 → 物理 → 化學 → 生理學和醫學 → 社會科學)。 Balaban 和 Klein 近期提出一個顯示科學的偏序圖表,其中自化學產生了諸多學科,因此化學可稱得上是“中心科學”。 在形成這些聯繫的過程中,下級的領域無法完全還原生成上級的領域。但公認的是,下級領域可以衍生出上級領域所沒有的思想和概念。 因此,化學建立在物理定律支配粒子(如原子, 質子, 電子, 熱力學等)這一知識的基礎上,雖然目前為止化學還沒有被“完全 '還原' 至量子力學”。 元素的週期性和化學鍵等,是化學中基於物理基本力衍生出的概念。 同樣的,生物學無法完全還原至化學,儘管事實上負責生命的組織由分子組成。 例如進化,用化學知識可以描述為生物體的 DNA 在基因的鹼基對級別上的突變。但是,化學無法充分地描述這一過程,因為它不包含驅使進化的概念,如自然選擇。化學是生物學的基礎,因為化學為研究和理解組成細胞的分子提供了方法。 化學與其他學科產生的聯繫由不同的子學科通過多個學科的概念所形成。物理化學、核化學及理論化學等領域同時需要化學和物理。化學和生物學在諸多領域相交,例如生物化學、藥物化學、分子生物學、化學生物學、分子遺傳學及免疫化學。化學和地球科學在地球化學及水文地理學等領域相交。.

新!!: 分子和中心科學 · 查看更多 »

中國中獸

中國中獸(Sinonyx jiashanensis)是一類像狼的中爪獸科哺乳動物,生存於5600萬年前古新世晚期的中國。牠們是中爪獸科的早期原始形態。中國中獸是由密西根大學的菲利浦·金格里奇(Philip Gingerich)在中國安徽發現。 中國中獸約有5呎長,頭部較長及大,腳短,趾上有細小的蹄。牠有持久力及強壯,能獵食行動緩慢的獵物及沿海岸吃腐肉。牠共有44顆牙齒,是原始哺乳動物的齒數,且與現今哺乳動物異型齒不同。其臼齒是非常窄的切齒,但有多個齒冠。大的頭顱骨有特長的枕骨及大的矢狀嵴,但腦部細小。大的矢狀嵴可以連接強壯的下頜骨肌肉,顯示牠有咬勁。.

新!!: 分子和中國中獸 · 查看更多 »

中国学科分类国家标准/140

没有描述。

新!!: 分子和中国学科分类国家标准/140 · 查看更多 »

中生动物门

中生動物是一種多肉海洋無脊椎寄生動物,現今依然不清楚牠們是退化了的扁形動物,還是獨立發展出的。一般而言,這些細小、難以理解的生物是由包附在一個或多個生殖細胞上的纖毛種皮細胞所組成的。數十年前,中生動物被分類為一個門,但分子種系發生學的研究卻顯示這類謎樣的中生動物其實是多系群的,亦即,牠們是由兩個不相關的類群所組成的。.

新!!: 分子和中生动物门 · 查看更多 »

帶電粒子

帶電粒子在物理學是指帶有電荷的粒子。它可以是離子,像是有多餘或欠缺電子的分子,或原子與質子的聯繫。它也可以是電子或質子本身,或是其它的基本粒子,像是正電子。它也可能是沒有電子的原子核,像是α粒子、氦核。中子沒有電荷,所以除非它們是帶正電的原子核的一部分,否則他們不是帶電粒子。電漿是原子核和電子分開的帶電粒子的集合體,但也可以是含有大量帶電粒子的氣體。電漿因為性質和固體、液體和氣體都不同,所以被稱為物質的第四態。 在極區常見的極光也是一種電漿,詳見極光。.

新!!: 分子和帶電粒子 · 查看更多 »

万有理论

萬有理論(Theory of Everything或ToE)指的是假定存在的一種具有總括性、一致性的物理理論框架,能夠解釋宇宙的所有物理奧秘。經過幾個世紀奮勉不懈的努力,發展出兩種理論框架:廣義相對論與量子場論。它們的總合,可以說是最接近想像中的萬有理論。廣義相對論專注於研究引力來明白宇宙的大尺度與高質量現象,例如恆星、星系、星系團等等。量子場論專注於研究非引力來明白宇宙的小尺度與低質量現象,例如,亞原子粒子、原子、分子等等。量子場論成功地給出標準模型,並且能夠按照大統一理論將弱力、強力與電磁力這三種非引力統合在一起。 經過多年的研究,這兩種理論分別在適用範圍內做出的預測幾乎都已被實驗肯定。根据物理学家的研究结果,廣義相對論與量子場論互不相容,即對於某些狀況,两者不可能同时是正確的。由於這兩種理論的適用範圍不同,對於大多數狀況,只需用到其中一種理論。這兩種理論的不相容之處在非常小尺度與高質量範圍才成为显著的问题,例如,在黑洞內部、在宇宙大爆炸之后的极短时间。為了解釋這衝突,透露更深層實在、將引力與其它三種作用力統合在一起的理論框架必需被找出,和諧地将廣義相對論與量子場論整合在一起,原則而言,成為能夠描述所有物理現象的單一理論。近期,在追逐這艱難目標的過程中,量子引力已成為積極研究領域。 万有理论用来指那些试图统合自然界四种基本相互作用:引力相互作用、强相互作用、弱相互作用和电磁相互作用成為一体的理论,是在电磁作用和弱相互作用連成一体的电弱作用理论之後,再加入強相互作用連成一体的大統一理論基础之後,又加上引力作用連成一体的理論。目前被认为最有可能成功的萬有理论是弦理论和圈量子引力論。.

新!!: 分子和万有理论 · 查看更多 »

帕眼蝶

帕眼蝶(Speckled Wood,學名:Pararge aegeria)或譯作斑點木蝶,是一種廣泛分佈在歐洲林地的蝴蝶。.

新!!: 分子和帕眼蝶 · 查看更多 »

三乙二酸苯六酯

三乙二酸苯六酯也称为“三草酸苯六酯”,是一种有机碳氧化物,其分子式为C12O12。每分子该化合物都由一分子六羟基苯(也称为“苯六酚”,可视为六个氢原子都被羟基取代的苯分子)与三分子乙二酸发生酯化反应的产物。.

新!!: 分子和三乙二酸苯六酯 · 查看更多 »

三碳酸苯六酯

三碳酸苯六酯是一种有机碳氧化物,其分子式为C9O9。该化合物是碳酸酯之一,每分子都由三分子碳酸与一分子苯六酚经酯化反应形成。.

新!!: 分子和三碳酸苯六酯 · 查看更多 »

三磷酸腺苷

三磷酸腺苷(adenosine triphosphate, ATP;也称作腺苷三磷酸、腺嘌呤核苷三磷酸)在生物化學中是一种核苷酸,作为細胞内能量传递的“分子通货”,储存和传递化学能。ATP在核酸合成中也具有重要作用。它也是RNA序列中的鳥嘌呤二核苷酸,在DNA進行轉錄或複製時可做為替補。.

新!!: 分子和三磷酸腺苷 · 查看更多 »

三聚体

三聚体又稱三体,是三个相同分子化合生成的产物。非常容易形成三聚体的化学品有甲醛、三氧化硫、丙酮、氰酸和脂肪族的异氰酸酯等。 炸藥三過氧化三丙酮也是一種三聚體。.

新!!: 分子和三聚体 · 查看更多 »

三角锥形分子构型

化学中,三角锥形分子构型描述了一個分子中,一個原子在三角錐的頂點處,另外三個原子形成三角錐的構形,位在頂點的原子和其他三個原子鍵結,若這三個原子為相同的原子,此分子屬於屬於C3v的對稱群,鍵角約為107°。 三角锥形分子构型的分子及離子包括氨(NH3)、三氧化氙(XeO3)、氯酸根離子( ClO3−)及亞硫酸根離子(SO32−)。在有機化學中,三角锥形构型的分子有時會用sp3混成來描述,价层电子对互斥理论中會將此構型歸類為AX3E,中心原子有一對孤對電子,另外再和三個原子鍵結。.

新!!: 分子和三角锥形分子构型 · 查看更多 »

三氢阳离子

氢分子合质子、三氢阳离子或H3+,是一种由三个氢原子构成的阳离子。它是宇宙中最丰富的离子之一,因为星际空间温度和密度均很低,所以它在星际介质中能稳定存在。尽管星际介质中压强低至10-15大气压,平均自由程很大,但依然有機率发生碰撞而产生其他离子或分子。因此H3+在星际介质气相化学中所起的作用是其他任何离子无法替代的。这种离子也是最简单的三原子离子,因为其中只有两个价电子。这也是形成三中心二电子键最简单的例子。.

新!!: 分子和三氢阳离子 · 查看更多 »

一元酸

在化學中,一元酸又稱單質子酸,通常指在一个分子中可能放出一个质子(H+)的酸。 如無機酸中的盐酸(HCl)、硝酸(HNO3)氢氰酸(HCN)及氢氟酸(HF)等。 在有机化合物中主要指每一个分子含一个羧基的羧酸,如甲酸(HCOOH)、醋酸(CH3COOH)、苯甲酸(C6H5COOH)等。儘管這些化合物的分子內不只有一個氫原子,但它們电离时也只是有一個離子。 如醋酸: CH_COOH + H_O \rightarrow CH_COO^ + H_O^.

新!!: 分子和一元酸 · 查看更多 »

一的法则

《一的法则》包括由于1982年至1984年根据通灵录音誊写的一套五本以記錄對話的哲学专著(据说第六部近期已经被翻译出来了),通靈團體成員為Dom、Carla、Jim,直至1984年去世,共106場集會,和一些来源于"Q'uo"的通灵文章(统称“Q'uo”的文集)。 这一系列出版物(及未出版物)评论和抄录了在一个"发问者"与一个外星生命"Ra"之间的对话,与Ra的通讯是透过通靈方式(channel)进行,具体方式是进入催眠状态(被作者称为"无意识出神")后,回答Don提出的问题。 “一的法则”这个名字本身包含着“一切唯一”的理念,即一切为一。此系列对话涵盖了哲学、灵性、宗教、宇宙學、人类学、历史、物理、生物、地理等方面。.

新!!: 分子和一的法则 · 查看更多 »

一级和二级抗体

一级和二级抗体是两种不同的抗体,前者直接与抗原结合,而后者则与已经和抗原结合的前者相结合。.

新!!: 分子和一级和二级抗体 · 查看更多 »

一氧化二氢恶作剧

一氧化二氢惡作劇(dihydrogen monoxide hoax)指將水描述成一種名為「一氧化二氫」的化學物質,並试图透過偽科学到处散布恐慌,以此说明人们會轻信单方面的分析。水的化學式是H2O,化學名稱即一氧化二氫,簡稱DHMO,但並不是國際純粹與應用化學聯合會所發佈的化學名稱,且幾乎沒有人會使用這個名稱。此外还有“羟酸”等其他变种。.

新!!: 分子和一氧化二氢恶作剧 · 查看更多 »

一氧化二氮

一氧化二氮或氧化亞氮(Nitrous oxide),无色有甜味气体,又称笑气,是一种氧化剂,化学式N2O,在一定条件下能支持燃烧,但在室温下稳定,有轻微麻醉作用,其麻醉作用于1799年由英国化学家汉弗莱·戴维发现。该气体早期被用于牙科手术的麻醉,現用在外科手術和牙科。“笑氣”的名稱是由於吸入它會感到欣快,并能致人发笑。一氧化二氮能溶于水、乙醇、乙醚及浓硫酸,但不与水反应。它也可以用來作為火箭和賽車的氧化劑,以及增加發動機的輸出功率。一氧化二氮是强温室气体。现笑气被用在很多娱乐场所。.

新!!: 分子和一氧化二氮 · 查看更多 »

平均自由程

气体分子的平均自由程(Mean free path)指气体分子两次碰撞之间的时间内经过的路程的统计平均值,一般用\overline\,表示。例如,在20℃下、标准大气压(101 KPa)下,氮气分子的平均自由程约为60纳米。 理想气体分子两次碰撞之间做匀速直线运动,类似分子的平均碰撞频率,每两次碰撞之间的路程是由气体分子的自身状态决定的。气体分子的平均自由程与分子的直径或半径、分子数密度成反比。.

新!!: 分子和平均自由程 · 查看更多 »

平面三角形分子构型

化学中,平面三角形分子构型描述了一個分子中,三個原子分別和同一個原子鍵結,三個原子形成一三角形,另一個原子在三角形中心,四個原子共平面的现象。。理想的平面三角形分子构型中,形成三角形的三個原子相同,鍵角為120°,屬於D3h的對稱群,但若三個原子非完全相同,例如H2CO,其構型就會和理想构型有些不同。 平面三角形分子构型的分子包括三氟化硼(BF3)、甲醛(H2CO)、光氣 (COCl2)及三氧化硫(SO3)。平面三角形构型的離子包括硝酸根(NO3−)、碳酸根離子(CO32−)及胍離子( C(NH2)3+)。有機化學中,平面三角形的有機分子(例如乙烯)中的中心碳原子採用sp2杂化。。 是一種三角錐构型胺類的畸变,其中一個過渡態即為平面三角形分子构型。 角錐化是一種從平面三角形分子构型轉變成四面体形分子构型的畸变。像中就會有這種畸变。.

新!!: 分子和平面三角形分子构型 · 查看更多 »

乙烯二酮

乙烯二酮也称为“二氧化二碳”,是一种暂时未被发现的假想碳氧化物。该化合物的分子式为C2O2, 结构式为O.

新!!: 分子和乙烯二酮 · 查看更多 »

乙烯四甲酸二酐

乙烯四甲酸二酐也称为乙烯四羧酸二酐、亚乙基四甲酸二酐或亚乙基四羧酸二酐,是一种有机碳氧化物,其分子式为C6O6。该化合物是乙烯四酸脱去两分子水后得到的酸酐。每个乙烯四甲酸二酐分子可以看作由两个类似顺丁烯二酸的五元环组成,每个环中有一个氧原子和四个碳原子,二两个环则共享一对由碳碳双键链接的碳原子。乙烯四甲酸二酐是环己六酮的同分异构物。常态下,乙烯四甲酸二酐是一种淡黄色的油状液体,可以溶解在二氯甲烷或三氯甲烷中。.

新!!: 分子和乙烯四甲酸二酐 · 查看更多 »

乙烷

乙烷是化学式为C2H6的烷烃。乙烷中的所有分子由共价键结合,通常在分子的书写中为了表现两个C(碳原子)之间只有一个化学键,写作CH3-CH3。它是由两个碳原子组成的烷烃中唯一的脂肪烃。 在标准状况下乙烷为可燃气体,无色无味,在一定的浓度下如遇火可产生爆炸。 工业生产的乙烷是从天然气分离出来的或者是煉油廠的副产品。在石油化工中它是生产乙烯的原材料。.

新!!: 分子和乙烷 · 查看更多 »

乙酸

乙酸,也叫醋酸、冰醋酸,化学式CH3COOH,是一种有机一元酸和短链饱和脂肪酸,为食醋内酸味及刺激性气味的来源。纯正而且无水的乙酸(冰醋酸)是无色的吸湿性固体,凝固点为16.7℃(62℉),凝固后为无色晶体。尽管乙酸是一种弱酸,但是它具有腐蚀性,其蒸汽对眼和鼻有刺激性作用,聞起來有一股刺鼻的酸臭味。 乙酸是一种简单的羧酸,由一個甲基一個羧基組成,是一种重要的化学试剂。在化学工业中,它被用来制造聚对苯二甲酸乙二酯,后者即饮料瓶的主要部分。乙酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维和织物。家庭中,乙酸稀溶液常被用作除垢剂。食品工业方面,在食品添加剂列表E260中,乙酸是规定的一种酸度调节剂。 每年世界范围内的乙酸需求量在650万吨左右。其中大约150万吨是循环再利用的,剩下的500万吨是通过石化原料直接制取或通过生物发酵制取。.

新!!: 分子和乙酸 · 查看更多 »

亞佛加厥 (消歧義)

亞佛加厥(Avogadro)可以指:.

新!!: 分子和亞佛加厥 (消歧義) · 查看更多 »

交叉分子束方法

交叉分子束方法是用來研究反應動態學的一種實驗技術,由兩個不同噴嘴噴發出兩股不同的分子(或原子)束,在一高真空的反應腔中形成交叉,使分子或原子產生碰撞而散射。可以藉此探討化學反應中的分子動力機制,以及偵測出化學反應中的分子碰撞現象 。.

新!!: 分子和交叉分子束方法 · 查看更多 »

交沙霉素

交沙霉素又称为“角沙霉素”,是一种大环内酯类抗生素(分子中包含一个14元环)。交沙霉素为白色或微黄白色结晶性粉末,无臭,味苦,极易溶于乙醇、乙醚或氯仿,极微溶于水。该抗生素由那波链霉菌中的一种菌株(Streptomyces narbonensis var.

新!!: 分子和交沙霉素 · 查看更多 »

亲和色谱法

亲和色谱法(Affinity chromatography,又称为亲和层析)是一种利用固定相的结合特性来分离分子的色谱方法。亲和色谱在凝胶过滤色谱柱上连接与待分离的物质有一定结合能力的分子,并且它们的结合是可逆的,在改变流动相条件时二者还能相互分离。亲和色谱可以用来从混合物中纯化或浓缩某一分子,也可以用来去除或减少混合物中某一分子的含量。.

新!!: 分子和亲和色谱法 · 查看更多 »

亲电体

亲电体(Electrophile,意思為电子喜好者)為一化学术语,指在化学反应中对含有可成键电子对的原子或分子(亲核试剂)有亲和作用的原子或分子。 因为亲电试剂可以接受电子,所以它们是路易斯酸(见酸碱反应理论)。大多数亲电试剂为正电性,有一个原子带正电,或有一个原子不具备八隅体电子。 亲电试剂进攻亲核试剂上电子集中的部位。有机化学中常见的亲电子试剂有阳离子(如H3O+ 和 NO2+)、極性分子(如氯化氢、卤代烃、酰卤,和羰基化合物)、可极化中电性分子(如Cl2 和 Br2)、氧化剂(如有机过氧酸)、不具备八隅体电子的试剂(如卡宾和自由基)、以及某些路易斯酸(如 BH3 和 DIBAL)。.

新!!: 分子和亲电体 · 查看更多 »

人類免疫缺陷病毒

人類免疫缺乏病毒(human immunodeficiency virus,缩写为HIV)是一種感染人類免疫系統細胞的慢病毒,屬反轉錄病毒的一種。普遍認為,人類免疫缺陷病毒的感染導致艾滋病,艾滋病是後天性細胞免疫功能出現缺陷而導致嚴重隨機感染及/或繼發腫瘤並致命的一種疾病。愛滋病毒起源於1920年代的非洲金沙萨,自1981年在美國被識別並發展為全球大流行。人類免疫缺陷病毒通常也俗稱為「艾滋病病毒」或「艾滋病毒」。 人類免疫缺陷病毒作為反轉錄病毒,在感染後會整合入宿主細胞的基因組中,而目前的抗病毒治療並不能將病毒根除。世界衛生組織(WHO)在2016年估計全球約有3670萬名愛滋病毒感染者,流行狀況最為嚴重的仍是撒哈拉以南非洲,其次是南亞與東南亞,成長幅度最快的地區是東亞、東歐及中亞。 在人類免疫缺陷病毒感染病程的一些時期,特別是早期及末期,具有感染性的病毒顆粒會存在於含有免疫細胞、血漿、淋巴液或組織液的某些體液中,如血液、精液、 前列腺液、陰道分泌液、乳汁或傷口分泌液;另一方面,病毒在體外環境中極不穩定。因此,人類免疫缺陷病毒的傳播途徑主要是不安全的性接觸、靜脈注射、輸血、分娩、哺乳等;而通常的工作、學習、社交、或家庭接觸,比如完整皮膚間的接觸、共用坐便器、接觸汗液等,不會傳播人類免疫缺陷病毒;與唾液或淚液的通常接觸(如社交吻禮或短暫接吻)也未有導致傳播人類免疫缺陷病毒的報告;但美國疾病控制與預防中心說已感染病毒的母親,可將病毒透過先嚼過的食物(唾液內含血液)傳給孩子。.

新!!: 分子和人類免疫缺陷病毒 · 查看更多 »

人馬座A

人馬座A(Sagittarius A或簡寫Sgr A)是位於銀河系銀心的強烈無線電波源。它位於人馬座,在可見光觀測下被銀河系旋臂的大幅宇宙塵所遮蔽。 人馬座A由3個部份組成:超新星遺迹的人馬座A東星、螺旋結構的人馬座A西星、及非常光亮的致密無線電波源人馬座A*。這三個部份是重疊的,當中人馬座A東星最大,西星位於東星內偏離中心的位置,而A*則位於西星中心。.

新!!: 分子和人馬座A · 查看更多 »

人體冷凍技術

人體冷凍技術(或人體冷藏學或人體冰凍法;cryonics)是一種試驗中的醫學技術,把人體或動物在極低溫(一般在攝氏零下196度以下 / 華氏零下320以下)的情況下深低溫保存,並希望可以在未來通過先進的醫療科技使他們解凍後復活及治療。 人體冷凍技術被美國的《生活科學》雜誌(Live Science)列為十大人腦未解之謎之一,及十大超越人类极限的未来科学技术。 目前,最大型的人體冷藏公司為美國的阿爾科生命延續基金(Alcor Life Extension Foundation)和人體冷凍機構(Cryonics Institute)。.

新!!: 分子和人體冷凍技術 · 查看更多 »

二十烷

二十烷是化學式为C20H42的烷烴。它有366,319种同分异构体。 二十烷在工業石油化學中沒有被太多地使用,因為它的高閃點令它成為低效能的燃油。由於它的化學性质不活躍,所以正二十烷(二十烷的直鏈同分異構體)是製成石蠟的物料之一,而且是用於製作蠟燭的化合物中分子最短的。 二十烷的特性沒有被它的大小、形態或在化學上的不活躍度影響,它的特性與其他烷烴的特性差不多。它是一個無色且密度小於水的非極性分子。如果不燃燒它,它是不活躍的。它不能溶於水。由於它是非極性,所以它與其他分子的化學鍵不強。 由於二十烷的熔點不太高(36-38℃),所以它可以做成可以經過相變儲能和控制温度的相變儲能材料(PCM)。.

新!!: 分子和二十烷 · 查看更多 »

二乙二酸-1,4-苯醌酯

二乙二酸-1,4-苯醌酯也称为“二乙二酸四羟基-1,4-苯醌酯”、“二草酸四羟基-1,4-苯醌酯”或“二草酸四羟基对苯醌酯”等,是一种有机碳氧化物,其分子式为C10O10。每分子该化合物都由一分子四羟基-1,4-苯醌(可视为四个氢原子都被羟基取代的对苯醌)与两分子乙二酸酯化的产物。.

新!!: 分子和二乙二酸-1,4-苯醌酯 · 查看更多 »

二硫化碳

二硫化碳是一种分子式为CS2的无色有毒液体。纯的二硫化碳有类似氯仿的芳香甜味,但是通常不纯的工业品因为混有其他硫化物(如羰基硫等)而变为微黄色,并且有令人不愉快的烂萝卜味。CS2可溶解硫單質或白磷。 由于二硫化碳结构简单,虽然它的分子中含有碳原子,但是被认为是无机物。 二硫化碳通过以下反应制备:.

新!!: 分子和二硫化碳 · 查看更多 »

二碳酸-1,4-苯醌酯

二碳酸四羟基-1,4-苯醌酯也称为“二碳酸四羟基对苯醌酯”是一种有机碳氧化物,其分子式为C8O8。每分子该化合物都由一分子四羟基-1,4-苯醌(可视为四个氢原子都被羟基取代的对苯醌)与两分子碳酸酯化的产物。.

新!!: 分子和二碳酸-1,4-苯醌酯 · 查看更多 »

二碘苯丙酮酸还原酶

二碘苯丙酮酸还原酶(diiodophenylpyruvate reductase,EC ),是一种以NAD+或NADP+为受体、作用于供体CH-OH基团上的氧化还原酶。这种酶能催化以下酶促反应: 二碘苯丙酮酸还原酶分子等电点为5.4,由两个相同的蛋白质亚基组成(亚基相对分子质量约为40,000D),人类二碘苯丙酮酸还原酶亚基由12号染色体上的基因编码,可能与乳酸脱氢酶B有近缘关系。这种酶的底物还可以是其他含有以丙酮酸支链作为取代基的芳环,其中卤代类衍生物作为底物具有较高活性。底物的活性从大到小按顺序排列为:草酰乙酸、3,5-二碘-4-羟苯基丙酮酸、吲哚丙酮酸、苯丙酮酸,而乙醛酸、丙酮酸、羟基丙酮酸以及在芳环3位或5位上有羟基或氨基的底物则仅具有极低活性或不具活性。.

新!!: 分子和二碘苯丙酮酸还原酶 · 查看更多 »

二磷酸腺苷

二磷酸腺苷(adenosine diphosphate,縮寫:ADP)是一種核苷酸。它是在代謝中重要的有機化合物,並是在活細胞中的能量流動是至關重要的。一個ADP分子包括三個重要的結構組件:一個糖骨架連接到一個腺嘌呤分子和鍵合到核糖的5'碳原子上的兩個磷酸盐(phosphate)基團的分子。.

新!!: 分子和二磷酸腺苷 · 查看更多 »

二氧化四碳

二氧化四碳也称为“丁三烯二酮”,是一种碳氧化物。二氧化四碳的分子式为C4O2,结构式为O.

新!!: 分子和二氧化四碳 · 查看更多 »

二氧化氮

二氧化氮(化学式:NO2),是氮氧化物之一。室温下为有刺激性气味的红棕色顺磁性气体,易溶于水,溶於水部分生成硝酸和一氧化氮。二氧化氮吸入后对肺组织具有强烈的刺激性和腐蚀性。作为氮氧化物之一的二氧化氮,是工业合成硝酸的中间产物,每年有大约几百万吨被排放到大气中,是一种主要的大气污染物。.

新!!: 分子和二氧化氮 · 查看更多 »

二氧杂环丁烷二酮

二氧杂环丁烷二酮可以指两种互为同分异构体的有机碳氧化物,它们的分子式皆为C2O4,都可以视为二氧化碳的二聚体:.

新!!: 分子和二氧杂环丁烷二酮 · 查看更多 »

库仑矩阵

库仑矩阵(Coulomb matrix),是用来表示分子内笛卡尔坐标系集合和核电荷的矩阵: M_.

新!!: 分子和库仑矩阵 · 查看更多 »

五氧化碳

五氧化碳是一种不稳定的碳氧化物,其分子式为CO5。该化合物分子具有C2对称性,其中四个氧原子与一个碳原子形成一个五元环,第五个氧原子与碳原子以碳氧双键相连。这种五氧化碳分子中的五元环并不成正五边形:五元环中不与碳相连的两个氧原子之间的O-O键键长为1.406Å,这两个氧原子每个与另一个相邻的氧原子之间的O-O键键长皆为为1.457Å,三个氧原子之间的键角为100.2°;处于碳原子与氧原子之间的氧原子和碳原子的C-O键键长为1.376Å,C-O-O键角为109.1°;五元环外的氧原子与碳原子之间C-O键键长为1.180Å,O-C-O键角为125.4°。.

新!!: 分子和五氧化碳 · 查看更多 »

今鳥類

今鳥亞綱(學名:Neornithes)是一个包含所有現存鳥類的最後共同祖先及其所有后代的演化支,这定义现在也被广泛地运用于定义鸟纲(Aves),因此今鸟亚纲也被广泛地视为鸟纲的次异名。 今鳥亞綱的特徵是有羽毛、喙沒有牙齒、蛋有硬殼、高代謝率、心臟有四室、輕盈但結實的骨骼。所有鳥類的前肢都進化成翼,大部份也能夠飛翔。它們有獨特的消化系統及呼吸系統,很適合飛行。一些鳥類,如鴉科及鸚鵡等是最有智慧的動物物種;有些鳥類甚至懂得製造及使用工具,很多物種也有傳遞知識的能力。 很多今鳥亞綱每年都會遷徙一段很長距離,也有不規則地移動短距離。它們會用視覺訊號及唱歌來溝通,也會進行合作繁殖及獵食。大部份鳥類都是有固一夫一妻制的,往往經歷整個繁殖季節,有時多年,但很少是畢生的。有些物種也會出現配對外交配;其他物種都是一夫多妻制或一妻多夫制的。它們會鳥巢中生蛋,並由雙親所孵化。大部份鳥類在孵化後都會由雙親照顧。.

新!!: 分子和今鳥類 · 查看更多 »

廣義相對論入門

广义相对论是一种关于引力的理论,它在1907年到1915年由爱因斯坦完成。根据广义相对论,物质之间的引力来自于时空的弯曲。 在广义相对论出现之前的200多年间,牛顿万有引力定律被广泛接受,它成功地解释了物质之间的引力作用。在牛顿的定律中,引力来自大质量物质之间的相互吸引。虽然牛顿也不知道这种力的本质,但它在描述运动时却非常成功。 但是,实验和观测都显示,爱因斯坦对引力的描述能够解释多个由牛顿定律无法解释的现象,比如水星和其他行星轨道的反常的进动。广义相对论还预言了一些关于引力的显著效应,比如引力波和引力透镜,还有引力场引发的时间膨胀。2016年2月11日,LIGO團隊於華盛頓舉行的一場記者會上共同宣布人類對於重力波的首個直接探測結果。所探測到的重力波來源於雙黑洞融合。 广义相对论已经成为现代天体物理学的重要工具。它提供了现在理解黑洞(一个引力强大到使光都无法逃逸的空间区域)的基础。其强大的引力也使一些天体(比如活动星系核和X射线双星)发射出强烈的辐射。广义相对论也是宇宙学的标準大爆炸模型的理论框架中的一部分。 然而,到现在仍然有大量的问题没有解决,其中最根本的是广义相对论如何和量子力学结合而产生一个完整一致的量子引力理论。.

新!!: 分子和廣義相對論入門 · 查看更多 »

价层电子对互斥理论

价层电子对互斥理论(英文:Valence Shell Electron Pair Repulsion,簡稱為VSEPR),是一个用来预测单个共价分子形态的化学模型。理论通过计算中心原子的价层电子数和配位数来预测分子的几何构型,并构建一个合理的路易斯结构式来表示分子中所有键和孤对电子的位置。.

新!!: 分子和价层电子对互斥理论 · 查看更多 »

价键理论

价键理论(Valence bond theory,VB理论)是一种获得薛定谔方程近似解的处理方法,又称为电子配对法。价键理论与分子轨道理论是研究分子体系的两种量子力学方法。它是历史上最早发展起来的处理多个化学键分子的量子力学理论。价键理论主要描述分子中的共价键及共价结合,核心思想是电子配对形成定域化学键。.

新!!: 分子和价键理论 · 查看更多 »

介電質

介電質(dielectric)是一種可被電極化的絕緣體。假設將介電質置入外電場,則束縛於其原子或分子的束縛電荷不會流過介電質,只會從原本位置移動微小距離,即正電荷朝著電場方向稍微遷移位置,而負電荷朝著反方向稍微遷移位置。這會造成介電質電極化,從而在介電質內部產生反抗電場,減弱整個介電質內部的電場。假若介電質是由弱鍵結的分子構成,則這些分子不但會被電極化,也會改變取向,試著將自己的對稱軸與電場對齊。 介電質通常指的是可被高度電極化的物質。在原子與分子層次,極化性可以用來衡量微觀的電極化性質,從極化性可以理論計算出介電質的電極化率和電容率,兩個巨觀的電極化性質。或者,可以直接從實驗測量出介電質的電極化率和電容率。假若置入了具有高電容率的介電質,則平行板電容器的電容會大幅增加,儲存於兩塊金屬平行板的正負電荷也會增加 。 介電質的用途相當廣泛。介電質的電傳導能力很低,再加上具備有很好的(dielectric strength)性質,就可以用來製造電絕緣體。另外介電質可被高度電極化,是優良的電容器材料。對於介電性質的研究,涉及了物質內部電能和磁能的儲存與耗散。用於解釋電子學、光學和固態物理的各種各樣現象,這研究極端重要。 回應麥可·法拉第的請求,英國科學家威廉·暉巍(William Whewell)命名所有可被電極化的絕緣體為介電質。.

新!!: 分子和介電質 · 查看更多 »

传热

热有三种方式:.

新!!: 分子和传热 · 查看更多 »

弹道输运

弹道输运(Ballistic transport),是指介质中的电子在输运过程中几乎不会遇到散射。由于没有散射的作用,电子的运动仅遵从牛顿定律。 介质中的电阻一般是由电子散射而产生,这可以是因为杂质、缺陷或者在平衡位置附近震荡的原子/分子引起的散射;也可以是由在气体和液体中自由运动的原子/分子引起的。 在介质中,我们可以定义一个自由程的概念,表示电子可以自由运动的路程。也就是说,在电子与其它物质发生碰撞,然后背离它初始运动方向之前它运动的路程。在很多情况下,我们可以通过减少杂质或者降低温度(当然,这个对半导体行不通)的办法来提高电子的自由程。 当电子的自由程(远)大于介质的尺度时,我们称此为弹道输运,这种情况下,电子只有碰到了边界才会改变运动方向。 分类:固体物理学.

新!!: 分子和弹道输运 · 查看更多 »

弗兰克·舍伍德·罗兰

弗兰克·舍伍德·罗兰(Frank Sherwood Rowland,),美国化学家,因「他們對大氣化學的研究工作,特別是臭氧的形成與分解」,與馬里奥·莫利納、保羅·克魯岑共同獲得1995年諾貝爾化學獎,曾任加州大学尔湾分校化学教授。他的研究主要涉及大气化学和化学反应动力学。.

新!!: 分子和弗兰克·舍伍德·罗兰 · 查看更多 »

弗朗西斯·克里克

弗朗西斯·哈利·康普頓·克立克,OM,FRS(Francis Harry Compton Crick,),英国生物学家、物理学家及神经科学家。他最重要的成就是1953年在剑桥大学卡文迪许实验室与詹姆斯·沃森共同发现了脱氧核糖核酸(DNA)的双螺旋结构,二人也因此与莫里斯·威尔金斯共同获得了1962年诺贝尔生理及医学奖,獲獎原因是「發現核酸的分子結構及其對生物中信息傳遞的重要性」 。克里克在2004年因大腸癌病逝於美國加州。他的同事克里斯多福·科赫,曾感叹道:“他临死前还在修改一篇论文;他至死仍是一名科学家”。.

新!!: 分子和弗朗西斯·克里克 · 查看更多 »

异柠檬酸脱氢酶 (NAD+)

异柠檬酸脱氢酶 (NAD+)(isocitrate dehydrogenase (NAD+),EC )是一种以NAD+或NADP+为受体、作用于供体CH-OH基团上的氧化还原酶。这种酶能催化以下酶促反应: 异柠檬酸脱氢酶 (NAD+)需要Mn2+或Mg2+以维持活性。真核细胞中的异柠檬酸脱氢酶 (NAD+)以两种形式存在:其中一种与NAD+相关联且仅在线粒体中被发现并可以变构调节;另一种与NADP+还存在于细胞质基质中但不能变构调节。 这两种酶——异柠檬酸脱氢酶 (NAD+)与异柠檬酸脱氢酶 (NADP+)并不相同,前者不能以草酰琥珀酸作为底物。某些物种的异柠檬酸脱氢酶 (NAD+)也能利用NADP+,但催化的反应速率较慢。.

新!!: 分子和异柠檬酸脱氢酶 (NAD+) · 查看更多 »

异柠檬酸脱氢酶 (NADP+)

异柠檬酸脱氢酶 (NADP+)(isocitrate dehydrogenase (NADP+),EC )是一种以NAD+或NADP+为受体、作用于供体CH-OH基团上的氧化还原酶。这种酶能催化以下酶促反应: 异柠檬酸脱氢酶 (NADP+)需要Mn2+或Mg2+以维持活性。真核细胞中的异柠檬酸脱氢酶 (NAD+)以两种形式存在:其中一种与NADP+还存在于细胞质基质中不能变构调节;另一种与NAD+相关联且仅在线粒体中被发现并但可以变构调节。 这两种酶——异柠檬酸脱氢酶 (NADP+)与异柠檬酸脱氢酶 (NAD+)并不相同,前者能以草酰琥珀酸作为底物。某些物种的异柠檬酸脱氢酶 (NADP+)也能利用NAD+,但催化的反应速率较慢。.

新!!: 分子和异柠檬酸脱氢酶 (NADP+) · 查看更多 »

引力探测器B

引力探测器B(Gravity Probe B,简称GP-B)是美国国家航空航天局(NASA)在2004年4月20日发射的一颗科学探测卫星。这个任务的计划是测量地球周围的时空曲率,以及相关的能量-动量张量(描述物质的分布及运动的张量),从而对爱因斯坦的广义相对论的正确性和精确性进行检验。卫星的飞行持续到2005年,其后任务进入到了数据分析阶段(2008年5月),并有可能一直持续分析到2010年。引力探测器B的研发历史可追溯到二十世纪六十年代,至2004年正式升空长达四十多年,其耗资达七亿五千万美元。这是美国国家航空航天局历史上研发时间最长的计划,之所以如此拖延的原因不仅仅在于技术上的难题,其中也牵扯进了很多关于科学上与政治上的争论。 引力探测器B的最初结果证实了广义相对论所预言的测地线效应的精确度达到了误差小于1%,而所期望的参考系拖拽效应的信号强度则和当前的噪声强度处于同一量级(这些噪声主要来自一些尚未建立研究模型的物理效应)。相关的数据分析工作正在进行中,对信号中的噪声进行建模分析,找到誤差來源,从而能够将有用的参考系拖拽信号从中萃取出来。2008年8月,参考系拖拽效应已被確認在期望結果的15%範圍內。 2008年12月,美国国家航空航天局發布報告,测地线效应的精确度达到了误差小于0.5%。 在一篇於2001年發表在《物理評論快報》的論文裏,作者表示,從分析所有四個陀螺儀給出的數據,得到測地漂移率為 −6,601.8±18.3 mas/yr) ,参考系拖拽漂移率為−37.2±7.2 mas/yr;廣義相對論預測分別為−6,606.1 mas/yr 與−39.2 mas/yr,差異分別為0.07%與5%,不確定性分別為0.28%與19%。 一些初步結果在美國物理學會於2007年4月舉辦的一場特別會議裏被發佈。美国国家航空航天局原本請求延伸引力探测器B數據分析階段至2007年12月。靠著商人、史丹佛大學、美国国家航空航天局的專款支持,這數據分析階段得以延伸至2008年年中。之後,又從沙特商人募得很多專款。 2011年,終於完成科學報告。.

新!!: 分子和引力探测器B · 查看更多 »

低維固體

低維固體是指某些固體表現出明顯的一維或二維特徵,例如分子具有鏈狀結構的三硫化鉭、TTF-就是一維固體,而分子具有片狀結構的石墨夾層或是二硫化鎳就是二維固體。低維固體具有三維固體所沒有的一些物理特性,像是 一維導體對於電子─點陣相互作用是不穩定的,因此在低溫下會變為半導體或絕緣體。.

新!!: 分子和低維固體 · 查看更多 »

位阻效应

位阻效应(也叫空间效应、空间位阻效应、立体效应)是研究分子中不同基团间電子團重疊形成的電磁力而造成的分子结构或反应取向的立体化学分枝。广泛应用于有机化学中分子结构及反应机理的定性讨论,但在有些情况下可能导致偏差或谬误。 Category:立体化学 Category:物理有机化学.

新!!: 分子和位阻效应 · 查看更多 »

侧链

侧链指有机分子完整结构上的侧支,所以又可称之为“支链”。 区块链中的侧链(sidechains)实质上不是特指某个区块链,而是指遵守侧链协议的所有区块链,该名词是相对与比特币主链来说的。侧链协议是指:可以让比特币安全地从比特币主链转移到其他区块链,又可以从其他区块链安全地返回比特币主链的一种协议。.

新!!: 分子和侧链 · 查看更多 »

循环小数

循环小数,是從小數部分的某一位起,一個數字或幾個數字,依次不斷地重複出現的小數。可分为有限循环小数和无限循环小数。.

新!!: 分子和循环小数 · 查看更多 »

微波

微波(Microwave,Mikrowellen)是指波长介于红外线和無線電波之间的电磁波。微波的頻率范围大约在 300MHz至300GHz之間。所對應的波長為1公尺至1mm之间。微波频率比无线电波频率高,通常也称为“超高频电磁波”。微波作为一种电磁波也具有波粒二象性。微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。 微波在雷达科技、ADS射线武器、微波炉、等离子发生器、无线网络系统(如手机网络、蓝牙、卫星电视及無線區域網路技术等)、传感器系统上均有广泛的应用。 在技术领域协定使用的四个频率分别为800MHz、2.45GHz、5.8GHz和13GHz。微波炉使用2.45GHz,此频率亦被作为ISM頻段(工業、科學及醫學用波段),使用在航空通讯领域。.

新!!: 分子和微波 · 查看更多 »

後鰓類

後鰓類生物(學名:Opisthobranchs; )原是異鰓類支序的一個大型及多樣的腹足綱軟體動物群組,但現時已不再使用。本分類原來是一個亞綱級的分類元,但由於還包括在陸地生活的有肺類物種(如:蝸牛及蛞蝓),不是一個單系群,所以從Bouchet et al.

新!!: 分子和後鰓類 · 查看更多 »

保守力

假设一感受着某作用力的粒子,從初始位置移動到終結位置,而此作用力所做的功跟移動路徑無關,則稱此力為保守力(conservative force),又稱為守恆力。等價地說,假設一個粒子從某位置,移動經過一條閉合路徑後,又回到原本位置,則作用於這粒子的保守力所做的機械功(保守力對於整個閉合路徑的積分)等於零。假設在一個物理系統裏,所有的作用力都是保守力,則稱此物理系統為「保守系統」,又稱為「守恆系統」。對於這種系統,在空間裏每一個位置,都可以給定位勢一個唯一數值。假設粒子從某位置移動至另一位置,則由於保守力的作用,粒子的勢能可能會有所改變,但前後差值與移動經過的路徑無關。例如,重力是一種保守力,而摩擦力是一種非保守力。.

新!!: 分子和保守力 · 查看更多 »

念力

念力,也被翻译为意念(psychokinesis,来自希腊语ψυχή , “psyche(心灵)”,意味着思想,灵魂,心,或生息;和κίνησις , “kinesis(室壁运动)”或念動力,意思是运动;字面意思为“来自理念的运动”)也称为telekinesis(希腊语τῆλε + κίνησις,字面意思为“隔空移物”),缩写分别为PK和TK,是由亨利·霍尔特杜撰的:根据意识直接影响到一个物理系统。这些想象完全不能用任何已知的物理能量来解释。念力典型例子可以包括扭曲或移动的物件,或影响随机数生成器的输出。 念力指通过人大脑的某种特殊意识去影响客观事物的运动规律。通常的念力能办到折弯铁匙,隔空移物等。有些人认为这种通常念力被认为是通过意念所创造的能量场所办到的。科幻作品星球大战中绝地武士所追求的原力的就是一种念力模式。从念力的理念论上来说,念力甚至能影响原子的衰变等复杂运动。 对于念力这项研究的现象,被归类於超心理学(Parapsychology)的范畴内。一些超自然研究人员认为,念力的存在值得进一步研究。如运用念力控制随机数生成指出了实验的可行性。 然而,没有令人信服的科学证据表明念力存在。2006年对于380个研究的一个进一步分析发现了一个“非常小”效应,它可以解释为发表性偏倚。念力试验历来被批评为缺乏适当的控制和重复操作性。怀疑论者和许多科学家已经提出,念力存在的假象,是受发表者个人的偏倚、欺骗、操纵统计数据、没进行重复实验验证所致。.

新!!: 分子和念力 · 查看更多 »

化合物

化合物(Chemical compound)是由兩種以上的元素以固定的質量比通过化學鍵结合在一起的化學物質。化合物可以由化學反應分解為更簡單的化學物質。像甲烷(CH4)、葡萄糖(C6H12O6)、硫酸鉛(PbSO4)及二氧化碳(CO2)都是化合物。 化合物是純物質分类下的一类,与元素和混合物相对。尽管有些情况下化合物的实际情况会与上述定义背离,如组成元素随制备方法而改变,内部结构并不均一,不同核素的分布并不固定等等,但一般仍认为它们属于化合物的范畴。另外,化合物中各元素的摩尔比并不一定是整数,某一元素也可呈不同的价态,例如非整比化合物和混合价态化合物。 化學元素的單質即使由幾個原子形成雙原子分子或多原子分子(如H2, S8),也不是化合物。 除特别不活泼的稀有气体氦和氖外,其他所有稳定元素都已制成了化合物。稀有气体化合物的制备曾费了一些周折。第一個稀有气体化合物六氟合铂酸氙是在1962年才製備而得。.

新!!: 分子和化合物 · 查看更多 »

化学家

化学家一般是指从事于近现代化学研究的科学家,有专职和兼职之分,在英國亦可指藥劑師。化學家們會對化學元素、原子、分子及它們如何互相作用作出研究。化學家們研究並測試藥物、炸藥及之類其他的東西。化學是一門十分重要的科學,因為現在大多數的新藥物都是根据化学研製出的。 广义上,化學家有时也包括中国古代的炼丹术士和西方古代的炼金术士。一個化學家與其他人做事的不同之處是他們通常都會很小心地檢查身邊每一種物體的變化。他們的工作,大部分是研究怎樣可以大量生產各種昂貴的藥用或者工業用化學品,務求造福大眾或者牟利維生。 每個化學家會有不同的專科,但是他們有些共同的做事方法。首先,他們看一種東西通常都會研究它是酸還是鹼,並且用原子的角度去分析那物體。其次,他們很小心地測量那些物體混合的時候不同物質的比例、化學作用正在進行的時候反應的速度及不同物體之間化學特性的分別。還有,他們會用自己有限的知識去嘗試瞭解那些自己不熟悉的東西,從而令自己學更多知識。 材料科學家是冶金學家的一類,但是他們讀書時通常都是主修化學。 小部份化學家都是在讀到大學畢業就出外當基層工作,大部份公司都雇用有博士學位的人。很多有關化學的工作或大學化學的課程對數學、物理、生物和化學同樣重視,因為化學又稱為中心科學。 讀到碩士的時候,化學科學生就得專攻一個分支。大部分人都會選擇生物化學,有機化學或無機化學等等。 讀完書之後,化學畢業生成為化學家,就會出來工作。他們多數會加入化學工業或做藥劑師。在很多國家大學其實有一科藥劑學專科,不過亦會有人讀畢化學後做藥劑師。又有些化學家會選擇為政府工作,當政府的化驗所技術員。.

新!!: 分子和化学家 · 查看更多 »

化学工程

化學工程,簡稱化工,是研究以化學工業為代表以及其他過程工業(例如石油煉制、冶金、食品及印染工業等)生產過程中有關化學過程與物理過程的一般原理和規律,並且應用這些規律來解決過程及裝置的開發、設計、操作及改善問題的工程技術學科。它主要研究大規模改變物料中的化學組成及其機械和物理性質。簡單地定義化學工程的本質,它是以數學及少量的物理觀念為基礎應用於化學工業上,來替生產各式化學品或是物料的工廠提供一個最節省成本的反應流程設計方式。實驗研究、理論分析和科學計算已經成為當代化工研究中不可或缺的三種主要手段。.

新!!: 分子和化学工程 · 查看更多 »

化学年表

化学年表列出了深远地改变人们对化学这门现代科学认识的重要著作、发现、思想、发明以及实验等。化学作为一门对物质组成和相互作用进行研究的自然科学,虽然其根源可以追溯到自有文字记载之时,但我们可以认为现代化学史是从英国科学家罗伯特·波义耳开始的。 后来被引入到现代化学中的早期思想主要有两个:一是自然哲学家(例如亚里士多德和德谟克利特)试图使用演绎推理来解释所处的世界,二是炼金术士(例如贾比尔和拉齐)和炼丹家(比如孙思邈和葛洪)试图使用实验方法来延长生命或进行物质的转化,例如用丹炉炼金丹,或将贱金属转化成金。 17世纪时,“演绎”和“实验”两种思想正融合到了一起,这种处于发展中的思想被称为科学方法。随着科学方法的引入,现代化学诞生了。 被称为“中心科学”的化学很大程度上受到其他学科的影响,也在许多科学技术领域发挥着强大的影响力。许多化学领域的重大事件对其他领域来说也是关键的发现,如物理学、生物学、天文学、地质学、材料科学,不一而足 。.

新!!: 分子和化学年表 · 查看更多 »

化学哲学

化学哲学是关注化学的科学方法论和假设。研究者包括哲学家、化学家和由两方结合的团队。其大部分历史都是被物理哲学所涵蓋,但是有化学产生哲学问题自20世纪后半叶便引发了越来越多的关注。Weisberg, M. (2001).

新!!: 分子和化学哲学 · 查看更多 »

化学物理学

化学物理学是化学和物理学的交叉学科,借助原子与分子物理学和凝聚态物理学中的理论方法和实验技术,研究物理化学现象的学科,是从物理学观点研究化学过程的物理学分支学科。化学物理学和物理化学都是化学和物理学的交叉学科,但二者是有细微区别的。化学物理学主要是研究化学过程的特征现象和物理理论,而物理化学主要研究化学的物理本质。.

新!!: 分子和化学物理学 · 查看更多 »

化学键

化學鍵(Chemical Bond)是一種粒子間的吸引力,其中粒子可以是原子或分子。透過化學鍵,粒子可組成多原子的化學物質。鍵由兩相反電荷間的電磁力引起,電荷可能來自電子和原子核,或由偶極子造成。化學鍵種類繁多,其能量大小、鍵長亦有所不同。 在原子中,帶負電、繞原子核運行的電子與核內帶正電的質子互相吸引,而位於兩原子核之間的電子則皆受兩方吸引。因此,原子核和電子間最穩定的組態,是當電子位處兩原子核間之時。這些電子使原子核能夠彼此相吸,形成所謂的化學鍵。然而,化學鍵並不能減少個別粒子所構成的體積。由於電子的質量較小且具有物質波性質,它們相較於原子核而言佔據了極大部分的體積,使原子核之間距離較遠。 一般而言,強化學鍵的形成伴隨著原子間電子的共用或轉移。分子、晶體、金屬和雙原子氣體,事實上幾乎生活中所有外在環境,都是由化學鍵所維繫而來;它決定了物質的結構。.

新!!: 分子和化学键 · 查看更多 »

化学标记语言

化学标记语言,亦称化学置标语言(英文为Chemical Markup Language,通常缩写为CML),是一种基于XML语言,用于描述化学分子、化学反应、光谱等化学数据的标记语言。可以使用Jumbo浏览器查看CML文件。.

新!!: 分子和化学标记语言 · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

新!!: 分子和化學 · 查看更多 »

化學反應速率

反应速率即化学反应进行的快慢,单位为mol/(L·s)或mol/(L·min)。用单位时间内反应物的浓度的减少或生成物浓度的增加量来表示。浓度单位一般用莫耳·升-1,时间单位用秒、分或小时。化学反应并非均匀速率进行:反应速率分为平均速率(一定时间间隔裡平均反应速率)和瞬时速率(给定某时刻的反应速率),可通过实验测定。反应物本身的性质,外界因素:温度,浓度,压强,催化剂,光,激光,反应物颗粒大小,反应物之间的接触面积和反应物状态,x射线,γ射线,固体物质的表面积,与反应物的接触面积,反应物的浓度也会影响化学反应速率。 \Delta v(A).

新!!: 分子和化學反應速率 · 查看更多 »

化學相似性

化學相似性(或稱為分子相似性)是指二個元素、分子或化合物在結構上的相似程度,或是在參與化學反應時效果的相似程度。若是探討在生物上的效應及其相似程度,一般會使用化合物的,否則會使用化合物的活性度來衡量參與化學反應時的效果。 化學相似性(或分子相似性)的概念是化學信息學中最重要的主題之一 。在化合物性質預測或設計特定性質化合物的现代研究中,化學相似性都有重要的作用。而有些藥物設計研究會利用大型化學品資料庫進行篩選,也和化學相似性有關。上述研究的基礎是Johnson和Maggiora的相似性質定律:「相似的化合物會有相似的性質」。.

新!!: 分子和化學相似性 · 查看更多 »

化學捕捉

化學捕捉(chemical trap)是化學中用來偵測其他分子的化合物,以下的情形才會用到化學捕捉:.

新!!: 分子和化學捕捉 · 查看更多 »

圆二色性

圓二色性(Circular dichroism, 缩写:CD)是涉及圆偏振光的二色性,即左旋光的和右旋光的差分吸收。左旋圆(LHC)的和右旋圆(RHC)的偏振光表示一个光子的两种可能的自旋角动量状态,因此圆形二色性也被称为自旋角动量的二色性 。这种现象在19世纪上半叶被让-巴蒂斯特·毕奥(Jean-Baptiste Biot),奥古斯丁·菲涅耳(Augustin Fresnel)和(Aime Cotton)发现。它在光学活性手性分子的吸收带中被显示。CD光谱学在许多不同领域中具有广泛的应用。最值得注意的是,使用UVCD来研究蛋白质的二级结构。UV/可见光CD被用于研究电荷转移跃迁。近红外CD被用于通过探测过渡金属的d→d跃迁来研究分子的几何和电子结构。,其使用来自红外能量区的光,被用于小有机分子的结构研究,并且最近被用于研究蛋白质和DNA。.

新!!: 分子和圆二色性 · 查看更多 »

包克雲球

包克雲球是在恆星形成階段中有時會產生的由塵埃和氣體組成的高密度暗雲氣。包克雲通常都在電離氫區內被發現,典型的質量大約是10–50 太陽質量,大小約為1光年,內部有氫分子(H2)、碳的氧化物和氦,還有大約1%(質量)的含矽的塵埃。包克雲球通常會導致聯星或聚星系統的形成。 包克雲球是在1940年代被天文學家巴特·包克首度發現的,在1947年的一篇論文中,包克和E.F. Reilly假設這些雲氣很像是昆蟲的繭,會經歷重力崩塌後形成新的恆星,也就是恆星或星團的誕生。這個假說很難在觀測上獲得證實,因為內部散發出來的可見光被濃密的黑暗雲氣遮蔽掉而難以看見。1990年,分析在近紅外線的觀測才證實了恆星在包克雲球內誕生。進一步的觀測顯露出包克雲球內嵌有熱源,有些是哈比—哈羅天體,和向外噴流的分子氣體。微米波發射線的研究,也提供了落入的氣體吸積成原恆星的證據。 包克雲球依然是積極研究的主題,是在自然的宇宙中所知最冷的對象(大约为8K),她們的結構和密度仍有許多神秘之處。目前能運用的方法,是依靠近紅外線消光導出的柱密度和未來的恆星計數,以進一步的探測這些天體。.

新!!: 分子和包克雲球 · 查看更多 »

刚体

在物理学裏,理想刚体(rigid body)是一種有限尺寸,可以忽略形变的固体。不论是否感受到外力,在刚体內部,質點與質點之间的距离都不会改变。这种理想模型适用条件是,运动过程比固体中的弹性波的传播要缓慢得多。根據相對論,這種物體不可能實際存在,但物體通常可以假定為完美剛體,前提是必須滿足運動速度遠小於光速的條件。 在经典力学裡,刚体通常被視為连续质量分佈体;在量子力学裏,刚体被視為一群粒子的聚集。例如,分子(由假定為質點的电子与核子组成)时常會被视为刚体。.

新!!: 分子和刚体 · 查看更多 »

分子力学

分子力学采用经典力学来模拟分子体系。在分子力学中,使用分子力场方法计算出所有系统的势能。分子力学可用于研究小分子,也可用于研究具有成千乃至上百万原子数的大型生物系统或材料。 全原子分子力学方法具有以下性质:.

新!!: 分子和分子力学 · 查看更多 »

分子对接

分子对接是分子模拟的重要方法之一,其本质是两个或多个分子之间的识别过程,其过程涉及分子之间的空间匹配和能量匹配。分子对接方法在药物设计、材料设计等领域有广泛的应用。.

新!!: 分子和分子对接 · 查看更多 »

分子人类学

分子人类学(英语:Molecular Anthropology)是人类学的分支,是在人类基因组等研究基础上发展形成的一门新兴交叉学科,利用分子水平的遗传信息来分析人类起源、当代和古代人类群体的演化以及古代社会文化结构等多方面多层次的问题。主要方法是比较DNA序列或蛋白质序列,但是早期方法亦包括血清学的比较研究。 通过考察在不同人群中的DNA序列,科学家可以判断的有关种群之间(或群体内部)的亲密关系。基因构成一定的相似性,能让分子人类学家确定不同的人群是否属于同一个单倍群(haplogroup),进而确定是否他们都有一个共同的地理发源地。这是意义重大的,因为它允许人类学家追踪迁移的和定居的模式,这提供了帮助洞察到现代人群是如何形成的并且将是如何继续向未来发展的。.

新!!: 分子和分子人类学 · 查看更多 »

分子建模

分子建模(英語:Molecular modelling)或稱分子模擬,是指利用理論方法與計算技術,模擬出化學分子的外觀或性質,屬於計算化學與計算生物學領域的研究對象。並且是化學與生物學上,如結構生物學等學門所應用的研究方法。.

新!!: 分子和分子建模 · 查看更多 »

分子储能方式

在研究光谱的结构时,我们先要了解分子的储能方式,以下将对分子的各种储存能量的方式一一列出:.

新!!: 分子和分子储能方式 · 查看更多 »

分子筛

分子筛是一种包含有精确和单一的微小孔洞的材料,可用于吸附气体或液体。 足够小的分子可以通过孔道被吸附,而更大的分子则不能。与一个普通筛子不同的是它在分子水平上进行操作。例如,一个水分子小到可以通过但比它大一点的分子就不行。因此,分子筛常用用来作干燥剂。一个分子筛能吸附高达其自身重量22%的水分。 通常分子筛由铝矽酸盐矿组成,也有合成的混合物或化合物。这些化合物具有开放结构使得小分子能够扩散,如:粘土,多孔玻璃,微孔木炭,活性炭等。 分子筛常被应用到石油工业,特别是用来纯化气体。例如可用硅胶吸附天然气中的汞对铝制管道和其他液化设备的腐蚀。 分子筛的再生方法包括在氧气浓缩器中变换压力,当用于乙醇脱水时也可用载气加热和清洗。.

新!!: 分子和分子筛 · 查看更多 »

分子结构

分子结构,或称分子立体结构、分子形状、分子几何、分子几何构型,建立在光谱学数据之上,用以描述分子中原子的三维排列方式。分子结构在很大程度上影响了化学物质的反应性、极性、相态、颜色、磁性和生物活性。 分子结构最好在接近绝对零度的温度下测定,因为随着温度升高,分子转动也增加。量子力学和半实验的分子模拟计算可以得出分子形状,固态分子的结构也可通过X射线晶体学测定。体积较大的分子通常以多个稳定的构象存在,势能面中这些构象之间的能垒较高。 分子结构涉及原子在空间中的位置,与键结的化学键种类有关,包括键长、键角以及相邻三个键之间的二面角。.

新!!: 分子和分子结构 · 查看更多 »

分子生物学

分子生物学(Molecular biology)是对生物在分子層次上的研究。这是一门生物学和化学之间跨学科的研究,其研究领域涵盖了遗传学、生物化学和生物物理学等学科。分子生物学主要致力于对细胞中不同系统之间相互作用的理解,包括DNA,RNA和蛋白质生物合成之间的关系以及了解它们之间的相互作用是如何被调控的。.

新!!: 分子和分子生物学 · 查看更多 »

分子电子跃迁

分子电子跃迁表示分子中价电子从一个能级因为吸收能量时,跃迁到一个更高的能级;或者释放能量,跃迁到更低的能级的過程。如果起始能階的能量比最終能階的能量高,原子便會釋放能量(通常以電磁波的形式發放)。相反,如果起始能階的能量較低,原子便會吸收能量。釋放與吸收的能量等於這兩個能階的能量之差。 在此过程中的能量变化提供了分子结构的信息,并决定了许多分子性质如颜色。有关电子跃迁的能量和辐射频率的关系由普朗克定律决定。 一般,我们应用电子跃迁来说明单个原子。当讨论多原子分子时,我们应用分子轨道理论。也可以视单个原子为单原子分子,将各种情况的电子跃迁统一到分子电子跃迁的框架下来。这里的能级是基于分子轨道理论提出的。 有机化合物中的电子跃迁在电磁频谱的紫外区或可见光区发生,可以由UV/VIS光谱测得。在HOMO σ带处的電子可被激发到 LUMO 的σ带。这个过程被写作σ → σ*跃迁。同样有电子从π键轨道激发至反π键轨道π*,写作π → π*跃迁。助色基團的自由电子对被写为孤对电子n,孤电子对有自己的跃迁,如芳香π键跃迁。下列是已存在的分子电子跃迁:.

新!!: 分子和分子电子跃迁 · 查看更多 »

分子物理学

分子物理学是研究分子的物理性质以及将原子结合为分子的化学键性质的学科,与化学学科紧密相连,同时和原子物理学密切相关。 分子物理学中最重要的实验手段是光谱分析。分子谱和原子谱的最大区别是,除了组成原子的原子能级之外,还有分子本身的转动和振动能级。 除了從原子得知的電子激發態以外,分子可以旋轉與震動。由於這些旋轉與震動具有量子性質,伴隨的能級也是離散的。純旋轉運動光譜是在紅外線譜域(波長大約為30-150微米);震動光譜是在近紅外線(near infra-red)譜域(大約為1-5微米);電子躍遷光譜是在可見光和紫外線譜域。從測量旋轉運動和震動光譜,可以獲得分子的物理性質,例如,原子核與原子核之間的距離。 原子物理學的原子軌域理論,在分子物理學裏,擴展為分子軌域理論。.

新!!: 分子和分子物理学 · 查看更多 »

分子遺傳學

分子遺傳學(Molecular genetics)是生物學中的一個領域,專門在分子層次下研究遺傳學,這一學門使用許多分子生物學與遺傳學的研究方法 。對生物體染色體和基因表達的研究可以深入了解遺傳,遺傳變異和突變。 這在發育生物學的研究和理解和治療遺傳疾病中很有用。.

新!!: 分子和分子遺傳學 · 查看更多 »

分子轨道

分子軌域(Molecular orbital, MO)是化學中用以描述分子中電子的波動特性的函數。這個函數可以計算出化學和物理性質,例如在任意一個特定區域找到電子的機率。「軌域」一詞由羅伯特·桑德森·馬利肯於1932年提出,為「單電子軌域波函數」(one-electron orbital wave function)的簡稱。從基本層面上來說,它用於描述該函數具有顯著振幅的空間區域。分子軌域通常由分子中的個別原子提供的原子軌域、混成軌域,或者其他原子團的分子軌域結合而成。這些可以由哈特里-福克方程或自洽场方法(SCF)量化計算。 分子軌域可以用來表示分子中佔有該軌域的電子可能出現的區域。分子軌域由原子軌域結合而成,其中原子軌域預測了原子中電子的位置。分子軌域可以具體說明分子的电子排布:一個或一對電子的空間分佈和它(們)的能量。分子軌域通常會以原子軌域線性組合(LCAO-MO法)表示,尤其是在進行定性或近似分析的時候。它們的寶貴之處在於對分子鍵結提供了簡單的模型,使之能透過分子軌域理論了解。現今大多數用於計算化學的方法由計算系統的MO開始。分子軌域描述一個電子在原子核產生的電場中的表現,以及與其他電子的平均分佈。根據包立不相容原理,兩個電子佔據相同軌域時,必須具有相反的自旋。這注定只是一個近似值,能夠高度精準描述的分子電子波函數並沒有軌域(參:組態相互作用方法)。 该概念首先由弗里德里希·洪德和罗伯特·桑德森·马利肯在1927-1928年引入。 电子在分子中的空间运动状态可以用分子轨道波函数(ψ,薛定谔方程的数学解)描述,借助Hartree-Fock方程或自洽场方法可对其作定量近似。 定性上看,分子轨道由原子轨道线性组合(LCAO-MO法)获得,组合后的分子轨道数目与组合前的原子轨道数目相等,經過鍵結與反鍵結的作用後,分子軌域能量高低重新排列。 -->.

新!!: 分子和分子轨道 · 查看更多 »

分子运动论

分子运动论(又稱气体动理论或分子动理论)是描述气体为大量做永不停息的随机运动的粒子(原子或分子,物理学上一般不加区分,都称作分子)。快速运动的分子不断地碰撞其他分子或容器的壁。分子动理论就是通过分子组分和运动来解释气体的宏观性质,如压强、温度、体积等。分子动理论认为,压强不是如牛顿猜想的那样,来自分子之间的静态排斥,而是来自以不同速度做热运动的分子之间的碰撞。 分子太小而不能直接看到。显微镜下花粉颗粒或尘埃粒子做的无规则运动——布朗运动,便是分子碰撞的直接结果。这可以作为分子存在的证据。.

新!!: 分子和分子运动论 · 查看更多 »

分子间作用力

分子间作用力(Intermolecular force),亦稱分子間引力,指存在于分子与分子之间或高分子化合物分子内官能基之间的作用力,简称分子间力。它主要包括:.

新!!: 分子和分子间作用力 · 查看更多 »

分子育种

分子育种是分子水平上的遗传育种,是传统育种与基因工程技术相结合的产物。分子育种技术将外源DNA导入作物,来改善育种效果,从而能够更大效率的利用种质资源。导入DNA可以以胚细胞或生长点分生细胞为目标。分子育种的主要目标,是提高产量、提升品质,并降低生产成本。现在的分子育种已能够识别目的基因,并控制重组的质粒,转化途径也更加多样化。.

新!!: 分子和分子育种 · 查看更多 »

分子量

分子量,又称“相对分子质量”,指组成分子的所有原子的原子量的总和,分子量的符号为Mr。定义为物质分子或特定单元的平均质量与12C质量的1/12之比值。由于是相对值,所以为无量纲量,单位为1。.

新!!: 分子和分子量 · 查看更多 »

分子機器

分子機器(molecular machine)也稱為奈米機器(nanomachine)是由少量的分子所組成,可以對特定的刺激(輸入)產生準機械運動(輸出)的物體。分子機器一詞也常用來表示模仿巨觀世界機器功能的分子。在奈米科技中常提到分子機器,曾提出許多有複雜結構的分子機器,目標是要建構。分子機器可以分為合成的及天然的兩種。 有些分子系統可以使化學或是力學過程偏離其平衡點,是在化學及奈米科技中的重要分支。只要這類的系統可以產生有用的功,依分子機器的定義來看,這也算是分子機器。 2016年诺贝尔化学奖頒給让-皮埃尔·索瓦日、弗雷澤·斯托達特及伯纳德·费林加,原因就是因為他們在分子機器上的設計及合成。.

新!!: 分子和分子機器 · 查看更多 »

分子振動

分子振動是指分子內原子間進行的週期性來回運動,而不包含分子的移動和轉動。這種週期性的運動頻率稱為振動頻率。在光譜學上常用紅外吸收光譜法與拉曼光譜學來測量分子的振動頻率,並用來分析分子結構。.

新!!: 分子和分子振動 · 查看更多 »

分子挖掘

此页介绍使用分子的数据挖掘。由於分子可由分子圖表示,這與圖形挖掘和結構化數據挖掘密切相關。主要問題是如何在區分數據實例時表示分子。其中一種方法是化學相似性度量,这在化學信息學領域具有悠久的傳統。 計算化學相似性的典型方法是使用化學指紋,但這会导致丟失有關分子拓撲的基礎信息。挖掘分子圖直接避免了這個問題。反向QSAR問題也適用於矢量映射問題。.

新!!: 分子和分子挖掘 · 查看更多 »

分子擴散

分子擴散(molecular diffusion),通常簡稱擴散,是任何粒子(氣體或液體)於絕對零度以上之環境下的熱力學運動。本行為的速率是溫度、流體黏度以及粒子大小(質量)的函數。擴散解釋高濃度與低濃度之間存在分子淨通量的原因。一旦濃度相等,分子雖持續運動,但由於濃度梯度已不復存在,分子遂停止擴散,改由自擴散主導分子的隨機運動。擴散的結局是材料逐漸混合,使分子分佈達成均勻。由於分子依然持續運動,但平衡也已經建立,因此分子擴散的最終狀態被稱為「動態平衡」。在具有均勻溫度的相態中,因不受外部淨力影響,擴散過程最終將達到完全混合。 今考慮兩個等溫且有能力交換粒子的系統,S1與S2。如果系統位能有發生交換;例如μ1>μ2(μ為化學勢),則系統S1至系統S2將有能量流產生,因為自然傾向降低能量並使熵值極大化。 分子擴散一般都以菲克定律作為其數學描述。.

新!!: 分子和分子擴散 · 查看更多 »

分子晶体

分子晶体指的是物质内部由范德华力(又称作范德瓦耳斯力或分子间作用力)将分子结合起来的固体物质。.

新!!: 分子和分子晶体 · 查看更多 »

呼吸作用

呼吸作用,又称為细胞呼吸(Cellular respiration),是生物体细胞把有机物氧化分解並转化能量的化學过程,也稱為釋放作用。无论是否自养,细胞内完成生命活动所需的能量,都是来自呼吸作用。真核細胞中,粒線體是與呼吸作用最有關聯的胞器,呼吸作用的幾個關鍵性步驟都在其中進行。 呼吸作用是一種酶促氧化反应。雖名為氧化反應,不論有否氧气参与,都可称作呼吸作用(這是因為在化學上,有電子轉移的反應過程,皆可稱為氧化)。有氧气参与時的呼吸作用,稱之為有氧呼吸;没氧气参与的反應,則称为无氧呼吸。 呼吸作用的目的,是透過釋放食物裡之能量,以製造三磷酸腺苷,即細胞最主要的直接能量供應者。呼吸作用的氢與氧的燃燒,但兩者間最大分別是:呼吸作用透過一連串的反應步驟,一般的一次性釋放。在呼吸作用中,三大营养物质:碳水化合物、蛋白质和脂質的基本组成单位──葡萄糖、氨基酸和脂肪酸,被分解成更小的分子,透過數個步驟,将能量转移到还原性氢(化合价为0的氢)中。最後經過一連串的電子傳遞鏈,氢被氧化生成水;原本貯存在其中的能量,則转移到ATP分子上,供生命活动使用。.

新!!: 分子和呼吸作用 · 查看更多 »

催化剂

催化劑又稱觸媒,是能透過提供另一活化能較低的反應途徑而加快化學反應速率,而本身的質量、組成和化學性質在參加化學反應前後保持不變的物質。例如二氧化錳可以作為過氧化氫(雙氧水)分解的催化劑。與催化劑相反,能減慢反應速率的物質稱為抑制劑。過去曾用的「負催化劑」一詞已不被國際純粹與應用化學聯合會所接受,而必須改用抑制劑一詞,催化劑一詞僅指能加快反應速率的物質。.

新!!: 分子和催化剂 · 查看更多 »

傅里叶变换离子回旋共振质谱法

傅里叶变换离子回旋共振质谱法也称作傅里叶变换质谱分析,这是一种根据给定磁场中的离子回旋频率来测量离子质荷比(m/z)的质谱分析方法。 彭宁离子阱(Penning Trap)中的离子被垂直于磁场的震荡电场激发出一个更大的回旋半径,这种激发作用同时也会导致离子的同相移动(形成离子束)。当回旋的离子束接近一对捕集板时,捕集板上会检测到影像电流信号。这种信号被称为自由感应衰减(FID),是一种由许多重叠的正弦波组成的瞬态或干涉图。通过傅里叶变换,我们可以从这些信号数据中萃取出有用的信号形成质谱。 傅里叶变换离子回旋共振质谱法(FTICR-MS)具有非常高的析像能力,可以十分精确地测定物质。因此对于FTICR-MS的使用主要是利用它的高分辨率检测分子组成。这一检测的理论前提是元素在这一过程中会发生质量亏损。 此外,FTICR-MS通常也被用来研究复杂的混合物。这是由于它所产生的分析图像具有较窄的峰宽,能够将两个质量相近的离子返回的信号(质荷比m/z)区分开来。 利用电喷射离子化作用产生的大量电荷,这种高分辨率同样也可以应用于蛋白质等高分子研究中。这些大分子中包含的同位素分布能够产生一系列同位素峰,由于这些同位素峰在质荷比坐标轴上十分接近,因此我们就要用到FTICR所具有的高解析分辨能力,结合大量电荷喷射来对其进行观察研究。 FTICR-MS与其他质谱分析仪器最大的不同点在于,它不是用离子去撞击一个类似电子倍增器的感应装置,只是让离子从感应板附近经过。而且对于物质的测定也不像其他技术手段一样利用时空法,而是根据频率来进行测量。利用象限仪(sector instruments)检测时,不同的离子会在不同的地方被检测出来;利用飞行时间法(time-of-flight)检测时,不同的离子会在不同的时间被检测出来;而利用FTICR-MS检测时,离子会在给定的时空条件下被同时检测出来。 FTICR是由英属哥伦比亚大学(University of British Columbia)的Alan G. Marshall 和 Melvin B. Comisarow二位学者发明的。首篇相关论文发表于1974年的《化学物理学》杂志。这一发明的灵感来源于传统的离子回旋共振(ICR)和傅里叶核磁共振(FT-NMR)波谱学。Alan G. Marshall随后在俄亥俄州立大学、佛罗里达州立大学继续丰富和发展了这项技术。.

新!!: 分子和傅里叶变换离子回旋共振质谱法 · 查看更多 »

哈特里-福克方程

哈特里-福克方程(Hartree–Fock equation),又称为HF方程,是一个应用变分法计算波函数的方程式,是量子物理、凝聚態物理學、量子化学中最重要的方程之一。HF方程形式上是单电子本征方程,求得的本征态是单电子波函数,即分子轨道。以HF方程为核心的数值计算方法称为“哈特里-福克方法”(Hartree–Fock method)。 基于分子轨道理论的所有量子化学计算方法都是以HF方法为基础的。鉴于分子轨道理论在现代量子化学中的广泛应用,HF方程被视为现代量子化学的基石。.

新!!: 分子和哈特里-福克方程 · 查看更多 »

冷阴极计数管

冷阴极计数管是一类特殊的电子管,曾在二十世纪五六十年代的计算机中作为内存储器使用。.

新!!: 分子和冷阴极计数管 · 查看更多 »

内酯

内酯(英文:Lactone)即環狀的酯,由一化合物中的羥基和羧基发生分子内缩合环化得到。内酯以五元(γ-内酯)及六元(δ-内酯)环内酯最为稳定,环内的角张力最小。4-羟基酸(R-CH(OH)-(CH2)2-COOH)在室温及稀酸存在下,便自发酯化形成五元环内酯。其他元数的内酯,如β-、ε-内酯,也可以制得,但不及以上二者稳定。 大环内酯是内酯的一类,分子内环元数较大,有很多是药物的成分。.

新!!: 分子和内酯 · 查看更多 »

凹嘴鵎鵼

凹嘴鵎鵼(學名:Ramphastos vitellinus),又名凹嘴巨嘴鳥,是千里達及南美洲熱帶的巨嘴鳥。.

新!!: 分子和凹嘴鵎鵼 · 查看更多 »

准分子激光

准分子激光(英文:Excimer laser)是一种紫外气态激光,处于激发态的稀有气体和另一种气体(稀有气体或卤素)结合的混合气体形成的分子,向其基态跃迁时发射所产生的激光,称为准分子激光。 准分子激光属于低能量激光,无热效应,是方向性强、波长纯度高、输出功率大的脉冲激光,光子能量波长范围为157-353纳米,寿命为几十纳秒,属于紫外光。最常见的波长有157 nm、193 nm、248 nm、308 nm、351-353 nm。.

新!!: 分子和准分子激光 · 查看更多 »

全同粒子

在量子力學裏,全同粒子是一群不可區分的粒子。全同粒子包括基本粒子,像電子、光子,也包括合成的粒子,像原子、分子。 全同粒子可以分為兩種類型:.

新!!: 分子和全同粒子 · 查看更多 »

八隅體規則

二氧化碳的路易斯結構──中央的碳原子及兩側的氧原子均被八個電子包圍。 八隅體規則(或稱八電子規則)是化學中一個簡單的規則,即原子間的組合趨向令各電子的價層都擁有八個電子,與惰性氣體擁有相同的電子排列。主族元素,如碳、氮、氧、鹵素族、鈉、鎂都依從這個規則。簡單而言,當組成離子或分子的組成原子的最外電子層有八個電子,它們便會趨向穩定,而若不满8个时,原子间会互相共享或交换电子达到平衡稳定。例如Cl与Na形成NaCl的结构。 第一層電子最多有2個,第二層8個,第三層18個,第四層32個。公式為2n2。.

新!!: 分子和八隅體規則 · 查看更多 »

八面体形分子构型

化学中,八面体形分子构型指的是一个分子中,中心原子上连有六个基团或配体而形成八面体的分子构型。理想的正八面体形分子属于Oh点群,例如六氟化硫SF6、六羰基钼Mo(CO)6等。使用“八面体”时比较随意,一般不考虑配体本身的形状,如Co(NH3)63+在考虑N-H键时并不属于八面体,但仍称其为八面体型分子。.

新!!: 分子和八面体形分子构型 · 查看更多 »

八氮立方烷

八氮立方烷也称为“立方氮烷”,是氮元素的一种假想单质,分子式为N8。八氮立方烷与N2、N4等互为同素异形体。八氮立方烷分子由8个围成立方体氮原子构成,可以看作所有次甲基都被氮原子代替了的立方烷分子,所以八氮立方烷是立方烷的衍生物之一。八氮立方烷分子可能是一种亚稳态分子。若忽略由键应力引起的化学热力学不稳定性和氮氮单键的较高键能,只从化学动力学角度来看,该分子因轨道对称而具有一定稳定性。.

新!!: 分子和八氮立方烷 · 查看更多 »

兰纳-琼斯势

兰纳-琼斯势(Lennard-Jones potential),又称L-J势, 6-12势, 或12-6势,是用来模拟两个电中性的分子或原子间相互作用势能的一个比较简单的数学模型。最早由数学家于1924年提出。由于其解析形式简单而被广泛使用,特别是用来描述惰性气体分子间相互作用尤为精确。 兰纳-琼斯势能以两体距离为唯一变量,包含两个参数。其形式为: V(r).

新!!: 分子和兰纳-琼斯势 · 查看更多 »

共价键

共价键(Covalent Bond),是化学键的一种。两个或多个非金屬原子共同使用它们的外层电子(砷化鎵為例外),在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做共价键。与离子键不同的是进入共价键的原子向外不显示电荷,因为它们并没有获得或损失电子。共价键的强度比氢键要强,比离子键小。 同一種元素的原子或不同元素的原子都可以通過共​​價鍵結合,一般共價鍵結合的產物是分子,在少數情況下也可以形成晶體。 吉爾伯特·路易斯于1916年最先提出共价键。 在简单的原子轨道模型中进入共价键的原子互相提供单一的电子形成电子对,这些电子对围绕进入共价键的原子而属它们共有。 在量子力学中,最早的共价键形成的解释是由电子的复合而构成完整的轨道来解释的。第一个量子力学的共价键模型是1927年提出的,当时人们还只能计算最简单的共价键:氢气分子的共价键。今天的计算表明,当原子相互之间的距离非常近时,它们的电子轨道会互相之间相互作用而形成整个分子共用的电子轨道。.

新!!: 分子和共价键 · 查看更多 »

共轭体系

在化學當中,共軛體系是指具有单键-双键交替结构的体系,其中双键的p軌域通过电子离域相互连接,这通常會降低分子的總能量并增加其穩定性。这里的共軛是指由一个σ鍵相隔的p軌域之间发生轨道重疊(如果是大的原子,也可能涉及d軌域) 孤對電子,自由基或碳正離子都可能是此系統的一部分。這些化合物可能是環狀,非環狀,線狀或雜和狀。 一個共軛體系會有一個p軌域重疊,連接其中間的單鍵。它可以讓π電子游離通過所有相鄰對齊的p軌域。此π電子不屬於單鍵或原子,但是屬於一組的原子。 最大的共軛體系是在石墨烯、石墨、導電聚合物和奈米碳管中被發現的。 共轭体系在单键、双键相互交替(以及其他类型)的共轭体系中,由于分子中原子间特殊的相互影响,使分子更加稳定,内能更小键长趋于平均化的效应。 如苯分子中由于相邻的π键电子轨道的交迭而形成共轭,使其六个碳-碳键的键长均为1.39埃。这是分子在没有外界影响下表现的内在性质。.

新!!: 分子和共轭体系 · 查看更多 »

共振 (化学)

共振论是化学中表示分子结构的一种方法,是价键理论的重要组成部分。该方法认为,对于结构无法用一个经典结构式来表达的分子、离子或自由基,可以通过若干经典结构式的共振来表达其结构。共振中的结构并不存在,真实粒子也并非这些共振结构的混合物或是平衡体系,只是价键理论中无法用单一结构式来准确表达物质结构,必须要借助共振的思想。.

新!!: 分子和共振 (化学) · 查看更多 »

共振增強多光子離子化

共振增強多光子離子化(Resonance enhanced multiphoton ionization,REMPI),或譯稱共振增強多光子電離或多光子共振游離,是一種用來偵測原子和小分子的光譜方法。這個方法透過一個可調式雷射來選擇性地將原子或分子激發到某一共振的中間態;此被激發的原子或分子再被激發,並產生電離。.

新!!: 分子和共振增強多光子離子化 · 查看更多 »

共晶体

共晶体或共晶(英语:cocrystal)是晶体学中的概念,人们对其定义有着争议,一种认为共晶体是由至少两种组分组成的晶体,其组分可以是原子、分子或离子。另一种认为共晶体是由至少两种组分组成的、具有独特性质的晶体。.

新!!: 分子和共晶体 · 查看更多 »

元系统跃迁

元系统跃迁或元系统转换是指通过进化,突现更高层次的组织或控制。 最好的例子如生命起源,单细胞到多细胞的进化,象征性思维。元系统是一些本来互相独立的组件,如分子,细胞,个体等等的组合,突现出的系统调整和控制其间的互动。 Category:控制论 Category:系統理論 Category:超个体 Category:演化 Category:假说.

新!!: 分子和元系统跃迁 · 查看更多 »

光合作用

光合作用是植物、藻類等生產者和某些細菌,利用光能把二氧化碳、水或硫化氢變成碳水化合物。可分为產氧光合作用和不產氧光合作用。 植物之所以称为食物链的生产者,是因为它们能够透过光合作用利用无机物生产有机物并且贮存能量,其能量轉換效率約為6%。通过食用,食物链的消费者可以吸收到植物所贮存的能量,效率为10%左右。對大多數生物來説,這個過程是賴以生存的關鍵。而地球上的碳氧循环,光合作用是其中最重要的一环。.

新!!: 分子和光合作用 · 查看更多 »

光學頻譜

光学频谱,简称光谱,是复色光通过色散系统(如光栅、棱镜)进行分光后,依照光的波长(或频率)的大小顺次排列形成的图案。光谱中的一部分可见光谱是电磁波谱中人眼可见的唯一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人類大脑視覺所能区别的所有颜色,譬如褐色和粉红色,其原因是粉红色并不是由单色组成,而是由多种色彩组成的。参见颜色。.

新!!: 分子和光學頻譜 · 查看更多 »

光導纖維

光導纖維(Optical fiber),簡稱光纖,是一種由玻璃或塑料製成的纖維,利用光在這些纖維中以全反射原理傳輸的光傳導工具。微細的光纖封裝在塑料護套中,使得它能夠彎曲而不至於斷裂。通常光纖的一端的發射裝置使用發光二極體或一束激光將光脈衝傳送至光纖中,光纖的另一端的接收裝置使用光敏元件檢測脈衝。包含光纖的线缆称为光缆。由於信息在光導纖維的傳輸損失比電在電線傳導的損耗低得多,更因為主要生產原料是硅,蘊藏量極大,較易開採,所以價格很便宜,促使光纖被用作長距離的信息傳遞媒介。隨著光纖的價格進一步降低,光纖也被用於醫療和娛樂的用途。 光纖主要分為兩類,與。前者的折射率是漸變的,而後者的折射率是突變的。另外還分為單模光纖及多模光纖。近年來,又有新的光子晶體光纖問世。 光导纤维是双重构造,核心部分是高折射率玻璃,表层部分是低折射率的玻璃或塑料,光在核心部分傳輸,并在表层交界处不断进行全反射,沿“之”字形向前傳輸。这种纤维比头发稍粗,这样细的纤维要有折射率截然不同的双重结构分布,是一个非常惊人的技术。各国科学家经过多年努力,创造了内附着法、MCVD法、VAD法等等,制成了超高纯石英玻璃,特制成的光导纤维傳輸光的效率有了非常明显的提高。现在较好的光导纤维,其光傳輸損失每公里只有零点二分贝;也就是说传播一公里后只損4.5%。.

新!!: 分子和光導纖維 · 查看更多 »

光化学

光化学(英语:photochemistry),是化学的一个分支,是一门研究物质因受光的影响而产生化学效应的学科。这里的光通常指紫外光或可见光。光化学与其他化学的本质区别在于光化学涉及激发态。.

新!!: 分子和光化学 · 查看更多 »

光分解離子成像

光分解離子成像,或更普遍地來說,產物成像是一種測量化學反應或光分解產物速度分佈的實驗技術 。 該方法使用二維偵測器,通常是微通道板,來擷取透過共振增強多光子離子化之態選擇後的離子到達偵測器的位置。第一個光分解離子成像實驗是由大衛·錢德勒(David W. Chandler)和保羅·休斯頓(Paul L. Houston)在1987年完成,其題目為碘甲烷的光分解動態學。.

新!!: 分子和光分解離子成像 · 查看更多 »

光致游離

光致游離或光電離是光子與原子或分子的交互作用導致離子形成的物理過程。.

新!!: 分子和光致游離 · 查看更多 »

光離子化檢測儀

光離子化檢測儀或PID是一種氣態檢測儀。 光離子化檢測儀是利用惰性氣體真空放電現象所產生的紫外線 (VUV),使待測氣體分子發生電離,並通過測量離子化後的氣體所產生的電流強度,從而得到待測氣體濃度。可以用來測量揮發性有機化合物和其他濃度從1ppm到10000ppm(十億分之一)的氣體。是一種有效且平價的檢測儀。檢測時會持續獲得每單位時間偵測到的訊號,將這些資料重疊分析後,即可得到我們所要的資訊,為一種精確而有效的檢測手段,在今天獲得了越來越廣泛的應用。手提式的的分析器則是被廣泛的應用在軍事、工業和狹小工作設施的安全等方面。 PID常被用來.

新!!: 分子和光離子化檢測儀 · 查看更多 »

光造形术

光固化立体造型术 (简称SLA或SL) 是用于创建模型, 原形, 图案等的一种3D打印技术。它采用光聚合法通过光照射让小分子链接, 形成聚合物。这些聚合物构成了固化的立体3D物件。 Category:雷射應用 Category:3D打印.

新!!: 分子和光造形术 · 查看更多 »

克劳修斯-莫索提方程式

克劳修斯-莫索提方程式(Clausius-Mossotti equation)表達了線性介電質的極化性和相對電容率之間的關係,是因義大利物理學者莫索提(Ottaviano-Fabrizio Mossotti)和德國物理學者魯道夫·克勞修斯而命名。這方程式也可以更改為表達極化性和折射率之間的關係,此時稱為洛倫茲-洛倫茨方程式(Lorentz-Lorenz equation)。 極化性是一種微觀屬性,而相對電容率則是在介電質內部的一種巨觀屬性,所以,這方程式式連結了介電質關於電極化的微觀屬性與巨觀屬性。.

新!!: 分子和克劳修斯-莫索提方程式 · 查看更多 »

克莱森酯缩合反应

克莱森缩合反应(Claisen缩合反应)是指两分子羧酸酯在强碱(如乙醇钠)催化下,失去一分子醇而缩合为一分子β-羰基羧酸酯的反应。参与反应的两个酯分子不必相同,但其中一个必须在酰基的α-碳上连有至少一个氢原子。简单的说,该反应是一个酯分子的酰基对另一酯分子的酰基α-碳原子进行的酰化反应。有关更广泛定义的克莱森缩合,请见下文“交叉克莱森缩合”。.

新!!: 分子和克莱森酯缩合反应 · 查看更多 »

前寒武纪

前寒武纪(英語:Precambrian)是地質年代中,對於顯生宙之前數個宙(eon)的非正式涵蓋統稱,原本正式的名稱是隱生宙或隱生元(Cryptozoic eon),但後來拆分成冥古宙、太古宙與元古宙三個時代。開始於大約45億年前的地球形成時期,結束於約5億4200萬年前,大量肉眼可見的硬殼動物誕生之時。 儘管前寒武紀佔了地球歷史中大約八分之七的時間,但人們對這段時期的了解相當少。這是因為前寒武紀少有化石紀錄,且其中多數的化石,如疊層石,只適合用來作生物地層學研究。此外,許多前寒武紀時期的岩石已經嚴重變質,使其起源變得晦澀不明。而其他的要不是已經腐蝕毀壞,就是還埋藏在顯生宙地層底下。 大約在45億年前左右,原始的地球從環繞太陽的物質之中聚集而成。不久之後可能又因為小行星(大小如火星)的撞擊,而分離出月球(參見大碰撞說)。一開始地球表面皆為岩漿覆蓋,穩固地殼則大約出現於44億年前。目前已知最古老的岩石發現於澳洲西部,放射性分析顯示一塊鋯石結晶已有大約44億400萬年歷史。.

新!!: 分子和前寒武纪 · 查看更多 »

固体

固體是物質存在的一種狀態,是四種基本物质状态之一。與液體和氣體相比,固體有固定的體積及形狀,形狀也不會隨著容器形狀而改變。固體的質地較液體及氣體堅硬,固體的原子之間有緊密的結合。固體可能是晶体,其空間排列是有規則的晶格排列(例如金屬及冰),也可能是無定形體,在空間上是不規則的排列(例如玻璃)。一般而言,固体是宏观物体,一个物体要达到一定的大小才能夠被称为固体,但是对其大小無明确的规定。 物理學中研究固體的分支稱為固体物理学,是凝聚态物理学的主要分支之一。材料科学探討各種常見固體的物理及化學特性。固體化學研究固體結構、性質、合成、表徵等的一門化學分支,也和一些固體材料的化學合成有關。.

新!!: 分子和固体 · 查看更多 »

固体分散物

固体分散体(solid dispersion)系指难溶性药物以分子、胶体状态、微晶或无定型状态分散在另一种水溶性材料中,或分散在难溶性、肠溶性材料中呈固体状态。 难溶性药物的生物利用度往往不高,而药物的吸收速率又取决于溶出速率,溶出速度随分散度的提高而提高,固体分散体中的载体多为水溶性,故制成固体分散体后可以明显改善难溶性药物的生物利用度。.

新!!: 分子和固体分散物 · 查看更多 »

固氮酶

固氮酶(Nitrogenase)是一类在许多有机体中被利用于将空气中的氮气转化为含氮化合物的酶。这类酶是现在已被人们发现的唯一一种能完成该过程的酶。氮一般以含有键能较高的氮-氮三键的氮分子形式存在于自然界中,必须将这三个化学键完全破坏才能把该双原子分子中的两个氮原子分开。 固氮酶可以看作是固氮作用中的催化剂,固氮酶使以下反应的活化能降低,从而使反应更容易进行。 固氮酶催化反应的简化反应方程式为: 详细反应方程式为: 反应底物为: 8 铁氧还蛋白red.

新!!: 分子和固氮酶 · 查看更多 »

固態反應

固態反應不同於液體和氣體的反應(以分子大小的粒子相混合),而是取決於固體的形狀、運輸性質等。簡單來說,就是物質在晶體中流動、反應。可以分為均勻固態反應、單相分均勻固態反應、非均勻固態反應等。.

新!!: 分子和固態反應 · 查看更多 »

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

新!!: 分子和国际单位制 · 查看更多 »

噝蝰屬

噝蝰屬(學名:Bitis),又稱膨蝰屬,是蛇亞目蝰蛇科蝰亞科下的一個有毒蛇屬,主要分布於非洲及阿拉伯半島南部。 噝蝰屬成員中同時有世界上最巨型和最細小的蝰蛇,牠們被稱為「膨蝰」的原因,是因為所有噝蝰在遇到危機時,會不斷重覆地將身體膨脹、收縮,並配合發出響亮的嘶嘶聲,產生威嚇敵人的效果。Mallow D, Ludwig D, Nilson G. 2003.

新!!: 分子和噝蝰屬 · 查看更多 »

BOINC

伯克利開放式網絡計算平台(Berkeley Open Infrastructure for Network Computing,簡稱BOINC)是目前主流的分佈式計算平台之一,由加州大學柏克萊分校電腦學系發展出的分散式計算系統。原本專為SETI@home項目而設計,目前納入的領域包括數學、醫學、天文學和氣象學等。BOINC匯集全球各地志願者的電腦或移動裝置,提供運算能力給研究者。截至2017年3月,BOINC在全世界有約815,912台活躍的主機,提供約18.971PetaFLOPS的運算能力。.

新!!: 分子和BOINC · 查看更多 »

CAS号

CAS編號(CAS Registry Number,或称CAS Number,CAS Rn,CAS #),又称CAS登录号或CAS登記號碼,是某种物质(化合物、高分子材料、生物序列(Biological sequences)、混合物或合金)的唯一的数字识别号码。 美国化学会的下设组织化学文摘社(Chemical Abstracts Service,簡稱CAS)负责为每一种出现在文献中的物质分配一个CAS編號,其目的是为了避免化学物质有多种名称的麻烦,使数据库的检索更为方便。如今几乎所有的化学数据库都允许用CAS編號检索。.

新!!: 分子和CAS号 · 查看更多 »

ChemSpider

Chemspider是一个网络化学数据库。它试运行于2007年3月,并于一年后的2008年3月正式发布。 ChemSpider数据库记录了超过两千万的分子,与其他传统化学数据库不同的地方在于,它通过WiChempedia收录维基百科中的化合物记录。ChemSpider于2009年5月被英国皇家化学会收购。.

新!!: 分子和ChemSpider · 查看更多 »

CPK配色

在化學中,CPK配色是一種國際通用的原子或分子模型的配色方式,也是最常用、最多人使用的分子模型上色方式,可用於各種分子模型或元素標示,最常用於CPK模型、球棒模型和空間填充模型。該配色方式由CPK模型的設計者Corey、Pauling(萊納斯·鮑林)與Koltun提出且改進。.

新!!: 分子和CPK配色 · 查看更多 »

状态方程

在物理学和热力学中,状态方程(Equation of state),也称物态方程,表达了热力学系统中若干个态函数参量之间的关系。特別是在热力学中,状态方程是一个热力学方程,描述了给定物理条件环境下物质的状态,例如其温度、压强、体积和内能。状态方程在描述流体、混合流体、固体甚至是研究恒星内部都十分有用。.

新!!: 分子和状态方程 · 查看更多 »

矛尾魚

矛尾魚,又名拉蒂邁魚,是矛尾魚屬(学名:Latimeria)的魚類。原以為腔棘魚已經全面滅絕,但於1938年在巡視漁民捕魚時竟發現了活生生的西印度洋矛尾魚(L.),後又多次在同一海域成功捕獲,故被稱為「活化石」。.

新!!: 分子和矛尾魚 · 查看更多 »

环腺苷酸

环腺苷酸(Cyclic adenosine monophosphate,简称为cAMP)是一种具有细胞内信息传递作用的小分子,被称为细胞内信使(intracellular messenger)或第二信使(second messengers)。.

新!!: 分子和环腺苷酸 · 查看更多 »

玻璃

玻璃是一種呈玻璃態的无定形体,熔解的玻璃經過迅速冷卻(過冷)而成形,雖為固態,但各分子因沒有足夠時間形成晶體,仍凍結在液態的分子排布狀態。 玻璃一般而言是透明、脆性、不透氣、並具一定硬度的物料。最常見的玻璃是,包括75%的二氧化硅(SiO2)、由碳酸鈉中製備的氧化鈉(Na2O)以及氧化鈣(CaO)及其他添加物。玻璃在日常环境中呈化学惰性,亦不會與生物起作用。玻璃一般不溶于酸(例外:氢氟酸与玻璃反应生成SiF4,从而导致玻璃的腐蚀);但溶于强碱,例如氫氧化銫。 因為玻璃透明的特性,因此有許多不同的應用,其中一個主要應用是作建築中的透光材料,一般是在牆上窗戶的開口安裝小片的玻璃(玻璃窗),但二十世紀的許多大樓會用玻璃為其側面的包覆,即玻璃幕牆大樓,這種現代的玻璃已經具有防破裂的能力而被廣為應用,更新款的加入防鳥類撞擊的設計。玻璃可以反射及折射光線,而且藉由切割或是拋光,可以提昇其反射或折射的能力,因此可以作透鏡、三棱鏡、其至高速傳輸用的光纖。玻璃中若加入金屬鹽類,其顏色會改變,玻璃本身也可以上色,因此可以用玻璃製作藝術品,包括著名的花窗玻璃。 玻璃雖然容易脆斷,但非常的耐用,在早期的文化遺址中都發現許多玻璃的碎片。因為玻璃可以形成或模製成任何的形狀,而且本身是無菌的,因此常用來作為容器,包括碗、花瓶、瓶子、玻璃杯,尤其成本低廉,適合大量生產。堅硬的玻璃也常作為紙鎮、彈珠等。若將玻璃嵌入有機塑料中,是複合玻璃纤维中的重要的加固材料。 在科學上,玻璃的定義較為廣泛,是指加熱到液態時會出現玻璃轉化的无定形固體。有許多材料都符合這類玻璃的條件,包括一些金屬合金、離子鹽類、水溶液及聚合物。在包括瓶子及眼鏡的許多應用中,聚合物玻璃(如壓克力、聚碳酸酯及PET)的重量較輕,可以取代傳統的矽玻璃。 玻璃在中國古代亦稱琉璃,日語漢字以硝子代表。.

新!!: 分子和玻璃 · 查看更多 »

玻璃态

玻璃态是由于物质在从液态冷却的时候由于冷却速度太快或者结晶速度太慢等动力学原因,或者由于分子自身不存在重复单元而无法形成晶体,而被冻结在液态的分子排布状态的一种形态。.

新!!: 分子和玻璃态 · 查看更多 »

玻色–爱因斯坦凝聚

玻色–爱因斯坦凝聚(Bose–Einstein condensate)是玻色子原子在冷却到接近绝对零度所呈现出的一种气态的、超流性的物质状态(物态)。1995年,麻省理工學院的沃夫岡·凱特利與科罗拉多大学鲍尔德分校的埃里克·康奈尔和卡尔·威曼使用气态的铷原子在170 nK(1.7 K)的低温下首次获得了玻色-爱因斯坦--。在这种状态下,几乎全部原子都聚集到能量最低的量子态,形成一个宏观的量子状态。.

新!!: 分子和玻色–爱因斯坦凝聚 · 查看更多 »

火(Fire)是物質燃燒過程中所進行的強烈氧化反應,而且其能量會以光和熱形式釋放,此外還會產生大量的生成物。緩慢的氧化反應,例如生锈或消化不在上述的定義中。 火的可见部分称作焰,可以隨著粒子的振動而有不同的形狀,在温度足够高时能以等离子体(第四態,類似氣體)的形式出現。依燃燒的物質及以純度不同,火焰的顏色和亮度也會不同。 火必須有可燃物、夠高的熱或溫度、氧化劑及化學物四項並存才能生火,缺一不可,根據質量守恆定律,火不會使被燃燒物的原子消失,只是通過化學反應轉變了被燃燒物的分子型態。火失控時,常常稱作失火或火災。 火是影響全球生態系統的重要因素之一,火的正面影響可以維持各種的生態系統以及刺激其成長。人類用火來烹調、生熱、產生訊號、照明及推進等。火的負面影響包括水體污染、土壤流失、空氣污染及對生命財產的危害。而造成全球溫度昇高的溫室效應,其原因之一就是來自燃燒化石燃料產生的二氧化碳。.

新!!: 分子和火 · 查看更多 »

火三角

火三角是一個簡單模型,能夠讓人知道一場火災發生所需要的成份,也是消防經常會用到的概念。 「火三角」闡明了一場火的燃燒之規律,只有齊備以下三種元素:引火源、可燃物及助燃剂(多数情况下為氧氣),一場火方能成功燃燒,缺一不可。因此只要把任何一種元素移除,這場火就能成功撲滅。在自然環境中,如果上述三種元素的比例恰當,便可產生一場火災。 當燃料用盡,火便會自行熄滅。當然,亦可以人手或化學方式將燃料與火分隔,使之熄滅。將燃料隔開是滅火的主要方法,於撲滅山林大火時此點尤其重要。 沒有足夠熱量,就不能產生火及繼續燃燒。某幾類火可以灑水澆熄,因為以水澆火,水會轉化成水蒸氣,帶走熱量。但要留意,某些火在遇水時會加劇燃燒或蔓延開去。將正在燃燒的燃料分開亦可有效降低熱量。山林大火時,已經著火的樹木會被隔開或移離火場,轉移到沒有其他可燃物的地方。.

新!!: 分子和火三角 · 查看更多 »

現代物理學

近代物理學(Modern physics)所涉及的物理學領域包括量子力學與相對論,與牛頓力學為核心的古典物理學相異。近代物理研究的對象有時小於原子或分子尺寸,用來描述微觀世界的物理現象。愛因斯坦創立的相對論經常被視為近代物理學的範疇。.

新!!: 分子和現代物理學 · 查看更多 »

球棒模型

脯氨酸的塑料球棒模型. 球棒模型(英語:Ball-and-stick models)是一種空間填充模型(space-filling model),用來表現化學分子的三維空間分佈。在此作圖方式中,線代表共價鍵,可連結以球型表示的原子中心。 最早的球棒分子模型是由德國化學家奧古斯特·威廉·馮·霍夫曼(August Wilhelm von Hofmann)所作,目的是用來講課。.

新!!: 分子和球棒模型 · 查看更多 »

理想气体状态方程

在熱力學裏,描述理想氣體宏觀物理行為的状态方程稱為理想氣體狀態方程(ideal gas equation of state)。理想气体定律表明,理想氣體狀態方程為 其中,p為理想气体的zh-hans:压强;zh-hant:壓力-,V为理想气体的体积,n為气体物质的量(通常是zh-hans:摩尔;zh-hant:莫耳-),R为理想气体常数,T為理想气体的热力学温度,K为波尔兹曼常数,N表示单位体积气体粒子数。 理想氣體方程以变量多、适用范围广而著称,對於很多種不同狀況,理想氣體狀態方程都可以正確地近似實際氣體的物理行為,包括常温常压下的空气也可以近似地适用。 理想气体定律是建立於zh-hans:玻意耳-马略特定律;zh-hant:波以耳定律-、查理定律、盖-吕萨克定律等人提出的经验定律。最先由物理學者埃米爾·克拉佩龍於1834年提出。奧格斯特·克羅尼格(August Krönig)於1856年、魯道夫·克勞修斯於1857年分別獨立地從氣體動理論推導出理想气体定律。.

新!!: 分子和理想气体状态方程 · 查看更多 »

硝化反应

硝化是向有机化合物分子中引入硝基(-NO2)的过程,硝基就是硝酸失去一个羟基形成的一价的基团。芳香族化合物硝化的反應机理為:硝酸的-OH基被質子化,接著被脫水劑脫去一分子的水形成硝酰正离子(nitronium ion,NO2+)中間體,最後和苯環行親電芳香取代反應,並脫去一分子的氫離子。 在此種的硝化反應中芳香環的電子密度會決定硝化的反應速率,當芳香環的電子密度越高,反應速率就越快。由於硝基本身為一個親電體,所以當進行一次硝化之後往往會因為芳香環電子密度下降而抑制第二次以後的硝化反應。必須要在更劇烈的反應條件(例如:高溫)或是更強的硝化劑下進行。 常用的硝化剂主要有浓硝酸、发烟硝酸、浓硝酸和浓硫酸的混酸或是脫水劑配合硝化劑。 有机化合物经硝化后颜色会加重,如果引入多个硝基,其氧化功能会非常强,因此成为爆炸性物质。如黄色炸药TNT就是甲苯经硝化生成的三硝基甲苯;苯经硝化制得产品为硝基苯,是制造染料的原料;甲烷经气相硝化得到硝基甲烷,是一种火箭燃料;纤维经硝化形成一种透明塑料-赛璐珞,最早用来制造电影胶片,后来因为极其易燃,经常引起电影院火灾,已经被淘汰。.

新!!: 分子和硝化反应 · 查看更多 »

硼酸

酸(分子式:H3BO3)是无机酸,主要用于消毒、殺蟲、防腐,在核電站控制鈾核分裂的速度,以及制取其他硼化合物。其為白色粉末或透明結晶,可溶於水;有時也會以礦物的形式存在,常存在溶解於某些礦物、火山湖水或溫泉。.

新!!: 分子和硼酸 · 查看更多 »

硼氢化铀

氢化铀(IV)是一种无机化合物,化学式为U(BH4)4,是一种绿色易挥发的固体,有放射性。.

新!!: 分子和硼氢化铀 · 查看更多 »

碰撞

“碰撞”在物理学中表现为两粒子或物体间极短的相互作用。 碰撞前后参与物发生速度,动量或能量改变。由能量转移的方式区分为弹性碰撞和非弹性碰撞。彈性碰撞是碰撞前後整個系統的動能不變的碰撞。彈性碰撞的必要條件是動能沒有轉成其他形式的能量(熱能、轉動能量),例如原子的碰撞。非弹性碰撞是碰撞后整个系统的部分动能转换成至少其中一碰撞物的内能,使整个系统的动能无法守恒。 下面示例的碰撞原理的数学表述是由克里斯蒂安·惠更斯在1651年到1655年间提出的。.

新!!: 分子和碰撞 · 查看更多 »

碱金属

碱金属是指在元素周期表中同属一族的六个金属元素:锂、钠、钾、铷、铯、钫.

新!!: 分子和碱金属 · 查看更多 »

碳的同素異形體

碳的同素異形體指的是碳元素的同素異形體,即純碳元素所能構成的各種不同的分子結構。包括了:.

新!!: 分子和碳的同素異形體 · 查看更多 »

碳酸酯

碳酸酯是碳酸(HO-C(O)-OH,H2CO3)分子中两个羟基(-OH)的氢原子部分或全部被烷基(R、R')取代后的化合物。其通式为RO-CO-OH或RO-CO-OR'。遇强酸分解为二氧化碳和醇。 碳酸酯可用作1,2-二醇和1,3-二醇的保护基。脱保护基的方法是用氢氧化钠水溶液处理。碳酸酯聚合生成聚碳酸酯,一种热塑性塑料。 此外,碳酸酯的其他用途还有:.

新!!: 分子和碳酸酯 · 查看更多 »

是卤族化学元素,化学符号是I,原子序数是53。.

新!!: 分子和碘 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 分子和磁場 · 查看更多 »

磁化学

磁化学(magnetic chemistry)是化学的分支,研究化学物质与电磁的关系。物質的磁性的產生,和原子或分子中電子的種種特性有關。 磁化學即研究分子原子中特性與磁學相關的化學問題。 Category:化学 C.

新!!: 分子和磁化学 · 查看更多 »

磁矩

磁矩是磁鐵的一種物理性質。處於外磁場的磁鐵,會感受到力矩,促使其磁矩沿外磁場的磁場線方向排列。磁矩可以用向量表示。磁鐵的磁矩方向是從磁鐵的指南極指向指北極,磁矩的大小取決於磁鐵的磁性與量值。不只是磁鐵具有磁矩,載流迴路、電子、分子或行星等等,都具有磁矩。 科學家至今尚未發現宇宙中存在有磁單極子。一般磁性物質的磁場,其泰勒展開的多極展開式,由於磁單極子項目恆等於零,第一個項目是磁偶極子項、第二個項目是磁四極子(quadrupole)項,以此类推。磁矩也分為磁偶極矩、磁四極矩等等部分。從磁矩的磁偶極矩、磁四極矩等等,可以分別計算出磁場的磁偶極子項目、磁四極子項目等等。隨著距離的增遠,磁偶極矩部分會變得越加重要,成為主要項目,因此,磁矩這術語時常用來指稱磁偶極矩。有些教科書內,磁矩的定義與磁偶極矩的定義相同。.

新!!: 分子和磁矩 · 查看更多 »

磷酸二酯鍵

磷酸二酯鍵(phosphodiester bond)也称为“3',5'-磷酸二酯键”或“磷酸双酯键”,是核酸分子中的磷酸基团的磷原子與另外兩個五碳糖分子的碳原子之間形成的共價鍵。這種形式的鍵結於DNA及RNA分子中負責將分別位於兩個核糖上的3號碳與5號碳連結起來。.

新!!: 分子和磷酸二酯鍵 · 查看更多 »

磷酸化

磷酸化(英語:Phosphorylation)或稱磷酸化作用,是指在蛋白質或其他類型分子上,加入一個磷酸(PO32-)基團,也可定義成「將一個磷酸基團導入一個有機分子」。此作用在生物化學中佔有重要地位。 蛋白質磷酸化可發生在許多種類的氨基酸(蛋白質的主要單位)上,其中以絲氨酸為多,接著是蘇氨酸。而酪氨酸則相對較少磷酸化的發生,不過由於經過磷酸化之後的酪氨酸較容易利用抗體來純化,因此酪氨酸的磷酸化作用位置也較廣為了解。 除了蛋白質以外,部分核苷酸,如三磷酸腺苷(ATP)或三磷酸鳥苷(GTP)的形成,也是經由二磷酸腺苷和二磷酸鳥苷的磷酸化而來,此過程稱為氧化磷酸化。另外在許多醣類的生化反應中(如糖解作用),也有一些步驟存在氧化磷酸化作用。.

新!!: 分子和磷酸化 · 查看更多 »

磺化

化就是在有机化合物分子中引入磺基的过程。 磺基(-SO3H)就是硫酸分子H2SO4(HO-SO2-OH)中去掉一个羥基形成的。如在苯分子中引入磺基就会形成苯磺酸。 磺化一般有两种方法:.

新!!: 分子和磺化 · 查看更多 »

神奇四俠:銀魔現身

《神奇四侠2》(Fantastic Four: Rise of the Silver Surfer)是一部于2007年上映的美国超级英雄电影,為於2005年上映的《神奇四侠》的续集。两部电影都是根据斯坦·李和杰克·科比创作的《神奇四侠》漫画改编,均由蒂姆·斯托瑞执导。几位主要演员也与前作保持一致,艾恩·古福特饰演里德·理查斯、洁西卡·艾巴扮演苏·斯通、克里斯·埃文斯出演强尼·斯通、麦克·切克里斯诠释本·格里姆,另外祖利安·麦马汉和凯丽·华盛顿也分别出演杜姆博士和阿丽茜娅·玛斯特斯。碧儿·加勒特在续集中出演弗兰基·雷伊,还有道格·琼斯扮演银色冲浪手,劳伦斯·费许朋则给后者的角色配音。剧情围绕这个新出现的银色冲浪手展开,他一开始是神奇四侠的敌人,之后成为盟友,决心一起从行星吞噬者手中拯救地球。 电影于2007年6月15日在北美上映后马上就登上了票房榜冠军的位置,一共获得了15个电影奖项提名,最终有两项获奖。与前作一样,电影在影评人中口碑不佳,虽然与前作相比有所改善,但负面评价仍然占多数。影片于2007年10月2日发行了蓝光影碟和DVD。.

新!!: 分子和神奇四俠:銀魔現身 · 查看更多 »

神经递质

经递质(neurotransmitter),有时简称“递质”或译作神经传递素,常用译名还包括神經傳導物質、神經傳達物質、脑内物质等,是在神经元、肌细胞或感受器间的化学突触中充当信使作用的特殊的机体内生的分子。神经递质在神经、肌肉和感觉系统的各个角落都有分布,是动物的正常生理功能的重要一环。截止1998年,在大脑内大约有45种不同的神经递质已被确认。.

新!!: 分子和神经递质 · 查看更多 »

禁線

禁線或禁止機制(forbidden mechanism, forbidden line)是化學上的概念,它是原子在量子力學通常的下不被接受的能量轉移發射譜線。在化學,「被禁止的」意義是在理想的對稱情況下,自然的法則下絕對不可能的。雖然這種轉換是在「技術上被禁止的」,但它們自然發生的機率並不是零。如果原子或分子被激發至受激狀態,雖然蛻變概率是極端的低,但是原子或分子仍然可能做一個允許的躍遷,經由其它另行激發狀態,進入較低的能階,而它幾乎一定會這樣做。 禁线是禁戒跃迁(Forbidden Transition)产生的谱线。禁戒跃迁是指跃迁概率很小的跃迁。通常的谱线是由偶极辐射产生,这是服从选择定则的。但四极辐射和磁偶极辐射不是绝对服从选择定则的,在适当条件下虽然违背选择定则,但也可以观察到这种跃迁,即为禁戒跃迁。相应的谱线即为禁线。.

新!!: 分子和禁線 · 查看更多 »

福井谦一

福井谦一(,)日本理论化学家,美国科学院外籍院士,欧洲艺术科学文学院院士。文化勳章、勳一等旭日大綬章表彰。文化功勞者。贈從二位。 福井教授由于在1951年提出直观化的前线轨道理论,因而於1981年成為亞洲首位诺贝尔化学奖得主、第6位日本人諾貝爾獎得主。.

新!!: 分子和福井谦一 · 查看更多 »

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

新!!: 分子和离子 · 查看更多 »

离子阱

离子阱,又称离子陷阱,是一种利用电场或磁场将离子(即带电原子或分子)俘获和囚禁在一定范围内的装置,离子的囚禁在真空中实现,离子与装置表面不接触。应用最多的离子阱有“保罗离子阱”(即四极离子阱,沃尔夫冈·保罗)和彭宁离子阱。 离子阱可以应用于实现量子计算机。传统计算机以电位的高低表示位元0和1,而量子计算机以粒子的量子力学状态,如原子的自旋方向等表示0和1,称为“量子位元”。离子阱利用电极产生电场,将经过超冷处理的离子囚禁在电场里,实现量子位元。 L L Category:离子 Category:质谱.

新!!: 分子和离子阱 · 查看更多 »

离子晶体

离子晶体指的是内部的离子由离子键互相结合的固态物质。.

新!!: 分子和离子晶体 · 查看更多 »

科学可视化

. at wci.llnl.gov.

新!!: 分子和科学可视化 · 查看更多 »

科学大纲

以下大綱是科學的主題概述: 科学(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.

新!!: 分子和科学大纲 · 查看更多 »

科學素養

科學素養(Scientific Literacy)表示拥有基本的语言学习和表达能力,能理解科学观念,了解科学研究过程和方法,能运用科学解释身边的事情,建立与评价有证据基础的论证,并恰当地运用结论来引领自己的行为。它包含運用書寫、數值與資訊等能力來理解科學方法、觀測與理論。.

新!!: 分子和科學素養 · 查看更多 »

稀有气体

--、鈍氣、高貴氣體,是指元素周期表上的18族元素(IUPAC新规定,即原来的0族)。它们性质相似,在常温常压下都是无色无味的单原子气体,很难进行化学反应。天然存在的稀有气体有六种,即氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)和具放射性的氡(Rn)。而人工合成的Og原子核非常不稳定,半衰期很短。根据元素周期律,估计Og比氡更活泼。不過,理论计算显示,它可能会非常活泼,并不一定能称为稀有气体;根據預測,同為第七週期的碳族元素鈇反而能表現出稀有氣體的性質。 稀有气体的特性可以用现代的原子结构理论来解释:它们的最外电子层的电子已「满」(即已达成八隅体状态),所以它们非常稳定,极少进行化学反应,至今只成功制备出几百种稀有气体化合物。每种稀有气体的熔点和沸点十分接近,温度差距小于10 °C(18 °F),因此它们仅在很小的温度范围内以液态存在。 经气体液化和分馏方法可从空气中获得氖、氩、氪和氙,而氦气通常提取自天然气,氡气则通常由镭化合物经放射性衰变后分离出来。稀有气体在工业方面主要应用在照明设备、焊接和太空探测。氦也会应用在深海潜水。如潜水深度大于55米,潜水员所用的压缩空气瓶内的氮要被氦代替,以避免氧中毒及氮麻醉的徵状。另一方面,由于氢气非常不稳定,容易燃烧和爆炸,现今的飞艇及气球都采用氦气替代氢气。.

新!!: 分子和稀有气体 · 查看更多 »

穹窿体

穹窿体是一种存在于真核细胞中的细胞器,也是一种核糖核蛋白分子。该细胞器的功能尚不明晰。 通过电子显微镜可观察到穹窿体呈对称的穹窿状,各侧皆具有39褶结构。穹窿体出现在各种真核细胞并表现出高度的保守性。穹窿体一般悬浮于细胞质基质中,但也可以成在参与对抗病原体时成为脂质筏的一部分。.

新!!: 分子和穹窿体 · 查看更多 »

空气簇射

气簇射(Air shower):宇宙射线进入大气层,与大气中的分子多次碰撞,相互作用后,产生许多游离的粒子和电磁辐射;在许多公里范围内出现彩色的射束;这种现象称为空气簇射。 这是天文学家布鲁诺·罗西于1930年末观察宇宙射线时发现的。 宇宙射线中包含各种粒子,如:质子、核、电子、光子、正电子等,以及电磁辐射。它们冲击空气中的分子,产生许多带能量的不稳定正子,衰变成其它的粒子和电磁辐射。 它们是空气簇射中的部分成份。宇宙射线和空气分子碰撞后,主要产生介子;也有K介子。它们是不稳定的,不久就衰变为其它粒子。其中的中性介子衰变为光子;光子和空气相互作用而产生电磁波和更多的光子和正子;这就是空气簇射彩色光的成因。 直到现在,超高能(>10^18 eV)宇宙射线的本质和来源仍然是个谜。 天体物理学者計劃测量广泛空气簇射的深度、二次发射粒子的数目、入射粒子的质量和能量的关系,来得到超高宇宙射线成分的知识。 皮埃尔和欧捷合作测量了从超高能宇宙射线而来的广泛空气簇射数据,得出能量在10的19次方eV范围的宇宙射线的平均质量是渐渐增大的。.

新!!: 分子和空气簇射 · 查看更多 »

竞争

争是一种广泛人存在的现象,是许多学科的研究对象。生物学的竞争是生物之間的關係之一。.

新!!: 分子和竞争 · 查看更多 »

立体效应

立体效应,理论有机化学的重要概念之一。简单来说,立体效应是由于分子本身各个官能团客观上占据了一定的空间大小,由此产生的诸多影响,称为立体效应。.

新!!: 分子和立体效应 · 查看更多 »

笼效应

效应(英文:cage effect);是指无论固体,液体或稠密气体的一个原子或分子,受不同的四周原(分)子包围,其性能如何受环境影晌的效应。例如:1.在凝聚态相或稠密气体中,反应物分子聚在一起,它们被周围分子包围,受到许多碰撞。2.分子解离,不能很快离开,因为有其它分子阻挡,结果,解离可发生重组合;3.在溶剂笼内的分子,偶然跳出笼,并遇上另一分子而发生反应。.

新!!: 分子和笼效应 · 查看更多 »

等电子体

等电子体是指具有相同价电子数并且具有相同结构的微粒,可以是原子,分子或离子。.

新!!: 分子和等电子体 · 查看更多 »

等电点

等电点是一个分子或者表面不带电荷时的pH值。 被称为两性离子的兩性分子同时含有带正电荷和负电荷的官能团。整个分子的总电荷则由其周围环境的pH值决定,根据pH值的不同整个分子可能带正电荷,也可能带负电荷。其原因是因为这样的分子在不同的pH值环境中可能会吸收或者丧失質子(H+)。在pH值等于等电点时这样的分子所带的正电荷和负电荷互相抵消,使得整个分子不带电。 表面也会自然地带电荷形成固定層。一般假如决定表面电荷的离子是H+/OH−的话那么表面浸入的液体的pH值也会决定表面的总电荷。在这里等电点也是表面总电荷为零时的pH值。 等电点会影响一定pH值下的溶解度。两性分子在水或盐水中在其等电点的溶解度最低,一般会在等电点时从溶液裡沉淀出来。生物两性分子如蛋白质即含有酸性的,也含有碱性的官能团。组成蛋白质的氨基酸可能是带正电荷的、带负电荷的、中性的或者本身是两性的。它们的电荷加在一起是蛋白质的电荷。pH值小于等电点时蛋白质的总电荷是正的,大于等电点时是负的。因此使用等电聚焦的技术可以在聚丙烯酰胺凝胶裡根据蛋白质不同的等电点把它们分离开来。等电聚焦也是双向凝胶电泳的第一步。.

新!!: 分子和等电点 · 查看更多 »

等電位聚焦

等电位聚焦(Isoelectric focusing)是一种根据分子携带的电荷不同来分离分子的技术。等电位聚集通常在凝胶中进行。 分子会被集中在一个具有pH梯度的介质中,通过介质的电流将产生带正电荷的氧化极和带负电荷的还原极。带电分子会向相反电荷的一极运动,直到到周围pH值与其等电点相同时带电分子才停止在凝胶中运动。介质中的pH值梯度通常用脂肪族两性离子产生,这些药品需要在样品加入之前加入。.

新!!: 分子和等電位聚焦 · 查看更多 »

等温过程

等温过程(Isothermal process)是热力学过程的一种,其中系统的温度不变:ΔT.

新!!: 分子和等温过程 · 查看更多 »

简化分子线性输入规范

化分子线性输入规范(Simplified molecular input line entry specification,簡稱SMILES),是一种用ASCII字符串明确描述分子结构的规范。SMILES由Arthur Weininger和David Weininger于20世纪80年代晚期开发,并由其他人,尤其是日光化学信息系统有限公司(Daylight Chemical Information Systems Inc.),修改和扩展。 由于SMILES用一串字符来描述一个三维化学结构,它必然要将化学结构转化成一个生成树,此系统采用纵向优先遍历树算法。转化时,先要去掉氢,还要把环打开。表示时,被拆掉的键端的原子要用数字标记,支链写在小括号里。 SMILES字符串可以被大多数分子编辑软件导入并转换成二维图形或分子的三维模型。转换成二维图形可以使用Helson的“结构图生成算法”(Structure Diagram Generation algorithms)。.

新!!: 分子和简化分子线性输入规范 · 查看更多 »

简正坐标

正坐标又叫做正则坐标,是用来描述和计算分子内部运动的一个坐标体系。.

新!!: 分子和简正坐标 · 查看更多 »

米勒-尤里实验

米勒-尤里實驗(Miller-Urey experiment)是一項模擬假設性早期地球環境的實驗,研究目的是測試化學演化的發生情況。尤其是針對亞歷山大·歐帕林(Alexander Oparin)與约翰·伯顿·桑驗,該學說認為早期地球環境使無機物合成有機化合物的反應較易發生。 米勒-尤里實驗是關於生命起源的經典實驗之一,由芝加哥大學的史丹利·米勒與哈羅德·尤里於1953年主導完成,其結果以《在可能的早期地球環境下之胺基酸生成》(A Production of Amino Acids Under Possible Primitive Earth Conditions)為題發表。米勒实验对后来探索前生物分子的非生物合成具有相当大的启发性,至今依然是教科书中关于生命起源的经典实验。.

新!!: 分子和米勒-尤里实验 · 查看更多 »

精油

精油(essential oil)是一种芳香物质,一般是從植物中萃取出來的芳香分子,为香水、調味料、化妆品等工业的重要产品,以及芳香療法(aromatherapy)的主要原料。精油通常使用水蒸气蒸馏。其他方法包含、溶劑提取、樹脂提取、冷壓。其使用於香水、化妝品、肥皂、家中清潔用品和其他產品,用於調整食物或飲料的氣味。.

新!!: 分子和精油 · 查看更多 »

粒子加速器

粒子加速器(particle accelerator)是利用電場來推動帶電粒子使之獲得高能量。日常生活中常見的粒子加速器有用於電視的陰極射線管及X光管等設施。只有当被加速的粒子置於抽真空的管中时,才不會被空氣中的分子所撞擊而潰散。在高能加速器裡的粒子由四極磁鐵(quadrupole magnet)聚焦成束,使粒子不會因為彼此間產生的排斥力而散開。 粒子加速器有兩種基本型式,環形加速器和直線加速器。.

新!!: 分子和粒子加速器 · 查看更多 »

粒子列表

这是一份粒子物理学的粒子清单,包括已知的和假设的基本粒子,以及由它们合成的复合粒子。.

新!!: 分子和粒子列表 · 查看更多 »

糖化

醣化(glycation)是在不受酶的控制下,蛋白質或脂質分子上附加糖類分子(如果糖或葡萄糖)的過程。所有的血糖都是还原性分子。非酶糖基化可发生在体内(endogenous glycation),也可以发生在体外(exogenous glycation)。在酶控制下的蛋白質或脂質上附加糖類的過程称为糖基化(glycosylation)。非酶糖基化是一个随机性的过程,会損害生物分子的功能。而糖基化则发生在靶分子的指定部位,是使分子产生活性的必需过程。 有关果糖的非酶糖基化的早期研究所采用的分析技术不够准确,导致果糖对非酶糖基化的重要性受到了严重低估。.

新!!: 分子和糖化 · 查看更多 »

紫外-可见分光光度法

紫外-可见分光光度法(Ultraviolet–visible spectroscopy,UV-Vis),又称紫外-可见分子吸收光谱法,是以紫外线-可见光区域电磁波连续光谱作为光源照射样品,研究物质分子对光吸收的相对强度的方法。通过分子紫外-可见分子吸收光谱法的分析可以进行定性分析,并可依据朗伯-比尔定律进行定量分析。曾元儿, 张凌.

新!!: 分子和紫外-可见分光光度法 · 查看更多 »

累积二烯烃

累积二烯烃也称为“聚集二烯烃”或“连烯烃”是分子中含有一对相邻碳碳双键(即有一个碳原子通过两个双键与相邻两个碳原子连接)的一类二烯烃。分子中具有超过一对相邻碳碳双键(累积双键)的烯烃则称为“累积多烯烃”。 最简单的累积二烯烃是丙二烯。虽然丙二烯等累积二烯烃是稳定的,但大多数的累积二烯烃皆很不稳定。由它们与氯气等化学物质反应可见,累积二烯烃的活泼程度比一般的烯烃更强,与炔烃相近。因为累积二烯烃具有不稳定性,所以其存在与应用均不甚普遍,现主要用于立体化学方面的研究。 此类二烯烃中,C-C-C键角为180°,两个π键和四个取代基在空间上处于正交,中心碳原子为sp杂化。类似的正交π键出现在烯酮中。 特定的催化剂(如威尔金森催化剂)可使丙二烯的一个双键被还原,另一个不受影响。 累积二烯烃的合成方法有:.

新!!: 分子和累积二烯烃 · 查看更多 »

經典物理學

-- 經典物理學所涉及的物理學領域通常是一些在量子力學與相對論之前發展出來的理論。經典物理學所概括的精確範圍必須依上下文而定。當研討狹義相對論時,經典物理學指的是在相對論之前的牛頓物理,也就是說,以在相對論與量子力學之前所發展出來的理論為基礎的物理學。當研討廣義相對論時,經典物理學指的是將狹義相對論納入考量後的牛頓物理。當研討量子力學時,它指的是包括狹義相對論與廣義相對論在內的非量子物理。換句話說,它指的是在所研討的物理領域之前形成的物理學。.

新!!: 分子和經典物理學 · 查看更多 »

經典物理術語

這一篇詞彙收集了經典物理內所有最常用的術語,並且簡單地表述了它們的定義。.

新!!: 分子和經典物理術語 · 查看更多 »

線粒體

--(mitochondrion)是一种存在于大多数真核细胞中的由两层膜包被的细胞器,直径在0.5到10微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。这种细胞器拥有自身的遗传物质和遗传体系,但因其基因组大小有限,所以线粒体是一种半自主细胞器。线粒体是细胞内氧化磷酸化和合成三磷酸腺苷(ATP)的主要场所,为细胞的活动提供了化学能量,所以有“細胞的發電站”(the powerhouse of the cell)之称。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 英文中的“线粒体”(mitochondrion,复数形式为“mitochondria”)一词是由希腊语中的“线”(“μίτος”或“mitos”)和“颗粒”(“χονδρίον”或“chondrion”)组合而成的。在“线粒体”这一名称出现前后,“粒体”“球状体”等众多名字曾先后或同时被使用。这些现在已不再继续使用的名称包括:blepharoblast、condriokont、chondriomite、chondrioplast、chondriosome、chondrioshere、filum、fuchsinophilic granule、interstitial body、körner、fädenkörner、mitogel、parabasal body、plasmasome、plastochondria、plastome、sphereoplast和vermicle等(按首字母在英文字母表中的顺序排列),其中“chondriosome”(可译为“颗粒体”)直至1982年仍见诸欧洲各国的科学文献。.

新!!: 分子和線粒體 · 查看更多 »

縮合反應

縮合反應(condensation reaction)是化學反應的一種,當中兩個分子透過官能團的變化結合成一個新的分子,過程中有細小的分子失去。如所失去的小分子為水,這個過程則稱作脫水反應。其他常見的小分子包括氯化氫、甲醇或乙酸等。 當兩個獨立的分子反應,這縮合反應屬於分子間的。一個簡單的例子就如兩個氨基酸透過形成肽鍵而結合成二肽,並透過不斷重複這一步驟形成多肽及蛋白質。與脫水反應相反的反應就是水解反應,當中水分子以氫氧離子及氫離子的形式與反應物反應,並使目標反應物分解。 如結合的過程中均由同一分子的原子或官能團參與,這縮合反應就屬於分子內的,而這類反應常導致環的生成。其中一個例子為狄克曼缩合反应,當中一個二酯分子的兩個酯官能團互相反應,透過失去一個醇分子而生成β-酮酯。.

新!!: 分子和縮合反應 · 查看更多 »

纳米颗粒

纳米颗粒(nanoparticle),指纳米量级的微观颗粒。它被定义为至少在一个维度上小于100纳米的颗粒。小于10纳米的半导体纳米颗粒,由于其电子能级量子化,又被称为量子点。 纳米颗粒具有重要的科学研究价值,它搭起了大块物质和原子、分子之间的桥梁。大块物质的物理性质通常与大小无关,但是在纳米尺寸上却通常并非如此。一些和尺寸相关的物理性质被观测到,例如:半导体纳米颗粒的量子束缚,一些金属纳米颗粒的表面胞质共振(surface plasmon resonance),磁性材料的超顺磁性。 类固体和软的纳米颗粒也被制造出来。脂质体是典型的具有类固体特性的纳米颗粒。 由于在生物医学,光学和电子等领域有多种潜在的应用,纳米颗粒研究目前是有强烈科学兴趣的领域。.

新!!: 分子和纳米颗粒 · 查看更多 »

纳米技术

納米技术(Nanotechnology)是一门应用科学,其目的在于研究于奈米规模时,物质和设备的设计方法、组成、特性以及应用。奈米科技是许多如生物、物理、化学等科学领域在技术上的次级分类,美国将其定义为「1至100奈米尺寸尤其是现存科技在奈米规模时的延伸」。奈米科技的世界为原子、分子、高分子、量子点集合,并且被表面效应所掌控,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲水性和量子穿隧效应等,而惯性和湍流等巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化学等以表面为主的科学新的可能性。 微小性的持续探究使得新的工具诞生,如原子力显微镜和扫描隧道显微镜等。结合如电子束微影之类的精确程序,这些设备将使我们可以精密地运作并生成奈米结构。奈米材质,不论是由上至下制成(将块材缩至奈米尺度,主要方法是从块材开始通过切割、蚀刻、研磨等办法得到尽可能小的形状(比如超精度加工,难度在于得到的微小结构必须精确)。或由下至上制成(由一颗颗原子或分子来组成较大的结构,主要办法有化学合成,自组装和定点组装(positional assembly)。难度在于宏观上要达到高效稳定的质量,都不只是进一步的微小化而已。物体内电子的能量量子化也开始对材质的性质有影响,称为量子尺度效应,描述物质内电子在尺度剧减后的物理性质。这一效应不是因为尺度由巨观变成微观而产生的,但它确实在奈米尺度时占了很重要的地位。 纳米科技的神奇之处在于物质在纳米尺度下所拥有的量子和表面现象,因此可以有许多重要的应用,也可以制造许多有趣的材质。.

新!!: 分子和纳米技术 · 查看更多 »

纳机电系统

奈机电系统(Nanoelectromechanical systems,简称NEMS)与 微機電系統(MEMS)概念相似,不过尺度更小。他们承诺具有革命性的能力去测量小到分子尺度的位移和力,并且与纳米科技密切相关。 有两种研究途径被研究者视为标准的NEMS研究方法。一种方法,自上而下,可以总结为“用一套工具来制作一套更小的工具”。例如,一个用毫米量级的工厂制作出来微米量级的工具,可以用来制作纳米量级的器械。另一种方法自下而上,可以被认为是组装原子和分子,使之达到期间所要求的复杂度和功能。这种过程可能用到自組裝或分子生物系统。 category:纳米技术 Category:纳米电子学.

新!!: 分子和纳机电系统 · 查看更多 »

线粒体基质

線粒體基质是線粒體中由線粒體内膜包裹的内部空间,其中充满无定形液体,含有参与三羧酸循环、脂肪酸氧化、氨基酸降解等生化反应的酶类。其中,苹果酸脱氢酶是线粒体基质的标志酶。线粒體基质中的某些酶系组成网状结构,与线粒體内膜内侧有一定的连接,利于上述酶促反应所形成的NADH转移至内膜的电子传递链中。除各种可溶性酶外,線粒體基质还含有线粒体自身的DNA(即线粒體DNA)和核糖体(粒線體核糖体)。 线粒體基质中每1μL的水溶解了约1.25mg的蛋白质,而细胞质基质中每1μL的水溶解了约0.26mg蛋白质,所以线粒體体基质较细胞质基质黏稠。虽然已知线粒体内膜含有可调节水分子转运的水通道蛋白,线粒体维持内膜两侧的渗透平衡的方式仍不明晰。.

新!!: 分子和线粒体基质 · 查看更多 »

线粒体外膜

线粒体外膜(outer mitochondrial membrane,缩写为“OMM”)是位于线粒体最外围的一层全封闭的单位膜,是该细胞器的界膜。线粒体外膜厚度约为6-7nm,较线粒体内膜平整光滑。线粒体外膜中磷脂与蛋白质各自的总质量几乎相等,两者比例约为0.9:1(其中心磷脂与磷脂的质量比约为0.03:0.97),与真核细胞细胞膜的同一比例相近。线粒体外膜中的标志酶是单胺氧化酶,这种酶能阻止胺神经递质(如降肾上腺素和多巴胺)的作用。.

新!!: 分子和线粒体外膜 · 查看更多 »

线粒体膜转运蛋白

线粒体膜转运蛋白质一般简称为“线粒体膜转运蛋白”,是位于线粒体膜中的蛋白质的统称。这些转运蛋白被用于转运各种分子和离子进出线粒体。它们以通过调节离子等化学物质在线粒体膜两侧的浓度来维持线粒体膜两侧正常的电化学梯度。线粒体膜转运蛋白包括:.

新!!: 分子和线粒体膜转运蛋白 · 查看更多 »

线粒体膜间隙

线粒体膜间隙(Intermembrane space of mitochondria)也称为“线粒体膜间间隙”,是线粒体外膜与线粒体内膜之间的空隙,宽约6-8nm,其中充满无定形液体。由于线粒体外膜含有孔蛋白,通透性较高,而线粒体内膜通透性较低,所以线粒体膜间隙内容物的组成与细胞质基质十分接近,含有众多生化反应底物、可溶性的酶和辅助因子等。由于蛋白质不能穿过孔蛋白,所以它们必须以一段特定的信号序列以供识别并转运进膜间隙,细胞色素''c''正是以这种方式进入膜间隙的。线粒体膜间隙中还含有比细胞质基质中浓度更高的腺苷酸激酶、单磷酸激酶和二磷酸激酶等激酶,其中腺苷酸激酶是线粒体膜间隙的标志酶,它可以催化膜间隙中三磷酸腺苷(adenosine triphosphate,简称“ATP”)分子末端的磷酸基团转移到单磷酸腺苷(adenosine monophosphate,简称“AMP”)分子上,生成两分子的二磷酸腺苷 (adenosine diphosphate,简称“ADP”)。 线粒体膜间隙中存在的蛋白质称为“线粒体膜间隙蛋白质”,这些蛋白质全部在细胞质基质中合成。有研究指出,线粒体膜间隙蛋白质在诱导癌细胞凋亡中具有重要作用。.

新!!: 分子和线粒体膜间隙 · 查看更多 »

线粒体核糖体

线粒体核糖体是存在于真核细胞线粒体内的一种核糖体,负责完成线粒体这种细胞器中进行的翻译过程。线粒体核糖体的沉降系数介干55S-56S之间,是已发现的沉降系数最小的核糖体。 不同生物的线粒体核糖体在组成与物理化学性质等方面的差异均比细胞质核糖体的大。.

新!!: 分子和线粒体核糖体 · 查看更多 »

线粒体拟核

线粒体拟核(mitochondrial nucleoid)是一种存在于线粒体内类似原核细胞的拟核的结构,是由线粒体DNA(mtDNA)和多种蛋白质组成的核蛋白复合物。线粒体拟核一般呈颗粒状分布于线粒体基质的特定位置,并经某些蛋白质锚定在线粒体内膜内侧表面上。线粒体拟核能直接或间接地与驱动蛋白进行相互作用,在线粒体分裂中作为mtDNA分离的基本单位。 目前已在多种真菌、植物和哺乳动物的线粒体中发现了拟核,说明该结构可能是真核细胞内mtDNA的普遍存在形式。 线粒体拟核的密度远高于间期的细胞核,甚至高于细胞分裂中期的染色体。这说明mtDNA必须进行压缩折叠才能装配成紧凑的拟核。以酵母菌为例,根据生理状态的不同,单个酵母菌中可含有10-40个线粒体拟核,平均每个拟核中则可含有1-2个mtDNA分子。酿酒酵母线粒体拟核的直径约为400nm,远小于松弛状态下长约25μm(80kb)的mtDNA。酿酒酵母中执行装配拟核功能的是线粒体DNA结合蛋白Abf2(ARS-binding factor 2),该蛋白能将mtDNA进行压缩而不影响mtDNA基因的转录。哺乳动物线粒体拟核的形态和分布与酿酒酵母中的相似:在人的ECV304细胞中,mtDNA组成约475个拟核,不连续地分布于线粒体中, 每个拟核含6-10个mtDNA。.

新!!: 分子和线粒体拟核 · 查看更多 »

线性二色性

线性二色性(Linear dichroism,简称LD)是主要用于研究分子功能和结构的光谱技术。LD可以通过平行或垂直于一个取向方向轴的光吸收的差异测得。LD的测量基于光和物质之间的相互作用,是电磁光谱的一种形式,如今主要应用在研究生物高分子(如DNA)及人工合成的聚合物方面。.

新!!: 分子和线性二色性 · 查看更多 »

统计力学

统计力学(Statistical mechanics)是一個以波茲曼等人提出以最大熵度理論為基礎,藉由配分函數 將有大量組成成分(通常為分子)系統中微觀物理狀態(例如:動能、位能)與宏觀物理量統計規律 (例如:壓力、體積、溫度、熱力學函數、狀態方程式等)連結起來的科学。如氣體分子系統中的壓力、體積、溫度。易辛模型中磁性物質系統的總磁矩、相變溫度、和相變指數。 通常可分為平衡態統計力學,與非平衡態統計力學。其中以平衡態統計力學的成果較為完整,而非平衡態統計力學至今也在發展中。統計物理其中有許多理論影響著其他的學門,如資訊理論中的資訊熵。化學中的化學反應、耗散結構。和發展中的經濟物理學這些學門當中都可看出統計力學研究線性與非線性等複雜系統中的成果。.

新!!: 分子和统计力学 · 查看更多 »

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

新!!: 分子和经典力学 · 查看更多 »

绝对零度

絕對零度(absolute zero)是熱力學的最低溫度,是粒子动能低到量子力学最低点时物质的温度。绝对零度是僅存於理論的下限值,其熱力學溫標寫成K,等於攝氏溫標零下273.15度(即−273.15℃)。 物質的溫度取決於其內原子、分子等粒子的動能。根據麥克斯韋-玻爾茲曼分佈,粒子動能越高,物質溫度就越高。理論上,若粒子動能低到量子力學的最低點時,物質即達到絕對零度,不能再低。然而,根據熱力學第二定律,絕對零度永遠無法達到,只可無限逼近。因為任何空間必然存有能量和熱量,也不斷進行相互轉換而不消失。所以絕對零度是不存在的,除非該空間自始即無任何能量熱量。在此一空間,所有物質完全沒有粒子振動,其總體積並且為零。 有關物質接近絕對零度時的行為,可初步觀察。定義如下: 其中h為普朗克常數、m為粒子的質量、k為波茲曼常數、T為絕對溫度。可見熱德布洛伊波長與絕對溫度的平方根成反比,因此當溫度很低的時候,粒子物質波的波長很長,粒子與粒子之間的物質波有很大的重疊,因此量子力學的效應就會變得很明顯。著名的現象之一就是在1995年首次被實驗證實的玻色-愛因斯坦凝聚,當時溫度降至只有1.7×10-7 K。.

新!!: 分子和绝对零度 · 查看更多 »

结构化学

结构化学是研究原子、分子和晶体结构以及结构与性能之间关系的学科。近几十年,这门学科获得迅速发展,结构化学观点不仅渗透到化学各个分支学科领域,同时在生物、材料、矿冶、地质等技术科学中也得到应用。 Category:物理化学.

新!!: 分子和结构化学 · 查看更多 »

结构模体

结构模体(structural motif,亦称为结构基序)是链状生物分子(如蛋白质或核酸)中的一种超二级结构,也存在于其它分子之中。结构模体使得我们无法预测蛋白的生物学功能:存在于蛋白质与酶中的模体可能功能迥异。 因为一级结构和三级结构之间的关系并不简单直接,两个生物聚合物可以共享同一个模体又缺乏明显的一级结构的相似性。换言之,一个结构模体不必要具有与一个相关。另外,的存在并不一定意味着一个独特的结构。例如,在大多数DNA模体中,假设该序列的DNA不从正常的“双螺旋”结构偏离。.

新!!: 分子和结构模体 · 查看更多 »

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

新!!: 分子和细胞 · 查看更多 »

细胞生物学

细胞生物学(cell biology)舊稱细胞学(cytology),是研究细胞的形态结构、生理機能、細胞週期,细胞分裂, 细胞凋亡, 以及各種胞器及訊息傳遞路徑的学科。研究範圍專注在生物學的微觀下與分子層次。細胞生物學研究包括極大的多樣性的單細胞生物,如細菌和原生動物,以及在多細胞生物如人類,植物,和海綿的許多專門的細胞。 细胞生物学在显微、亚显微和分子水平三个层次上进行研究,并不断向探究细胞与细胞间、细胞与细胞外界相互作用等领域拓展,向探究细胞增殖、分裂、死亡等生命活动内在规律纵深。从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。 細胞是生命的基本單位,細胞的特殊性決定了個體的特殊性,因此,對細胞的深入研究是揭開生命奧秘、改造生命和征服疾病的關鍵。細胞生物學已經成為當代生物科學中發展最快的一門尖端學科,是生物、農學、醫學、畜牧、水產和許多生物相關專業的一門必修課程。 50年代以來諾貝爾生理與醫學獎大都授予了從事細胞生物學研究的科學家。 細胞生物學是研究細胞結構、功能及生活史的一門科學。細胞生物學由细胞学(cytology)發展而來,细胞学是關於細胞結構與功能(特別是染色體)的研究。現代細胞生物學從顯微水平,超微水平和分子水平等不同層次研究細胞的結構、功能及生命活動。 對於所有的生物科學,了解細胞的成分和細胞是如何工作是至關重要的。賞析細胞類型之間的異同,對於細胞和分子生物學領域以及生物醫學領域,如和發育生物學尤為重要。這些基本的相似性和差異提供了一個統一的主題,有時允許從研究一種細胞類型學到的原則進行外推並推廣到其他類型的細胞。因此,細胞生物學的研究和以下學科密切相關:遺傳學,生物化學,分子生物學,免疫學和發育生物學。.

新!!: 分子和细胞生物学 · 查看更多 »

缩合聚合物

縮合聚合物泛指所有經縮合反應生成的聚合物。在聚合過程中有小分子如水、甲醛及氯等物質離開聚合物鏈。與其相對的則為由不飽和烴透過沒有單體損失的加成反應生成的加成聚合物。澱粉、纖維素、胜肽等是自然界常見的縮合聚合物,而尼龍、尿素甲醛樹脂等則為常見縮合聚合物的例子。.

新!!: 分子和缩合聚合物 · 查看更多 »

缺电子分子

缺电子分子或缺電子化合物,指分子中的价电子数少于其形成正常共价键所需电子数的化合物。 例如:.

新!!: 分子和缺电子分子 · 查看更多 »

群体感应

群聚感應()是一種與族群密度有相互關係的刺激和反應的系統。許多細菌會透過群聚感應,根據其族群規模來調節基因的表現。有些社會性昆蟲也會使用和群聚感應的相似方法,決定要在何處建立巢穴。群聚感應除了可以在生態系統當中發揮作用之外,在電腦運算或是機器人的發展上,亦是一項可以應用的技術。 群聚感應可以當作任何中的決策過程,只要獨立個體有(1)一種方法可評估他們所接觸到的個體的數量和 (2)一旦達到特定閾值的個體所被偵測之後的普遍反應.

新!!: 分子和群体感应 · 查看更多 »

群速度

波的群速度(group velocity),或簡稱群速,是指波振幅外形上的變化(稱為波的「調變」或「波包」)在空間中所傳遞的速度。想象一下我们将一块石头投入一个平静的池塘中激起一个波浪,随即变成一个中心平静呈环形扩展的波环。这个正在扩展的波环为一组由不同传播速度的独立子波组成。波长较长的子波传播速度较快并消失在整组波的前缘。波长较短传播较慢的波随着整组波内缘的推进而消失。.

新!!: 分子和群速度 · 查看更多 »

羧酸酯

羧酸酯,屬於有機化合物,由醇類和羧酸經酯化反應製得。多帶有香味,但亦有一些種類有刺激性,常被用於香精和香料,亦或有殺菌用途。.

新!!: 分子和羧酸酯 · 查看更多 »

羅塞塔號

羅塞塔號(Rosetta)是歐洲太空總署組織的機器人空间探测器計劃,研究67P/楚留莫夫-格拉希门克彗星。2004年3月2日在蓋亞那太空中心發射,10年8個多月後進入彗星軌道,隨後其所攜帶的菲萊登陸器則於2014年11月12日在彗星上著陸。在2014年8月6日它接近到彗星約的距離,並降低其相對速度為,從而成為意圖會合彗星而進入其軌道的第一個航天器。經過進一步的機動,計劃是接近到後和大約6週後進入軌道。它是歐洲太空總署基礎任務的一部分,和它是被設計成既軌道環繞彗星又登陸彗星的第一個任務。 羅塞塔號于2004年3月2日格林威治時間07:17由亞利安五號運載火箭發射,在2014年8月6日到達彗星。羅塞塔號由兩個主要部件組成:羅塞塔探測器,其中帶有12個儀器,及菲萊登陸器,其中帶有另外的9個儀器。羅塞塔號的任務將軌道環繞67P/楚留莫夫-格拉希门克彗星17個月,並且被設計來完成對於彗星有史以來嘗試的最詳細的一個研究。任務是被從在德國達姆施塔特的歐洲太空運營中心(ESOC)控制。 探測器以羅塞塔石碑為命名,希望此任務能幫助解開行星形成前的太陽系的謎。而登陸器以尼羅河中小島的名字菲萊命名,有一塊方尖碑在那裡被發現且協助解讀羅塞塔石碑。對羅塞塔石碑和方尖碑的象形文字的比較,催化埃及的書寫系統的解密。同樣,人們希望這些飛船將導致更好的理解彗星和早期太陽系。 在它飛向彗星的途中,飛船已經完成2小行星的飛掠任務。在2007年,罗塞塔号还进行了火星重力助推变轨(飞越)。 罗塞塔号的菲莱登陆器于2014年11月12日在彗星上登陆,就是67P/楚留莫夫-格拉希门克彗星,成为有史以来第一个在彗星上的成功受控登陆的探测器。天体物理学家伊丽莎白·皮尔逊说,虽然菲莱登陆器的未来是不确定的,但是轨道器罗塞塔号是任务的主力,并且它的工作将继续。.

新!!: 分子和羅塞塔號 · 查看更多 »

真空蒸馏

真空蒸馏是一种使待分离液体上方压强小于其蒸汽压的蒸馏方法。这种方法适用于蒸汽压大于环境压力的液体。由于待分离液体沸点降低,真空蒸馏不一定需要加热。.

新!!: 分子和真空蒸馏 · 查看更多 »

热力学温度

热力学温度是温度的绝对测量量,是热力学的主要参数之一。 热力学温度由热力学第二定律定义,理论最低温度为零点。在称为绝对零度该点上,物质的粒子构成具有最小运动。在量子力学的描述中,绝对零度下的物质处于其基态,该状态下其能量最低。热力学温度因此也常被称为绝对温度。 国际单位制指定热力学温标为热力学温度的计量标度,并选择水的三相点273.16K作为基点。历史上一直在使用其他标准。使用华氏度作为单位间隔的朗肯温标,在美国的某些工程领域仍然用作英制工程单位的一部分。ITS-90给出了一个以非常高的精确度估计热力学温度的实用方法。 大体上,体静止时的温度是一种计量物质的粒子构成如分子,原子,亚原子粒子的平动、振动和转动的能量的方法。所有的这些运动的动能和粒子的势能,有时还包括某些其他类型的等效粒子能量构成物体的总内能。在物体不受外力或外力对其不做功的条件下,内能可以被不严格地称作热能。内能可以以多种方式存储于一种物质内,每种构成一个“自由度”。每个自由度有相同的能量平均值k_B T/2(k_B为玻尔兹曼常数),除非其处于量子体系。内部自由度(转动,振动等)适用于室温下的量子体系,平动自由度适用于经典体系,除了在极低的温度(开尔文的分数)下。大多数情况下,热力学温度由粒子的平均平动动能确定。 Category:温度 Category:态函数 Category:国际单位制基本量.

新!!: 分子和热力学温度 · 查看更多 »

热传导

热传导,是热能从高温向低温部分转移的过程,是 一个分子向另一个分子传递振动能的结果。各种材料的热传导性能不同,传导性能好的,如金属,还包括了自由电子的移动,所以传热速度快,可以做热交换器材料,而金屬傳導能力依次爲銀>銅>金>鋁;传导性能不好的,如石棉,可以做热绝缘材料。.

新!!: 分子和热传导 · 查看更多 »

热运动

热运动是自然界中独立存在的基本运动形式之一,有巨大数量微观粒子(分子、原子、电子或点阵粒子等)参与的永不停息的无规则运动,并伴有频繁碰撞。.

新!!: 分子和热运动 · 查看更多 »

烷基化

烷基化是烷基由一个分子转移到另一个分子的过程。近現代產業中,在整个炼油过程中,烷基化可以将分子按照需要重组,增加产量,對油品應用是非常重要的一环。.

新!!: 分子和烷基化 · 查看更多 »

疏水性

在化學裡,疏水性指的是一個分子与水互相排斥的物理性質。这种分子称为疏水物。 疏水性分子偏向於非極性,並因此較會溶解在中性和非極性溶液(如有机溶剂)。疏水性分子在水裡通常會聚成一團,而水在疏水性溶液的表面時則會形成一個很大的接觸角而成水滴状。 舉例來說,疏水性分子包含有烷烴、油、脂肪和多數含有油脂的物質。 疏水性通常也可以稱為親脂性,但這兩個詞並不全然是同義的。即使大多數的疏水物通常也是親脂性的,但還是有例外,如矽橡膠和碳氟化合物(Fluorocarbon)。.

新!!: 分子和疏水性 · 查看更多 »

病毒性

病毒性是指一種生物的致病性程度,即一個病原體引發疾病的相對能力。於生態學的了角度上來看,病毒性可以是寄主因寄生所引發的適應度下降。病毒性可以近因(即病原體協助令寄主生病的跡象)及遠因(即令病原體帶有病毒性的演化壓力)來理解。.

新!!: 分子和病毒性 · 查看更多 »

生命延續

生命延續(Life extension)或生命延續学(Life extension science)是一门研究如何延缓衰老或返老还童的科学,旨在达到增加生命的最高或平均壽命的效果,一般特指延续人類的壽命。然而,当前人类尚未发现能够使得生命永远延续的方法。 诸如“补品”、“激素”等所谓的延缓衰老产品在全球范围内是一个利润率极高的产业,在美国年利润高达500亿美金,但没有证据能够表明这类产品的有效性与安全性。 该领域的一些研究人员,以及那些想要成为“延寿者”、“永生者”的人相信,未来对于生命延续将会依靠回复年轻状态、干细胞、再生醫學、分子修复、基因治疗、药物、和器官移植(人工器官或)等方式实现,让人类拥有永恒的生命、永保青春。生物伦理学家仍然在争论生命延续可能带来的伦理学问题。.

新!!: 分子和生命延續 · 查看更多 »

生命元素

生命元素是指生命所必需的元素。在天然的条件下,地球上或多或少地可以找到90多种元素,根据目前掌握的情况,多数科学家比较一致的看法,生命元素共有28种,包括氢、硼、碳、氮、氧、氟、钠、镁、硅、磷、硫、氯、钾、钙、钒、铬、锰、铁、钴、镍、铜、锌、砷、硒、溴、钼、锡和碘。 硼是某些绿色植物和藻类生长的必需元素,而哺乳动物并不需要硼,因此,人体必需元素实际上为27种。在27种生命必需的元素中,按体内含量的高低可分为宏量元素和微量元素。 宏量元素指含量占生物体总质量0.01%以上的元素。如碳、氢、氧、氮、磷、硫、氯、钾、钠、钙和镁,这些元素在人体中的含量均在0.04%~62.8%之间,这11种元素共占人体总质量的99.97%。 微量元素指占生物体总质量0.01%以下的元素。如铁、硅、锌、铜、溴、锡、锰等。这些微量元素占人体总质量的0.03%左右。这些微量元素在体内的含量虽小,但在生命活动过程中的作用是十分重要的。.

新!!: 分子和生命元素 · 查看更多 »

生命演化历程

生命演化历程紀錄地球上生命發展過程中的主要事件。本条目中的時間表,是以科學證據為基礎所做的估算。 生物演化指生物的族群从一個世代到另一個世代之間,获得並传递新性状的过程。並解釋长时段的生物演化过程中,新物种的生成與生物世界的多样性。經歷數十億年的演化與物種形成,現在的各物种之間皆由共同祖先互相連結。 以下的列表除非有寫公元或西元,否則是從現在開始算,如6500萬年前是指距離現在已有6500萬年的時間了。.

新!!: 分子和生命演化历程 · 查看更多 »

生命是什么

《生命是什么》(What Is Life?)是物理学家薛定谔的一本生物学著作,發表於1944年。這本書是根據薛丁格於1943年2月,在都柏林三一學院的公開講座課程內容。在書中薛丁格介紹了含有配置遺傳信息的化學共價鍵,一種“不規律晶體”的概念。 雖然自1869年以來已知脱氧核糖核酸(DNA)的存在,但在薛丁格講述當時,DNA的螺旋形狀與其在複製過程中的角色,還不明確。而在1950年代,這個概念刺激了其他人對於追尋遺傳分子的研究熱情。回顧歷史,薛丁格對“不規律晶體”的理論性充分推測,可被視為提供了分子生物學家關於遺傳物質,應該搜索的方向。共同發現DNA結構的詹姆斯·杜威·沃森(James D. Watson)和弗朗西斯·克里克(Francis Crick),均表示他們研究最初的靈感源自本書,並且把描述遺傳信息儲存機制的前期理論,歸功於薛丁格所撰寫的此書。.

新!!: 分子和生命是什么 · 查看更多 »

生物力学

生物力学是采用力学理论来研究生物体内物质运动的学科。人体力学是其中的一个分支。 生物力学的研究主题可以概括为以下三方面:.

新!!: 分子和生物力学 · 查看更多 »

生物大分子

生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。常见的生物大分子包括蛋白质、核酸 (DNA、RNA等)、糖类。 这只是一個概念性定義,与生物大分子对立的是小分子物质(二氧化碳、甲烷等)和无机物质,实际上生物大分子的特点在于其表现出的各种生物活性和在生物新陈代谢中的作用。 比如:某些多肽和某些脂类物质的分子量并未达到惊人的地步,但其在生命过程中同样表现出了重要的生理活性。与一般的生物大分子并无二致。 生物大分子大多数是由简单的组成结构聚合而成的,蛋白质的组成单位是氨基酸,核酸的组成单位是核苷酸。 生物大分子都可以在生物体内由简单的结构合成,也都可以在生物体内经过分解作用被分解为简单结构,一般在合成的过程中消耗能量,分解的过程中释放能量。 蛋白质、核酸和多糖是3类主要的生物大分子,它们在分子结构和生理功能上差别很大,然而,在以下几个方面又显出共性:.

新!!: 分子和生物大分子 · 查看更多 »

生物学

生物学研究各種生命(上图) 大肠杆菌、瞪羚、(下图)大角金龟甲虫 、蕨類植物 生物學(βιολογία;biologia;德語、法語:biologie;biology)或稱生物科學(biological sciences)、生命科學(life sciences),是自然科學的一大門類,由經驗主義出發,廣泛研究生命的所有方面,包括生命起源、演化、分佈、構造、發育、功能、行為、與環境的互動關系,以及生物分類學等。現代生物學是一個龐大而兼收並蓄的領域,由許多分支和分支學科組成。然而,盡管生物學的範圍很廣,在它裡面有某些一般和統一概念支配一切的學習和研究,把它整合成單一的,和連貫的領域。在總體上,生物以細胞作為生命的基本單位,基因作為遺傳的基本單元,和進化是推動新物種的合成和創建的引擎。今天人們還了解,所有生物體的生存以消耗和轉換能量,調節體內環境以維持穩定的和重要的生命條件。 生物學分支學科被研究生物體的規模所定義,和研究它們使用的方法所定義:生物化學考察生命的基本化學;分子生物學研究生物分子之間錯綜復雜的關系;植物學研究植物的生物學;細胞生物學檢查所有生命的基本組成單位,細胞;生理學檢查組織,器官,和生物體的器官系統的物理和化學的功能;進化生物學考察了生命的多樣性的產生過程;和生態學考察生物在其環境如何相互作用。最終能夠達到治療診斷遺傳病、提高農作物產量、改善人類生活、保護環境等目的。.

新!!: 分子和生物学 · 查看更多 »

生物地球化学循环

生物地质化学循环(Biogeochemical Cycle,又称作生态系统的物质循环)在生态学上指的是化学元素或分子在生态系统中划分的生物群落和无机环境之间相互循环的过程。这使得相关的元素得以循环,虽然实际上在某些循环中化学元素被长期积聚在同一个地方而不发生移动(如海洋或湖泊的水)。Prentice Hall Biology.

新!!: 分子和生物地球化学循环 · 查看更多 »

生物分子

生物分子(Biomolecule)是自然存在于生物体中的分子的总称,包括大分子例如蛋白质,碳水化合物,脂质和核酸,以及小分子例如代謝產物,次级代谢产物和天然产物。这类材料的更通用的名称是生物材料。大多数生物分子都为有机化合物,含有碳和氢,多数含氮、氧、磷和硫,有时也有其他元素出现,但例子不多,参见生物无机化学。.

新!!: 分子和生物分子 · 查看更多 »

生态学

德國生物學家恩斯特·海克爾(左)和丹麦植物学家尤金纽斯·瓦尔明(右),两位生態学的建立者 生态学(Ökologie),是德国生物学家恩斯特·海克尔于1866年定义的一个概念:生态学是研究生物体与其周围环境(包括非生物环境和生物环境)相互关系的科学。德语Ökologie(最初:Oecologie)是由希腊语词汇Οικοθ(家)和Λογοθ(学科)组成的,意思是“研究居住在同一自然环境中的动物(Lebewesen)的学科”,目前已经发展为“研究生物与其环境之间的相互关系的科学”。环境包括生物环境和非生物环境,生物环境是指生物物种之间和物种内部各个体之间的关系,非生物环境包括自然环境:土壤、岩石、水、空气、温度、湿度等。 在1935年英国的Tansley提出了生态系统的概念之后,美国的年轻学者Lindeman在对Mondota湖生态系统详细考察之后提出了生态金字塔能量转换的“十分之一定律”,也就是同一條食物鏈上各營養級之間能量的轉化效率平均大約為百分之十左右。由此,生态学成为一门有自己的研究对象、任务和方法的比较完整和独立的学科。近年来,生态学已经创立了自己独立研究的理论主体,即从生物个体与环境直接影响的小环境到生态系统不同层级的有机体与环境关系的理论。它们的研究方法经过描述——实验——物质定量三个过程。系统论、控制论、信息论的概念和方法的引入,促进了生态学理论的发展。如今,由于与人类生存与发展的紧密相关而产生了多个生态学的研究热点,如生物多样性的研究、全球气候变化的研究、受损生态系统的恢复与重建研究、可持续发展研究等。 生态学是生物学的一个分支,生物学的研究对象向微观和宏观两个方面发展,微观方面向分子生物学方向发展,生态学是向研究宏观方向发展的分支,是以生物个体、种群、群落、生态系统直到整个生物圈作为它的研究对象。生态学也是一个综合性的学科,需要利用地质学、地理学、气象学、土壤学、化学、物理学等各方面的研究方法和知识,是将生物群落和其生活的环境作为一个互相之间不断地进行物质循环和能量流动的整体来进行研究。.

新!!: 分子和生态学 · 查看更多 »

甲酸

酸(英文:Formic acid)又称作蚁酸,化学式为HCOOH。蚂蚁和蜜蜂等膜翅目昆蟲的分泌液中含有蚁酸,当初人们蒸馏蚂蚁时制得蚁酸,故有此名。甲酸无色而有刺激气味,且有腐蚀性,人类皮肤接触后会起泡红肿。熔点8.4℃,沸点 100.8℃。由于甲酸的结构特殊,它的一个氢原子和羧基直接相连。也可看做是一个羟基甲醛。因此甲酸同时具有酸和醛的性质。在化学工业中,甲酸被用于橡胶、医药、染料、皮革种类工业。.

新!!: 分子和甲酸 · 查看更多 »

男孩和他的原子

《男孩和他的原子:史上最小的電影》(A Boy and His Atom: The World's Smallest Movie)是一個由IBM研究院拍攝,於2013年發布至YouTube上的定格動畫短片,當中描繪了一名男孩與原子做了各種形式的動作。這部短片長度僅一分鐘,以掃描隧道顯微鏡將一氧化碳分子放大1億倍拍攝。拍攝團隊藉由操縱一氧化碳分子以拍攝242張相片,後製組合成一部動畫。 這部電影被《金氏世界紀錄大全》認證為世界上最小的定格動畫電影。拍攝這部短片的IBM科學家先前已研究出將原子磁化以增強檔案儲存效率的方法,這部短片即使用原子磁化的原理操縱一氧化碳分子的移動。他們拍攝此短片的目的是希望學生在看到後,能將成為科學家作為生涯考慮的選項之一。.

新!!: 分子和男孩和他的原子 · 查看更多 »

甘露糖

露糖(Mannose)是一種單醣,也是一種六碳醣。在自然界中較少單獨存在,多以群體的大分子形式出現。其甜度比蔗糖低,可作為糖尿病患者的代糖使用。 它與核糖、半乳糖、墨角藻糖、胺基葡萄糖同為禽流感病毒粒子的重要组成部分之一。 甘露糖在醣類代謝過程中,會因為己糖激酶的作用,而磷酸化形成甘露糖-6-磷酸。.

新!!: 分子和甘露糖 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 分子和电子 · 查看更多 »

电子亲合能

在一般化學與原子物理學中,电子亲合能(或电子亲和势、电子亲和力,electron affinity,Eea)的定義是,將一個電子加入一個氣態的原子或分子所需耗費,或是釋出的能量。 在固態物理學之中,對於一表面的電子親合能定義不同。.

新!!: 分子和电子亲合能 · 查看更多 »

电子排布

電子排序,即電子組態,亦即電子構型,指電子在原子、分子或其他物理結構中的每一層電子層上的排序及排列形態。 正如其他基本粒子,電子遵從量子物理學,而不是一般的經典物理學;電子也因此有波粒二象性。而且,根據量子物理學中的《哥本哈根詮釋》,任一特定電子的確實位置是不會知道的(軌域及軌跡放到一旁不計),直至偵測活動進行使電子被偵測到。在空間中,該測量將會檢測的電子在某一特定點的概率,和在這一點上的波函數的絕對值的平方成正比。 電子能夠由發射或吸收一個量子的能量從一個能級跃迁到另一個能級,其形式是一個光子。由於泡利不相容原理,沒有兩個以上的電子可以存在於某個原子軌域(軌域不等於電子層);因此,一個電子只可跨越到另有空缺位置的軌域。 知道不同的原子的電子構型有助了解元素週期表中的元素的結構。這個概念也有用於描述約束原子的多個化學鍵。在散裝物料的研究中這一理念可以說明激光器和半導體的奇特性能。.

新!!: 分子和电子排布 · 查看更多 »

电子效应

电子效应,理论有机化学基本概念之一。细分为两大类:一类是涉及π键的共轭效应;一类是涉及σ键的诱导效应和超共轭效应。 电子效应本质上来讲就是由于不同原子之间存在电负性的差别,这个差别导致了化学键的极化。这种极化的结果可以沿着化学键传导,从而对分子本身的物理性质和化学性质产生了影响。.

新!!: 分子和电子效应 · 查看更多 »

电化学

电化学(electrochemistry)作为化学的分支之一,是研究两类导体(电子导体,如金属或半导体,以及离子导体,如电解质溶液)形成的接界面上所发生的带电及电子转移变化的科学。 传统观念认为电化学主要研究电能和化学能之间的相互转换,如电解和原电池。但电化学并不局限于电能出现的化学反应,也包含其它物理化学过程,如金属的电化学腐蚀,以及电解质溶液中的金属置换反应。.

新!!: 分子和电化学 · 查看更多 »

电磁学

电磁学(英語:electromagnetism)是研究电磁力(電荷粒子之间的一种物理性相互作用) 的物理学的一个分支。电磁力通常表现为电磁场,如電場、磁場和光。电磁力是自然界中四种基本相互作用之一。其它三种基本相互作用是强相互作用、弱相互作用、引力。 電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關係的一門學科。 英文单词electromagnetism是两个希腊语词汇ἢλεκτρον(ēlektron,“琥珀”)和μαγνήτης(magnetic源自"magnítis líthos"(μαγνήτης λίθος),意思是“镁石”,一种铁矿)的合成词。研究电磁现象的科学是用电磁力定义的,有时称作洛伦兹力,是既含有電也含有磁的现象。 电磁力在决定日常生活中大多数物体的内部性质中发挥着主要作用。常见物体的电磁力表现在物体中单个分子之间的分子间作用力的结果中。电子被电磁波力学束缚在原子核周围形成原子,而原子是分子的构成单位。相邻原子的电子之间的相互作用产生化學过程,是由电子间的电磁力与动量之间的相互作用决定的。 电磁场有很多种数学描述。在经典电磁学中,电场用欧姆定律中的電勢与电流描述,磁場与电磁感应和磁化强度相关,而馬克士威方程組描述了由电场和磁场自身以及电荷和电流引起的电场和磁场的产生和交替。 电磁学理论意义,特别是基于“媒介”中的传播的性质(磁导率和电容率)确立的光速,推动了1905年阿尔伯特·爱因斯坦的狭义相对论的发展。 虽然电磁力被认为是四大基本作用力之一,在高能量中弱力和电磁力是统一的。在宇宙的历史中的夸克時期,电弱力分割成电磁力和弱力。.

新!!: 分子和电磁学 · 查看更多 »

电离

电离(Ionization),或称电离作用、離子化,是指在(物理性的)能量作用下,原子、分子在水溶液中或熔融状态下产生自由离子的过程。 電離大致可細分為兩種類型:一種連續電離(sequential ionization)和非連續電離(Non-sequential ionization)。在古典物理學中,只有連續電離可以發生。非連續電離則違反了若干物理定律,屬於量子電離。 例如:.

新!!: 分子和电离 · 查看更多 »

电离平衡

电离平衡是一种化学现象,通常发生在具有极性共价键的化合物溶于水中的情况。.

新!!: 分子和电离平衡 · 查看更多 »

电离度

弱电解质在水中的电离达到平衡状态时,已电离的溶质的分子数占原有溶质分子总数(包括已电离的和未电离的)的百分率,称为电离度,通常用"α"来表示。公式为: \alpha.

新!!: 分子和电离度 · 查看更多 »

电离能

電離能(Ionization energy),或稱游離能、電離焓,常簡記為EI,指的是將一個電子自一個孤立的原子、離子或分子移至無限遠處所需的能量。更廣義的用法,第一电离能定义为气态原子失去一个电子成为一价气态正离子所需的最低能量,记作I1;气态一价正离子失去一个电子成为气态二价正离子所需的能量称为第二电离能,记作I2。依此类推。 电离能的数值和原子的有效核电荷密切相关,也和原子大小、原子轨道中电子间的推斥作用等因素有关。 电离能是了解原子性质的重要数据。.

新!!: 分子和电离能 · 查看更多 »

电离氢区

电离氢区(H II區)是發光的氣體和電漿組成的雲氣,有時會有數百光年的直徑,是恆星誕生的場所。從這些氣體中誕生的年輕、炙熱的藍色恆星散發出大量的紫外線,使星雲環繞在周圍的氣體游離。 H II區在數百萬年的歲月中也許可以誕生成千上萬顆的恆星。最後,超新星爆炸和來自星團中質量最大的那些恆星吹出的強烈恆星風,將會吹散掉H II區的氣體,留下來的就是像昴宿星團這樣的星團。 H II區是因為有大量被游離的氫原子而得名的,天文學家同樣的將中性氫的區域稱為HI區,而H2稱為分子氫。在宇宙的遠處的H II區不會被忽略,也能被看見,對其它星系H II區的觀測,在測量距離和化學組成是很重要的研究項目。.

新!!: 分子和电离氢区 · 查看更多 »

电荷转移配合物

电荷转移配合物(charge-transfer complex, CT complex)是两个或两个分子以上或者一个大分子的不同部分的、有电荷转移作用的配合物。其中提供电子的一方叫做电子给体,接受电子的一方叫做电子受体。如SO2·I2是一个电荷转移配合物。.

新!!: 分子和电荷转移配合物 · 查看更多 »

無線電波源

宇宙射电源是在外太空散發強烈的無線電波的天體。無線電輻射來自熱氣體、在磁場中呈螺旋運動的電子和在太空中輻射出特定波長的原子和分子。无线电发射来自于各种来源。这些物体代表了宇宙中最极端的和充满能量的物理过程。.

新!!: 分子和無線電波源 · 查看更多 »

焦耳-湯姆孫效應

耳-湯姆孫效應是指氣體會因在等焓的環境下自由膨脹,而使溫度上升或下降。這個過程稱為焦耳-湯姆孫過程 這以詹姆斯·焦耳和開爾文男爵命名。.

新!!: 分子和焦耳-湯姆孫效應 · 查看更多 »

熱絲極離子真空計

熱絲極離子真空計(英文:Hot filament ionization gauge),有時又稱熱絲極真空計或熱陰極真空計,是一種非常廣泛用於壓力範圍在10^至10^托的測量裝置。構造和三極管類似,但是絲極作為負極。 熱絲極離子真空計 巴雅-愛泊特熱釷-銥絲極離子真空計在2.75 in的刀口法蘭 其他名稱.

新!!: 分子和熱絲極離子真空計 · 查看更多 »

熱量

热量是指由于温度差别而转移的能量;也是指1公克的水在1大氣壓下溫度上升1摄氏度所產生的能量; 在温度不同的物体之间,热量总是由高温物体向低温物体传递;即使在等温过程中,物体之间的温度也不断出现微小差别,通过热量传递不断达到新的平衡。 由于温差的存在而导致的能量转化过程中所转化的能量;而该转化过程称为熱交換或热传递;熱量的公制為焦耳。 熱量與熱能之間的關係就好比是做功與機械能之間的關係一樣。若兩區域之間尚未達至熱平衡,那麼熱便在它們中間溫度高的地方向溫度低的另一方傳遞。任何物質都有一定數量的內能,這和組成物質的原子、分子的無序運動有關。當兩不同溫度的物質處於熱接觸時,它們便交換內能,直至雙方溫度一致,也就是達致熱平衡。這裏,所傳遞的能量數便等同於所交換的熱量數。許多人把熱量跟內能弄混,其實熱量指的是內能的變化、系統的做功。熱量描述能量的流動,而內能描述能量本身。充分了解熱量與內能的分別是明白熱力學第一定律的關鍵。 營養學中也有熱量的單位——卡路里(cal)及千卡(大卡,kcal)。一千卡路里等於一大卡。 Category:热学 Category:能量 Category:營養學.

新!!: 分子和熱量 · 查看更多 »

燃料乙醇

燃料乙醇(英语:Ethanol fuel),也称乙醇燃料,又稱生質酒精,是一种被广泛用于运输业的生物燃料。它和酒精饮料中的乙醇是同一类型的醇类。燃料乙醇由富含糖类物质的农作物酿制产生,可作为添加剂加入汽油中制成混合燃料。燃料乙醇主要供汽车、摩托车等交通工具使用,汽油发动机无需做过多改动就可以直接使用燃料乙醇。当汽油价格较高时,燃料乙醇具有明显的成本优势。但是,大规模使用燃料乙醇导致玉米、甘蔗等农作物供不应求、价格上升。同时在生产燃料乙醇的过程中也会释放出二氧化碳或污染物,因而有损其清洁燃料的称号。 世界运输燃料乙醇生产在2000年和2007年间增长了三倍,从170亿到超过520亿公升。从2007年到2008年,乙醇在全球汽油型燃料的使用比例从3.7%上升至5.4%。在2011年的全球燃料乙醇产量达到22.36 BG注(846亿升),其中美国是最大的生产者,拥有13.9 BG(526亿升),占全球产量的62.2%,其次是巴西5.6 BG(211亿升)。乙醇燃料具有“”(GGE),这意味着1.5加仑乙醇产生一加仑汽油的能量。.

新!!: 分子和燃料乙醇 · 查看更多 »

燕鷗

燕鷗是燕鷗科的海鳥,以往被看為鷗科下的一個亞科。燕鷗與鷗及剪嘴鷗是一個血統分支,全世界都有牠們的蹤跡。 大部份燕鷗過往都被編入燕鷗屬中,但是根據DNA序列的分析發現燕鷗屬可以分開為幾個細小的屬。.

新!!: 分子和燕鷗 · 查看更多 »

番茄紅素

茄紅素(Lycopene、分子式 C40H56)是一種明亮紅色的類胡蘿蔔素顏料,在番茄和其它紅色果子如西瓜和西柚中也有。 番茄紅素是人體最常見和是最有力的類胡蘿蔔素抗氧劑之一。它的英文名Lycopene是從番茄的種類分類茄屬Solanum lycopersicum中而來得。.

新!!: 分子和番茄紅素 · 查看更多 »

異丙苯法

丙苯法是化學工業上製備苯酚與丙酮的一種方法。它的優點在於將原料苯和丙烯轉化為更有價值的苯酚與丙酮。當中使用的其他原料是少量催化劑、少量產生自由基的化合物與可以來自空氣的氧氣。 總體的化學反應總括如下:.

新!!: 分子和異丙苯法 · 查看更多 »

物理变化

物理变化与化学变化(化学反应)相对,指的是不涉及物质原子重组的变化。物理變化的過程中,原有的分子並未分解,也沒有新的分子產生。只是分子間的距離改變了。如冰融化成液態水時,水分子間的位置由不能移動而變成可以在容器內移動,而且分子間的距離改變了,但是水分子本身並沒有被破壞。.

新!!: 分子和物理变化 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 分子和物理学 · 查看更多 »

物理化学

物理化學(Physical Chemistry),是一門從物理學角度分析物質體系化學行為的原理、規律和方法的學科,可謂近代化學的原理根基。物理化學家關注於分子如何形成結構、動態變化、分子光譜原理、平衡態等根本問題,涉及的物理學有靜力學、動力學、量子力學、統計力學等。大體而言,物理化學為化學諸分支中,最講求數值精確和理論解釋的學科。 化學物理學和物理化學都是物理學和化學的交叉學科,但二者是有細微區别的。化學物理學主要是研究化學過程的特征現象和物理理論,而物理化學主要研究化學的物理本質,主要借助原子與分子物理學和凝聚態物理學中的理論方法和實驗技術,研究物理化學現象的學科。 以下是都在物理化學要研究的範圍之中:.

新!!: 分子和物理化学 · 查看更多 »

物质状态

物質狀態是指一種物質出現不同的相。早期來說,物質狀態是以它的體積性質來分辨。在固態時,物質擁有固定的形狀和容量;而在液態時,物質維持固定的容量但形狀會隨容器的形狀而改變;氣態時,物質不論有沒有容量都會膨漲以進行擴散。近期,科學家以分子之間的相互關係作分類。固態是指因分子之間因為相互的吸力因而只會在固定位置震動。而在液體的時候,分子之間距離仍然比較近,分子之間仍有一定的吸引力,因此只能在有限的範圍中活動。至於在氣態,分子之間的距離較遠,因此分子之間的吸引力並不顯著,所以分子可以隨意活動。電漿態,是在高溫之下出現的高度離化氣體。而由於相互之間的吸力是離子力,因而出現與氣體不同的性質,所以電漿態被認為是第四種物質狀態。假如有一種物質狀態不是由分子組成而是由不同力所組成,我們會考慮成一種新的物質狀態。例如:費米凝聚和夸克-膠子漿。 物質狀態亦可用相的轉變來表達。相的轉變可以是結構上的轉變又或者是出現一些獨特的性質。根據這個定義,每一種相都可以其他的相中透過相的轉變分離出來。例如水數種固體的相。超導電性便是由相的轉變引伸出來,因此便有超導電性的狀態。同樣,液晶體狀態和鐵磁性狀態都是用相的轉變所劃分出來並同時擁有不一樣的性質。.

新!!: 分子和物质状态 · 查看更多 »

物质的量

物质的量(在台灣稱為物量)也被称为物质的摩尔量、莫耳數,但不是正规用法,是量度一定量粒子的集合体中所含粒子数量的物理量。 在国际单位制中,物质的量的符号为n,单位为摩尔(mol),量纲为N。摩尔是七个基本单位之一。 物质的量可用来度量所有粒子,如原子、分子、电子等,或者它们的特定组合。使用时要说明粒子的类别。 1971年第14届国际计量大会决议通过了摩尔作为物质的量的单位,从此物理学和化学上的“物质的量”被统一起来。.

新!!: 分子和物质的量 · 查看更多 »

牛津通识读本

牛津通识读本系列 (Very Short Introductions series,简称VSI系列) ,是牛津大学出版社自1995年开始出版的一套系列丛书。这套书的每一本都对一个特定的主题进行简洁而精炼的介绍。几乎所有读本都由该领域公认的专家撰写,篇幅为100–150页,并包括进一步深度阅读的建议。作者们往往提供了个人的见解,但每个读本都力图做到中立和完整。 截至2014年9月,该系列已出版书目达到401本,包括 历史、神学、文艺理论、科学哲学、后现代主义、情绪、动物权利、伦理、莎士比亚、休谟、恐怖主义、西班牙内战和进化论等。出版商表示“该系列丛书将会涵盖所有的主要学科, 为所有读者提供一个可读性强且包罗万千的工具书图书馆。” VSI系列上市以来取得了极大的成功,截至2011年, 该系列已被翻译为25种语言,在全世界的销量超过500万册,其中许多读本被选为大学入门教材。系列简体中文版由译林出版社代理出版。 VSI系列的大量书目为首次撰写,但也有一些选自牛津大学出版社已出版的书籍。.

新!!: 分子和牛津通识读本 · 查看更多 »

瀉流

在物理学中,瀉流是容器中的氣體分子個別地通過一小孔而漏出的過程,條件是小孔的直徑遠小於氣體的平均自由程,漏出時氣體分子之間沒有碰撞。氣體分子的的泻流速率(单位时间从小孔泻流出的分子数目)和分子的分子量的平方根成反比,即格銳目定律。 Category:流体力学.

新!!: 分子和瀉流 · 查看更多 »

發酵 (葡萄酒)

酵是葡萄酒釀製的一個重要過程,通過這一過程可以讓葡萄汁轉變為酒精飲料。這一過程中葡萄酒裏的酵母和糖相互作用產生乙醇和二氧化碳。未發酵時葡萄汁中的氧氣含量和溫度等都是需要注意的事項,而且發酵過程中可能會有發酵停滯和數種葡萄酒變質現象發生。發酵葡萄酒的容器可以是不鏽鋼桶、敞開的木桶、橡木桶和葡萄酒瓶中。.

新!!: 分子和發酵 (葡萄酒) · 查看更多 »

發色團

簡單來說發色團是分子中與顏色有關的部分。 當分子吸收某特定可见光的波長射出或反射其他波長的光時會產生顏色。而發色團是指在分子中的某個兩個分子軌域的能量差落在可見光譜的範圍上的區域。因此當可見光的能量傳遞給發色團時則其中的電子會因吸收能量而從基態躍升為激發態.

新!!: 分子和發色團 · 查看更多 »

白大角羊

白大角羊(學名Ovis dalli)是北美洲西北部特有的一種羊,顏色由白色至淺褐色,有彎曲褐色的角。白大角羊的學名是以威廉·希·戴爾(William Healey Dall)來命名。.

新!!: 分子和白大角羊 · 查看更多 »

百分比

分比(Percentage),又稱百分率、百分數(符號為百分號 %)是一種表達比例,比率或分數數值的方法(以百為分母的分數計算),也是無因次量的數字(純數)。 根据其英文发音,百分比在东南亚华人中常被称为巴仙;在台語中则根据日文發音「translit」唸趴線豆、趴線或趴,部分報章雜誌網站俗寫為趴。 英文中的Percent一词源自拉丁文per centum,per是「每」、centum則是「百」的意思;還有百分比的音文縮寫「pc」也常被許多人使用過。.

新!!: 分子和百分比 · 查看更多 »

D2sp2杂化

d2sp2杂化(d2sp2 hybridization)是指一个原子内的两个n-1d轨道、一个ns轨道和两个np轨道发生杂化的过程。原子发生d2sp2杂化后,上述n-1d轨道、ns轨道和np轨道便会转化成为五个杂化轨道,称为“d2sp2杂化轨道”。五个d2sp2杂化轨道分别存在于两个平面上,其中,位于水平面的四个杂化两两之间的夹角皆为90°,另有一个杂化轨道位于轴向平面、垂直于其余四个杂化轨道。一般认为d2sp2杂化的水平杂化轨道是由dx²-z²、s、px和py轨道组成的,而轴向杂化轨道则由dz²和pz组成。d2sp2杂化一般发生在分子形成过程中。杂化过程中,能量相近的d轨道、s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。.

新!!: 分子和D2sp2杂化 · 查看更多 »

D2sp3杂化

d2sp3杂化(d2sp3 hybridization)是指一个原子同一电子层内由两个n-1d轨道、一个ns轨道和三个np轨道发生生杂化的过程。原子发生d2sp3杂化后,上述n-1d、ns和np轨道便会转化成为六个轨道,称为“d2sp3杂化轨道”。六个d2sp3杂化轨道分别存在于两个平面上,其中,位于水平面的四个杂化两两之间的夹角皆为90°,另有两个杂化轨道位于轴向平面、对称地分布于水平面两侧。一般认为d2sp3杂化的水平杂化轨道是由dx²-z²、s、px和py轨道组成的,而轴向杂化轨道则由dz²和pz组成。d2sp3杂化一般发生在分子形成过程中。杂化过程中,能量相近的d轨道、s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。 以3−中的铁离子(Fe3+)为例:处于基态的Fe3+(电子排布式为:3d5)的3d电子发生重排(两个3d电子发生d-d跃迁,由eg轨道进入t2g轨道)。然后,两个空的3d轨道、一个空的4s轨道和三个空的4p轨道进行d2sp3杂化,形成六个d2sp3杂化轨道。该过程中铁离子的轨道排布变化情况如下图所示(图中灰色的配位电子对由6个氰酸根离子提供):.

新!!: 分子和D2sp3杂化 · 查看更多 »

D3sp杂化

d3sp杂化(d3sp hybridization)是指一个原子内的三个n-1d轨道、一个ns轨道和一个np轨道发生杂化的过程。原子发生d3sp杂化后,上述n-1d轨道、ns轨道和np轨道便会转化成为五个杂化轨道,称为“d3sp杂化轨道”。五个d3sp杂化轨道分别存在于两个平面上,其中,位于水平面的三个杂化两两之间的夹角皆为120°,另有两个杂化轨道位于轴向平面、对称地分布于水平平面两侧。一般认为d3sp杂化的水平杂化轨道是由dxy、dx²-y²和s轨道组成的,轴向杂化轨道由dz²和pz组成。d3sp杂化一般发生在分子形成过程中。杂化过程中,能量相近的d轨道、s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。.

新!!: 分子和D3sp杂化 · 查看更多 »

DNA纳米技术

DNA纳米技术專門研究利用脫氧核糖核酸或其他核酸的分子性質(如自組裝的特性),來建構出可操控的新型纳米尺度結構或機械。在这个领域,核酸被用作非生物的材料而不是在活细胞中那样作为遗传信息的载体。严格的核酸碱基配对法则(使链上特定的碱基列相互连接以形成牢固的双螺旋结构)使这一技术成为可能。这一技术允许合理的碱基链设计,从而严格地组合形成具有精密控制的纳米级特性的复杂的目标结构。脫氧核糖核酸是常使用的优势材料,但包括其他核酸如核糖核酸和肽核酸也被用来构造结构,所以偶尔也用“核酸纳米技术”来概括这个领域。 DNA纳米技术概念的基础最先由纳德里安·西曼(Nadrian Seeman)在1980年代早期阐述,在2000年后开始引起广泛的关注。这一领域的研究者已经构建了静止结构如二维和三维晶体结构、毫微管、多面体和其他任意的造型;和功能结构如纳米机器和DNA運算。一些组建方法被用来构建拼装结构、折叠结构和动态可重构结构。现在,这种科技开始被用作解决在结构生物学和生物物理学中基础科学问题的工具;同时也被应用在结晶学和光谱学中来测定蛋白质结构。这项技术在分子电子学(molecular scale electronics)和纳米医学中的应用仍在研究中。.

新!!: 分子和DNA纳米技术 · 查看更多 »

DNA聚合酶

DNA聚合酶(DNA Polymerase,EC編號2.7.7.7)是一種參與DNA複製的酶。它主要是以模板的形式,催化去氧核糖核苷酸的聚合。聚合後的分子將會組成模板鏈並再進一步參與配對。 DNA聚合酶以去氧核苷酸三磷酸(dATP、dCTP、dGTP、或dTTP,四者統稱dNTPs)為底物,沿模板的3'→5'方向,將對應的去氧核苷酸連接到新生DNA鏈的3'端,使新生鏈沿5'→3'方向延長。新鏈與原有的模板鏈序列互補,亦與模板鏈的原配對鏈序列一致。 已知的所有DNA聚合酶均以5'→3'方向合成DNA,且均不能「重新」(de novo)合成DNA,而只能將去氧核苷酸加到已有的RNA或DNA的3'端羥基上。因此,DNA聚合酶除了需要模板做為序列指導,也必需-zh-hans:引物; zh-hant:引子;-來起始合成。合成引物的酶叫做引發酶。 反應式:.

新!!: 分子和DNA聚合酶 · 查看更多 »

Dsp2杂化

dsp2杂化(dsp2 hybridization)是指一个原子内的一个n-1d轨道、一个ns轨道和两个np轨道发生杂化的过程。原子发生dsp2杂化后,上述n-1d轨道、ns轨道和np轨道便会转化成为四个等价的杂化轨道,称为“dsp2杂化轨道”。四个dsp2杂化轨道存在于同一平面上,且对称轴两两之间的夹角相同,皆为90°,故dsp2杂化也称为“平面正方形杂化”。dsp2杂化一般发生在分子形成过程中。杂化过程中,能量相近的d轨道、s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。 一般只有过渡金属元素才能发生dsp2杂化。以2-中的二价铂离子(Pt2+)为例:处于基态的Pt2+(电子排布式为:4f145d8),它的一个空的5d轨道、一个空的6s轨道和两个空的6p轨道进行dsp2杂化,形成四个dsp2杂化轨道。该过程中Pt2+的轨道排布变化情况如下图所示(图中灰色的配位电子对由4个氯离子提供):.

新!!: 分子和Dsp2杂化 · 查看更多 »

隧穿电离

当原子或分子中的电子发生隧穿效应而通过势垒,由束缚态进入连续态而离开原子或分子,这种电离过程即称为隧穿电离。在强场作用下,原子势垒发生大幅变形,原本电子难以隧穿的势垒的长度被大大缩减,电子变得易于隧穿。 对于光场,其电场分量是随时间改变的,每半个周期,电场就要改变一次方向。电子带有负电荷,在库仑作用下电子每半个周期便会改变运动方向。由于电子从电场中获得很大动能,当其改变方向后可能与母核发生碰撞,如果碰撞非弹性,即电子与母核重结合,额外的能量会以光子的形式发射出去,因为电子可以多次改变方向而吸收更多电场能量,最终以光子形式放出,人们可以得到很高的光子能量,实验上会观测到高次谐波(High order harmonic generation, HOHG),这是当前产生甚紫外光的一种有效途径;如果发生弹性碰撞后最终电子逸出,多次改变方向会使电子吸收额外的动能,最终得到超阈值电离谱(Above threshold ionization, ATI)。 Category:原子物理学.

新!!: 分子和隧穿电离 · 查看更多 »

芳香烃

芳香烃(aromatic hydrocarbons,简称芳烃)為苯及其衍生物的總稱,乃指分子结构中含有一个或者多个苯环的烃类化合物。名稱來源由於有機化學發展初期,這一類化合物幾乎都在揮發性、有香味的物質中發現,例如:從安息香膠中取得安息香酸,自苦杏仁油取得苯甲醛等。但後來許多性質應屬芳香族的化合物,卻沒有擁有香味,因此現今芳香烴,意指的只是這些含有苯環的化合物。其中最简单和最重要的芳香烃是苯及其同系物甲苯、二甲苯、乙苯等。在芳香族中,一些芳香環中並不完全是苯的結構,而是其中的碳原子,會被氮、氧、硫等元素取代,我們稱之為雜環,例如:像是呋喃的五元環中,包括一個氧原子,吡咯中含有一個氮原子,噻吩含有一個硫原子等。 而芳烃可分为:.

新!!: 分子和芳香烃 · 查看更多 »

銻化鎵

銻化鎵為半導體材料之一,其中分子裡包含了銻和鎵,屬於III-V族,其能隙為 0.726ev,晶格常數是0.61 nm。銻化鎵通常可以用來做、紅外發光二極體、電晶體、雷射二極體等用具。.

新!!: 分子和銻化鎵 · 查看更多 »

銜尾蛇

銜尾蛇(英语:Ouroboros,音譯烏洛波羅斯,,亦作咬尾蛇),是一個古代流傳下來的符號,形象為一條蛇(或龍)吞食自己的尾巴,結果形成一個圓環(有時亦會展示成扭紋形,即阿拉伯數字「8」的形狀),其名字涵義為「自我吞食者」。這個符號一直都有很多不同的象徵意義,而當中最為人接受的是「無限大」、「循環」等。另外,銜尾蛇亦是宗教及神話中的常見符號,在煉金術中更是重要的徽記。近代,有些心理學家(如卡爾·榮格)認為,銜尾蛇其實反映了人類心理的原型。.

新!!: 分子和銜尾蛇 · 查看更多 »

银(silver)是一种化学元素,化学符号Ag(来自argentum),原子序数47。银是一种柔软有白色光泽的过渡金属,在所有金属中导电率、导热率和反射率最高。銀在自然界中的存在方式有纯净的游离态单质(自然银),与金等其他金属的合金,还有含银矿石(如辉银矿和角银矿)。大部分银都是精炼铜、金、铅和锌的副产品。 银不易受化學藥品腐蝕,长久以来被视为贵金属。银比金来源更丰富,在现代以前的货币体系中作为硬币使用,有时甚至和金一道使用。除了货币之外,银的用途还有太阳能电池板、净水器、珠宝和装饰品、高价餐具和器皿(银器),银币和还可用于投资。银在工业上用于和导体、特制镜子、窗膜和化学反应的催化剂。银的化合物用于胶片和X光。稀硝酸银溶液等银化合物会产生,可以消毒和消灭微生物,用于绷带、伤口敷料、导管等医疗器械。.

新!!: 分子和銀 · 查看更多 »

音速

声速,又称“音速”(每秒340 米,每小時1236公里),顧名思義即是聲音的速度,定義為單位時間內振動波傳遞的距離。音速(波傳遞的速度)與傳遞介質的材質狀況(密度、溫度、壓力…)有絕對關係,而與發聲者(波源)本身的速度無關,而發聲者(波源)與聽者(觀察者)間若有相對運動關係,就形成了都卜勒效應;由此觀點,我們可以知道,超音速時的諸多物理現象(震波、音爆、音...),其實與聲音無關,而是壓縮波密集累積所產生的物理現象。聲音的傳播速度在固體最快,其次液體,而氣體的音速最慢。通常音速是指在空氣中的音速,为343.2米/秒(1,236公里/小时)。音速又會依空氣之狀態(如濕度、温度、密度)不同而有不同數值。如攝氏零度之海平面音速约为331.5米/秒(1193公里/小時);一萬米高空之音速約為295米/秒(1062公里/小時);另外每升高1攝氏度,音速就增加0.607米/秒。 在固體中有兩種可能的聲波,其中一種是與流體相同的縱波,另一種是流體沒有的橫波,兩種不同的聲波可以有不同的傳播速度(例如地震波)。縱波形式的音速取決於介質的壓縮率和密度,而固體中橫波形式的音速取決於介質的剛度和密度。 在超流體中也存在兩種不同的「聲波」,第一種聲波是與平常流體相同的密度波,另一種是超流體特有的第二聲波。.

新!!: 分子和音速 · 查看更多 »

螳䗛

螳䗛是螳䗛目下的肉食性昆蟲。螳䗛目下只有一個螳䗛科。它們是南非西部及納米比亞的特有種,但從始新世的化石紀錄可見,它們原有更廣的分佈。 螳䗛沒有翅膀。它們的外觀像螳螂及竹節蟲的混合體。從分子分析證據顯示它們的最近親是蛩蠊。它們最初是根據在納米比亞及坦桑尼亞的標本描述的。.

新!!: 分子和螳䗛 · 查看更多 »

鎓内盐

鎓内盐(ylide或ylid),音译为“叶立德”,指的是一类在相邻原子上有相反电荷的中性分子。鎓内盐在有机化学,尤其是有机合成中有很多应用。一般来说,鎓内盐能以共振式表示,其中一个共振杂化体具有双键: 实际的电子分布取决分子的具体性质。.

新!!: 分子和鎓内盐 · 查看更多 »

聚合

聚合是将一种或几种具有简单小分子的物质,合并成具有大分子量的物质的化工单元过程。 大分子量的物质一般叫作聚合物或高分子化合物,分子量都高达几千甚至几百万。淀粉、纤维素都是天然的高聚物,是由单糖聚合而成的。塑料是人工合成的高聚物。能够聚合成高聚物的小分子物质叫做单体,单体一般有三类:一种是含有不饱和键,大部分是碳碳双键,也可能是碳碳三键或者是碳氮三键;另一种单体是含有两个或多个有特殊功能的原子团;第三种单体是不同原子组成的环状分子,比如碳氧环、氧硫环、碳氮环等。这些单体可以互相连接形成高聚物。 如果聚合是由同一种单体进行的叫做均聚;如果由几种不同的单体形成高聚物,叫做共聚。 例如由乙烯分子作为单体聚合形成聚乙烯塑料的过程就叫做均聚;此外还有丙烯均聚形成聚丙烯塑料,氯乙烯形成聚氯乙烯等。 有乙烯和丙烯进行共聚,可以形成合成橡胶,叫做乙丙橡胶。 任何小分子合并的过程都可以叫做聚合,不仅仅是必须形成高聚物。例如三个甲醛分子合成一个三聚甲醛分子的过程也叫做聚合过程。.

新!!: 分子和聚合 · 查看更多 »

聚合物

有機聚合物(Polymer)是指具有非常大的分子量的化合物,分子間由結構單位(structural unit)、或單體由共價鍵連接在一起 。 這個聚合物(polymer)是出自於希臘字:polys代表的是多,而meros 代表的是小單位(part),所以很多小單位連結在一起的這種特別的分子,我們稱之為聚合物。可以參考塑膠、DNA和高分子。.

新!!: 分子和聚合物 · 查看更多 »

聚烯烃

聚烯烃是烯烃经过加聚反应形成的高分子化合物。这类有机聚合物通常由许多相同或不同的简单烯烃分子(如乙烯、丙烯、1-丁烯、1-戊烯、1-己烯、1-辛烯、4-甲基-1-戊烯等α-烯烃以及某些环烯烃)聚合形成。常见的聚烯烃有聚乙烯、聚1-丁烯等。聚烯烃的主要通过高压聚合、低压聚合(包括溶液法、浆液法、本体法、气相法)等方式生产。.

新!!: 分子和聚烯烃 · 查看更多 »

聚氯乙烯人造革

聚氯乙烯人造革是一种复合材料。它是由聚氯乙烯树脂、增塑剂、稳定剂和其它助剂组成混合物,涂覆或贴合在基材上,再经其它工艺过程加工而成的。它近似天然皮革,具有外现鲜艳、质地柔软、强度大、耐磨、耐拆、耐酸酸等优良性能。它广泛地应用于工业、农业、交通运输业、国防及日常生活等方面,是一种经济价值较高,有广阔发展机会的产品。 聚氯乙烯人造革虽然能代替天然皮革加工成各种制品,但它与天然皮革相比,最大的缺点是透气性和吸湿性能差;同时在结构上全都是包括表面层、中间层、纤维层等不同质的断层结构。因此,聚氯乙烯人造革将应该向具有透气性和吸湿性的方向发展,同时还得研究同质连续结构的、更接近天然皮革的品种。 解放前,中国没有聚氯乙烯人造革的生产。解放后,中国在原生产硝基漆布的基础上,于1956年成功试制出了第一批聚氯乙烯人造革。随着社会主义建设的发展,聚氯乙烯人造革生产也有了很大的发展。生产单位由一个发展到目前的数十个;产品的品种和规格有所增加,产量和质量也都有了很大的增长和提高。.

新!!: 分子和聚氯乙烯人造革 · 查看更多 »

遗传学入门

遗传学是一门研究基因的学科,其目的是尝试解释什么是基因以及它们是如何发挥作用的。基因的作用,可以认为是现存生物从其远祖所继承下来的特质。而基因学所探索的其中一个方向,就是确定哪些特征是可以被遗传的,以及解释这些特征是如何被世代相传的。 在基因学里面,生物的特征通常被称为性状。我们最容易理解的性状,即生物的体征——如人眼的颜色、高矮胖瘦等。然而,还有很多其他类型的性状,包括生长繁殖方式、抗病能力等,均是生物的一些性狀。这些性状通常都是会遗传的,如中国俗语所说「种瓜得瓜,种豆得豆」。但是有一些性状会因为环境的改变有一定的个体差异,比如说高个子的儿子也可能因为生长期营养不良而长得较为矮小,尽管很可能他实际上遗传了能长很高的基因。在基因与环境的共同影响之下,要想说清楚某各个个体的性状,会是一件很复杂的事情。例如,想要某个人得癌症或者心脏病的几率有多高的話,除了要看其家族史之外,还要看他的生活品质。这解释了为什么有的人就算不吸烟也会得肺癌,而另一些人吸了一辈子烟却很长寿。 遗传信息主要是由一条很长的分子链承载的,这条分子链叫做DNA。上一代生物通过复制这条DNA链,就能把其性状传递给下一代。我们可以把DNA理解为计算机中的所安装的所有程序,而生物则是一个很特殊的计算机,可以根据这套程序来生长及运作;而基因则是指DNA中的具备某一种功能的片段,就好比一个程序,例如TRPV1这段基因则是用来制造可以让人感受辣味的感觉部件的。 需要注意的是,我们所说的某个具体基因,其实际内容形式可能并不一样。比如说,某一个基因是用来描述头发颜色的:在头发生长的时候,这段基因会产生各种不同的颜料,并附着于头发中;拿汉族人来说,他们的基因通常会产生黑色的头发;但个别人的同一个基因中的内容和大多数人有所差异,结果他们的头发就不是黑色的了。基因中的内容,是由成百上千甚至到几十万的,称为碱基对的东西构成的。而这些碱基对中的一部分可能会发生突变,假如突變位置發生在「非」(有意義的基因表達)的位置上,就會导致生物间同一个基因的内容差异。这种突变通常是随机事件,不僅有機會产生新的性状,甚至是导致生物进化的重要一环。.

新!!: 分子和遗传学入门 · 查看更多 »

道尔顿分压定律

道尔顿分壓定律(也称道尔顿定律,道耳頓分壓定律)描述的是理想气体的特性。这一经验定律是在1801年由约翰·道尔顿所观察得到的。其描述如下: 在组分之间不发生化学反应的前提下,理想气体混合物的压強等于各组分的分压之總和。数学描述为: 其中 \ p_1, p_2, p_n 为每一个组分的分压。 结合玻意耳定律和阿伏伽德罗定律(亞佛加厥定律),可以推知理想气体各组分的分压之比等于其莫耳组分之比,即 其中 \ m_1, m_2, m_n 为每一个组分的摩尔數。 需要注意的是,实际气体并不严格遵从道尔顿分压定律,在高压情况下尤其如此。当压強很高时,分子所占的体积和分子之间的空隙具有可比性;同时,更短的分子间距离使得分子间作用力增强,从而会改变各组分的分压。这两点在道尔顿定律中并没有体现。.

新!!: 分子和道尔顿分压定律 · 查看更多 »

菊粉

菊糖(Inulin),也叫菊粉,一种果聚糖,由果糖分子聚合而成,(请勿与甜菊糖苷混淆)多含在菊科和桔梗科植物的细胞中(如洋姜)。 菊糖是一種天然的多醣體,由許多種植物製造,被認為是一種可溶性纖維,有時也被歸類在益生素中, 因為菊糖可在消化道中被細菌用作為食物。菊糖,或是果寡糖,是澱粉 形 式的纖維,人體不能完全消化。當人體攝取益生素時,未能消化的部分可以提供消化道中益菌養分。菊糖可幫助 消化道中 益菌的 生長。 医学作用:菊糖清除率,由于菊糖进入血流后既不分解,又不与蛋白结合,肾小球滤过为唯一排泄途径,所以可把菊糖注射入人体,观察菊糖清除率以确定肾功能。.

新!!: 分子和菊粉 · 查看更多 »

菱形動物門

菱形動物門(學名:Rhombozoa),或二胚蟲目(Dicyemida)是棲息在頭足類腎附屬物的一門寄生蟲。二胚動物門其實是在菱形動物門之前命名的,但現今一般都會以菱形動物門來稱呼這類動物。 菱形動物門的分類被受質疑。傳統上,二胚蟲目與直泳動物門一同分類在中生動物門中。不過,分子種系發生學顯示二胚動物門應該較為接近線蟲動物門。 二胚蟲目可以細分為Conocyemidae及二胚蟲科。.

新!!: 分子和菱形動物門 · 查看更多 »

鐵蛋白

鐵蛋白是一种常见的球狀蛋白质,由24個蛋白亚基构成,它能在所有类型的细胞中表达,是原核生物與真核生物用于儲存鐵離子的主要蛋白質。铁蛋白的主要功能是使鐵離子的儲存維持在溶解状态并且對細胞無害;对于人类来说,它是一个铁缺乏和铁过载的缓冲区。沒有與鐵離子的儲鐵蛋白稱為原儲鐵蛋白(或“去铁铁蛋白”)。 儲鐵蛋白的相对分子质量约为450 kDa。脊椎动物的每分子储铁蛋白由表观相对分子质量分别为19 kDA和21 kDA的铁蛋白轻链(L)和铁蛋白重链(H)的两种亚基复合而成,这两种蛋白质亚基的序列同源性约为50%。两栖类动物另外拥有一种铁蛋白中型链(M)。细菌和植物的铁蛋白与脊椎动物的铁蛋白重链最为相似。已在椎实螺(一种腹足动物)中提取出两种储铁蛋白,体细胞铁蛋白及卵黄铁蛋白被区分开来,而一种类似椎实螺体细胞储铁蛋白的额外亚基与珍珠牡蛎的外壳形成有关。雄性及雌性血吸虫(一种寄生虫)中可以各表达出一种铁蛋白。.

新!!: 分子和鐵蛋白 · 查看更多 »

非绝热耦合

非绝热耦合(nonadiabatic coupling)又称电子振动耦合(vibronic coupling)或导数耦合(derivative coupling),是一个描述分子体系中电子与原子核间运动耦合作用的物理量 。 在量子力学中,根据波恩-奥本海默近似,电子在一个指定的量子态上运动,因而在各能级上的概率分布恒定不变,这种过程称为电子绝热过程。然而,电子的不同运动状态会被原子核的运动所耦合,而这一偶合就因而被称为电子-振动耦合。在这种耦合会诱导下,体系不再严格遵守波恩-奥本海默近似,而可以从一个电子态转化为另一电子态,这样的过程称为电子非绝热过程,而该耦合也因而又被称为非绝热耦合。非绝热耦合的数学形式具有电子态关于原子核运动的导数的形式,因而有时又被称为导数耦合。 非绝热耦合对于理解和研究非绝热过程具有至关重要的意义。非绝热耦合项在动力学方程中来源于原子核动能项,而同时出现在分母上的原子核质量项使得这一耦合作用一般可以忽略,而波恩-奥本海默近似大部分时候是成立的。然而,在势能面之间的圆锥交叉点附近,非绝热耦合的绝对值趋于无穷大,它的作用不再可以被忽略 。.

新!!: 分子和非绝热耦合 · 查看更多 »

非诚勿扰 (节目)

《非诚勿扰》是由中国江苏卫视制作的一档以婚恋交友为核心的社会生活服务真人秀节目,于2010年1月15日开播,取代同一时段播出的引进英国版权的歌唱节目《谁敢来唱歌》。由江苏电视台新闻节目主持人孟非主持,现另由黃菡分析点评以及其他嘉宾担任“非诚合伙人”。节目形式取材于在全世界范围被广泛采用的英國獨立電視台的兩性聯誼節目《Take Me Out》,和2008-2009播出的澳大利亚节目《Taken Out》。 节目录制地点位于南京市鼓楼区的江苏广播电视总台的演播大厅或北京市的演播大厅。首播时间为每周六和周日的21:10,同日23:00左右重播,周六周日12:30左右第二次重播(后改为11:30,分别重播上周六、周日),时长约一个半小时(含广告)。自开播以来,特别是2012年元旦开始的限娱令以来,《缘来非诚勿扰》收视率在中国大陆各个卫星电视节目中名列前茅,且收视率日渐攀升。 该节目于2013年以配英文字幕、普通话原声在澳大利亚民族广播协会频道播出,《非诚勿扰》在SBS 2台播出时使用的名称为“If You Are The One”。 在2016年1月,在《非诚勿扰》及珍爱网商标侵权案中,深圳中院宣判,江苏卫视在婚恋交友节目《非诚勿扰》中使用“非诚勿扰”商标行为构成对金阿欢所持有的“非诚勿扰”商标权的侵害,珍爱网构成共同侵权,因此,深圳中院判令江苏卫视于判决生效后立即停止使用“非诚勿扰”栏目名称,珍爱网于判决生效后立即停止使用“非诚勿扰”名称进行广告推销、报名筛选、后续服务等行为。1月15日,江苏省广播电视总台发表声明,《非诚勿扰》暂时更名为《缘来非诚勿扰》,在周六原时段播出,但在2017年1月,本节目再次改回《非诚勿扰》原名。 新浪娱乐另从知情人士处独家获悉,旧版《非诚勿扰》上一次录制为2017年1月份,这中间已经有三个月没有再录制了。2017年3月25日播出的内容为旧版《非诚勿扰》的最后一期,目前旧版节目已经全面停播。据悉,节目组正在对节目进行重大改版,此次改版的节目形式和内容与旧版有较大变化,但孟非依然是固定主持人。.

新!!: 分子和非诚勿扰 (节目) · 查看更多 »

非金属性

非金属性(氧化性)指原子、分子或离子在化学反应中吸收电子能力。吸收电子能力越强的粒子其非金属性也就越强;反之则越弱,而其金属性(还原性)就越强。非金属性最强的元素是氟。.

新!!: 分子和非金属性 · 查看更多 »

非苯芳烃

非苯芳烃指分子中没有苯环结构却具有芳香性的环状烃类分子或离子。一般来说,非苯芳烃符合休克尔规则(4n+2),即含有4n+2个π电子。此外还要求环为平面型,且环内氢原子的排斥较小。.

新!!: 分子和非苯芳烃 · 查看更多 »

非洲獸總目

非洲獸總目(Afrotheria)是哺乳動物下的一個分支,包含了金毛鼴科、象鼩科、馬島蝟科、土豚、蹄兔目、象及海牛。.

新!!: 分子和非洲獸總目 · 查看更多 »

非游離輻射

非游離輻射(Non-ionizing radiation)是指波長较长、頻率较低、能量低的射線(粒子(主要是光子)或波的双重形式)或电磁波。輻射可分為游離輻射和非游離輻射,非游離輻射无法從(绝大多数)原子或分子裡面游離(ionize)出電子。.

新!!: 分子和非游離輻射 · 查看更多 »

非整比化合物

非整比化合物(Non-stoichiometric compound,又譯非化学计量化合物),又稱贝多莱体(berthollides),指的是组成中各类原子的相对数目不能用几个小的整数比表示的化合物。.

新!!: 分子和非整比化合物 · 查看更多 »

靶向治疗

靶向治疗或靶向分子治疗(英語:Targeted Therapy、Molecularly Targeted Therapy)是一种以干扰癌变或肿瘤增生所需的特定分子来阻止癌细胞增长的一种药物疗法,而非一般的干扰所有(不稳定细胞)的传统化疗法。放射疗法尽管是针对特定肿瘤的,但是并非此处“靶向”的含义。 癌症靶向治疗在被认为是比当今其他疗法更加有效,并且对正常细胞伤害更小的疗法。 靶向治疗可以治疗乳腺癌、多发性骨髓癌,淋巴癌,前列腺癌,黑色素瘤以及其他一些癌症。 Mark Greene在1985年报告,确切的实验(在体内和体外环境用单克隆抗体处理Her2/neu软化细胞)表明靶向治疗会逆转肿瘤细胞恶性表型。 一些人拒绝接受靶向治疗这个术语所指的药物是没有选择性的这种观点。“靶向治疗”这个术语有时在文章中,会带双引号出现。.

新!!: 分子和靶向治疗 · 查看更多 »

順磁性

順磁性(Paramagnetism)指的是一種材料的磁性狀態。有些材料可以受到外部磁场的影响,产生跟外部磁場同樣方向的磁化向量的特性。这样的物质具有正的磁化率。与順磁性相反的现象被称为抗磁性。.

新!!: 分子和順磁性 · 查看更多 »

衣索比亞狼

衣索比亞狼(學名Canis simensis),又名阿北西尼亞胡狼或西門豺,是非洲特有的一種犬屬。由於在分類上的不明,故曾以「狼」或「豺」來命名,但近年相信牠們應該是灰狼的親屬。牠們分佈在衣索匹亞海拔3000米以上的非洲高山地區,是生態系統中的頂尖掠食者。牠們是犬屬中最為瀕危的,只餘下7個群落共約550隻。最大的群落位於衣索匹亞南部的貝爾山(Bale Mountains),另外的群落則在北部瑟門山(Semien Mountains)及其他地區。1990年在貝爾山國家公園爆發的狂犬病在兩星期內就令牠們的數量由440隻減少至160隻。.

新!!: 分子和衣索比亞狼 · 查看更多 »

表面增强拉曼光谱

表面增强拉曼光谱(Surface-enhanced Raman spectroscopy)或表面增强拉曼散射(surface-enhanced Raman scattering (SERS)),是一种通过吸附在粗糙金属表面上的分子或等离子体磁性二氧化硅纳米管等纳米结构增强拉曼散射的表面敏感技术,其增强因子可高达^-^,这意味着该技术可以检测单个分子。.

新!!: 分子和表面增强拉曼光谱 · 查看更多 »

顯微鏡

顯微鏡泛指將微小不可見或難見物品之影像放大,而能被肉眼或其他成像儀器觀察之工具。日常用語中之顯微鏡多指光學顯微鏡。放大倍率和清析度(聚焦)為顯微鏡重要因素。 显微镜是在1590年由荷兰的詹森父子所首创。顯微鏡的類型有許多。最常見的(和第一個被發明的)是光學顯微鏡,其使用樣品的光圖像。其他主要的顯微鏡類型是電子顯微鏡(透射電子顯微鏡和掃描電子顯微鏡),超顯微鏡,和各種類型的掃描探針顯微鏡。.

新!!: 分子和顯微鏡 · 查看更多 »

行星適居性

行星適居性是天文學裡對星體上生命的出現與繁衍潛力的評估指標,其可以適用於行星及行星的天然衛星。 生命的必要條件是能量來源(通常是太陽能但並不全然)。但通常是當其他眾多條件,如該行星的地球物理學、地球化學與天體物理學的條件成熟後,方會稱該行星為適合生命居住的。外星生命的存在仍是未知之數,行星適居性是以太陽系及地球的環境推測其他星體是否會適合生命居住。行星適居性較高的星體通常是那些擁有持續與複雜的多細胞生物與單細胞生命系統的星體。對行星適居性的研究和理论是天體科學的组成部分,正在成为一门新兴学科太空生物學。 對地球以外的星體進行生命探索是極古老的話題,最初是屬於哲學及物理學的研究領域。而在20世紀後期科學界對此有兩個重大突破。其一是使用先進機器對太陽系裡其他行星與衛星進行觀察,獲得這些星體的適居性資料,並將其與地球的相關資料作比較。其二是外太陽系行星的發現,它們是在1995年首度發現的,其後進度不斷加快。這個發現證明了太陽並不是惟一的擁有行星的星體,而且亦擴闊了探索適合生命居住的行星的範圍,使外太陽系星體亦被納入研究之中。.

新!!: 分子和行星適居性 · 查看更多 »

血小板衍生生長因子

血小板衍生生長因子(Platelet-derived growth factor,PDGF)為一種生長因子,可以調控細胞的生長和分化,且在血管新生上扮演重要角色。未控制的血管新生常常導致癌症。在化學上PDGF為醣蛋白二聚體,且有A和B兩種不同形式,可組合為AA、AB和BB等結構。 PDGF是一種有效的间充质細胞丝裂原,包含纖維母細胞、平滑肌、神經膠細胞。在小鼠和人类中,PDGF信号网络都包括四種配体:PDGFA 到 PDGFAD,与两个受体:PDGFRA和PDGFRB。所有PDGF都表达到胞外,并通过二硫键连接形成同元二聚体,但只有PDGFA和B可以形成有功能的异元二聚体。 PDGF在被合成出來之後,會先貯存在血小板中的α顆粒當中,直到受到刺激後才釋放出來。另外,平滑肌細胞、活化的巨噬細胞,和上皮細胞等多種細胞也會製造PDGF。 醫療上,可使用合成PDGF加速病灶的癒合;骨科和牙周病專科上也會以PDGF治療骨質流失。.

新!!: 分子和血小板衍生生長因子 · 查看更多 »

血红蛋白

血红蛋白,俗稱血色素,(Hemoglobin(美國) 或 haemoglobin(英國);縮寫︰Hb 或 Hgb)是高等生物体内负责运载氧的一种蛋白质。可以用平均細胞血紅蛋白濃度測出濃度。 血红蛋白存在于几乎所有的脊椎动物体内,在某些无脊椎动物组织也有分布。血液中的血红蛋白从呼吸器官中将氧气运输到身体其他部位释放,以满足机体氧化营养物质支持功能运转之需要,并将由此生成的二氧化碳带回呼吸器官中以排出体外。在哺乳动物中,血红蛋白占红细胞干重的97%、总重的35%。平均每克血红蛋白可结合1.34ml的氧气,是血浆溶氧量的70倍。一个哺乳动物血红蛋白分子可以结合最多四个氧分子。 血红蛋白也参与其他气体的转运:它能携带机体的部分二氧化碳(大约10%)。亦可将重要的调节分子一氧化氮结合在球状蛋白的某个硫醇基团上,在释放氧气的同时将其释放。 在红细胞及其祖系细胞以外也发现了血红蛋白——包括黑质中的A9多巴胺神经元、巨噬细胞、肺泡细胞以及肾脏中的系膜细胞。在这些组织中,血红蛋白作为抗氧化剂和铁代谢的调节因子存在。 血红蛋白和类血红蛋白分子在许多无脊椎动物、真菌和植物中也有分布。在这些机体中,血红蛋白可能携带氧气,抑或扮演转移和调节诸如二氧化碳、一氧化氮、硫化氢和硫化物的角色。其中一种称作豆血红蛋白(Leghemoglobin)的变体分子是用来清除氧气以免毒害诸如豆科植物的固氮根瘤的厌氧系统的。 血红蛋白化学式:C3032H4816O812N780S8Fe4。人体内的血红蛋白由四个亚基构成,分别为两个α亚基和两个β亚基,在与人体环境相似的电解质溶液中血红蛋白的四个亚基可以自动组装成α2β2的形态。 血红蛋白的每个亚基由一条肽链和一个血红素分子构成,肽链在生理条件下会盘绕折叠成球形,把血红素分子抱在里面,这条肽链盘绕成的球形结构又被称为珠蛋白。血红素分子是一个具有卟啉结构的小分子,在卟啉分子中心,由卟啉中四个吡咯环上的氮原子与一个亚铁离子配位结合,珠蛋白肽链中第8位的一个组氨酸残基中的吲哚侧链上的氮原子从卟啉分子平面的上方与亚铁离子配位结合,当血红蛋白不与氧结合的时候,有一个水分子从卟啉环下方与亚铁离子配位结合,而当血红蛋白载氧的时候,就由氧分子顶替水的位置。 血紅蛋白與氧的結合可受到2,3-二磷酸甘油酸(2,3-BPG)的調控,成人的血紅素組成為α2β2,使成人血紅蛋白對氧的親和性降低,而胎兒血紅蛋白的組成為α2γ2,不受2,3-二磷酸甘油酸影響。 血红蛋白与氧结合的过程是一个非常神奇的过程。首先一个O2与血红蛋白四个亚基中的一个结合,与氧结合之后的珠蛋白结构发生变化,造成整个血红蛋白结构的变化,这种变化使得第二个氧氣分子相比于第一个氧氣分子更容易寻找血红蛋白的另一个亚基结合,而它的结合会进一步促进第三个氧氣分子的结合,以此类推直到构成血红蛋白的四个亚基分别与四个氧氣分子结合。而在组织内释放氧的过程也是这样,一个氧氣分子的离去会刺激另一个的离去,直到完全释放所有的氧氣分子,这种有趣的现象称为协同效应。 由于协同效应,血红蛋白与氧气的结合曲线呈S形,在特定范围内随着环境中氧含量的变化,血红蛋白与氧分子的结合率有一个剧烈变化的过程,生物体内组织中的氧浓度和肺组织中的氧浓度恰好位于这一突变的两侧,因而在肺组织,血红蛋白可以充分地与氧结合,在体内其他部分则可以充分地释放所携带的氧分子。可是当环境中的氧气含量很高或者很低的时候,血红蛋白的氧结合曲线非常平缓。 除了运载氧,血红蛋白还可以与二氧化碳、一氧化碳、氰离子结合,结合的方式也与氧完全一样,所不同的只是结合的牢固程度,一氧化碳、氰离子一旦和血红蛋白结合就很难离开,这就是煤气中毒和氰化物中毒的原理,遇到这种情况可以使用其他与这些物质结合能力更强的物质来解毒,比如一氧化碳中毒可以用静脉注射亚甲基蓝的方法来救治。.

新!!: 分子和血红蛋白 · 查看更多 »

血腦屏障

腦血管障壁(blood–brain barrier ,BBB),也稱為血腦屏障或血腦障壁,指在血管和腦之間有一種选擇性地阻止某些物質由血進入腦的“--”。.

新!!: 分子和血腦屏障 · 查看更多 »

风是大规模的气体流动现象。在地球上,风是由空气的大范围运动形成的。在外层空间,太阳风是气体或带电粒子从太阳到太空的流动,而行星风则是星球大气层的轻分子经释气作用飘散至太空。风通常可按、速度、力度、肇因、产生区域及其影响来划分。在太阳系的海王星和木星上,曾观测到迄今为止于星球上产生的最为强烈的风。 在气象学中,经常用风的強度和风的方向来描述风。短期的高速的风的爆发被成为阵风。极短时间内(大约1分钟)的强风被称为。长时间的风可根据它们得平均强度被称呼不同的名字,比如微风、烈風、风暴、飓风、台风等。风发生的时间范围很大,有--持续几十分钟的雷暴气流,有可持续几小时的因地表加热而产生的局地微风,也有因地球上不同气候区内吸收太阳能量不同而产生的全球性的风。大尺度大氣環流产生的两个主要原因是赤道和极地之间的所受不同的加热,以及行星的旋转(科里奥利效应)。在热带,热低压和高原可以驱动季风环流。在海岸地区,海陆风循环在局地的风中占主要。在有起伏地形的地区,山谷风在局地风中占主要。 在人类文明历史中,风引发了神话,影响过历史,扩展了运输和战争的范围,为机械功,电和娱乐提供了能源。风推动着帆船在地球的大海中航行。热气球利用风可作短途旅行,动力飞行可以利用风来增加升力和减少燃料消耗。一些天气现象引发的风切变区域可以导致航空器处于危险的境况。当风变强时,会毁坏树木和人造建筑。 风还可以通过不同的风成过程(比如沃土的形成,黄土的形成)和侵蚀作用改变地表形态。盛行风可以将大沙漠的黄沙从源头带到很远的地方;粗糙的地形可以将风加速,因为对当地的影响很大,世界上一些区域的和沙尘暴相关的风都有自己的名字。风可以影响野火的蔓延。 很多种植物的种子是依靠风来散布,这些物种的生存和分布受风影响很大。一些飞行类昆虫的种群大小也受风影响。当风和低温同时发生时,对家畜会有不利影响。风还可以影响动物的食物的储存,以及它们的捕猎和自保的策略。.

新!!: 分子和風 · 查看更多 »

被动运输

被动运输指的是生物化学物质的运动或其他原子或分子穿过细胞膜。不像主动运输,该过程不需要化学能,这是因为顺浓度梯度的跨膜转运总是伴随着系统熵增大的方向进行的。因此,被动运输是基于细胞膜的半透性,这也相应地依赖膜脂以及膜蛋白的组织形式及其化学表征。被动运输的四种形式分别是:简单扩散(自由扩散)、易化扩散(协助扩散)、过滤以及渗透。.

新!!: 分子和被动运输 · 查看更多 »

袋狸目

袋狸目(Peramelemorphia)是包括了袋狸及兔袋狸的一目,接近「雜食性有袋類」的主支。其下所有成員都是澳洲及新畿內亞的原住民,大部份都有袋狸的體態:肥胖、弓背、尖長的吻、很大的耳朵、幼長的腳及幼的尾巴。牠們的體型介乎140克至2公斤,大部份都有約1公斤重。.

新!!: 分子和袋狸目 · 查看更多 »

食品容器

食品容器(英文:Food contact materials、日文:食品用器具材料)為用來裝載並會與食物直接接觸的容器。例如:玻璃、裝飲料的罐子;也包括工廠中生產食物的機械和咖啡機。 食品與容器接觸的過程中,容器材質的分子可能轉移到食物上。據此,許多國家都制定食品容器相關法規以確保食品安全。.

新!!: 分子和食品容器 · 查看更多 »

西北太平洋国家实验室

西北太平洋国家实验室(Pacific Northwest National Laboratory ,简称:PNNL),创建于1965年,位于美国华盛顿州东部哥伦比亚河和交界的沙漠地带,在第二次世界大战“曼哈顿工程”里生产美国原子弹核材料的汉福德基地(Hanford Site)的基础上建成。PNNL最初的任务是从事原子弹核材料生产的研究,20世纪80年代末开始从事整个基础科学研究。PNNL隶属于美国能源部,现拥有4000多名科学家。其优势研究领域包括能源、环境、计算机、核能、放射化学等,特别是基础分子科学和计算机科学。.

新!!: 分子和西北太平洋国家实验室 · 查看更多 »

親水性

親水性指分子能夠透過氫鍵和水分子形成短暫鍵結的物理性質。因為熱力學上合適,這種分子不只可以溶解在水裡,也可以溶解在其他的極性溶液內。 一個親水性分子,或說分子的親水性部份,是指其有能力極化至能形成氫鍵的部位,並使其對油或其他疏水性溶液而言,更容易溶解在水裡面。親水性和疏水性分子也可分別稱為極性和非極性分子。 肥皂擁有親水性和疏水性兩端,以使其可以溶解在水裡,也可以溶解在油裡。因此可得,肥皂可以去除掉水和油之間的界面。.

新!!: 分子和親水性 · 查看更多 »

馬丁·羅德貝爾

馬丁·羅德貝爾(Martin Rodbell,),美国生物化学和分子內分泌學家,以发现G蛋白而闻名。因发现G蛋白和这些蛋白在细胞信号传导中的作用与艾爾佛列·古曼·吉爾曼一起分享1994年诺贝尔生理学或医学奖。 Category:盖尔德纳国际奖获得者 Category:诺贝尔生理学或医学奖获得者 Category:美國諾貝爾獎獲得者 Category:美國生物化學家 Category:華盛頓大學校友 Category:约翰·霍普金斯大学校友.

新!!: 分子和馬丁·羅德貝爾 · 查看更多 »

香港膠災

香港膠災是2012年发生在香港附近海域的一次海洋污染事件。2012年7月23日,強颱風韋森特吹襲香港,邻近海域普遍颳起颶風;导致一艘於香港南面水域的中海集運貨櫃船的7個貨櫃墮海,當中6個貨櫃裝滿由中國石化生產的聚丙烯膠粒,並在風暴過後於香港南面海域漂流。部分貨櫃遭海浪擊毀,使櫃內膠粒進入海洋,成為海洋垃圾,並隨水流散佈於香港南部海域及岸灘,造成廣泛環境及生態污染,同時影響本地漁業。 膠粒在風暴襲港翌日已陸續沖上海岸,並由愉景灣非政府組織DB Green成員率先發現。膠災之初,香港主流媒體基本没有进行报导。清理工作基本由DB Green、香港海洋守護者協會及其他非政府組織主導,並透過社交網站以及網絡媒體傳播消息。這些消息逐步在民間引起強烈反響,令大量香港普通市民自發到海岸清理。 事發近兩週後,香港報章及電視媒體開始大幅度報導事件。海事處及食物環境衛生署等香港政府部門一直積極與民間組織協作清理,但政府從未向公眾發佈相關消息。到8月5日,開始有局長級官員向公眾交代。膠粒貨主中國石化公司以及船運公司中海集運都在7月底開始與非政府組織合作清理。但膠粒污染的責任問題尚未獲釐清。.

新!!: 分子和香港膠災 · 查看更多 »

解离常数

在化学、生物化学及药理学中,解离常数(dissociation constant,K_)是一种特定类型的平衡常数,用于衡量一较大物体与另一较小组分分开(解离)的倾向,也可以描述配合物解体成组分分子或盐分裂为其组分离子。解离常数是缔合常数的倒数。对于一些特定的盐,解离常数亦可被称为电离常数。 对于一般的反应: \mathrm_\mathrm_ \rightleftharpoons x\mathrm + y\mathrm 其中复合物\mathrm_\mathrm_分解为x份A亚单位及y份B亚单位,则解离常数被定义为: K_.

新!!: 分子和解离常数 · 查看更多 »

角形分子構型

角形分子構型是分子結構中的一種,可以用來描述三個原子的分子,三個原子之間形成二個鍵,但所有原子不處在一條直線上,因此有不為180度的鍵角。 角形分子構型可能是由四面体形分子构型衍生而來,只是鍵結的二個原子改為孤對電子,理想的鍵角為109.5°,不過也常出現105°、107°及109°的鍵角。角形分子構型也可能是由平面三角形分子构型衍生而來,而鍵結的一個原子改為孤對電子。一些原子(例如氧)因為存在孤對電子,常常會形成角形分子構型。H2O就是一種角形分子的例子。其鍵角大約為104.45度。 只由主族元素構成的三原子分子或離子,若中心原子和其他原子沒有形成雙鍵,也不是超價分子,常常會是角形分子構型,例如二氧化氮、二氯化硫及CH2離子,角形分子構型可以用价层电子对互斥理论(VSEPR)來說明。.

新!!: 分子和角形分子構型 · 查看更多 »

视觉系统

视觉系统是神经系统的一个组成部分,它使生物体具有了视知觉能力。 它使用可见光信息构筑机体对周围世界的感知。视觉系统具有将外部世界的二维投射重构为三维世界的能力。需要注意的是,不同物种所能感知的可见光处于光谱中的不同位置。例如,有些物种可以看到紫外部分,而另一些则可以看到红外部分。 本条目主要介绍哺乳动物的视觉系统,其他很多“高等”动物也具有与之类似的视觉系统。 哺乳动物的视觉系统包括:.

新!!: 分子和视觉系统 · 查看更多 »

諸熊奎治

諸熊奎治(,),日本理論化學家。瑞寶中綬章表彰。文化功勞者。 諸熊現任名譽教授、美國艾默理大學名譽教授、京都大學福井謙一紀念研究中心高級研究員。曾任国际量子分子科学院第7、8任主席。.

新!!: 分子和諸熊奎治 · 查看更多 »

高分子

分子(Macromolecule)化合物是一個非常大的分子,如蛋白質,通常由較小的亞基(單體)的聚合產生。它們一般由數千或更多的原子組成。通过一定形式的聚合反应生成具有非常高的分子量的大分子,一般指聚合物和结构上包括聚合物的分子。在生物化学中,这个术语被应用于三个传统的生物聚合物(核酸、蛋白质、和碳水化合物),以及具有大分子量的非聚合分子,例如脂类和。这些分子有时也被称为生物大分子。 聚合物高分子的各个构成分子被称为单体。 人工合成的高分子包括塑料。金属和晶体虽然也是由许多原子组成的,其内部通过类似分子的键联合在一起,但是它们一般不被认为是高分子。有时不同的高分子之间通过分子间力(但不是通过化学键)组合到一起,尤其是假如这样的组合是自然发生的,而且其组成部分一般不单独出现的话,那么这样的混合物也会被称为高分子。实际上这样的混合物更应该被称为高分子复合物。在这种情况下组成这个复合物的单个高分子往往被称为下单位。由高分子组成的物质往往有不寻常的物理特性。液晶和橡胶就是很好的例子。许多高分子在水中需要特殊的小分子帮助才能溶解。许多需要盐或者特殊的离子来溶解。.

新!!: 分子和高分子 · 查看更多 »

高分子支载催化剂

高分子支载型催化剂是一类通过接枝法,将有很高活性的小分子催化剂负载在高分子上的非均相催化剂。该类催化剂所具有的特点:可实现重复利用,减少重金属离子的排放,经济高效的达到小分子催化剂的最高利用性。目前研究最广泛的高分子载体主要包括无机高分子载体和天然高分子载体。 Category:高分子化学 Category:催化剂.

新!!: 分子和高分子支载催化剂 · 查看更多 »

高斯定律

斯定律(Gauss' law)表明在闭合曲面内的电荷分佈與產生的電場之間的關係:.

新!!: 分子和高斯定律 · 查看更多 »

譜線

譜線是在均勻且連續的光譜上明亮或黑暗的線條,起因於光子在一個狹窄的頻率範圍內比附近的其他頻率超過或缺乏。 譜線通常是量子系統(通常是原子,但有時會是分子或原子核)和單一光子交互作用產生的。當光子的能量確實與系統內能階上的一個變化符合時(在原子的情況,通常是電子改變軌道),光子被吸收。然後,它將再自發地發射,可能是與原來相同的頻率或是階段式的,但光子發射的總能量將會與當初吸收的能量相同,而新光子的方向不會與原來的光子方向有任何關聯。 根據氣體、光源和觀測者三者的幾何關係,看見的光譜將會是吸收譜線或發射譜線。如果氣體位於光源和觀測者之間,在這個頻率上光的強度將會減弱,而再發射出來的光子絕大多數會與原來光子的方向不同,因此觀測者看見的將是吸收譜線。如果觀測者看著氣體,但是不在光源的方向上,這時觀測者將只會在狹窄的頻率上看見再發射出來的光子,因此看見的是發射譜線。 吸收譜線和發射譜線與原子有特定的關係,因此可以很容易的分辨出光線穿越過介質(通常都是氣體)的化學成分。有一些元素,像是氦、鉈、鈰等等,都是透過譜線發現的。光譜線也取決於氣體的物理狀態,因此它們被廣泛的用在恆星和其他天體的化學成分和物理狀態的辨識,而且不可能使用其他的方法完成這種工作。 同核異能位移是由於吸收光子的原子核與發射的原子核有不同的電子密度。 除了原子-光子的交互作用外,其他的機制也可以產生譜線。根據確實的物理交互作用(分子、單獨的粒子等等)所產生的光子在頻率上有廣泛的分佈,並且可以跨越從無線電波到伽馬射線,所有能觀測的電磁波頻譜。.

新!!: 分子和譜線 · 查看更多 »

變種天賦

《變種天賦》(The Gifted)是一部由麥特·尼克斯開創,取材自漫威漫畫《X戰警》,於2017年10月2日在FOX開播的美國電視劇。 本劇與「X戰警電影系列」宇宙相連,設定於一條X戰警已經消失的架空時間線。這也是繼《變種軍團》後,第二部由X戰警系列所改編的電視劇。 本劇首播集由X戰警系列電影的導演布萊恩·辛格執導,他同時也身為本劇的執行製作之一。劇集風格也採用了布萊恩·辛格所執導的X戰警電影相似的黑暗色彩和寫實風格,以及對於歧視與宽容的探討。本劇開播後獲得了普遍好評,多數稱讚該劇的社會評論主題和演出陣容。2018年1月4日,這部劇獲得第二季續訂。.

新!!: 分子和變種天賦 · 查看更多 »

计算化学

计算化学(computational chemistry)是理论化学的一个分支,主要目的是利用有效的数学近似以及电脑程序计算分子的性质,例如总能量、偶极矩、四极矩、振动频率、反应活性等,并用以解释一些具体的化学问题。计算化学这个名词有时也用来表示计算机科学与化学的交叉学科。.

新!!: 分子和计算化学 · 查看更多 »

鯨偶蹄目

偶蹄目(学名:Cetartiodactyla)是一個包含了传统鯨目及偶蹄目的演化支。這個演化支一般是用來描述鯨魚(包括海豚)是從偶蹄目中演化而來。根據遗传学分析,鯨魚現存最亲近的近親是河馬。鯨魚與河馬的分支則稱為河馬形類(Whippomorpha,有建議使用Cetancodonta但未普及)。依此定义,剔除了鲸目的旧有偶蹄目分类将是个并系群。 在起初,鯨偶蹄類的定义原是指鯨目是偶蹄目的旁系姊妹分類,而非從偶蹄目演化。從此定義來看,所有偶蹄目(包括河馬)之間才是近親,而鯨魚是偶蹄类的旁系群。 鯨魚演化自陸上的哺乳動物,並形成了一個單系群。一般都接受鯨魚是從單一的祖先演化下來。於1990年代前,最廣泛接受的鯨魚近親是已滅絕的中爪獸目。中爪獸目是有蹄的及主要是肉食性的哺乳動物。但現今很少學者認同這個說法,一般只認同中爪獸目是鯨偶蹄類的近親,而非鯨魚的祖先。.

新!!: 分子和鯨偶蹄目 · 查看更多 »

诱导效应

誘導效應,即因分子中原子或基團極性(电負性)不同而致使成键电子雲在原子链上向某一方向移动的效應。其本质是静电感應。电子雲偏向电负性较强的基团或原子(如氟)移动。 诱导效应的强弱程度可以通过测量偶极矩而得知,也可以通过比较相关取代羧酸的酸解离常数而大致估量。它随距离的增长而迅速下降,故一般情况下只需要考虑三根键的影响。诱导效应的另外一个特点是电子云是沿原子链移动或传递的,这一点与场效应不同。 诱导作用的大小一般以氢为标准进行比较:吸电子能力比氢强的基团或原子具吸电子诱导效应,用 −I 表示;给电子能力比氢强的基团或原子则具给电子诱导效应,用 +I 表示。 取代基的诱导效应强弱有如下规律:.

新!!: 分子和诱导效应 · 查看更多 »

诺贝尔奖

诺贝爾奖(Nobelpriset,Nobelprisen),是根据瑞典化学家阿尔弗雷德·诺贝尔的遗嘱於1901年開始頒發的奖项。诺贝尔奖分设物理、化学、生理学或医学、文学、和平和经济学六个奖项(经济学奖于1968由瑞典中央银行增设,全称“瑞典银行纪念诺贝尔经济科学奖”,通称“诺贝尔经济学奖”)。诺贝尔奖普遍被认为是所颁奖的领域内最重要的奖项。.

新!!: 分子和诺贝尔奖 · 查看更多 »

豚足袋狸

豚足袋狸(Chaeropus ecaudatus)是一種細小及草食性的袋狸,分佈在澳洲內陸乾旱及半乾旱的平原。.

新!!: 分子和豚足袋狸 · 查看更多 »

豚鼠小目

豚鼠小目(学名:Caviomorpha)又作南美豪豬類,是齧齒目下的一個小目,包含了所有在南美洲的豪豬下目。這個分類是得到化石及分子證據所支持的。.

新!!: 分子和豚鼠小目 · 查看更多 »

象鼩

象鼩是一類非洲原住的食蟲哺乳動物,屬於象鼩目(Macroscelidea)。牠們有著很像象的長鼻。牠們廣泛分佈在南部非洲,由納米比沙漠至南非及大森林中都有。其中的北非象鼩則生活在非洲西北部半乾旱及多山的地區中。.

新!!: 分子和象鼩 · 查看更多 »

質子交換膜燃料電池

質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell,簡稱:PEMFC),又稱固體高分子電解質燃料電池(Polymer Electrolyte Membrane Fuel Cells),是一種以含氫燃料與空氣作用產生電力與熱力的燃料電池,運作溫度在 50℃ 至 100℃,無需加壓或減壓,以高分子質子交換膜為傳導媒介,沒有任何化學液體,發電後產生純水和熱。 燃料電池中,質子交換膜燃料電池相對低溫與常壓的特性,加上對人體無化學危險、對環境無害,適合應用在日常生活,所以被發展應用在運輸動力型(Transport)、現場型(Stationary)與攜帶型(Portable)等機組。.

新!!: 分子和質子交換膜燃料電池 · 查看更多 »

質子自遷移反應

質子自遷移反應(autoprotolysis)是指質子(氫離子)在兩個相同分子之間轉移的現象,其中一個是布朗斯特酸,釋放質子,另一個是布朗斯特碱,接受質子。例如在水的電離中,水就產生了質子自遷移反應: 溶劑只要有可解離的氫原子,也有孤對電子可以接受H+,就可能會出現質子自遷移反應。 例如純液氨也會有質子自遷移反應:.

新!!: 分子和質子自遷移反應 · 查看更多 »

质子化

在化学中,质子化是原子、分子或离子获得质子(H+)的过程。  简单的可以理解为和质子化合, 即结合一个质子,一般都是该物质有孤对电子,所以可以通过配位键结合一个质子。如H2O变成H3O+,NH3变成NH4+等等。 质子化的逆过程是去质子化。 质子化可能是最基本的化学反应,是很多化学计量和催化过程中的一步。一些多元离子和原子可以进行多次质子化,例如很多生物高分子。 基底经过质子化後,其中每一种粒子的质量和电荷都增加了一个单位。分子质子化或去质子化後,很多化学性质都发生了改变,不仅限於电荷和质量,如亲水性、还原势、光学特性等。在特定的分析步骤中,如电喷雾质谱,质子化是必需的一步。 质子化和去质子化会发生在大多数酸碱反应,是大多数酸碱反应理论的核心。布朗斯特-劳里酸被定义为将另一物质质子化的化学物质。.

新!!: 分子和质子化 · 查看更多 »

质谱法

质谱(mass spectrometry,缩写:MS)是一种电离化学物质并根据其质荷比(质量-电荷比)对其进行排序的分析技术。简单来说,质谱测量样品内的质量。 质谱法被用于许多不同领域,并被用于纯样品和复杂混合物。 质谱是离子信号作为质荷比的函数的曲线图。这些频谱被用于确定样品的元素或,颗粒和分子的质量,并阐明分子的化学结构,如肽和其他化合物。 在典型的质谱法中,可以是固体,液体或气体的样品被电离,例如用电子轰击它。 这可能导致一些样品的分子破碎成带电的碎片。 然后,这些离子根据其质荷比被分离,通常通过加速它们并使其经受电场或磁场:相同质荷比的离子将经历相同数量的偏转。离子通过能够探测带电粒子的机制被探测到,例如一个电子倍增管。 结果被显示为作为质荷比的函数的已经探测离子的相对丰度的频谱。 样品中的原子或分子可以通过将已知质量与鉴定的质量相关联或通过特征分解模式来鉴定。.

新!!: 分子和质谱法 · 查看更多 »

质量加权坐标

质量加权坐标是描述分子内部运动的一套坐标体系.

新!!: 分子和质量加权坐标 · 查看更多 »

费米悖论

费米悖论(Fermi paradox,又称費米謬論)阐述的是对地外文明存在性的过高估计和缺少相关证据之间的矛盾。 宇宙惊人的年龄和庞大的星体数量意味着,除非地球是一个特殊的例子,否則地外生命应该广泛存在 。在1950年的一次非正式讨论中,物理学家恩里科·费米问道,如果银河系存在大量先进的地外文明,那么为什么连飞船或者探测器之类的证据都看不到。对这个话题更加具体的探讨最早出现在1975年麦克·哈特的文章中,有时也被叫做麦克·哈特悖论。另一个紧密相关的问题是大沉默——即使难以星际旅行,如果生命是普遍存在的话,为什么我们探测不到电磁信号?有人尝试通过寻找地外文明的证据来解决费米悖论,也提出这些生命可能不具备人类的智慧。也有學者认为高等地外文明根本不存在,或者非常稀少以至于人类不可能联系得上。地球殊異假說有時被認為為費米悖論提供了一種解釋的答案。 从哈特开始,很多人开始发展关于地外文明的科学理论或模型。大部分工作都引用费米悖论作为参考。很多相关的问题已经得到重视,内容包括天文学、生物学、生态学和哲学。新兴的天体生物学给问题的解决引入了跨学科的研究手段。.

新!!: 分子和费米悖论 · 查看更多 »

超价分子

超价分子是指由一种或多种主族元素形成,而且中心原子价层电子数超过8的一类分子。例如五氯化磷、六氟化硫、磷酸根离子、三氟化氯以及三碘阴离子都是典型的超价分子。超价分子的概念最早是由上述几种不符合八隅体规则的分子产生的,而自从超价分子的概念提出以来,就处于不断的争议之中。八隅体规则的例外主要有三种,缺电子分子(例如三氟化硼中心原子价电子数为6)、奇电子分子(例如一氧化氮的价电子数是奇数)和超价分子。利用分子轨道理论可以很好地解释前两种分子,然而对于超价分子,不但结构没有得到公认的解释,甚至定义都处于争论之中。.

新!!: 分子和超价分子 · 查看更多 »

超分子

超分子(supermolecule)是在1937年由德国化學家K.L. Wolf提出,最早是形容由氫鍵鍵結的乙酸二聚體。超分子化學是有關分子錯合物非共價鍵結的相關研究。「超分子」一詞有時是指超分子組裝,是由二個或多個彼此沒有形成共價鍵結的分子(一般是高分子)所組成的錯合物 。在生物化學中,「超分子」是指像肽及寡核苷酸等由生物分子組成的錯合物。.

新!!: 分子和超分子 · 查看更多 »

超固体

超固体(Supersolid)是一种所有分子(或原子、原子对)处于同一个低温基态的物质状态,属于玻爱凝聚态,和超流体很相似。超固体有很多神奇的特性,例如所有分子都表现得像同一个分子,熵为零,黏度为零,無摩擦力並且能像液體一樣流動,同時維持其晶格結構等等。 2004年美国宾夕法尼亚州立大学的科学家陳鴻渭宣布发现将固氦冷冻到特别低的温度下,并使其在不同的速度下振荡,结果发现,粒子表现出无摩擦流动现象,就像发生在液氦的超流体现象中的情况一样。固氦粒子的这种行为表现此前从未发现过。.

新!!: 分子和超固体 · 查看更多 »

超精细结构

超精细结构是指导致原子、分子和离子的能级造成细微变化和分裂的一系列效应。这个名字来源于“精细结构”,这是指由于电子自旋和轨道角动量产生的磁矩之间的相互作用所产生的。而超精细结构造成的能级变化和分裂更为微小,并且是由原子核内部的电磁场所产生的。.

新!!: 分子和超精细结构 · 查看更多 »

跨膜运输

跨膜运输(membrane transport)是细胞生物学中,细胞控制像離子或是小分子的溶質通過生物膜(由磷脂双分子层及蛋白質組成)的許多機制。跨膜运输的調節是透過選擇性滲透的機制(生物膜可以控制不同化學結構的物質進出)。因此有可能一些物質可以跨膜运输,而另外一些物質不行。.

新!!: 分子和跨膜运输 · 查看更多 »

路德维希·玻尔兹曼

路德维希·爱德华·玻尔兹曼(Ludwig Eduard Boltzmann ,)是一位奥地利物理学家和哲学家。作为一名物理学家,他最伟大的功绩是发展了通过原子的性质(例如,原子量,电荷量,结构等等)来解释和预测物质的物理性质(例如,粘性,热传导,扩散等等)的统计力学,并且从统计概念出發,完美地阐释了热力学第二定律。.

新!!: 分子和路德维希·玻尔兹曼 · 查看更多 »

路易斯結構

路易斯結構(Lewis structures),又稱路易斯點圖像、電子點圖像、路易斯電子點式、路易斯點結構、電子點結構,是分子中原子和原子鍵結和標示孤對電子存在的圖像。 路易斯結構可以畫出表示分子中的共價鍵以及配位化合物。路易斯結構是由這位吉爾伯特·牛頓·路易斯科學家命名的,他在1916年時把路易斯結構寫入它的一篇名為《原子和分子》的文章中。他們類似電子點圖像在價電子和孤對電子中以點來表示,但也可以用線來表示共享電子(如單鍵、雙鍵、三鍵等)。 路易斯結構中每個原子他們的位置在分子的結構上用不同的化學記號標示。線畫在原子和原子間的鍵結(也可以用一對點來表示),多餘的電子以一對點來表示孤對電子。 雖然第二週期的主族元素可反應藉由獲得或失去共享電子讓外層價電子填滿至8個,然而其他元素對於價電子遵循不同的規則。氫原子(H)的遵循方式是是填滿最外層的一個價電子或使之最外層沒有電子,但過渡金屬遵循dodectet (12) 規則(例如過錳酸鹽離子)。.

新!!: 分子和路易斯結構 · 查看更多 »

踝節目

踝節目(Condylarthra)是已滅絕的有胎盤类哺乳動物,主要生存於古新世及始新世。踝節目是古新世最有特色哺乳動物,並顯示了古新世哺乳動物群的演化程度。 與食蟲类动物的祖先相比,踝節目成員顯示了演化成雜食性或草食性的最初跡象。大型的陸上草食性動物自從恐龍的滅絕後就消失了,食性的轉移引發了踝節目的演化輻射,在澳洲以外的陸地上,生成了新生代不同類別的草食性有蹄動物。故此最原始的踝節目其實是某些现代有蹄類的共同祖先。雖然有些踝節目有細小的蹄,但最原始的形態是有爪的。 最近的分子及DNA研究重整了哺乳動物的演化情況。近蹄類及管齒目不再是奇蹄目、偶蹄目及鯨目的近親,故有蹄類最少是從兩個不同的分支獨立演化而成的。這亦有可能由于踝節目本身是一個多系群,即踝節目內的成員未必是近親。 除了南蹄目及現今的有蹄類外,踝節目被認為是其他己滅絕的哺乳動物(如中爪獸目及恐角目)的祖先。.

新!!: 分子和踝節目 · 查看更多 »

鹵化

鹵化是一种化工单元过程,是向有机化合物分子中引入卤素原子的过程,最常用的是向烃分子中引入卤素原子,形成“卤烃”,由于卤烃相当活泼,很容易被其他原子或“基”置换,因此常用于有机合成制造中间体的过程。鹵化也可以指無機化合物(例如金屬)引入卤素原子的过程。 鹵化的途徑和化學劑量和其化學結構的特性、有機化合物的官能基或鹵化的鹵族元素都有關係。卤素是氟、氯、溴、碘、砹五种元素的总称,因此卤化也分为氟化、氯化、溴化和碘化。碘比氯和溴要贵上很多,因而化工生产中最常用的是氯化法和溴化法。常用的氯化剂是氯气或氯化氢。因为氟气氧化性太强,通常会将反应物直接氧化分解,因而氟化一般用相应的氟化剂。 鹵化的例子有乙炔被氯化氢氯化,可以生成氯乙烯,成为制造塑料聚氯乙烯的原料;苯被氯化生成六氯苯等。 脫鹵反應(Dehalogenation)是鹵化的逆反應,就是從分子中移除鹵族元素,最常見的是脫鹵化氫反應Yoel Sasson "Formation of Carbon–Halogen Bonds (Cl, Br, I)" in Patai's Chemistry of Functional Groups, 2009, Wiley-VCH, Weinheim.

新!!: 分子和鹵化 · 查看更多 »

麦克斯韦-玻尔兹曼分布

麦克斯韦-玻尔兹曼分布是一个描述一定温度下微观粒子运动速度的概率分布,在物理学和化学中有应用。最常见的应用是统计力学的领域。任何(宏观)物理系统的温度都是组成该系统的分子和原子的运动的结果。这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。麦克斯韦-玻尔兹曼分布具体说明了这个比例,对于任何速度范围,作为系统的温度的函数。它以詹姆斯·麦克斯韦和路德维希·玻尔兹曼命名。 这个分布可以视为一个三维向量的大小,它的分量是独立和正态分布的,其期望值为0,标准差为a。如果X_i的分布为\ X \sim N(0, a^2),那么 就呈麦克斯韦-玻尔兹曼分布,其参数为a。.

新!!: 分子和麦克斯韦-玻尔兹曼分布 · 查看更多 »

點群

在數學裡,點群是指固定一點不動之幾何對稱(等距同構)的群。.

新!!: 分子和點群 · 查看更多 »

黄眼企鹅

黃眼企鵝(學名:,毛利語:Hoiho)是原住新西蘭的企鵝。牠們以往被認為是小藍企鵝的近親,但分子分析研究發現牠們更為接近冠企鵝屬。就像所有其他的企鵝,黃眼企鵝主要以魚為主食。 黃眼企鵝分佈在新西蘭的南島、斯圖爾特島、奧克蘭群島及坎貝爾島。位於奧塔哥半島的群落是著名的旅遊熱點,很多遊客會在此近距離觀賞黃眼企鵝。.

新!!: 分子和黄眼企鹅 · 查看更多 »

软硬酸碱理论

软硬酸碱理论简称HSAB(Hard-Soft-Acid-Base)理论,是一种尝试解释酸碱反应及其性质的现代理论。20世纪60年代初,拉尔夫·皮尔逊採用HSAB原理,嘗試统一有机和无机化学反应。它目前在化学研究中得到了广泛的应用,其中最重要的莫过于对配合物稳定性的判别和其反应机理的解释。软硬酸碱理论的基础是酸鹼電子論,即以电子对得失作为判定酸、碱的标准(即路易斯酸碱理论)。该理论可用于定性描述,而非定量的描述,这将有助于了解化学性质和反应的主要驱动因素。尤其是在过渡金属化学,化学家们已经完成了无数次实验,以确定配体和过渡金属离子本身的硬和软方面的相对顺序。.

新!!: 分子和软硬酸碱理论 · 查看更多 »

载体蛋白

载体蛋白(carrier protein)简称“载体”,是参与离子、小分子或高分子跨越生物膜进行运输的一类多回旋折叠蛋白质。载体蛋白都是跨膜蛋白,它们能在协助扩散或主动运输过程中将被运载物从自身所处的膜的一端转运到另一端,有载体蛋白参与的物质转运机制被统称为载体介导转运。载体蛋白的转运机制是载体蛋白分子构象发生可逆性变化后与被转运分子结合,使被转运分子随之作跨膜运动。载体蛋白按被运载物的数量和运载方向分为三种类型,分别是单向运输载体(uniport carrier)、同向运输载体(symport carrier)和反向运输载体(antiport carrier)。每种载体蛋白一般只能识别并转运单独一种或十分相似的一类化学物质。.

新!!: 分子和载体蛋白 · 查看更多 »

轉移酶

轉移酶是一種催化一個分子(稱為供體)的官能團(如甲基或磷酸鹽團)轉移至另一個分子(稱為受體)的酶。 舉例來說,一種酶催化以下的化學反應就是轉移酶: 在這例子中的A就是供體,而B就是受體。供體一般都會被稱為輔酶。.

新!!: 分子和轉移酶 · 查看更多 »

龍捲風

龍捲風,又稱龍捲、捲風,是一種相當猛烈的天氣現象,由快速旋轉並造成直立中空管狀的气流形成。龙卷风大小不一,但形状一般都呈上大下小的漏斗状,“漏斗”上接积雨云(极少数情况下为积云),下部一般与地面接触并且常被尘土或碎片残骸等包围。 多数龙卷风直径约75米,风速在每小时64千米至177千米之间,可横扫数千米。还有一些龙卷风风速可超过每小时480千米,直径达1.6千米以上,移动路径超过100公里。 虽然除南极洲外的每块大陆都有龙卷风,但美国遭受的龙卷风比任何国家或地区都多。除此之外,龙卷风在加拿大南部、亚洲中南部和东部、南美洲中东部、非洲南部、欧洲西北部和东南部、澳大利亚西部和东南部以及新西兰等地区皆常出现。 台湾虽然龙卷风不多见,但根据气象学者研究,嘉南因为平原地形,平均两年会出现一次龙卷风。在2011年5月12日新北市新店区也发生过小龙卷风。2014年7月19日屏東縣里港發生過高達50公尺的陸龍捲。.

新!!: 分子和龍捲風 · 查看更多 »

辐射

物理學上的輻射指的是能量以波或是次原子粒子移動的型態,在真空或介質中傳送。包含.

新!!: 分子和辐射 · 查看更多 »

输运现象

气体的输运现象(transport phenomena)表示一类气体由非平衡态转为平衡态的过程,主要有以下几类 :.

新!!: 分子和输运现象 · 查看更多 »

辅酶

輔酶是有機非蛋白小分子,其用途為在酵素(酶)內載運化學基。許多輔酶是磷化水溶性維他命。但非維他命物質也可能是輔助,如ATP-磷酸基的生化載具。 輔酶被消耗在其幫助的反應上,如NADH輔酶被氧化還原反應轉化至NAD+。但輔酶是會再產生的,且其在細胞內的濃度會維持在一穩定的程度。 輔酶的一特殊子集為輔基。其輔因子(或稱輔助因子)會緊緊黏在酵素上,且不會在反應中被消耗。輔基包含有鉬蝶呤、硫辛胺和生物素。 酶蛋白與輔酶單獨存在時,一般無催化能力,只有二者結合成完整的分子時,才具有活性 ,此完整的酶分子稱為全酶。.

新!!: 分子和辅酶 · 查看更多 »

近蹄類

近蹄類(学名:Paenungulata),又名準有蹄類或次有蹄類,是一個包含了長鼻目、海牛目、蹄兔目、重腳目及索齒獸目等哺乳動物的動物分類。當中重腳目及索齒獸目經已滅絕,相對與現存的另外三個目有其獨特的一面。重腳目是像犀牛的草食性及蹠行的動物,而索齒獸目則像河馬,估計是吃陸上植物及像其他大型有蹄類般行走。 喬治·蓋洛德·辛普森是利用傳統的科學分類來將這類多樣的哺乳動物歸納在近蹄類中,但在解決其系譜問題時卻就缺乏嚴謹。他暗示蹄兔目可能與奇蹄目有關。早期的學者基於其齒列認為蹄兔目最接近犀牛,另外一些證據顯示蹄兔目有可能是奇蹄目的親屬,而非其他的近蹄類。故此,近蹄類之間有可能並不怎麼接近。 其後的基因技術及支序分類學發現,近蹄類是一個可信的分支,是最古老從有胎盤哺乳動物(真獸下綱)分化的一系。牠們與奇蹄目的關係卻沒有得到證實,雖然牠們的形態很像有蹄類,分子研究卻顯示牠們是屬於非洲獸總目。其他非洲獸總目的成員有非洲蝟目、象鼩目及管齒目。 在近蹄類的五個目中,蹄兔目是最為基底的,其次是重腳目,而其他的則較為相關,並組成了特提斯獸類,因為相信牠們的共同祖先是生活於史前的特提斯洋岸邊。.

新!!: 分子和近蹄類 · 查看更多 »

过三氧化氢

过三氧化氢也称为“三氧化氢”或“三氧化二氢”,其化学式为“H2O3”或“HOOOH”,是氢元素的氧化物。是一种不稳定的化合物,在水溶液中会分解为水和单线态氧: 上述反应的逆反应(向水分子中插入单线态氧原子)一般情况下由于单线态氧原子不足而速率小于正反应速率。 理论研究表明,过三氧化氢有顺式和反式共两种异构体,其中反式异构体比顺式异构体更稳定。二阶全活化空间微扰理论(complete active space perturbation theory of second order,CASPT2)预测结果显示,在单激发态中,顺式过三氧化氢寿命最长的激发态为21A",跃迁能为167.43nm,寿命为1.44×10-5s;而反式过三氧化氢寿命最长的激发态为21A,其跃迁能为165.52nm,寿命为2.07×10-5s。 在生命系统中,臭氧是由单线态氧形成的,现在推测其原理是:臭氧是单线态氧与水产生的H2O3的抗体催化产物。.

新!!: 分子和过三氧化氢 · 查看更多 »

过二硫酸

过二硫酸(或称为“过氧二硫酸”、“过硫酸”或“马歇尔酸”)是一种硫的含氧酸,分子式为H2S2O8 。 其结构可以表示为HO3SOOSO3H。虽然过二硫酸分子中的硫的氧化态为+6,但因为该分子中还具有类似过氧根的结构,所以其表现出比硫酸根更高的氧化态。过二硫酸常态下为固体,加热熔化时易分解。过二硫酸的盐称为“过二硫酸盐”。 过二硫酸易溶于水并具有吸水性,在热溶液中易发生水解,先后产生过一硫酸与过氧化氢。过二硫酸具有不稳定性,在室温下可以缓慢分解,放出氧气。过二硫酸具有强氧化性,能将氯离子等卤素离子氧化成卤素单质、氨氧化成氮气、将苯胺氧化成苯胺黑,与乙醇、乙醚等有机物作用会发生爆炸。过二硫酸的氧化性弱于过一硫酸。.

新!!: 分子和过二硫酸 · 查看更多 »

过冷

过冷(Supercooling,又譯超冷凍)是一種物理現象,透過降低液体或气体的温度,但不使其凝固的过程,能做到讓水瞬間凝冰的效果。.

新!!: 分子和过冷 · 查看更多 »

茶红素

茶红素(Thearubigins)是存在于红茶中的一种橙褐色色素,是茶叶发酵的产物。在生物化学上,茶红素是一类分子差异极大的异质性红色或褐红色的酚性物质,但很难提取。 茶红素,橙褐色化合物占干茶的6%到8%的重量。茶红素在茶汤的味道,色泽,方面,起到了一定的作用,茶红素约占总颜色的35%,也在成品茶的褐色方面起到了重要的作用。 Category:茶的化學.

新!!: 分子和茶红素 · 查看更多 »

范德华力

范德华力(Van der Waals force)在化学中指分子之间非定向的、无饱和性的、较弱的相互作用力,根据荷兰物理学家约翰内斯·范德瓦耳斯命名。范德华力是一种电性引力,但它比化学鍵或氢键弱得多,通常其能量小於5kJ/mol。范德华力的大小和分子的大小成正比。 范德华力的主要来源有三种机制:.

新!!: 分子和范德华力 · 查看更多 »

蜘蛛絲

蜘蛛絲是由蜘蛛所分泌抽出的纖維,其主要成份是蛋白質。蜘蛛利用牠們所生產的蜘蛛絲建造蜘蛛網以捕捉獵物,或建構巢穴或卵囊作為蜘蛛或子代的保謢場所。蜘蛛也可以利用自己的蜘蛛絲將自己懸吊著,以保護自己。 大多數的蜘蛛並不只有一種蜘蛛絲。蜘蛛腹部具有多種腺體專門分泌絲蛋白,通稱為絲腺。不同之絲腺會分泌不同的蛋白質,經由各自的通道,最末於絲疣將絲蛋白拉出而成為蜘蛛絲。絲蛋白在蜘蛛體內為液態,但經由絲疣開口時,由於壓力的作用,絲蛋白分子會重新排列而成為固態之絲蛋白。 許多蜘蛛幼體會利用蜘蛛絲作為飛翔的工具以進行遷徙。牠們將蜘蛛絲噴向空中,藉由風力將自己帶離原地。雖然這種遷徙方式的距離大多數公尺之遠,但極可能是蜘蛛遷徙至不同島嶼的方式。許多水手曾指出當他們在海中航行時可以在風帆上捉到蜘蛛。 在某些情況下,蜘蛛可能將蜘蛛絲當作食物。大多數的結網蜘蛛會在蜘蛛網不堪使用時以攝入蜘蛛絲的方式回收蜘蛛網。姬蛛科(Theridiidae)中有多種寄居於其它結網蜘蛛之物種,平時會偷竊宿主蜘蛛網上的獵物,或是直接攝入宿主的蜘蛛網上的蜘蛛絲作為食物。 人類已知如何以人工的方式從蜘蛛身上抽取蜘蛛絲。此動作乃將蜘蛛上下顛倒並固定其身體及步足,再利用鑷子等細物從絲疣附近拉出蜘蛛絲。若需要抽出大量的蜘蛛絲,可利用馬達等機械代替雙手以持續拉絲。.

新!!: 分子和蜘蛛絲 · 查看更多 »

胡克定律

--定律/--定律(Hooke's law),是力学弹性理论中的一条基本定律,內容:固体材料受力後,应力與应变(單位變形量)成線性關係,满足此定律的材料:线弹性/胡克型(Hookean) 从物理的角度看,胡克定律源于多数固体(或孤立分子)内部的原子在无外载作用下处于稳定平衡的状态。 许多实际材料,如一根长度为L、横截面积A的棱柱形棒,在力学上都可以用胡克定律来模拟——其單位伸长(或縮減)量\varepsilon (应变)在常系数E(称为弹性模量)下,与拉(或壓)应力 σ 成正比例,即: 或 \Delta L:總伸長(縮減)量。胡克定律用17世纪英国物理学家罗伯特·胡克的名字命名。胡克提出该定律的过程颇有趣味,他于1676年发表了一句拉丁语字谜,谜面是:ceiiinosssttuv。两年后他公布了谜底是:ut tensio sic vis,意思是“力如伸长(那样变化)”(见参考文献1),这正是胡克定律的中心内容。 胡克定律仅适用于特定加载条件下的部分材料。钢材在多数工程应用中都可视为线弹性材料,在其弹性范围内(即应力低于屈服强度时)胡克定律都适用。另外一些材料(如铝材)则只在弹性范围内的一部分区域行为符合胡克定律。对于这些材料需要定义一个应力线性极限,在应力低于该极限时线性描述带来的误差可以忽略不计。 还有一些材料在任何情况下都不满足胡克定律(如橡胶),这种材料称为“非胡克型”(neo-hookean)材料。橡胶的刚度不仅和应力水平相关,还对温度和加载速率十分敏感。 胡克定律在磅秤制造、应力分析和材料模拟等方面有广泛的应用。.

新!!: 分子和胡克定律 · 查看更多 »

部分分式积分法

部分分式积分法,即通过将原函数拆分为部分分式来简化积分步骤,是计算积分时的一个常用技巧。任何有理函数都可拆分为多个多项式和部分分式的和,每个部分分式中的分子次数小于分母,然后根据积分表及利用其他积分技巧,将每个部分分式积分,就得到原函数的积分。.

新!!: 分子和部分分式积分法 · 查看更多 »

胺化

胺化是在有机化合物分子中引入氨基的一种化工单元过程。 氨基就是氨分子(NH3)中去掉一个氢原子形成的-NH2。带有氨基的化合物称为“胺”。 胺化不仅可以在有机化合物中引入一个氨基,还可以置换两个或三个氨基。胺化的方法很多,主要有两种:.

新!!: 分子和胺化 · 查看更多 »

都卜勒增寬

在原子物理学中,都卜勒增寬(Doppler broadening)是因為原子或分子的運動速度分布產生的多普勒效应造成譜線增寬的現象。自发发射分子的不同運動速度造成了不同的都卜勒位移,而這些效應的線性累積結果就是譜線增寬。因為以上效應產生的線型輪廓即為都卜勒輪廓(Doppler profile)。一個特別的,也可能最重要的狀況是因為粒子熱運動而發生的熱都卜勒增寬。接著,譜線增寬程度只取決於譜線的頻率、譜線發射分子的質量、溫度;因此都卜勒增寬可用以推測輻射體的溫度。 (或稱為無都卜勒光譜學,Doppler-free spectroscopy)可用來發現原子躍遷的真實頻率而不需要將樣品降溫至都卜勒增寬效應最低的溫度值。.

新!!: 分子和都卜勒增寬 · 查看更多 »

胃育蛙

胃育蛙是兩種目前已滅絕的溪蟾屬(Rheobatrachus)蛙類。牠們是澳大利亞東部昆士蘭的特有種。兩種胃育蛙皆在1980年代左右滅絕。牠們特殊之處在於母蛙在其胃中孵化卵及哺育幼蛙。 胃育蛙的分佈地總面積只有少於2000平方公里,兩種都是生活在介乎海拔350-1400米的雨林中。牠們滅絕的原因不明,但棲息地的消失、污染及壺菌病都可能是引發滅絕的原因。 胃育蛙的分類被受討論。有些學者認為牠們屬於龜蟾科下的溪蟾亞科,但另一些學者則將牠們分類在其自己獨有的溪蟾科中。.

新!!: 分子和胃育蛙 · 查看更多 »

阿伏伽德罗常数

在物理学和化学中,阿伏伽德罗常数(符号:N或L)的定義是一个比值,是一個樣本中所含的基本單元數(一般為原子或分子)N,與它所含的物質量n(單位為摩爾)間的比值,公式為NA.

新!!: 分子和阿伏伽德罗常数 · 查看更多 »

阿蘭德-羅蘭彗星

阿蘭德-羅蘭彗星(Arend-Roland comet、C/1956 R1)由西維恩·阿蘭德(Sylvain Arend)和喬治·羅蘭兩位天文學家(Georges Roland)於1956年11月8日在比利時的皇家天文臺所發現的,為一顆非週期彗星。由於這一顆彗星是1956年發現的第八顆彗星,所以起先被命名為阿蘭德-羅蘭彗星1956h。因為它是1957年第三顆通過近日點的彗星,所以又被改名為1957III。最後這顆彗星被國際天文學聯合會正式命名為C/1956 R1(阿蘭德-羅蘭彗星),“C /”顯示它是一顆非週期彗星,而R1顯示它是天文學家在九月上半月發現的第一顆彗星。.

新!!: 分子和阿蘭德-羅蘭彗星 · 查看更多 »

阿梅代奥·阿伏伽德罗

阿梅代奥·阿伏伽德罗(Amedeo Avogadro,),意大利化学家,生于都灵。全名Lorenzo Romano Amedeo Carlo Avogadro di Quaregua。1811年发表了阿伏伽德罗假說,也就是今日的阿伏伽德罗定律,并提出分子概念及原子、分子区别等重要化学问题。 阿伏伽德罗出生於意大利西北部皮埃蒙特区的首府都灵,是當地的显赫家族,阿伏伽德罗的父親菲立波,曾擔任撒伏以王國的最高法院法官。父親對他有很高的期望。阿伏伽德罗勉強地讀完中學,進入都灵大学讀法律系,成績突飛猛進,1796年获博士学位。 阿伏伽德罗30歲時,對研究物理產生興趣。後來他到鄉下的一所職業學校教書,1815年1月與馬西亞結婚。1832年,出版了四大冊理論物理學,其中寫下有名的假設:「在相同的物理條件下,相同體積的氣體,含有相同數目的分子。」但未被當時的科學家接受。后来经坎尼札罗用实验论证,到1860年才获得公认。 著名的阿伏伽德罗常數(Avogadro's number, NA.

新!!: 分子和阿梅代奥·阿伏伽德罗 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

新!!: 分子和薛定谔方程 · 查看更多 »

闪烁体探测器

闪烁体探测器(Scintillation Detector)是利用电离辐射在某些物质中产生的闪光来进行探测的,也是目前应用最多、最广泛的电离辐射探测器之一。辐射引起物质发光的现象很早就被人们所关注和利用:早在1903年,威廉·克鲁克斯就发明了由硫化锌荧光材料制成的闪烁镜并用其观察镭衰变放出的辐射;卢瑟福在其著名的卢瑟福散射实验中也曾使用硫化锌荧光屏观测α粒子。不过,由于传统荧光材料在使用上很不方便,闪烁探测器一直没有大的进展。1947年Coltman和Marshall成功利用光电倍增管测量了辐射在闪烁体内产生的微弱荧光光子,这标志着现代闪烁体探测器的发端。之后随着光电倍增管等微光探测器件的应用和相关技术的进步,闪烁体探测器得到了非常迅速的发展,各种新型闪烁体材料层出不穷。由于具有探测效率高、分辨时间短、使用方便、适用性广等特点,闪烁体探测器在某些方面的应用已超过气体探测器,并为γ射线谱学的形成和发展提供了可能。.

新!!: 分子和闪烁体探测器 · 查看更多 »

關聯性磁振頻譜

聯性磁振頻譜(Correlation spectroscopy, COSY)是二維核磁共振(NMR)頻譜學中的一種技術,其他二維NMR技術包括有J頻譜(J-spectroscopy)、交換譜(Exchange spectroscopy, EXSY)及核歐佛豪瑟效應頻譜(Nuclear Overhauser effect spectroscopy, NOESY)。二維NMR頻譜對於分子提供了比一維NMR頻譜更多的資訊,在對分子結構的決定上極為有用,尤其當分子極為複雜,難以用一維NMR來研究之時。歷史上第一項二維NMR實驗方法——COSY是由Jean Jeener於1971年首先提出,其為布魯塞爾自由大學(Université Libre de Bruxelles)教授。真正的實驗由Walter P. Aue、Enrico Bartholdi 及理查德·恩斯特(Richard R. Ernst)三人首先完成,於1976年發表。.

新!!: 分子和關聯性磁振頻譜 · 查看更多 »

钨合金

钨合金的定义分为两种:广义的钨合金和狭义的钨合金。广义的钨合金:含有钨元素的金属材料统称为钨合金,如钨铁合金、钨铜合金、钨镍合金等;狭义的钨合金:以钨为基体材料(其中含钨量为85%~99%)加入少量镍(Ni)、铜(Cu)、铁(Fe)、钴(Co)、钼(Mo)、铬(Cr)等金属黏结剂组成的一种合金材料,也被称之为高比重钨合金或高密度钨合金或重合金。 钨合金的密度可达16.5~19.0g/cm^3。较常用的主要有:W-Ni-Cu和W-Ni- Fe两大系列。这种材料在密度、强度、硬度、延展性、导电/热性等物理性能中都有显著的特点,因而在国防工业、航空航天工业,医疗行业、电气行业等行业中得到广泛的应用。.

新!!: 分子和钨合金 · 查看更多 »

蒸腾作用

--(transpiration,或稱--)蒸騰作用是通過植物的水分運動和從植物的地上部分蒸發的過程,如葉,莖和花。水對植物是必需的,但只有少量的水被根吸收用於生長和新陳代謝。剩下的97-99.5%由於蒸騰和而損失。葉子表面上點綴著稱為氣孔的毛孔,在大多數植物中,它們在葉子下側更多。氣孔與保衛細胞和它們的氣孔輔助細胞(一起稱為氣孔複合體)鄰接,這些細胞打開和關閉孔隙。蒸騰通過氣孔發生,並且可以被認為是與氣孔打開相關的必要“成本”,以允許空氣中的二氧化碳氣體擴散進行光合作用。蒸騰作用還可以冷卻植物,改變細胞的滲透壓,並使礦物質營養物質和水分從根部向地上部分大量流動。 水分在植物表面由液體變成氣體,這過程需要能量,這能量稱為汽化热,在大自然中能量是由太陽供應的。.

新!!: 分子和蒸腾作用 · 查看更多 »

蒸氣壓

一种物质的蒸气压也称作饱和蒸气压,指的是这种物质的气相与其非气相达到平衡状态时的压强。任何物质(包括液态与固态)都有挥发成为气态的趋势,其气态也同样具有凝聚为液态或者凝华为固态的趋势。在给定的温度下,一种物质的气态与其凝聚态(固态或液态)之间会在某一个压强下存在动态平衡。此时单位时间内由气态转变为凝聚态的分子数与由凝聚态转变为气态的分子数相等。这个压强就是此物质在此温度下的饱和蒸气压。蒸气压与物质分子脱离液体或固体的趋势有关。对于液体,从蒸气压高低可以看出蒸发速率的大小。具有较高蒸气压的物质通常说其具有挥发性。 任何物质的蒸气压都随着温度非线性增加,它们之间的关系可以用克劳修斯-克拉佩龙方程(Clausius–Clapeyron relation)描述。随着温度的升高,物质蒸气压随之升高直到足以克服周围大气的压强从而在物质本体内的任何位置发生气化而产生大量气泡。这一现象叫做沸腾,而这个温度叫做此压强下的沸点。物质的常压沸点就是此物质的饱和蒸气压等于一个标准大气压时候的温度。需要注意的是在较深液体中发生的沸腾所需温度会高于较浅液体中的沸腾,因为除了大气压强外还需要克服液体自身深度所造成的压强。對於溶液,計算需用拉午耳定律。.

新!!: 分子和蒸氣壓 · 查看更多 »

還原糖

還原糖()是在鹼性溶液中能生成醛基和羰基的糖。還原糖可被適當的氧化劑氧化成醛糖酸、糖二酸等。 還原糖包括如葡萄糖、果糖、甘油醛等的所有單糖,以及乳糖、麥芽糖等二糖,和寡糖。 蔗糖和海藻糖在溶液中不生成醛基和酮基,故不屬於還原糖。.

新!!: 分子和還原糖 · 查看更多 »

键级

键级为成键轨道中的电子数与反键轨道中的电子数之差的一半。 若將其寫成數學式則可表示成: b.

新!!: 分子和键级 · 查看更多 »

键能

键能通常指在标准状态下气态分子拆开成气态原子时,每种化學鍵所需能量的平均值。.

新!!: 分子和键能 · 查看更多 »

脫氨作用

脫氨作用(,亦可称为脱氨基)是指移除分子上的一個氨基。人類的肝臟經由脫氨作用將氨基酸分解,當氨基酸的氨基被去除之後,會轉變成氨。由碳及氫所組成的殘餘部分,則回收或氧化產生能量。對人體而言,氨具有毒性,因此某些酵素將會在尿素循環中將二氧化碳分子附加其上,使氨轉變成尿素或尿酸。之後這些尿素及尿酸再經由尿液排出體外。 除了氨基酸之外,DNA的構成物之一胞嘧啶也會因為脫氨作用而轉變成尿嘧啶;胞嘧啶受到甲基化之後的產物5-甲基胞嘧啶,則會在脫氨作用下轉變成胸腺嘧啶。.

新!!: 分子和脫氨作用 · 查看更多 »

脱烷基

脱烷基是和烷基化相反的一种化工单元过程,是从有机化合物分子中脱去烷基的单元过程,一般是脱去和碳原子链接的烷基。例如从甲苯中脱去甲基生成苯,从甲基萘中脱去甲基生成萘等过程。 脱烷基很容易生成不必要的副产品,或将碳链上其他氢原子脱掉,因此脱烷基一般应用两种方法:.

新!!: 分子和脱烷基 · 查看更多 »

脈絡猿

脈絡猿(Chororapithecus)是生存於1000-1050萬年前中新世的猿,牠是已知最早的大猩猩。牠的存在顯示人類/黑猩猩分支及大猩猩的最後共同祖先可能是生存在更早於1000-1100萬年以前,最少是以往認為的800萬年前早了200萬年。 脈絡猿的化石是來自三個個體的九顆牙齒,都是在埃塞俄比亞阿法爾窪地以南的地層中發現,這是於1974年發現阿法南方古猿「露西」的同一位點。這8顆臼齒及1顆犬齒的研究顯示其結構與大猩猩的部份相似。 與其他史前猿的牙齒比較後,發現脈絡猿可能是屬於大猩猩,主要吃高纖維的植物,且可能是現今生活在非洲的大猩猩的直系祖先。另外,有認為這些化石是屬於早期人科的。.

新!!: 分子和脈絡猿 · 查看更多 »

脉冲激光沉积

脈衝雷射沉積(Pulsed Laser Deposition,PLD),也被稱為脈衝雷射燒蝕(pulsed laser abalation,PLA)為物理气相沉积(Physical Vapor Deposition,PVD)的一種, 是一種利用聚焦後的高功率脈衝雷射於真空腔體中對靶材進行轟擊,由於雷射能量極強,會將靶材汽化形成電漿蕈狀團(plasma plume),並沉澱於基板上形成薄膜。 於鍍膜可於高真空、超高真空或通入工作氣體(如欲沉積氧化物薄膜,通常會通入氧氣作為其工作氣體)的環境下進行。 於脈衝雷射沉積的過程中,雷射的能量被靶材吸收之後,能量首先激發靶材內部的電子躍遷,之後再轉成熱能等使靶材汽化形成電漿態,於電漿雲中,包含分子、原子、電子、離子、微粒、融球體等物質。 Category:半導體物理學 Category:薄膜沉積 Category:雷射机械加工 Category:雷射應用.

新!!: 分子和脉冲激光沉积 · 查看更多 »

醚(漢語拼音:mí,Ether)是具有醚官能团的一类有机化合物。醚官能团是由一个氧原子连接两个烷基或芳基所形成,醚的通式为:R–O–R。它还可看作是醇或酚羟基上的氢被烃基所取代的化合物。 醚类中最典型的化合物属:乙醚,它常用于有机溶剂与医用麻醉剂。由于其在化学中的常用性(乙醚是最常用的醚类提取溶剂),我们还有时将乙醚直接简称为“醚”。醚类化合物的应用常见于有机化学和生物化学,它们还可作为糖类和木质素的连接片段。.

新!!: 分子和醚 · 查看更多 »

膜间隙

膜间隙、膜間腔(intermembrane space,简称IMS)是指线粒体或叶绿体的内膜与外膜之间的区域。膜间隙的主要功能是进行氧化磷酸化。 位于外膜的叫做孔蛋白的一类通道蛋白允许离子与小分子自由移动进入膜间隙。这对于与这些细胞器功能相关的溶质来说,并不意味着他们与胞质溶胶之间在本质上是连续的。驶往线粒体基质或组织基质的酶可以以运输的方式穿过线粒体膜间隙。线粒体中的移位酶有的在线粒体外膜上(TOM)有的在线粒体内膜上(TIM,叶绿体中的移位酶有的在外膜上(TOC)有的在内膜上(TIC)。在电子传递期间,因为质子梯度的缘故,膜间隙倾向于低pH,当质子从线粒体基质被泵入膜间隙时就会产生质子梯度。负责形成质子梯度的相应细胞结构包括了:辅酶Q、NADH-辅酶Q氧化还原酶复合体(复合体I)、琥珀酸盐-辅酶Q氧化还原酶复合体(复合体II)与辅酶Q-细胞色素c氧化还原酶复合体(复合体III)。.

新!!: 分子和膜间隙 · 查看更多 »

重排反应

重排反应(Rearrangement reaction)是分子的碳骨架发生重排生成结构异构体的化学反应,是有机反应中的一大类。重排反应通常涉及取代基由一个原子转移到同一个分子中的另一个原子上的过程,以下例子中取代基R由碳原子1移动至碳原子2: 分子间重排反应也有可能发生。 通常不用弯箭头表示的电子转移图来描述重排反应的机理。例如在Wagner-Meerwein重排反应中,烃基迁移的实际机理很可能涉及烃基沿键的类似流动性的转移,而非离子性的断键与成键。而在周环反应中,以轨道间相互作用来解释机理要比用电子转移来描述清晰得多。因此虽然在很多情况下可以画出重排反应的电子转移图机理,但它们极有可能与真实机理有较大偏差。 一些典型的重排反应:.

新!!: 分子和重排反应 · 查看更多 »

重氮化合物1,3-偶极环加成反应

重氮化合物1,3-偶极环加成反应(diazoalkane 1,3-dipolar cycloaddition)是发生在1,3-偶极重氮化合物(尤其是重氮甲烷)与亲偶极体间的1,3-偶极环加成反应。当以烯烃或其衍生物作为这类有机化学反应中的亲偶极体时,反应的产物为吡唑啉类物质。 重氮甲烷与反-戊烯二酸重氮化合物1,3-偶极环加成反应的产物则为1-吡唑啉。因为重氮化合物末端氮原子仅能与酯中的α-碳原子结合,所以此反应具有100%的区域选择性。重氮化合物1,3-偶极环加成反应属于顺式加成(syn addition),亲偶极体的构型在反应中会被保留下来。1-吡唑啉不稳定,且因为分子倾向于朝杂环与酯基间的存在共轭体系的构型转变,所以会自发异构化形成2-吡唑啉。此反应过程如下图所示: 若以苯基重氮甲烷作为反应物,反应的区域选择性将会颠倒。在2-吡唑啉发生简单空气有机氧化产生吡唑后,能继续参与重氮化合物1,3-偶极环加成反应。 重氮化合物1,3-偶极环加成反应的另一个例子是重氮化合物-硫酮偶联反应。.

新!!: 分子和重氮化合物1,3-偶极环加成反应 · 查看更多 »

重水

重水(或称氘代水,化学式D2O或者2H2O)是水的一種,它的摩尔质量比一般水要重。普通的水(H2O)是由兩個只具有質子的氫原子和一個氧16原子所組成,但在重水分子內的兩個氫同位素氘,比一般氫原子有各多一個中子,因此造成重水分子的質量比一般水要重。地球上的水大約有 6,400分之一是半重水(HDO)。 由於普通水和重水都是由相同數量的氫和氧原子組成,兩者的化學反應皆會接近相同。但在物理上,重水的凝固点(即固態水的熔點)和沸點比普通水稍高,在一個大氣壓力下,重水的凝固點是攝氏3.82度,沸點是攝氏101.4度,密度為1.1056g/cm3。 有另一種重水稱為半重水,HDO,它只有一個氫原子是多一個中子的重氫。一般的半重水都並不純正,通常是50%HDO,25%的H2O 及 25%的D2O。除了由重氫組成的重水分子外,還有一種由重氧原子(氧17或氧18)組成的重水分子,稱為「重氧水」。由於分離出重氧水分子的難度較高,因此提煉純正重氧水的成本會比重氫水為高。.

新!!: 分子和重水 · 查看更多 »

量子

量子一詞來自拉丁语quantum,意為“有多少”,代表“相當數量的某物质”。在物理學中常用到量子的概念,指一個不可分割的基本個體。例如,“光的量子”是光的單位。而延伸出的量子力學、量子光學等更成為不同的專業研究領域。 其基本概念为所有的有形性質是“可量子化的”。“量子化”指其物理量的數值是特定的,而不是任意值。例如,在(休息狀態的)原子中,電子的能量是可量子化的。這決定原子的穩定和一般問題。 在20世紀的前半期,出現了新的概念。許多物理學家將量子力學視為瞭解和描述自然的的基本理論。在量子出现在世界上100多年间,经过普朗克,爱因斯坦,斯蒂芬霍金等科学家的不懈努力,已初步建立量子力学理论。.

新!!: 分子和量子 · 查看更多 »

量子化学

量子化学是应用量子力学的规律和方法来研究化学问题的一门学科。将量子理论应用于原子体系还是分子体系是区分量子物理学与量子化学的标准之一。目前认为最早的量子化学计算是1927年布劳(Ø.Burrau)对离子以及同年瓦尔特·海特勒和弗里茨·伦敦对H2分子的计算,开创量子化学这一個交叉学科。经过近八十年发展之后,量子化学已经成为化学家们广泛应用的一种理论方法。.

新!!: 分子和量子化学 · 查看更多 »

量子穿隧效應

在量子力學裏,量子穿隧效應(Quantum tunnelling effect)指的是,像电子等微观粒子能夠穿入或穿越位勢壘的量子行為,儘管位勢壘的高度大於粒子的總能量。在經典力學裏,這是不可能發生的,但使用量子力學理論卻可以給出合理解釋。 量子穿隧效應是太陽核聚變所倚賴的機制。量子穿隧效應限制了太陽燃燒的速率,是太陽聚變循環的瓶頸,因此維持太陽的長久壽命。許多現代器件的運作都倚賴這效應,例如,隧道二極管、場致發射、約瑟夫森結、等等。扫描隧道显微镜、原子鐘也應用到量子穿隧效應。量子穿隧理論也被應用在半導體物理學、超導體物理學等其它領域。 至2017年為止,由於對於量子穿隧效應在半導體、超導體等領域的研究或應用,已有5位物理學者獲得諾貝爾物理學獎。.

新!!: 分子和量子穿隧效應 · 查看更多 »

量子纏結

在量子力學裏,當幾個粒子在彼此相互作用後,由於各個粒子所擁有的特性已綜合成為整體性質,無法單獨描述各個粒子的性質,只能描述整體系統的性質,則稱這現象為量子--或量子--(quantum entanglement)。量子糾纏是一種純粹發生於量子系統的現象;在經典力學裏,找不到類似的現象。 假若對於兩個相互糾纏的粒子分別測量其物理性質,像位置、動量、自旋、偏振等,則會發現量子關聯現象。例如,假設一個零自旋粒子衰變為兩個以相反方向移動分離的粒子。沿著某特定方向,對於其中一個粒子測量自旋,假若得到結果為上旋,則另外一個粒子的自旋必定為下旋,假若得到結果為下旋,則另外一個粒子的自旋必定為上旋;更特別地是,假設沿著兩個不同方向分別測量兩個粒子的自旋,則會發現結果違反貝爾不等式;除此以外,還會出現貌似佯谬般的現象:當對其中一個粒子做測量,另外一個粒子似乎知道測量動作的發生與結果,儘管尚未發現任何傳遞信息的機制,儘管兩個粒子相隔甚遠。 阿爾伯特·愛因斯坦、鮑里斯·波多爾斯基和納森·羅森於1935年發表的爱因斯坦-波多尔斯基-罗森佯谬(EPR佯谬)論述到上述現象。埃爾溫·薛丁格稍後也發表了幾篇關於量子糾纏的論文,並且給出了「量子糾纏」這術語。愛因斯坦認為這種行為違背了定域實在論,稱之為「鬼魅般的超距作用」,他總結,量子力學的標準表述不具完備性。然而,多年來完成的多個實驗證實量子力學的反直覺預言正確無誤,還檢試出定域實在論不可能正確。甚至當對於兩個粒子分別做測量的時間間隔,比光波傳播於兩個測量位置所需的時間間隔還短暫之時,這現象依然發生,也就是說,量子糾纏的作用速度比光速還快。最近完成的一項實驗顯示,量子糾纏的作用速度至少比光速快10,000倍。這還只是速度下限。根據量子理論,測量的效應具有瞬時性質。可是,這效應不能被用來以超光速傳輸經典信息,否則會違反因果律。 量子糾纏是很熱門的研究領域。像光子、電子一類的微觀粒子,或者像分子、巴克明斯特富勒烯、甚至像小鑽石一類的介觀粒子,都可以觀察到量子糾纏現象。現今,研究焦點已轉至應用性階段,即在通訊、計算機領域的用途,然而,物理學者仍舊不清楚量子糾纏的基礎機制。.

新!!: 分子和量子纏結 · 查看更多 »

量子生物学

量子生物学是利用量子理论来研究生命科学的一门学科。该学科包含利用量子力学研究生物过程和分子动态结构。利用量子生物学研究量子水平的分子动态结构和能量转移,如果所得结果与宏观的生物学现象相吻合且很难用其他学科的研究重复,则这一研究结果较为可信。 量子生物化学和光合过程的量子研究已得到了可核查的重要的结果。尤其是光合作用中,对于俘获光子后发生的分步的、对质子的量子式释放,利用量子生物学的理论,已获得显著的研究进展(相关理论涉及到较为复杂的光系统II)。此外,实验和理论的发现都支持酶促反应中包含量子穿隧机制。将能量转化为化学能(可用于化学转化)的生物学过程在实质上都是量子力学过程。这些过程包含化学反应、光俘获、电子激发态的形成、激发能的转移和化学过程(如光合作用及细胞呼吸)中电子及质子(氢离子)的转移。量子生物学以量子力学效应为根据,借助数学计算,对生物学相互作用进行模拟。奧地利出生的量子物理学家和数理生物学家埃尔温·薛定谔早在1946年就提出了用量子理论研究遗传系统的需求,理论生物学家罗伯特·罗森在1961年接着给出了一份详细、正式的研究量子遗传学的办法。在这方面的一个仍未解决的存在争议的问题是:量子效应在生物系统中的非平凡/通用角色(即不受限于分子性质)究竟是什么?然而,新近关于转录的研究与转录酶对于相干态双链DNA的量子信息处理是一致的。.

新!!: 分子和量子生物学 · 查看更多 »

自发发射

自发辐射(Spontaneous emission),是在没有任何外界作用下,激发态原子或是分子的電子自发地从高能階向低能階跃迁,同时发射出一光子。 各原子的自发发射过程完全是随机的,所以自发辐射光是非相干的。 非相对论性的量子力学无法解释自发辐射,根据该理论,如果一个孤立原子处于定态,即使是激发态,它将一直处于该态,而不会跃迁到其他的态。但是量子场论指出一个电磁场系统即使处于真空态也有振动,孤立的原子是不存在的。当处于激发态的原子与场发生相互作用的时候将导致自发辐射。 Category:雷射科學 Category:电磁辐射.

新!!: 分子和自发发射 · 查看更多 »

自由基取代反應

自由基取代反應(Radical substitution)是有機化學中的一個取代反應類型。在這類的反應過程中,自由基扮演著反應中間體的角色。此類反應大多涉及至少兩個步驟,有些甚至可能達到三個步驟。 此類反應的第一步是藉由均裂來產生帶有未成對電子的自由基,如2式與3式般,稱為起始(initiation)。而均裂可在熱、紫外光或有机过氧化物、偶氮化合物等的幫助下發生;其中,紫外光能用於將一個雙原子分子轉為兩個自由基。在6式與7式中,自由基會在彼此重組後消失,反應也在此步驟後停止,因而稱為終止(termination)。如果自由基並未走向終止步驟,而是持續進行反應並產生新的自由基(如4或5),則這些介於起始與終止之間的步驟稱為增長(propagation)。.

新!!: 分子和自由基取代反應 · 查看更多 »

自然

自然(英文:Nature),是指不断运行演化的宇宙萬物,包括生物界和非生物界两个相辅相成的体系。 人类所能理解地自然现象有:生物界的基因模因、共识主动、意识行为、社会活动和生态系统等;宇宙间的天使粒子、次原子粒子、星系星云和黑洞白洞等。 人类不能理解地宗教信仰、灵魂观念和神明信念等现象,被称为超自然现象。 从对超自然现象的探索,到对自然现象的认知,是人类逐渐理解自己、适应生存环境和丰富社会活动的过程。例如,古时,火是神明,日月星辰是超自然现象;如今,卫星、电视、电脑和手机成为了神话中的千里眼和顺风耳;区块链成了全球共识共享的无字天书。.

新!!: 分子和自然 · 查看更多 »

自然-中国

《自然-中国》(Nature China)是英国《自然》杂志社的网上发行杂志。《自然-中国》致力于推广来自中国大陆和香港的优秀科学研究成果。 国际官方网站于2007年1月开启。中国镜站亦于2007年4月25日开启。使用者可以免费阅读网站内所有的文章,包括来自中国大陆和香港的《自然》系列原文章。.

新!!: 分子和自然-中国 · 查看更多 »

臭氧层

臭氧層是指大氣層的平流層中臭氧濃度相對較高的部分,主要作用是吸收短波紫外線。臭氧層密度低,如果它被壓縮到對流層的密度,則只有數毫米厚。.

新!!: 分子和臭氧层 · 查看更多 »

臭氧层空洞

臭氧層破洞(Ozone depletion)地球大氣上空平流層(臭氧層)的臭氧從1970年代開始,以每十年4%的速度遞減的一種現象。在兩極地區的部份季節,遞減速度還超過每十年4%,而在春季時連對流層的臭氧也在減少,形成所謂臭氧層破洞。 臭氧被消耗的主要原因是氯化物和溴化物对臭氧分解的催化作用引起的,这些卤素主要来源于地面释放的氟氯烃(CFC),商品名称为氟里昂。 因為臭氧層可以阻擋對生物有害的紫外線(波長為270-315 奈米)進入大氣層,被消耗而稀薄甚至破洞的臭氧層會導致皮膚癌,白內障等疾病患者的增加,並造成一些生物品種(如海洋浮游生物)的滅絕,所以蒙特利爾議定書規定禁止生產氟氯烴等一些能造成臭氧層被消耗的物質。.

新!!: 分子和臭氧层空洞 · 查看更多 »

金属键

金屬鍵是化學鍵中的一种,主要在金属中存在,一些原子簇化合物中也存在金属键。由離域電子及排列成晶格状的金屬離子之间的静电吸引力组合而成。由于电子的自由运动,金屬鍵没有固定的方向,因而是非极性鍵。 金屬鍵決定了金屬許多物理特性,如強度、可塑性、延展性、傳導熱量、导电性、和光澤。例如一般金属的熔点、沸点随金屬鍵的强度而升高。离子半径越小,金属键越强。 金屬之間的鍵結除了金屬鍵以外,也有其他的鍵結方式,甚至是純物質也不例外。例如元素態的鎵在固態及液態下有共價的原子對鍵結,這些原子對形成晶格,和其他的金屬仍以金屬鍵鍵結。另一個金屬-金屬共價鍵的例子是。.

新!!: 分子和金属键 · 查看更多 »

金属性

金属性或还原性是指在化学反应中原子、分子或离子失去电子的能力。失电子能力越强的粒子所属的元素金属性就越强;反之越弱,而其非金属性就越强。.

新!!: 分子和金属性 · 查看更多 »

金屬硼球烯

在化學當中,金屬硼球烯是在硼球烯(B40)中封有金屬原子的分子,硼球烯(B40)於2014年七月發現及發表。金屬硼球烯與金属富勒烯構型相似,皆為球型碳當中圍困著金屬離子。 最近研究顯示,金屬硼球烯包含內包金屬硼球烯及外包金屬硼球烯。內包金屬硼球烯為內部包裹著一個金屬原子的硼球烯,如:鈣@B40及鍶@B40;外包金屬硼球烯為金屬原子在硼球烯的腰部相互連結形成圍繞式的七邊形將其包裹住。如: 鈹&B40及鎂&B40。『@』及『&』表示原子是在金屬硼球烯內部或在金屬硼球烯外部連結形成圍繞式的七邊形將其包裹住。.

新!!: 分子和金屬硼球烯 · 查看更多 »

釋氣

釋氣 (有時稱為氣體揮發,特別是參考室內空氣品質) 是一些材料因為分解、通風、或吸收所釋放出的氣體。例如,研究顯示大氣層中二氧化碳的濃度有時和海洋的釋氣有所關聯。它可以包含昇華和蒸發等,一種物質變成氣體的相變,以及脫附,來自容器裂縫或內部的氣體產品滲漏造成的緩慢化學反應。沸騰通常被認為是一種單純的釋氣現象,因為它是由相同物質的液體相變成為蒸氣的作用。.

新!!: 分子和釋氣 · 查看更多 »

长生不老

長生不老,指壽命長而不會衰老。相近的辭彙還有長生不死(在安全無外力狀況下擁有無限的壽命,但依舊會老化)、不老不死(在安全無外力狀況下不會衰老與死亡)、不朽(Immortality)與永生(在安全無外力狀況下永遠生存而不會死亡)。水螅、燈塔水母是目前已知不會衰老的生物。.

新!!: 分子和长生不老 · 查看更多 »

腎功能

腎尿的生成及調節示意圖(分為五個大階段(由左至右):1.腎小體(藍色),2.近曲小管(棕色),3.亨利氏環(深淺兩小段綠色),4.遠曲小管(紫色),5.收集管系統(深紫色)) 腎功能(Renal function)、在腎臟是指腎臟狀態的指示及其在腎生理作用的角色。腎小球濾過率(Glomerular filtration rate/GFR、腎絲球濾過率)描述了通過腎臟過濾流體之流速。肌酸酐清除率(Creatinine clearance rate、CCr 或 CrCl)是指血漿中的單位時間內肌酸酐的清除功能比率,亦是近似GFR的一個有用的量度。此外由於肌酸酐的分泌所造成的肌酸酐清除率超過GFR,而肌酸酐的分泌可被西咪替丁所阻斷。另一方面,舊式的血清肌酸酐方法之過度估計導致了低估肌酸酐清除率,因而提供了GFR的較低的偏差估計值。 不過目前GFR及CCr已經可以精確地由在血液和尿液的物質比較測量而計算出,或則只用驗血結果(檢驗兩個參數eGFR(估計小球濾過率)及eCCr(估計肌酸酐清除率))的公式估算。 這些檢驗的結果在評估腎臟的排泄功能機制是相當重要的。比如、慢性腎功能不全,及主要經由尿液排泄的藥物劑量而計算得的腎小球濾過率(或肌酸酐清除率)。 這些排泄流體通常被認為是經由腎臟處理過的血液之液體過濾量。在生理學上,這些"液體過濾量"(容積血液流量且質量已去除)之間僅有鬆散相關。.

新!!: 分子和腎功能 · 查看更多 »

配合物结构

配合物结构是指其原子在分子或錯合物中,配位基與原子配体之幾何型態。配位基的幾何型態排列會因配位基之數目及其與中心原子鍵結之型式而改變。金屬中心的氧化狀態也會改變其配位的喜好。金屬中心所配位之配位基數目可從二個至十五個之多。 八面體結構是一個常見的配位幾何結構,六個配位基以對稱分佈配位在金屬上,如果將各配位基以直線相連,就形成一八面體的形狀。其他常見的配位幾何例子,如四面體結構及平面四邊形結構。 晶體場理論可被用來解釋化合物之不同配位結構的相對穩定性及其是否具有順磁特性。.

新!!: 分子和配合物结构 · 查看更多 »

配體

配體(ligand,也稱為配基、配位基)是一個化學名詞,表示可和中心原子(金屬或類金屬)產生鍵結的原子、分子和離子。一般而言,配體在參與鍵結時至少會提供一個電子。配體扮演路易士鹼的角色。但在少数情况中配体接受电子,充当路易斯酸。 在有機化學中,配体常用來保護其他的官能团(例如配体BH3可保護PH3)或是穩定一些容易反應的化合物(如四氢呋喃作為BH3的配体)。中心原子和配基組合而成的化合物稱為配合物。 金屬及類金屬只有在高度真空的環境,可以以氣態、不受和其他原子鍵結的條件存在。除此以外,金屬和類金屬都會和其他原子以配位或共價鍵的方式鍵結。络合物中的配體主宰了中心金屬的的活性,其受配體本身被替換的速度、配體的活性等因素影響。在生物無機化學、藥物化學、均相催化及環境化學等領域中,如何選擇配體都是個重要的課題。 一般配体可依其帶電、大小、其原子特性及可提供電子數(如齿合度或哈普托數)加以分類。而配體的大小可以用其圆锥角來表示。 -->.

新!!: 分子和配體 · 查看更多 »

酯膜結構

酯膜結構是由國立臺灣大學物理學系教授趙治宇在2004年所發現的新相態。是借於固態與液態之間的樣態,屬於液晶狀態裡面的一個亞狀態。酯膜結構和液晶一樣具有柔性排列结构的特性,但分子間的連結程度又較液晶更小,因此物質可以像在液體中一樣地通過酯膜結構的物質。 Category:物质状态.

新!!: 分子和酯膜結構 · 查看更多 »

酰氯

酰氯是指含有 -C(O)Cl 官能团的化合物,属于酰卤的一类,是羧酸中的羟基被氯替换后形成的羧酸衍生物。最简单的酰氯是甲酰氯,但甲酰氯非常不稳定,不能像其他酰氯一样通过甲酸与氯化试剂反应得到。常见的酰氯有:乙酰氯、苯甲酰氯、草酰氯、氯乙酰氯、三氯乙酰氯等。 酰氯也指各种无机含氧酸的衍生物,通式为 -M(.

新!!: 分子和酰氯 · 查看更多 »

酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.

新!!: 分子和酶 · 查看更多 »

酶底物 (生物学)

底物(substrate)在生物化学领域指參與生化反應的物質,可為化學元素、分子或化合物,经酶作用可形成產物。一個生化反应的受質往往同时也是另一個化學反應的产物。.

新!!: 分子和酶底物 (生物学) · 查看更多 »

酶抑制剂

酶抑制剂是一类可以结合酶并降低其活性的分子。由于抑制特定酶的活性可以杀死病原体或校正新陈代谢的不平衡,许多相关药物就是酶抑制剂。一些酶抑制剂还被用作除草剂或农药。并非所有能和酶结合的分子都是酶抑制剂,酶激活剂也可以与酶结合并提高其活性。大概可分為競爭性抑制劑及。.

新!!: 分子和酶抑制剂 · 查看更多 »

酸(有时用“HA”表示)的传统定义是当溶解在水中时,溶液中氢离子的浓度大于纯水中氢离子浓度的化合物。换句话说,酸性溶液的pH值小于水的pH值(25℃时为水的pH值是7)。酸一般呈酸味,但是品尝酸(尤其是高浓度的酸)是非常危险的。酸可以和碱发生中和作用,生成水和盐。酸可分为无机酸和有机酸两种。.

新!!: 分子和酸 · 查看更多 »

酸碱电子理论

酸碱电子理论,也称广义酸碱理论、路易斯酸碱理论,是1923年美国化学家吉尔伯特·路易斯提出的一种酸碱理论。该理论认为:凡是可以接受外来电子对的分子、基团或离子为酸(路易斯酸);凡可以提供电子对的分子、基团或离子为碱(路易斯碱)。因為跳脫了限定氫離子與氫氧根的酸鹼概念,这种理论包含的酸碱范围很广,但是,它对确定酸碱的相对强弱来说,没有统一的标度,对酸碱的反应方向难以判断。后来,提出的软硬酸碱理论弥补了这种理论的缺陷。 常見的路易斯酸有:.

新!!: 分子和酸碱电子理论 · 查看更多 »

酸碱质子理论

酸碱质子理论(-----酸碱理论)是丹麦化学家布朗斯特和英国化学家湯馬士·馬丁·劳里于1923年各自独立提出的一种酸碱理论。该理论认为:凡是可以释放質子(氫離子,H+)的分子或离子为酸(布朗斯特酸),凡是能接受氫離子的分子或离子則为碱(布朗斯特碱)。 當一個分子或離子釋放氫離子,同時一定有另一個分子或離子接受氫離子,因此酸和鹼會成對出現。酸碱质子理论可以用以下反應式說明: 酸在失去一個氫離子後,變成共軛鹼;而鹼得到一個氫離子後,變成共軛酸。以上反應可能以正反應或逆反應的方式來進行,不過不論是正反應或逆反應,均維持以下的原則:酸將一個氫離子轉移給鹼。 在上式中,酸和其對應的共軛鹼為一組共軛酸鹼對。而鹼和其對應的共軛酸也是一組共軛酸鹼對。.

新!!: 分子和酸碱质子理论 · 查看更多 »

色散力

倫敦分散力(London dispersion force, LDF),簡稱倫敦力或分散力,是一作用於分子間的力。 它是范德华力的一部分,名稱源自德裔美國物理學家。科學家觀察到在高壓低溫下,即使是非極性分子也能被液化或固化,弗里茲·倫敦認為非極性分子間必然有吸引力存在,此吸引力即為倫敦分散力。.

新!!: 分子和色散力 · 查看更多 »

苯丙氨酸

苯丙氨酸(Phenylalanine,簡稱Phe或F),是二十種常見胺基酸的一種,化學式為:C6H5CH2CH(NH2)COOH,在室溫下為粉末狀固體。它是一種必需胺基酸,人體無法自行合成,必須從飲食中攝取。因為分子一端的苯環具有疏水性,所以苯丙胺酸被分類為非極性分子。 L-苯丙胺酸(LPA)為一種電中性胺基酸,它的合成密碼子为"UUU"和"UUC"。苯丙氨酸作為酪氨酸,單胺類信號傳導分子的多巴胺,去甲腎上腺素,和腎上腺素,以及皮膚色素的黑色素的前體。苯丙氨酸是在哺乳動物的乳汁中天然發現。它用於食品和飲料產品的製造,並作為以其著名的止痛和抗抑鬱作用的營養補充劑出售。它是一種神經調節劑苯乙胺的直接前體,一種常用的膳食補充劑。 一般由植物生成苯丙胺酸,如下圖:.

新!!: 分子和苯丙氨酸 · 查看更多 »

雞雁總目

雞雁總目(學名:Galloanserae)是指雁形目及雞形目兩目的鳥類。它們在解剖及分子、形態及DNA序列、與及反轉錄轉座子標記上的相似,顯示它們是演化上的近親。.

新!!: 分子和雞雁總目 · 查看更多 »

離域電子

離域電子(delocalized electron),也称游離電子,是在分子、離子或固體金屬中不止與單一原子或單一共價鍵有關係的電子。 游離電子包含在分子軌道中,延伸到幾個相鄰的原子。一般来讲,離域電子存在于共轭系統和化合物中。人們漸漸地了解到,σ鍵中的電子也會游離。例如甲烷中的成键電子是由五個原子共享的。更多细节详见分子軌道理論。.

新!!: 分子和離域電子 · 查看更多 »

離子交換

離子交換技術(Ion exchange)或稱離子色譜法,是將兩種電解質間做離子的交換,或是在電解溶液和配合物之間的交換。最常見到的例子是使用聚合物或礦物用來純化、分離或淨化純水和其他離子溶液。其他的例子有離子交換樹脂,功能化多孔或凝膠聚合物)、沸石、、黏土和土壤中的腐殖質。 離子交換有兩類,一種是陽離子交換,指的是帶正電的離子互相交換;另外的陰離子交換,則是帶負電的離子互相交換。也有兩性離子交換劑可讓陰、陽離子同時交換。而在混床中能同時有效的進行交換陰、陽離子的交換。混床包括了陰、陽離子交換樹脂,或由處理過的溶液通過幾種不同的離子交換材料所製造出來。 離子交換劑,可以為非選擇性或因喜好結合為某些類別的離子,這取決於其化學結構。這根據了離子的大小、電價或結構而定。可以結合交換離子的常見範例有:.

新!!: 分子和離子交換 · 查看更多 »

雷射冷卻

雷射冷卻是指運用一道或多道雷射將原子、分子冷卻的技術。1974年,斯坦福大学的T.W.汉森等人提出以激光将气体分子减速的设想。.

新!!: 分子和雷射冷卻 · 查看更多 »

電子伏特

電子伏特(electron Volt),簡稱電子伏,符号为eV,是能量的單位。代表一個電子(所帶電量為1.6×10-19庫侖)经过1伏特的電位差加速后所獲得的动能。電子伏与SI制的能量单位焦耳(J)的换算关系是.

新!!: 分子和電子伏特 · 查看更多 »

電子轉移

電子轉移(Electron transfer,ET),是指電子在二個原子或其他化学物质(如分子等)之間的移動。電子轉移是一種氧化还原反應,會改變兩個反應物的氧化態。 許多生物體的機制涉及電子轉移反應,包括氧氣和血紅素的結合、光合作用、呼吸作用和。此外,的過程可視為兩電子轉移(兩個同時作用,方向相反的電子轉移),在這個情況下兩個互相轉移的分子距離很小。電子轉移常和過渡金屬錯合物有關 ,但現在也有很多有機化學反應中出現電子轉移的例子。.

新!!: 分子和電子轉移 · 查看更多 »

電子自旋共振

電子順磁共振(electron paramagnetic resonance,EPR),又称電子自旋共振(electron spin resonance,ESR),是屬於自旋1/2粒子的電子在靜磁場下发生的磁共振現象。因为類似靜磁場下自旋1/2原子核核磁共振的現象,又因利用到電子的順磁性,故曾稱作“電子順磁共振”。 由於分子中的電子多數是成對存在,根據泡利不相容原理,每个電子对中的两个电子必為一個自旋向上,另一個自旋向下,所以磁性互相抵消。因此只有拥有不成對電子存在的粒子(例如過渡元素中重金屬原子或自由基),才能表現磁共振。 雖然电子自旋共振的原理与核磁共振的类似,但由於電子的質量遠輕於原子核的质量,所以电子有较大的磁矩。以氫原子核(質子)為例,電子磁矩強度是其659.59倍。因此對於電子,磁共振所在的拉莫頻率通常需要透過減弱主磁場強度來使之降低。但即使如此,拉莫頻率通常所在波段仍比核磁共振拉莫頻率所在的射頻範圍還要高(通常是在微波的波段),因此有穿透力以及對帶有水分子的樣品有加熱可能的潛在問題,在進行人體造影時則需要改變方法。舉例而言,0.3T的主磁場下,電子共振頻率發生在8.41GHz,而對於常用的核磁共振核種——質子而言,在這樣強度的磁場下,其共振頻率仅為12.77MHz。.

新!!: 分子和電子自旋共振 · 查看更多 »

電傳導

電傳導(electrical conduction)是指介質內,載電荷的粒子的運動。稱這些粒子為電荷載子。它們的運動形成了電流。這運動可能是因為感受到電場的作用而產生的,或是因為載子分佈的不均勻引發的擴散機制的結果。對於不同的物質,電荷傳輸的物理參數也不同。根据物质电传导性的不同可以分为导体和绝缘体。常见的导体有金属,电解质溶液或液体。常见的绝缘体有干燥的木材、塑料、橡胶。 歐姆定律明確地描述了金屬和電阻器的電傳導。歐姆定律闡明,電流與外加的電場成正比,在一個物質內,由於外加的電場 \mathbf\,\! 而產生的電流密度 \mathbf\,\! ,可以用方程式表達為 其中,\sigma\,\! 是物質的電導率; 或者, 其中,\rho\,\! 是物質的電阻,是 \sigma\,\! 的倒數。 在半導體元件裏,電傳導是由電場作用和擴散這兩種物理機制共同引發的。因此,電流密度可以表達為 其中,D\,\! 是擴散常數,q\,\! 是電荷量,n\,\! 是電子的體積密度。 由於電子的電荷量是負值,載子是朝著電子密度遞減的方向移動。因此,對於電子,假若電子密度的梯度是正值,則電流是負值;假若載子是電洞,則必須將電子密度 n\,\! 改換為電洞密度 p\,\! 的負值: 對於線性異向性物質,\sigma\,\! 、\rho\,\! 、D\,\! ,都是張量。.

新!!: 分子和電傳導 · 查看更多 »

電動勢

在電路學裏,電動勢(electromotive force,縮寫為emf)表徵一些電路元件供應電能的特性。這些電路元件稱為「電動勢源」。電化電池、太陽能電池、燃料電池、熱電裝置、發電機等等,都是電動勢源。電動勢源所供應的能量每單位電荷是其電動勢 。假設,電荷 Q\, 移動經過一個電動勢源後,獲得了能量 W\, ,則此元件的電動勢定义為 \mathcal.

新!!: 分子和電動勢 · 查看更多 »

電磁力

電磁力(electromagnetic force)是處於電場、磁場或電磁場的帶電粒子所受到的作用力。大自然的四種基本力中,電磁力是其中一種,其它三種是強作用力、弱作用力、引力。光子是傳遞電磁力的媒介。在電動力學裏,電磁力稱為勞侖茲力。延伸至相對論性量子場論,在量子電動力學裏,兩個帶電粒子倚賴光子為媒介傳遞電磁力。帶電粒子是帶有淨電荷的粒子。電荷是基本粒子的內秉性質。只有帶電粒子或帶電物質(帶有淨電荷的物質)才能夠感受到電磁力,也只有帶電粒子或帶電物質才能夠製成電場、磁場或電磁場來影響其它帶電粒子或帶電物質。 對於決定日常生活所遇到的物質的內部性質,電磁力扮演重要角色。在物質內部,分子與分子之間彼此相互作用的分子間作用力,就是電磁力的一種形式。分子間作用力促使一般物質呈現出各種各樣的物理與化學性質。由於電子與原子核分別帶有的負電荷與正電荷,它們彼此之間會以電磁力相互吸引,使得電子移動於環繞著原子核的原子軌道,與原子核共同組成原子。分子的建構組元是原子。幾個鄰近原子的電子與電子、電子與原子核、原子核與原子核,以電磁力彼此之間相互作用,主導與驅動各種化學反應,因此促成了所有生物程序。.

新!!: 分子和電磁力 · 查看更多 »

電磁波譜

在電磁學裏,電磁波譜包括電磁輻射所有可能的頻率。一個物體的電磁波譜專指的是這物體所發射或吸收的電磁輻射(又稱電磁波)的特徵頻率分佈。 电磁波谱频率从低到高分別列为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。可见光只是电磁波谱中一个很小的部分。電磁波譜波長有長到數千公里,也有短到只有原子的一小段。短波長的極限被認為,幾乎等於普朗克長度,長波長的極限被認為,等於整個宇宙的大小,雖然原則上,電磁波譜是無限的,而且連續的。.

新!!: 分子和電磁波譜 · 查看更多 »

蛇是一类無足的爬蟲類動物,是蛇亚目(学名:Serpentes)的通称,属于爬行纲,另有其它無足的爬虫類如蚓蜥、蛇蜥等并不属于蛇亚目。 又有虵、虺、螣、蚦、蜧、蜦、长虫等別稱,根據種類也會有蝮、蚺、蟒、蝰等近義稱呼。正如所有爬蟲類有鱗目一樣,蛇類全身佈滿鱗片。所有蛇類都是肉食性動物。目前全球共有3,000多種蛇類,包括體型最短小的細盲蛇科以至最長的蟒科及蚺科。為了配合蛇類窄長的身體,成對的內臟(如肺、腎)會在蛇體前後排列,而非左右互對。 部分蛇類擁有毒性,能使被其咬擊的生物受傷、疼痛以至死亡。蛇的另一個特徵是顎部能作出廣角度的開合,因此能吞食比自己身型龐大的獵物。生物研究指蛇類大概於白堊紀時代由蜥蜴類衍生而成。現代蛇類的分類研究,大概可追溯至古新世時代。目前紀錄中最巨型的蛇類是活於古新世的泰坦巨蟒,長度達13米長,其化石被發現的年份是2009年;目前體型最細小的蛇類是卡拉細盲蛇,長度約只有10公分。 亚洲一些地区則认为他们有着魔力,因此将他们的肉用作传统药材。.

新!!: 分子和蛇 · 查看更多 »

蛇鷲

蛇鷲(學名:Sagittarius serpentarius),又名鷺鷹或秘書鳥,是一種大型及陸生的猛禽。它們是非洲的特有種,一般棲息在撒哈拉以南非洲的草原及大草原。它們是鷹形目下蛇鷲科的唯一物種,蛇鷲科內只有一屬一種。 在南非及蘇丹的紋章上是有蛇鷲的。.

新!!: 分子和蛇鷲 · 查看更多 »

蛋白二聚体

在生物化學中,雙聚體為由兩個分子組合而成的高分子配合物,常以非共價鍵鍵結。像是蛋白質或是核酸皆為高分子。是一種蛋白質四級結構。 同源雙聚體,可由兩個相同的分子組合而成(此過程稱為同源二聚作用 homodimerization)。而異源二聚體則是由兩種不同的高分子所形成(稱為異源二聚作用heterodimerization) 生物化學中的大部分雙聚體皆不是用共價鍵相連結的。例如: 反轉錄酶為一種非共價鍵連接的異源二聚體酵素,是由兩種不同的胺基酸鏈連結的。另一個例外為雙聚體蛋白NEMO,由雙硫鍵連結的雙聚體。 有些蛋白會包含特殊的區域,確保二聚作用(二聚區域)的形成。.

新!!: 分子和蛋白二聚体 · 查看更多 »

蛋白質一級結構

蛋白质一级结构(Protein primary structure)是肽或蛋白质中氨基酸的线性序列。按照惯例,蛋白质的一级结构被报道从氨基末端(N)端到羧基末端(C)端。蛋白质生物合成最通常由细胞中的核糖体进行。肽也可以在实验室中合成。蛋白质一级结构可以被直接测序,或从DNA序列推断。 在生物化學裡,生物分子的一級結構是其分子組成和分子間化學鍵結的精確模樣。對於一典型的無分支、無交叉的生物聚合物(如DNA、RNA或典型的細胞內蛋白質等分子),其第一結構等同於描述其單體單位的序列,即如DNA序列和肽序列。「一級結構」這一名詞在Linderstrom-Lang於1951年的Lane Medical Lectures上首次被提到。一級結構和一級序列有一點相似,即使在二級或三級結構中並沒有平行的概念。.

新!!: 分子和蛋白質一級結構 · 查看更多 »

蛋白质亚基

蛋白质亚基(英语:Protein subunit)、蛋白亚基或亚基蛋白在结构生物学中是指参与组成蛋白质复合物(寡聚体或多聚体)的单个蛋白质分子。一个蛋白质亚基就是一条多肽链,而一条多肽链是由一組基因所编码,这就意味着每个亚基都由一組基因编码。.

新!!: 分子和蛋白质亚基 · 查看更多 »

蛙壺菌

蛙壺菌(学名:Batrachochytrium dendrobatidis)是一種壺菌門真菌,可以引起兩棲類的壺菌病。它們最初是於1998年發現,在其後的十年內,造成了大量兩棲類的死亡,引發多個物種滅絕,是為全新世滅絕事件之一。被國際自然保護聯盟物種存續委員會的入侵物種專家小組(ISSG)列入世界百大外來入侵種。 一些兩棲類物種具有天生的免疫能力。就算一些患上壺菌病的物種,也能夠生存下來,顯示出演化性選擇的痕跡或等位基因。不過另一個解釋卻指一些蛙壺菌的形態並非真正的病原體。.

新!!: 分子和蛙壺菌 · 查看更多 »

雙光子吸收

雙光子吸收(Two-photon absorption)是指原子或分子同時吸收兩個光子而躍遷到高能階的現象。在這個情況下,能階之間的能量差正好等於吸收光子的總能。雙光子吸收需要使兩個光子與分子同時反應,因此反應機率遠小於一般的單光子吸收,它的機率正比於光強度的平方,因此歸屬於非線性光學的範疇。關於雙光子吸收的討論可溯至玛丽亚·格佩特-梅耶1931年的博士論文,但當時雷射尚未發明,因此難以達到雙光子吸收所需的光強度。實際的實驗一直到1960年代才被實現。.

新!!: 分子和雙光子吸收 · 查看更多 »

雙縫實驗

在量子力學裏,雙縫實驗(double-slit experiment)是一種演示光子或電子等等微觀物體的波動性與粒子性的實驗。雙縫實驗是一種「雙路徑實驗」。在這種更廣義的實驗裏,微觀物體可以同時通過兩條路徑或通過其中任意一條路徑,從初始點抵達最終點。這兩條路徑的程差促使描述微觀物體物理行為的量子態發生相移,因此產生干涉現象。另一種常見的雙路徑實驗是马赫-曾德尔干涉仪實驗。 雙縫實驗的基本儀器設置很簡單,如右圖所示,將像激光一類的相干光束照射於一塊刻有兩條狹縫的不透明板,通過狹縫的光束,會抵達照相膠片或某種探測屏,從記錄於照相膠片或某種探測屏的輻照度數據,可以分析光的物理性質。光的波動性使得通過兩條狹縫的光束相互干涉,形成了顯示於探測屏的明亮條紋和暗淡條紋相間的圖樣,明亮條紋是相長干涉區域,暗淡條紋是相消干涉區域,這就是雙縫實驗著名的干涉圖樣。 在古典力學裏,雙縫實驗又稱為「楊氏雙縫實驗」,或「楊氏實驗」、「楊氏雙狹縫干涉實驗」,專門演示光波的干涉行為,是因物理學者托馬斯·楊而命名。假若,光束是以粒子的形式從光源移動至探測屏,抵達探測屏任意位置的粒子數目,應該等於之前通過左狹縫的粒子數量與之前通過右狹縫的粒子數量的總和。根據定域性原理(principle of locality),關閉左狹縫不應該影響粒子通過右狹縫的行為,反之亦然,因此,在探測屏的任意位置,兩條狹縫都不關閉的輻照度應該等於只關閉左狹縫後的輻照度與只關閉右狹縫後的輻照度的總和。但是,當兩條狹縫都不關閉時,結果並不是這樣,探測屏的某些區域會比較明亮,某些區域會比較暗淡,這種圖樣只能用光波動說的相長干涉和相消干涉來解釋,而不是用光微粒說的簡單數量相加法。 雙縫實驗也可以用來檢試像中子、原子等等微觀物體的物理行為,雖然使用的儀器不同,仍舊會得到類似的結果。每一個單獨微觀物體都離散地撞擊到探測屏,撞擊位置無法被預測,演示出整個過程的機率性,累積很多撞擊事件後,總體又顯示出干涉圖樣,演示微觀物體的波動性。 2013年,一個檢試分子物理行為的雙縫實驗,成功演示出含有810個原子、質量約為10000amu的分子也具有波動性。 理查德·費曼在著作《費曼物理學講義》裏表示,雙縫實驗所展示出的量子現象不可能、絕對不可能以任何古典方式來解釋,它包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。透過雙縫實驗,可以觀察到量子世界的奧秘。.

新!!: 分子和雙縫實驗 · 查看更多 »

雙電子偶素

雙電子偶素是由兩個電子偶素所組成的分子,化學式為,是約翰·惠勒在1946年預言它的存在 ,隨後雙電子偶素都只有理論上的研究。直到2007年才由加州大學河濱分校的大衛·卡西迪和米爾斯發現它。他們主要把電子偶素撞擊極薄的矽晶片製成。.

新!!: 分子和雙電子偶素 · 查看更多 »

連接酶

連接酶(Ligase,或稱連結酶和結合酶)是一種催化兩種大型分子以一種新的化學鍵結合一起的酶,一般會涉及水解其中一個分子的團。一般連結酶催化以下的反應: 或有時是: 其中小階的字母代表小團。.

新!!: 分子和連接酶 · 查看更多 »

進動

進動(precession)是自轉物體之自轉軸又繞著另一軸旋轉的現象,又可稱作旋進。在天文學上,又稱為「歲差現象」。 常見的例子為陀螺。當其自轉軸的軸線不再呈鉛直時,即自转轴与对称轴不重合不平行时,會發現自轉軸會沿著鉛直線作旋轉,此即「旋進」現象。另外的例子是地球的自轉。 對於量子物體如粒子,其帶有自旋特徵,常將之類比於陀螺自轉的例子。然而實際上自旋是一個內稟性質,並不是真正的自轉。粒子在標準的量子力學處理上是視為點粒子,無法說出一個點是怎樣自轉。若要將粒子視為帶質量球狀物體來計算,以電子來說,會發現球表面轉速超過光速,違反狹義相對論的說法。 自旋的進動現象主要出現在核磁共振與磁振造影上。其中的例子包括了穩定態自由旋進(進動)造影。 進動是轉動中的物體自轉軸的指向變化。在物理學中,有兩種類型的進動,自由力矩和誘導力矩,此處對後者的討論會比較詳細。在某些文章中,"進動"可能會提到地球經驗的歲差,這是進動在天文觀測上造成的效應,或是物體在軌道上的進動。.

新!!: 分子和進動 · 查看更多 »

FOXM1

FOXM1(Forkhead box protein M1)是一种转录因子蛋白质,有关调节细胞周期的重要作用。当FOXM1从小鼠中去除后,幼鼠在出生后不久因心臟衰竭而死亡,由于心肌细胞和肝细胞多倍体的发展。研究显示了FOXM1对染色体偏析和基因组稳定性有重大作用。FOXM1因子失调表达了会造成异常的细胞增殖,导致引发癌症。.

新!!: 分子和FOXM1 · 查看更多 »

IUPAC命名法

IUPAC命名法(International Union of Pure and Applied Chemistry chemical nomenclature)包括IUPAC规定的一系列的命名法,它规定从有机到无机、从分子到高分子及各方面化学术语。IUPAC已将命名法出版为一系列的颜色书。.

新!!: 分子和IUPAC命名法 · 查看更多 »

Σ鍵

σ键是价键理论和分子轨道理论中一种化学键的名称。由两个相同或不相同的原子轨道沿轨道对称轴方向相互重叠而形成的共价键,叫做σ键。一般的“单键”都属于这种σ键,比如C-H, O-H, N-H, C-C, C-Cl等等。 由两个相同或不相同的原子轨道沿轨道对称轴方向相互重叠而形成的共价键,叫做σ键。σ键是原子轨道沿轴方向重叠而形成的,具有较大的重叠程度,因此σ键比较稳定。σ键是能围绕对称轴旋转,而不影响键的强度以及键跟键之间的角度(键角)。根据分子轨道理论,两个原子轨道充分接近后,能通过原子轨道的线性组合,形成两个分子轨道。其中,能量低于原来原子轨道的分子轨道叫成键轨道,能量高于原来原子轨道的分子轨道叫反键轨道。以核间轴为对称轴的成键轨道叫σ轨道,相应的键叫σ键。以核间轴为对称轴的反键轨道叫σ*轨道,相应的键叫σ*键。分子在基态时,构成化学键的电子通常处在成键轨道中,而让反键轨道空着。 σ键是共价键的一种。它具有如下特点:.

新!!: 分子和Σ鍵 · 查看更多 »

Μ子

μ子(渺子,muon)是一种带有一个单位负电荷、自旋为1/2的基本粒子。μ子与同属于轻子的电子和τ子具有相似的性质,人们至今未发现轻子具有任何内部结构。历史上曾经将μ子称为μ介子,但现代粒子物理学认为μ子并不属于介子(參見历史)。 每一种基本粒子都有与之对应的反粒子,μ子的反粒子是反μ子(反渺子,antimuon)。反μ子(μ+)与μ子(μ-)相比只是带一个单位的正电荷,质量、自旋等性质完全相同,因此又叫做正μ子。 与其他带电的轻子一样,μ子有一个与之伴随的中微子——μ中微子(νμ)。μ中微子与电中微子νe参与的反应不同,是两种不同的粒子。.

新!!: 分子和Μ子 · 查看更多 »

KAtomic

KAtomic 是一个简单的教育游戏,属于KDE游戏,跟随KDE桌面环境发布。是一个Atomix (电脑游戏)克隆。二维简单画面, 按分子结构排列化学元素。.

新!!: 分子和KAtomic · 查看更多 »

L-艾杜糖醇2-脱氢酶

L-艾杜糖醇2-脱氢酶(L-iditol 2-dehydrogenase,EC )是一种以NAD+或NADP+为受体、作用于供体CH-OH基团上的氧化还原酶。这种酶能催化以下酶促反应: L-艾杜糖醇2-脱氢酶广泛存在于各种生物细胞中,现已在古菌、细菌、真菌、植物和动物细胞中发现了这种酶。L-艾杜糖醇2-脱氢酶可以作用于包括L-艾杜糖醇、D-葡萄糖醇、D-木糖醇和D-半乳糖醇(D-卫矛醇)等糖醇分子。不同生物不同组织中的L-艾杜糖醇2-脱氢酶对不同的底物具有特异性。L-艾杜糖醇2-脱氢酶对能特异性识别NAD+,但不能利用NADP+。这种酶主要参与果糖和甘露糖之间的转化过程。.

新!!: 分子和L-艾杜糖醇2-脱氢酶 · 查看更多 »

Leiden Classical

Leiden Classical是一个分布式计算项目,由荷兰莱顿大学发起。Leiden Classical属于BOINC系统,其中任何科学家和学生可以提出自己的测试,以模拟在经典物理环境下的各种分子和原子。.

新!!: 分子和Leiden Classical · 查看更多 »

MBBA

MBBA,即N-(4-甲氧基苯亞甲基)-4-丁基苯胺(N-(4-Methoxybenzylidene)-4-butylaniline),是一種有機化合物,屬於亞胺類,含有醚、苯、醛亞胺和醚等官能基,具有液晶相態,且常溫下就呈液晶態,是一種研究较多的液晶材料,其化學式為C18H21NO。.

新!!: 分子和MBBA · 查看更多 »

MolyMod

MolyMod是一套分子模型製作工具,以製作球棒模型為主,可以簡單的製作出各種分子的實體模型,且有一定的精確度,也可以輔助一些分子結構的計算。MolyMod主要是塑膠製品,主要是設計用來做教學用途,並且有申請專利。 這些模型可以製作無機,有機分子模型,原子軌域與分子軌域模型,金屬晶體與離子晶體模型,也有分不同用途的套件。 此種模型也可以製作空間填充模型。.

新!!: 分子和MolyMod · 查看更多 »

NEEDLESS角色列表

此角色列表是《NEEDLESS》內的登場人物的介紹,關於本作品其他內容請見條目NEEDLESS。 ※以下介紹中包含一部份原作漫畫與電視動畫劇情,請斟酌閱讀。.

新!!: 分子和NEEDLESS角色列表 · 查看更多 »

PyMOL

PyMOL是一个开放源码,由使用者贊助的分子三维结构显示软件。由Warren Lyford DeLano编写,並且由DeLano Scientific LLC將它商業化。DeLano Scientific LLC是一個私人的軟體公司,它致力於創造讓普遍的科學與教育社群都能取得的好用軟體工具。 PyMOL适用于创作高品質的小分子或是生物大分子(特别是蛋白質)的三维结构圖像。軟體的作者宣称,在所有正式发表的科學文獻中的蛋白質結構圖像中,有四分之一是使用PyMOL來製作。 PyMOL是少數可以用在結構生物学领域的开放源代码視覺化工具。 軟體以Py+MOL命名:“Py”表示它是由一种计算机语言Python所衍生出來的,“MOL”表示它是用于显示分子(英文为molecule)结构的软件。.

新!!: 分子和PyMOL · 查看更多 »

Sirius可视化软件

Sirius可视化软件(简称Sirius)是圣地亚哥超级计算机中心(San Diego Supercomputer Center)所开发的一个分子建模与分析系统。Sirius设计旨在支持除简单显示小分子和蛋白质的之外的高级用户需求。.

新!!: 分子和Sirius可视化软件 · 查看更多 »

Sp2d杂化

sp2d杂化(sp2d hybridization)是指一个原子内的一个ns轨道、两个np轨道和一个nd轨道发生杂化的过程。原子发生sp2d杂化后,上述nd轨道、ns轨道和np轨道便会转化成为四个等价的杂化轨道,称为“sp2d杂化轨道”。四个sp2d杂化轨道存在于同一平面上,且对称轴两两之间的夹角相同,皆为90°。sp2d杂化一般发生在分子形成过程中。杂化过程中,能量相近的d轨道、s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。 一般只有过渡金属元素才能发生sp2d杂化,一些金属互化物中的部分原子也可以采取sp2d杂化形式。以2-中的二价钯离子(Pd2+)为例:处于基态的Pd2+(电子排布式为:4d8),它的一个空的5s轨道、两个空的5p轨道和一个空的5d轨道进行sp2d杂化,形成四个sp2d杂化轨道。该过程中Pd2+的轨道排布变化情况如下图所示(图中略去了出Pd2+价层未填满的4d轨道,灰色的配位电子对由4个氯离子提供):.

新!!: 分子和Sp2d杂化 · 查看更多 »

Sp2杂化

sp2杂化(sp2 hybridization)是指一个原子同一电子层内由一个ns轨道和两个np轨道发生杂化的过程。原子发生sp2杂化后,上述ns轨道和np轨道便会转化成为三个等价的原子轨道,称为“sp2杂化轨道”。三个sp2杂化轨道的对称轴在同一条平面上,两两之间的夹角皆为120°。sp2杂化一般发生在分子形成过程中。杂化发生前,原子最外层s轨道中的一个电子被激发至p轨道,使将要发生杂化的原子进入激发态;之后,该层的s轨道与三个p轨道中的任意两个发生杂化。此过程中,能量相近的s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。 以硼原子为例,硼原子在成键时一般采用sp2杂化形式:处于基态的硼原子(电子排布式为:1s22s22p1)的一个2s电子激发至一个空的2p轨道上,使原子进入激发态(电子排布式为:1s22s12p2)。然后,一个2s轨道再和上述两个各填充了一个电子的2p轨道进行sp2杂化,形成三个sp2杂化轨道。该过程中硼原子的原子轨道排布变化情况如下图所示: 在有机化学中,碳原子与其他原子以双键连接时(如烯烃中的碳碳双键、醛和酮中的碳氧双键),碳原子均采用sp2杂化形式。.

新!!: 分子和Sp2杂化 · 查看更多 »

Sp3d2杂化

sp3d2杂化(sp3d2 hybridization)是指一个原子同一电子层内由一个ns轨道、三个np轨道和两个nd轨道发生生杂化的过程。原子发生sp3d2杂化后,上述ns、np和nd轨道便会转化成为六个轨道,称为“sp3d2杂化轨道”。六个sp3d2杂化轨道分别存在于两个平面上,其中,位于水平面的四个杂化两两之间的夹角皆为90°,另有两个杂化轨道位于轴向平面、对称地分布于水平面两侧。一般认为sp3d2杂化的水平杂化轨道是由s、px、py和dx²-z²轨道组成的,而轴向杂化轨道则由pz和dz²组成。sp3d2杂化一般发生在分子形成过程中。杂化过程中,能量相近的d轨道、s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。 以3−中的铁离子(Fe3+)为例:处于基态的Fe3+(电子排布式为:3d5)的一个空的4s轨道、三个空的4p轨道和两个空的4d轨道进行sp3d2杂化,形成六个sp3d2杂化轨道。该过程中铁离子的轨道排布变化情况如下图所示(图中灰色的配位电子对由6个氟离子提供):.

新!!: 分子和Sp3d2杂化 · 查看更多 »

Sp3杂化

sp3杂化(sp3 hybridization)是指一个原子同一电子层内由一个ns轨道和三个np轨道发生杂化的过程。原子发生sp3杂化后,上述ns轨道和np轨道便会转化成为四个等价的原子轨道,称为“sp3杂化轨道”。四个sp3杂化轨道的对称轴两两之间的夹角相同,皆为109°28'。sp3杂化一般发生在分子形成过程中。杂化发生前,原子最外层s轨道中的一个电子被激发至p轨道,使将要发生杂化的原子进入激发态;之后,该层的s轨道与三个p轨道发生杂化。此过程中,能量相近的s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。 以碳原子为例:处于基态的碳原子(电子排布式为:1s22s22p2)的一个2s电子激发至一个空的2p轨道上,使原子进入激发态(电子排布式为:1s22s12p3)。然后,一个2s轨道再和上述三个各填充了一个电子的2p轨道进行sp3杂化,形成四个sp3杂化轨道。该过程中碳原子的原子轨道排布变化情况如下图所示: 在有机化学中,碳原子与其他原子以单键连接时(如烷烃、环烷烃中的碳碳单键和碳氢单键等),碳原子均采用sp3杂化形式。.

新!!: 分子和Sp3杂化 · 查看更多 »

Sp杂化

sp杂化(sp hybridization)是指一个原子同一电子层内由一个ns轨道和一个np轨道发生杂化的过程。sp杂化是最简单的杂化形式。原子发生sp杂化后,上述ns轨道和一个np轨道便会转化成为两个等价的原子轨道,称为“sp杂化轨道”。两个sp杂化轨道的对称轴夹角为180°,在同一条直线上,故sp杂化也称为“直线型杂化”。sp杂化一般发生在分子形成过程中。杂化发生前,原子最外层s轨道中的一个电子被激发至p轨道,使将要发生杂化的原子进入激发态;之后,该层的s轨道与三个p轨道中的任意一个发生杂化。此过程中,能量相近的s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量。 以铍原子为例,铍原子在成键时一般采用sp杂化形式:处于基态的铍原子(电子排布式为:1s22s2)的一个2s电子激发至一个空的2p轨道上,成为激发态(电子排布式为:1s22s12p1)。然后,一个2s轨道再和上述填充了一个电子的2p轨道进行sp杂化,形成两个sp杂化轨道。该过程中铍原子的原子轨道排布变化情况如下图所示: 在有机化学中,碳原子与其他原子以三键连接时(如炔烃中的碳碳三键、腈中的碳氮三键),碳原子均采用sp杂化形式。因为sp杂化产生的键角DCCC为180°,在分子中形成了直线型的区域,使炔烃分子能排列得更加整齐、紧密,这是炔烃熔点较烯烃、烷烃高的原因之一。.

新!!: 分子和Sp杂化 · 查看更多 »

U (消歧义)

U,u是拉丁字母中的第二十二個字母。 除此之外,U還可以指代:.

新!!: 分子和U (消歧义) · 查看更多 »

X射線吸收光譜

X光吸收光譜(X-ray absorption spectroscopy,缩写:XAS)是目前廣泛應用於取得氣態、分子、及凝體(例如,固體)中,目標原子之區域(原子尺度)結構資訊及電子狀態的一種技術。.

新!!: 分子和X射線吸收光譜 · 查看更多 »

X射线衍射法

X射线衍射法,是指使用X射线探测某些分子或晶体结构的科研方法。.

新!!: 分子和X射线衍射法 · 查看更多 »

X光散射技术

X光散射技术或X射线衍射技术(X-ray scattering techniques)是一系列常用的非破壞性分析技術,可用於揭示物質的晶體結構、化學組成以及物理性質。这些技术都是以观测X射线穿过样品后的散射强度为基础,并根据散射角度、极化度和入射X光波长对实验结果进行分析。X光散射技术可在許多不同的條件下進行分析,例如不同的溫度或壓力。.

新!!: 分子和X光散射技术 · 查看更多 »

抗氧化剂

抗氧化剂是指能减缓或防止氧化作用的分子(常专指生物体中)。氧化是一种使电子自物质转移至氧化剂的化学反应,过程中可生成自由基,进而启动链反应。当链反应发生在细胞中,细胞受到破坏或凋亡。抗氧化剂则能去除自由基,终止连锁反应并且抑制其它氧化反应,同时其本身被氧化。抗氧化剂通常是还原剂,例如硫醇、抗坏血酸、多酚类。 抗氧化剂也是一种汽油中重要的添加剂。它可以防止油料在储存过程中氧化变质形成胶质沉淀从而妨碍内燃机的正常运转。Werner Dabelstein, Arno Reglitzky, Andrea Schütze and Klaus Reders "Automotive Fuels" in Ullmann's Encyclopedia of Industrial Chemistry 2007, Wiley-VCH, Weinheim.

新!!: 分子和抗氧化剂 · 查看更多 »

柏拉图烃

柏拉图烃是柏拉图立体的分子表现形式,其中顶点由碳原子取代,边由原子间的化学键表示。.

新!!: 分子和柏拉图烃 · 查看更多 »

极性

極性(polarity),在化學中指一根共價鍵或一個共價分子中電荷分佈的不均勻性。如果電荷分佈得不均勻,則稱該鍵或分子為極性;如果均勻,則稱為非極性。 物質的一些物理性質(如溶解性、熔沸點等)與分子的極性相關。.

新!!: 分子和极性 · 查看更多 »

极性表面积

极性表面积(Polar surface area,簡稱PSA)是常用於藥物化學的一個參數,其定義為化合物內極性分子的總表面積,多為氧原子及氮原子,也包括與其相連的氫原子。 在藥物化學的應用中,極性表面積是評價藥物在細胞內的可運輸性質的描述指標。這一參數的大小與藥物在人體內的小腸吸收量、Caco-2單層可透性及血腦屏障的穿透性有明顯關連。一例子是當一分子的極性表面積大於1.4平方納米時,其在細胞的穿透性就會變差。一種需穿越血腦屏障並作用於中樞神經系統的感受體上的藥物,其極性表面積就不能大於0.6平方納米。.

新!!: 分子和极性表面积 · 查看更多 »

构效关系

构效关系指的是药物或其他生理活性物质的化学结构与其生理活性之间的关系,是药物化学的主要研究内容之一。狭义的构效关系研究的对象是药物,广义的构效关系研究的对象则是一切具有生理活性的化学物质,包括药物、农药、化学毒剂等。最早期的构效关系研究以直观的方式定性推测生理活性物质结构与活性的关系,进而推测靶酶活性位点的结构和设计新的活性物质结构,随着信息技术的发展,以计算机为辅助工具的定量构效关系成为构效关系研究的主要方向,定量构效关系也成为合理药物设计的重要方法之一。.

新!!: 分子和构效关系 · 查看更多 »

恢复系数

恢復係數(coefficient of restitution)衡量两个物体在碰撞後的反彈程度。假若恢復係數為1,则此碰撞为弹性碰撞;假若恢復係數小於1而大於或等於0,则此碰撞为非弹性碰撞;假若恢復係數為0,则此碰撞为完全非弹性碰撞,兩個物体黏贴在一起。 恢復係數是兩個碰撞物體之間的共同性質。但是,時常在文獻中,恢復係數會被表現為單獨物體所具有的內秉性質,而隻字不提這物體到底是與哪個物體相互碰撞。在這狀況裏,第二個物體被假定為完美彈性剛體。.

新!!: 分子和恢复系数 · 查看更多 »

恩赐奖 (日本学士院)

恩賜賞(おんししょう)是日本学士院设立的一个奖项。日本学士院选择学術上有特殊贡献的論文、著書或者其他的研究業績,发奖表彰学者的研究事业(日本学士院法8条1款)。日本学士院恩賜奖和学术奖都是日本最权威的学術奖项。其中,恩賜奖又是日本学士院颁发的最高奖项,候选人是毎年仅颁发9件以内的日本学士院賞的得主。日本学术院从中精选当年最優的学术作品(1件以内),由日本皇室亲自赐奖金给获奖者。1911年设立。。.

新!!: 分子和恩赐奖 (日本学士院) · 查看更多 »

恆星分子

恆星分子(Stellar molecules)是存在恆星內或周圍形成,並在恆星內或環繞在周圍的分子。這種結構可以在溫度很低,可以讓分子形成,否則這顆恆星的物質就被限制為只有原子(化學元素)形成氣體,或非常高溫的電漿。.

新!!: 分子和恆星分子 · 查看更多 »

李遠哲

李遠哲(Yuan-Tseh Lee,),生於新竹州新竹市,化學家。中央研究院院士、日本學士院名譽會員。曾任中央研究院院長(1994-2006年),國際科學理事會會長(2011-2016年)、名古屋大學高等研究院名譽會長。 1986年,因首先以分子角度來研究化學反應的動力學而與達德利·赫施巴赫及約翰·波拉尼共獲諾貝爾化學獎,是首位獲得該獎的華人及臺灣人。.

新!!: 分子和李遠哲 · 查看更多 »

東部深層海水創新研發中心

東部深層海水創新研發中心(Eastern Taiwan Deep Sea Water Innotavion & Researsh Conter,ETDIC)為一座隸屬在行政院經濟部旗下的研究中心,廠區坐落在臺灣臺東縣太麻里鄉知本溪出海口南岸,全名為經濟部東部深層海水創新研發中心。 東部深層海水創新研發中心是臺東縣第一個由法人單位進駐的研發中心,指導單位是經濟部技術處,執行單位是石材暨資源產業研究發展中心。.

新!!: 分子和東部深層海水創新研發中心 · 查看更多 »

核磁共振

核磁共振(NMR,Nuclear Magnetic Resonance)是基於原子尺度的量子磁物理性質。具有奇數質子或中子的核子,具有內在的性質:核自旋,自旋角動量。核自旋產生磁矩。NMR觀測原子的方法,是將樣品置於外加強大的磁場下,現代的儀器通常採用低溫超導磁鐵。核自旋本身的磁場,在外加磁場下重新排列,大多數核自旋會處於低能態。我們額外施加電磁場來干涉低能態的核自旋轉向高能態,再回到平衡態便會釋放出射頻,這就是NMR訊號。利用這樣的過程,可以進行分子科學的研究,如分子結構、動態等。.

新!!: 分子和核磁共振 · 查看更多 »

核磁共振氢谱

核磁共振氢谱 (也称氢谱, 或者 1H谱) 是一种将分子中氢-1的核磁共振效应体现于核磁共振波谱法中的应用。可用来确定分子结构。 当样品中含有氢,特别是同位素氢-1的时候,核磁共振氢谱可被用来确定分子的结构。氢-1原子也被称之为氕。 简单的氢谱来自于含有样本的溶液。为了避免溶剂中的质子的干扰,制备样本时通常使用氘代溶剂(氘.

新!!: 分子和核磁共振氢谱 · 查看更多 »

核膜

核膜(nuclear membrane 或 karyotheca),又称核被膜或核封套(nuclear envelope)是包圍真核细胞細胞核,分隔開细胞核和细胞质的生物膜。.

新!!: 分子和核膜 · 查看更多 »

标准氢电极

标准氢电极(英文:Standard Hydrogen Electrode,旧时用Normal Hydrogen Electrode,简称NHE,现已停用),简称SHE,是构成标准电极电势(E^0)基准的。在25℃时,它的大约为4.44±0.02V,但为了给所有电极反应的电动势设立一个基准值,在任意温度下氢电极的标准电极电势都定义为零。其他电极的电势都是相对于标准氢电极而确定的。 氢电极的氧化还原半反应式如下: 这个半反应是在镀有的处于标准状态(气体压强为1大气压、离子或分子的活度为1mol/L的溶液)的铂电极上发生的,相应的能斯特方程为: 或 其中:.

新!!: 分子和标准氢电极 · 查看更多 »

桥环化合物

桥环化合物是一类分子中两个或多个环共用两个不直接相连的原子的有机化合物。 被公用的原子称为桥头原子,连接桥头原子的键称为桥。 桥环化合物的命名见有机化学命名法 (A部)#A-3.桥烃。.

新!!: 分子和桥环化合物 · 查看更多 »

極化性

在物理學裏,感受到外電場的作用,中性原子或分子會改變其正常電子雲形狀,衡量這改變的物理量稱為極化性(polarizability)。以方程式表達, 其中,\mathbf是由於電子雲形狀的改變而產生的電偶極矩,\alpha是極化性,\mathbf是外電場。 極化性的國際單位為:C\ m^2\ V^(库仑·米2·伏特-1)。而伏特單位可以表達為(請注意,方括弧內的符號代表單位,不代表物理量) 其中,\epsilon _0 是電常數。 所以,\alpha/(4\pi\epsilon_0)的單位是m^3,稱此常數為體積極化性。例如,氫氣的體積極化性是0.667 \text 10^ m^3或0.667 Å3。 極化性是個微觀量,它和相對電容率\epsilon_r的關係式,稱為克勞修斯-莫索提方程式: 其中,N是單位體積的原子數目。 前面定義的極化性\alpha是個純量,這意味著外電場只能產生與其平行的電偶極矩,也就是說,朝著\hat方向的電場只能造成朝著\hat方向的電偶極矩。但是,對於某些物質,朝著\hat方向的電場,也會造成朝著\hat方向或\hat方向的電偶極矩。這時候,極化性\alpha變為二階張量,必須用3 x 3 矩陣來描述。.

新!!: 分子和極化性 · 查看更多 »

構相異構

構象異構(英語:Conformational isomerism,又譯結構異構或構形異構,為同分異構的一種類型,指由於原子環繞於化學鍵四周,而導致結構式相同,卻具有化學構象或構象異構體之差異的分子現象。 有三種效應,會使某些構象異構物較為穩定:.

新!!: 分子和構相異構 · 查看更多 »

構造原理

構築理論(Aufbau principle,又称遞建原理或馬德隆規則)决定了原子、分子和离子中電子在各能級的排布。而構造原理認為全部電子是一個一個地依次進入電場(低能量軌域),待低能量軌域填滿後,才填入高能量軌域,並假設對電場而言它們是處於最穩定的情況中。假若違反構築理論,將導致電子組態的不穩定。它是在1920年前後由尼爾斯·波耳正式提出,主要是以量子力學描述。 洪特规则的特例:.

新!!: 分子和構造原理 · 查看更多 »

欧洲南方天文台

歐洲南天天文台()是為在南半球研究天文學,在政府間組織的一個研究機構,由15個國家組成和支援的一個天文研究組織。它成立於1962年,目的是為歐洲天文學家提供先進的設施和捷徑以研究南方的天空。這個組織總部設在德國慕尼黑附近的加興,雇用了約730名工作人員,每年並接受成員國約1億3100萬歐元的經費。 歐洲南天天文台建設和經營一些已知規模最大和技術最先進的望遠鏡,包括首創主動光學技術的新技術望遠鏡、和由4個8米等級的望遠鏡和4個1.8米輔助望遠鏡組成的甚大望遠鏡。目前由ESO進行的計畫包括亞他加馬大型毫米波陣列和歐洲極大望遠鏡。 ALMA是下一個十年最大的地面天文專案,將成為在毫米與次毫米波尺度下觀測的主要新工具。他的建設正在進行中,預計於2013年完成。ALMA專案是歐洲各國、亞洲、北美洲和智利之間的國際合作計畫。歐洲執行權由ESO代表行使,並且還主持ALMA區域中心。 E-ELT是40米等級的望遠鏡,目前還在細部設計階段,將是世界上觀測天空最大的巨眼。 歐洲極大望遠鏡,它將極有力的推動天文物理學的知識,能夠仔細研究的天體,包括圍繞著其它恆星的行星、宇宙中的第一個天體、超大質量黑洞、和主宰宇宙的暗物質與暗能量的自然本質和分布。從2005年底,ESO就一直與工作和使用社群的歐洲天文學家和天文物理學家共同來定義此新的聚型望遠鏡。 ESO的觀測機構已經作出許多重大的天文發現和一些天體目錄。最近的研究結果包括發現最遙遠的伽瑪射線暴和我們的星系,銀河系,中心有黑洞的證據。2004年,甚大望遠鏡讓天文學家獲得第一張在173光年外環繞著的棕矮星的系外行星2M1207b軌道的絕佳影像。安裝在ESO另一架望遠鏡上的儀器,高精度徑向速度行星搜索器發現許多的系外行星,包括迄今發現最小的系外行星格利澤581c。甚大望遠鏡還發現迄今距離人類最遙遠星系的候選者阿貝爾1835 IR1916。.

新!!: 分子和欧洲南方天文台 · 查看更多 »

歐歌鶇

歐歌鶇(學名:Turdus philomelos)是一種分佈在歐亞大陸的鶇屬鳥類,上身呈褪色,下身呈奶白色或淺黃色,有黑色斑點。牠們歌聲獨特,常見於詩歌。 歐歌鶇在森林、花園和公園繁殖。牠們會在樹上以泥築巢,每次會生4-5顆蛋。牠們是雜食性的,懂得利用石頭作為鐵砧攻擊蝸牛。牠們就像其他雀形目般受體內、外的寄生蟲侵襲,且易被貓和猛禽捕食。 有一部份的歐歌鶇是候鳥,會飛到南歐、北非及中東過冬。牠們也有被引進到新西蘭及澳洲。牠們雖然並非瀕危,但在歐洲部份地區的數量大幅減少,可能是與種植業的改變有關。.

新!!: 分子和歐歌鶇 · 查看更多 »

毒理学

毒理学是研究外源性化学物及物理和生物因素对生物有机体的有害作用及其作用机理,进而预测其对人体和生态环境的危害的严重程度,为确定安全限值和采取防治措施提供科学依据的科学,也是对毒性作用进行定性和定量评价的一门学科。由于毒理学的研究目的是为保护生物体的健康或安全提供科学依据的一门学科,因此从学科性质上毒理学属于预防医学,贯穿了预防为主的思想。.

新!!: 分子和毒理学 · 查看更多 »

比熱容

比熱容(Specific Heat Capacity,符號c),簡稱比熱,亦稱比熱容量,是熱力學中常用的一个物理量,表示物体吸热或散热能力。比热容越大,物体的吸热或散热能力越弱。它指單位質量的某種物質升高或下降單位温度所吸收或放出的熱量。其國際單位制中的單位是焦耳每千克開爾文,即令1公斤的物質的溫度上升1开尔文所需的能量。根據此定理,最基本便可得出以下公式: m是质量,单位千克(kg)。 ΔT是温度变化,单位开尔文(K)。 當比熱容越大,該物質便需要更多熱能加熱。以水和油為例,水和油的比熱容分別约为4200 J/(kg·K)和2000 J/(kg·K),即把水加熱的熱能是油的約2.1倍。若以相同的熱能分別把水和油加熱的話,油的温升將比水的温升大。 比熱容的符號是c,必須為小写,而大写C則為熱容的符號。以水為例,一千克(kg)重的水需要4200焦耳(J)來加熱一开尔文(K)。根據比熱容,便可得出: 比热容在国际单位制中的单位为焦耳每千克开尔文。也可读作焦每千克开、焦耳每千克凯尔文、焦耳每公斤克耳文等。写作J/(kg · K)。焦耳每千克摄氏度与焦耳每千克开尔文在数值上等同。.

新!!: 分子和比熱容 · 查看更多 »

比较分子场方法

比较分子场方法(Comparative Molecular Field Analysis),减缩写为CoMFA,是一种理论药物化学的计算方法。 相比传统的QSAR方法只考虑分子的二维结构信息,要求化合物属于同系物,有相同的基本骨架。 而CoMFA是一种三维QSAR方法,能分析分子的三维结构,从而能够分析生物活性。 CoMFA主要是立体场和静电场。其工作步骤如下:.

新!!: 分子和比较分子场方法 · 查看更多 »

毛細管電泳

毛細管電泳(Capillary electrophoresis)利用毛細管中被分析的帶電分子在電場作用下,因移動速率不同而達到分離不同分子的目的。.

新!!: 分子和毛細管電泳 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 分子和氢 · 查看更多 »

氢键

氫鍵是分子間作用力的一種,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是电负性较强的原子。氢键既可以是分子间氢键,也可以是分子内的。其键能最大约为200kJ/mol,一般为5-30kJ/mol,比一般的共价键、离子键和金属键键能要小,但强于静电引力。 氢键对于生物高分子具有尤其重要的意义,它是蛋白质和核酸的二、三和四级结构得以稳定的部分原因。.

新!!: 分子和氢键 · 查看更多 »

氣味

氣味是人類嗅覺系統对散布於空氣中的某些特定分子的感應。人们把使人愉快的气味称为香味,把使人不快的气味称为臭味。人类大概能识别1000种不同的气味。.

新!!: 分子和氣味 · 查看更多 »

氣體擴散法

气体扩散法是一种利用不同分子间在热运动中具有不同的速度而分离出铀235的富集(浓缩)方法。.

新!!: 分子和氣體擴散法 · 查看更多 »

氧化态

氧化态(英文:Oxidation State)表示一个化合物中某个原子的氧化程度。形式氧化态是通过假设所有异核化学键都为100%离子键而算出来的。氧化态用阿拉伯数字表示,可以为正数、负数或是零。 氧化态的升高称为氧化,降低则称为还原。这两个过程涉及电子的形式转移,即总体上看,还原是获得电子的过程,而氧化是失去电子的过程。 IUPAC对氧化态的定义为: “氧化态:一种化学物质中某个原子氧化程度的量度。根据以下公认的规则可计算该原子的电荷:.

新!!: 分子和氧化态 · 查看更多 »

氧的同素异形体

人们对氧的同素异形体有着各种认知。其中最熟悉的是双氧(O2),大量存在于地球大气层,也被称为分子氧或三线态氧。另一个是高活性的臭氧(O3)。其他包括:.

新!!: 分子和氧的同素异形体 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 分子和氧气 · 查看更多 »

氨基酸合成

氨基酸合成是生物代谢过程中由其他化合物合成各种氨基酸的一系列酶促生化反应。.

新!!: 分子和氨基酸合成 · 查看更多 »

氫原子光譜

氫原子光譜指的是氫原子內之電子在不同能階躍遷時所發射或吸收不同波長、能量之光子而得到的光譜。氫原子光譜為不連續的線光譜,自無線電波、微波、紅外光、可見光、到紫外光區段都有可能有其譜線。根据电子跃迁的后所处的能阶,可将光谱分为不同的线系。理论上有无穷个线系,前6个常用线系以发现者的名字命名。.

新!!: 分子和氫原子光譜 · 查看更多 »

氫化電子偶素

氫化電子偶素或電子偶素化氫是一種由奇異原子電子偶素和氫原子組成的分子,化學式為, 科學家在1951年預測它的存在,並且在1990年發現它。 氫化電子偶素的半衰期約為0.65個奈秒,而結合能有1.1±0.2eV。.

新!!: 分子和氫化電子偶素 · 查看更多 »

氮4

氮4是一种由四个氮原子组成的氮单质,化学式为“N4”,其分子呈正四面体形。N4与N2、N3是同素异形体。.

新!!: 分子和氮4 · 查看更多 »

氯化镁

氯化镁是一种氯化物,化学式MgCl2。无色而易潮解晶体。這些鹽是典型的離子鹵化物,高度易溶於水。水合氯化鎂可以從鹽水或海水中提取。通常带有6分子的结晶水。但加热至95℃时失去结晶水。135℃以上时开始分解,并释放出氯化氢(HCl)气体。工业上生产镁的原料。在海水和盐卤中找到。水合氯化鎂是處方口服鎂補充劑通常使用的物質。.

新!!: 分子和氯化镁 · 查看更多 »

氯化氢

氯化氢(hydrogen chloride),分子式为HCl,室温下为无色气体,遇空气中的水汽形成白色盐酸酸雾。氯化氢及其水溶液盐酸在化工中非常重要。二者分子式均可写为HCl。.

新!!: 分子和氯化氢 · 查看更多 »

水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.

新!!: 分子和水 · 查看更多 »

水島三一郎

水島三一郎(,),日本化學家,皇后美智子的姑父,專長結構化學、分子結構、分子科學。曾任東京帝國大學教授。日本學士院會員。文化勳章、勲一等瑞寶章表彰。文化功勞者。 水島教授是分子結構理論的世界先驅,也是繼湯川秀樹之後日本人第2位教廷宗座科學院院士。他曾是1962年、1964年諾貝爾化學獎候選人,再傳弟子大隅良典是2016年諾貝爾生理學或醫學獎得主。.

新!!: 分子和水島三一郎 · 查看更多 »

水島公一

水島公一(,),是锂离子电池的陰極材質鈷酸鋰(LiCoO2)以及一系列物質的發現者。現任東芝公司研究員。.

新!!: 分子和水島公一 · 查看更多 »

气体

气体是四种基本物质状态之一(其他三种分别为固体、液体、等离子体)。气体可以由单个原子(如稀有气体)、一种元素组成的单质分子(如氧气)、多种元素组成化合物分子(如二氧化碳)等组成。气体混合物可以包括多种气体物质,比如空气。气体与液体和固体的显著区别就是气体粒子之间间隔很大。这种间隔使得人眼很难察觉到无色气体。气体与液体一样是流体:它可以流动,可变形。与液体不同的是气体可以被压缩。假如没有限制(容器或力场)的话,气体可以扩散,其体积不受限制,沒有固定。气态物质的原子或分子相互之间可以自由运动。 氣體的特性介於液體和等离子体之間,氣體的溫度不會超過等离子体,氣體的溫度下限為簡併態夸克氣體,現在也越來越受到重視。高密度的原子氣體冷卻到非常低的低溫,可以依其統計特性分為玻色氣體和費米氣體,其他相態可以參照相態列表。.

新!!: 分子和气体 · 查看更多 »

气凝胶

氣凝膠(Aerogel),也稱作空氣膠或是稀密封,是世界上密度僅次於全碳气凝胶的人造發泡物質。它的製造是將氣體取代液體在凝膠中的位置而成,而如此做出的結果造就了擁有數種傑出特性的極輕物質。其中最引人注目的是它良好的隔熱能力。這樣的物質擁有許多俗名與暱稱,如:凍結的煙霧(frozen smoke)、固態的煙霧(solid smoke)、固態的空氣(solid air)、藍煙(blue smoke)、舊金山之霧(San Fransisco fog)等,而這些都源自於他的透明性與物質中的光線散射能力。不過,這種物質的觸感卻像是聚苯乙烯一般。 Samuel Stephens Kistler在1931年發明氣凝膠。而這一切是因為他與Charles Learned之間的賭注,競爭看誰有辦法將凝膠裡的液體成分用氣體取代卻不使發泡的間壁收縮崩塌。最後Kistler辦到了。 氣凝膠藉由將凝膠裡頭的液體成分抽出。這種方法會令液體緩慢的被脫出,但不至於使凝膠裡的固體結構因為伴隨的毛細作用被擠壓破碎。 世界上第一個氣凝膠體的主要成分是矽膠。Kistler隨後又造出了以鋁、鉻、氧化錫為基礎物質的凝膠。第一個碳凝膠體則遲至1980年代以後才被開發。.

新!!: 分子和气凝胶 · 查看更多 »

气相色谱法

气液色谱法(Gas chromatography,又称气相层析)是一种在有机化学中对易于挥发而不发生分解的化合物进行分离与分析的色谱技术。气相色谱的典型用途包括测试某一特定化合物的纯度与对混合物中的各组分进行分离(同时还可以测定各组分的相对含量)在某些情况下,气相色谱还可能对化合物的表征有所帮助。在微型化学实验中,气相色谱可以用于从混合物中制备纯品。 气相色谱中的流动相(或活动相)是载气,通常使用惰性气体(如氦气)或反应性差的气体(如氮气)。固定相则由一薄层液体或聚合物附着在一层惰性的固体载体表面构成。固定相装在由玻璃或金属制成的一根空心管柱内(称为色谱柱)。用作进行气相色谱的仪器称为气相色谱仪(或“气体分离器”)。 待分析的气体样品与覆盖有各种各样的固定相的柱壁相互作用,使得不同的物质在不同的时间被洗脱出来。从一种物质进样开始到出现色谱峰最大值的时间被称为该物质的保留时间,通过将未知物质的保留时间与相同条件下标准物质的保留时间的比较可以表征未知物。 在原理上,气相色谱与柱色谱(及其它种类的色谱,如高效液相色谱,薄层色谱)类似,但也有着很多明显的不同。.

新!!: 分子和气相色谱法 · 查看更多 »

河北农业大学

河北农业大学(英语:Hebei Agricultural University ,HEBAU / AUH),简称:河北农大,是位于中华人民共和国河北省保定市的一所省部共建的以农林业及其工程与生命科学为优势和特色的公立综合性大学。河北农业大学创建于公元1902年(大清光绪二十八年),是中国建校最早并最早实施高等农业教育的农业高等院校,河北省建立最早的高等院校,河北省重点大学。学校为河北省人民政府与中华人民共和国教育部、中华人民共和国农业部、国家林业局共建制(省部共建制)高校,并逐步计划备案申报“华北农业大学”。学校现为双一流建设工程高校、中华人民共和国中西部高校基础能力建设工程高校。 该院校前身是近代中国历史建立最早的农业高等院校直隶农务学堂,为中国培养了第一批近现代农业科技人才,是中国现代农业高等教育的起源院校之一,也是中国大学自近代以来建校史最为悠久的大学之一。1900年,庚子事变爆发,八国联军入侵清朝首都北京,慈禧太后下令和谈,接受八国联军提出的《辛丑和约》,此举对中国打击甚大,因此朝廷保守派主动进行变法,史称“清末新政”。其中,清政府推行“新政”的一个重要内容即是「废科举,办学堂,派留学」。1902年2月13日公布推广学堂办法,并于同年8月15日颁布《钦定学堂章程》。在此背景下,时任直隶总督袁世凯深感中国农业人才之缺失,即上书《奏为拣员调补同知要缺恭折》(现藏于台北国立故宫博物院)于慈禧太后,于1902年创建直隶农务学堂,后曾更名为直隶高等农务学堂、直隶公立农业专门学校,中华民国时期称为河北省立农学院,1975年至文化大革命运动结束之际,该校名称曾短暂称为“华北农业大学”。.

新!!: 分子和河北农业大学 · 查看更多 »

沸石

沸石是一种含有水架状结构的铝硅酸盐矿物,最早发现于1756年。瑞典的矿物学家克朗斯提(Cronstedt)发现有一类天然铝硅酸盐矿石在灼烧时会产生沸腾现象,因此命名为沸石(瑞典文:zeolit)。在希腊文中意为“沸腾的石头”。此后人们对沸石的研究不断深入。 沸石因成分不同分为方沸石(Na·H2O)和钙沸石(Ca·3H2O)。其含水量与外界温度及水蒸气的压力有关,加热时水分可慢慢逸出,但并不破坏其结晶构造。 晶体结构中有许多空腔(笼)和连接空腔的通道,水分子位于其中,可由通道运输。晶体和集合体形态及解理随着晶体结构的不同而异,一般呈浅色,玻璃光泽,硬度3-3.5,比重2.0-2.4。 沸石族矿物由低温热液作用形成,见于喷出岩,特别是玄武岩的孔隙中,也见于沉积岩、变质岩及热液矿床和某些近代温泉沉积中。 1932年,McBain提出了“分子筛”(Molecular sieve)的概念。表示可以在分子水平上筛分物质的多孔材料。沸石用作分子筛,可以吸取或过滤其他物质的分子。虽然沸石只是分子筛的一种,但是沸石在其中最具代表性,因此“沸石”和“分子筛”这两个词经常被混用。 除了天然产品外,也可由人工合成,人造沸石是:磺酸化聚苯乙烯,天然沸石:铝硅酸钠。.

新!!: 分子和沸石 · 查看更多 »

油,是由一种或多种液态的碳氢化合物组成的物质。由于油具有疏水性的特性,“油”亦是许多与水不溶之液体的总称。而可以在油中溶解的物质都具有亲油性,一般不溶於水。 油和水可以在乳液,比如奶中短時間內比较均匀地混合。但是乳液是亚稳定的状态,一段时间后又会重新分为油和水两个相态。 油的过量摄入会导致脂肪增生,可能導致心血管疾病的發生。.

新!!: 分子和油 · 查看更多 »

沉降

沉降又稱沉積、沉澱,是懸浮液的粒子下沉積聚的過程。原因可以是地心吸力、離心力或電磁力。在地理學,沉降通常是侵蝕作用的相反,亦即沉積物遷移的最終結果;過程包括躍移。 不同大小的東西都可以沉降,由流水中的大石頭,塵土或花粉的懸浮液,至單個分子,例如蛋白質和肽的細胞懸浮液都可以。 在地理學,此名詞通常用來描述沉積物的堆積作用,而最後會形成沉積岩;在其他化學及環境學領域等則用來描述小粒子和分子的運動。在生物工業則是指將細胞分離自介質的過程。.

新!!: 分子和沉降 · 查看更多 »

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

新!!: 分子和波粒二象性 · 查看更多 »

波音藝廊

波音藝廊(北波音藝廊和南波音藝廊)是一个位于美國芝加哥卢普区千禧公園的户外展览空间。它靠着南北中层平台,并位于瑞格雷广场(Wrigley Square)和皇冠喷泉(Crown Fountain)的东边。波音公司的主席及首席执行官詹姆斯·贝尔(James Bell)在一次于芝加哥文化中心举行的会议中向芝加哥市长理查德·戴利(Richard M. Daley)宣布波音公司会为这块空地的工程提供5百万美元的捐款。.

新!!: 分子和波音藝廊 · 查看更多 »

泛甲殼動物

泛甲殼動物(學名:Pancrustacea)是甲殼類及六足亞門的總稱。這個分類與缺角類假就有矛盾,因缺角類只包含多足綱及六足亞門,並認為甲殼類是較為疏遠的。截至2010年,泛甲殼動物已被廣泛接受。 多項分子研究都支持泛甲殼動物是單系群,但大部份甲殼類都是昆蟲的並系群,即昆蟲是演化自甲殼類祖先。.

新!!: 分子和泛甲殼動物 · 查看更多 »

洪德最大多重度规则

洪德最大多重度规则(Hund's rule of maximum multiplicity)是洪德规则中的第一条,于1925年由弗里德里希·洪德提出。因其在原子化学、光谱学、量子化学中的重要性,又常被简称为洪德规则,而忽略洪德的另外两条规则。一些中学教材里面介绍的洪德规则实际上是本规则,如在人教版化学选修教材中,洪德规则被表述为:“当电子排布在同一能级的不同轨道时,总是优先单独占据一个轨道,而且自旋方向相同。”.

新!!: 分子和洪德最大多重度规则 · 查看更多 »

液態核磁共振量子電腦

液態核磁共振量子電腦(Liquid-state nuclear magnetic resonance quantum computer, liquid NMR QC)是利用液態之核磁共振(NMR)技術實現量子計算機 (量子電腦)的一項方案,為當前較為成功的量子電腦物理系統之一。 其屬於系綜量子電腦(ensemble quantum computer)類別,在一些學派的觀念底下,因為不是對單一量子位元進行操控,而不認為是真正的量子電腦。 目前液態核磁共振量子電腦主要是採用自旋1/2的核子,例如質子(氫核)、碳13核、氟19核等,主要考量是僅為磁偶極而弛緩時間或量子脫散時間較長,仍夠保持量子資訊的量子態較久。這些核的原子為有機分子中的成分原子,彼此透過化學鍵間的J耦合(純量耦合)互相影響;J耦合亦是此類量子電腦中進行量子計算中受控反閘(controlled NOT gate, C-NOT)的來源機制。 目前較成熟的系統可達到7個量子位元的操作,而10個以上的量子位元,據稱即將可以商業性購得。艾薩克·莊群組在2001年《自然》雜誌的論文利用了7個量子位元的液態磁振量子電腦進行了秀爾演算法,對15做因式分解為3和5的示範,為一代表作。然而實際上並非真正達成,而是透過一些技巧性的方式簡化問題來做出展示。.

新!!: 分子和液態核磁共振量子電腦 · 查看更多 »

混成軌域

混成軌域(Hybrid orbital)是指原子軌域經混成(hybridization)後所形成的能量简并的新轨道,用以定量描述原子間的鍵結性質。與價層電子對互斥理論可共同用來解釋分子軌域的形狀。混成概念是萊納斯·鮑林於1931年提出。.

新!!: 分子和混成軌域 · 查看更多 »

淺島誠

淺島誠(,),日本生物學家,專長發育生物學。立陶宛國家科學院外籍院士。曾任東京大學教授及副校長(理事)、日本學術會議副會長,現任東京大學名譽教授、東京理科大學副校長。紫綬褒章表彰。文化功勞者。.

新!!: 分子和淺島誠 · 查看更多 »

游離輻射

游離輻射(ionizing radiation)是指波長短、頻率高、能量高的射線(粒子或波的双重形式)。輻射可分為游離輻射和非游離輻射,游離輻射可以從原子或分子裡面電離過程(Ionization)中作用出至少一個電子。反之,非游離輻射則不行。游離能力,決定於射線(粒子或波)所帶的能量,而不是射線的數量。如果射線沒有帶有足夠游離能量的話,大量的射線並不能夠導致游離。.

新!!: 分子和游離輻射 · 查看更多 »

滲流力學

滲流力學是流體力學的一個分支,主要研究流體在多孔介質中的運動方式。由於多孔介質之間的空隙尺寸微小,因此滲流力學具有毛細作用突出、分子力作用顯著和流動阻力較大等特性,因此流動速度往往比較慢,另外慣性力也可忽略不計。.

新!!: 分子和滲流力學 · 查看更多 »

滿月周期

滿月週期是14個太陰月的滿月視大小和月齡(由新月開始經歷的時間)變化的週期。它們的序列有:.

新!!: 分子和滿月周期 · 查看更多 »

漸近巨星分支

AGB恆星在天文物理上是非常重要的,因為它們能產生大量的塵粒,並且也是成為行星狀星雲的前兆。 漸近巨星分支是赫羅圖上低質量至中質量恆星在演化時聚集的區域。在恆星演化周期中,這是所有中低質量恆星(0.6-10太陽質量)末期階段的生活。 在觀測上,一顆漸近巨星分支(AGB)恆星看起來像是一顆紅巨星。它的內部構造特點是在中央有一個不活躍的碳和氧核心,外面是正在將氦融合成碳(氦燃燒)的氦層,再外面則是將氫融合成氦(氫燃燒)的殼層,還有大量與一般正常恆星類似的物質組成的外殼。.

新!!: 分子和漸近巨星分支 · 查看更多 »

漂白

漂白,一般指纺织领域染整工艺过程。漂白的目的是去除天然色素,赋于织物必要和稳定的白度。.

新!!: 分子和漂白 · 查看更多 »

濾過裂隙

過裂隙(filtration slits),即腎臟的組成腎元之腎小體內的鮑氏囊上之足細胞的"足突"叉合彼此形成"濾過裂隙"(或裂隙孔)、且裂隙極小(約為8 nm),而帶有負電荷、大分子以及帶陰電性的分子會被阻擋在外。 濾過裂隙可對比於腎小球內皮細胞的膜孔(fenestra),並由"裂隙隔膜"(slit diaphragm)跨越其上。.

新!!: 分子和濾過裂隙 · 查看更多 »

激发态

发是在任意能级上能量的提升。在物理学中有对于这种能级有专门定义:往往与一个原子被激发至激发态有关。 在量子力学中,一个系统(例如一个原子,分子或原子核)的激发态是该系统中任意一个比基态具有更高能量的量子态(也就是说它具有比系统所能具有的最低能量要高的能量)。 一般来说,处于激发态的系统都是不稳定的,只能维持很短的时间:一个量子(例如一个光子或是一个声子)在发生自发辐射或受激辐射后,只在能量被提升的瞬间存在,随即返回具有较低能量的状态(一个较低的激发态或基态)。这种能量上的衰减一般被称为“衰变”(decay),它是“激发”的逆过程。 持续时间较长的激发态被叫做亚稳态(metastable)。同质异能素(nuclear isomers)与单线态氧(singlet oxygen)就是其中的两个例子。.

新!!: 分子和激发态 · 查看更多 »

激光光谱学

激光光谱学是对在激光器发明之后,使用激光作为光源来进行的原子、分子的发射光谱、吸收光谱以及非线性效应所做研究的通称。 Category:光譜學.

新!!: 分子和激光光谱学 · 查看更多 »

激光诱导击穿光谱

光诱导击穿光谱(Laser-induced breakdown spectroscopy,LIBS) 技术通过超短脉冲激光聚焦样品表面形成等离子体,进而对等离子体发射光谱进行分析以确定样品的物质成分及含量。超短脉冲激光聚焦后能量密度较高,可以将任何物态(固态、液态、气态)的样品激发形成等离子体,LIBS技术(原则上)可以分析任何物态的样品,仅受到激光的功率以及摄谱仪&检测器的灵敏度和波长范围的限制。。再者,几乎所有的元素被激发形成等离子体后都会发出特征谱线,因此,LIBS可以分析大多数的元素。如果要分析的材料的成分是已知的,LIBS可用于评估每个构成元素的相对丰度,或监测杂质的存在。在实践中,检测极限是:a)等离子体的函数,b)光收集窗口,以及c)所观查的过渡谱线的强度。LIBS利用光学发射光谱,并且是该程度非常类似于电弧/火花发射光谱。 LIBS在技术上是非常相似的一些其它基于激光的分析技术,共享许多相同的硬件。这些技术是拉曼光谱学的振动光谱技术,(LIF)的荧光光谱技术。实际上,现在设备已经被制造成在单个仪器中结合这些技术,允许样品原子的,分子的和结构的特征研究,以给予物理性质的一个更深入的了解。.

新!!: 分子和激光诱导击穿光谱 · 查看更多 »

激素

素(英語:hormone)也音譯作荷尔蒙或賀爾蒙,在希腊文原意为“興奋活动”。激素是指体内的某一细胞、腺体或者器官所产生的可以影响机体内其他细胞活动的化学物质。仅需很小剂量的激素便可以改变细胞的新陈代谢。可以说激素是一种从一个细胞传递到另一个细胞的化学信使。 所有的多细胞生物都会产生激素,植物产生的激素也被称为植物激素。动物产生的激素通常通过血液运输到体内指定位置,细胞通过其特殊的接受某种激素的受体来对激素进行反应。激素分子与受体蛋白结合后,打开了信号通路进行信号转导,并最终使细胞做出特异性反应。 内分泌系统分泌的激素分子通常都会直接被释放进入血液中,主要是进入有孔毛细血管。可以进行旁分泌信号传送的激素分子可以通过组织间隙渗透进入邻近的靶组织中。 此外还有许多自然或者人工合成的外生化合物对人类和其他动物也有类似激素的效果。他们也会像内源产生的激素一样,对体内自然激素的合成、分泌、运输、结合、功效或消除产生干扰,并进而影响人体稳态、生殖、发展或者是行为。.

新!!: 分子和激素 · 查看更多 »

木星

|G1.

新!!: 分子和木星 · 查看更多 »

有蹄類

有蹄類是指幾類使用趾尖(一般都有蹄)來支撐身體的哺乳動物。牠們共有幾個目,當中有6-8個仍然生存。就有蹄超目是一個支序分類學的分支,或只是一個分類單元仍存有爭議,因為未必所有有蹄類都是彼此近親的。有蹄類過往被認為是一個目,及後分裂成奇蹄目、偶蹄目、管齒目、蹄兔目、海牛目及長鼻目。奇蹄目、偶蹄目及鯨目被稱為「真有蹄類」,而長鼻目、海牛目、蹄兔目及管齒目則合稱為「準有蹄類」或「近蹄類」。 現今普遍的有蹄類有馬、斑馬、驢、牛、犀牛、駱駝、河馬、山羊、豬、綿羊、長頸鹿、鹿、貘、羚羊及瞪羚。.

新!!: 分子和有蹄類 · 查看更多 »

有機半導體

有機半導體是具有半導體性質的有機材料。單分子短鏈(低聚物和有機聚合物)可以是半導體。半導體小分子(芳香族烴類)包括的多環芳族化合物,並五苯,蒽,以及。聚合物有機半導體包括聚(3 -己基噻吩),,以及聚乙炔及其衍生物。 有兩個主要的重疊類有機半導體。這些有機電荷轉移複合物和線性骨幹的導電聚合物都來自聚乙炔。線性主鏈的有機半導體包括聚乙炔本身和它的衍生物聚吡咯和聚苯胺。至少在那裡,電荷轉移複合物往往表現出類似於的傳導機制。在這種機制的存在下產生的空穴和由帶隙分離的電子傳導層。雖然這種典型的機制很重要,不過與無機非晶半導體、隧道、局部狀態、,和声子也能協助躍遷大大的有助於傳導,特別是在聚乙炔。如同無機半導體一樣,有機半導體可以掺杂。有機半導體容易摻雜如聚苯胺(歐明創)和,因此也被稱為有機金屬。 典型的電流載流子在有機半導體裡的空穴和電子的π鍵。幾乎所有的有機固體都是絕緣體。但是,當其組成分子為,電子會移動通過重疊,特別是通過躍遷,隧道及相關機制。多環式芳香族烴類和酞菁鹽晶體是這種類型的有機半導體材料的例子。 電流載流子主要是由於流動性低,即使是未配對電子在電荷轉移複合物中可能是穩定的。這種不成對的電子,可作為載流子。這種類型的半導體也可通過配對的電子給體分子與電子受體分子來獲得。.

新!!: 分子和有機半導體 · 查看更多 »

有機發光二極體

有机发光二極體(英文:Organic Light-Emitting Diode,縮寫:OLED)又稱有機電激發光顯示(英文:Organic Electroluminescence Display,縮寫:OELD)、有機發光半導體,OLED技术最早于1950年代和1960年代由法国人和美国人研究,其后索尼、三星和LG等公司于21世纪开始量产,與薄膜電晶體液晶顯示器為不同類型的產品,前者具有自發光性、廣視角、高對比、低耗電、高反應速率、全彩化及製程簡單等優點,但相對的在大面板價格、技術選擇性 、壽命、解析度、色彩還原方面便無法與後者匹敵,有机发光二極體顯示器可分單色、多彩及全彩等種類,而其中以全彩製作技術最為困難,有机发光二極體顯示器依驅動方式的不同又可分為被動式(Passive Matrix,PMOLED)與主動式(Active Matrix,AMOLED)。 有机发光二極體可简单分为有机发光二極體和聚合物發光二極體(polymer light-emitting diodes, PLED)兩種類型,目前均已开发出成熟产品。聚合物發光二極體相对于有机发光二極體的主要优势是其柔性大面积显示。但由於產品壽命問題,目前市面上的產品仍以有机发光二極體為主要應用。.

新!!: 分子和有機發光二極體 · 查看更多 »

最大簡約法

最大簡約法(Maximum parsimony)是一種常使用於系統發生學計算的方式,可用來根據分子序列的變異程度,來分析生物之間的演化關係,進而建構出演化樹。 「簡約」一般有「經濟的」或「儉省的」之義,但在生物學中,「簡約法」是屬於無母數統計的一種統計方法以估計親緣關係。以最大簡約法建構的親緣關係樹是以演化過程具有最少次變化為前提,表示現存資料在過去的演化過程應由最少次步驟所形成。這項概念由Walter M. Fitch在1971年所提出。.

新!!: 分子和最大簡約法 · 查看更多 »

最简分数

最簡分數或既约分数指的是分子與分母互質的分數。 若一分數可表為\frac,且p, q \in \mathbb(整數),(p,q).

新!!: 分子和最简分数 · 查看更多 »

惠普尔陨石坑

惠普尔陨石坑的周边,LAC-1 区域图。 惠普尔陨石坑(Whipple)是位于月球背面北极附近的一座小撞击坑,其名称取自美国著名天文学家弗雷德·劳伦斯·惠普尔(1906年-2004年),2009年4月17日被国际天文学联合会正式接受 。.

新!!: 分子和惠普尔陨石坑 · 查看更多 »

成体干细胞

成体干细胞(somatic stem cell)是未分化的细胞,在发育后在整个身体中发现,其通过细胞分裂而增殖以补充垂死细胞并再生受损的组织。更准确地名称为"体细胞干细胞"(来自希腊语Σωματικóς,意思是身体),因为它们通常在幼体(儿童)比在成年动物和人体更丰富。 对成体干细胞的科学兴趣集中在它们无限地分裂或自我更新的能力,并产生它们起源的器官的所有,具有潜力从几个细胞再生出整个器官。与胚胎干细胞不同,人类成体干细胞在研究和治疗中的使用不被认为是有争议的,因为它们来自成人组织样品,而不是指定用于科学研究的人类胚胎。它们主要被用于在人类和模式生物例如小鼠和大鼠中研究。.

新!!: 分子和成体干细胞 · 查看更多 »

星際分子列表

這是依照原子的數目編組,已在星際介質中被檢測出的分子名單。每一個被檢測出的化學式均與列出,電離的形式如被檢測到也會一併列出。.

新!!: 分子和星際分子列表 · 查看更多 »

星際雲

星際雲是對存在於銀河系或其他星系內以電漿或宇宙塵的型態累積成的雲氣的通用名稱。星際雲是高密度的星際介質,它的密度比平均密度要大的多。依據雲氣的密度、大小和溫度,在其中的氫可以是中性的(H I區)、電離的(H II區,也就是電漿)或分子(分子雲)。中性和電離的雲有時也被稱為發散雲,而分子雲有時也稱為密度雲。.

新!!: 分子和星際雲 · 查看更多 »

星际物质

星際物質(缩写为ISM)是存在於星系和恆星之間的物質和輻射場(ISRF)的总称。星際物質在天文物理的準確性中扮演著關鍵性的角色,因為它是介於星系和恆星之間的中間角色。恆星在星際物質密度較高的分子雲中形成,並且經由行星狀星雲、恆星風、和超新星獲得能量和物質的重新補充。換個角度看,恆星和星際物質的相互影響,可以協助測量星系中氣體物質的消耗率,也就是恆星形成的活耀期的時間。 以地球的標準,星際物質是極度稀薄的電漿、氣體、和塵埃,是離子、原子、分子、塵埃、電磁輻射、宇宙射線、和磁場的混合體。物質的成分是99%的氣體和1%的塵埃,充滿在星際間的空間。這種極端稀薄的混合物,典型的密度從每立方公尺只有數百到數億個質點,以太初核合成的結果來看氣體的成分,在數量上應該是90%氫和10%的氦,和其他微跡的「金屬」(以天文學說法,除氢和氦以外的元素都是金屬)。 2013年9月12日,美国航空航天局正式宣布,旅行者1号在2012年8月25日已经达到了星际物质(ISM),使其成为第一个这样做的人造物体。星际等离子体和灰尘会被研究直到任务结束的2025年。.

新!!: 分子和星际物质 · 查看更多 »

流变学

流变学(rheology)研究的是在外力作用下,物体的变形和流动的学科,研究对象主要是流体,还有软固体或者在某些条件下固体可以流动而不是弹性形变。W.

新!!: 分子和流变学 · 查看更多 »

流體動力學

流體動力學(Fluid dynamics)是流體力學的一門子學科。流體動力學研究的對象是運動中的流體(含液體和氣體)的狀態與規律。流體動力學底下的子學科包括有空氣動力學和液體動力學。 解決一個典型的流體動力學問題,需要計算流體的多項特性,主要包括速度、壓力、密度、溫度。 流體動力學有很大的應用,比如在預測天氣,計算飛機所受的力和力矩,輸油管線中石油的流率等方面上。其中的的一些原理甚至運用在交通工程,因交通運輸本身可被視為一連續流體运动。.

新!!: 分子和流體動力學 · 查看更多 »

斯塔克效应

斯塔克效应(Stark effect)是原子和分子光譜譜線在外加電場中發生位移和分裂的現象。分裂和位移量稱為斯塔克分裂或斯塔克位移。斯塔克效應又可分為一階和二階斯塔克效應。一階的情況下光譜分裂或位移是與電場強度呈線性關係,二階則是和電場強度呈二次方關係。 斯塔克效應對應於帶電粒子譜線的壓力增寬(斯塔克增寬)。當譜線的分裂或位移在吸收線發生時則稱為逆斯塔克效應(Inverse Stark effect)。 由電場造成的斯塔克效應與由磁場造成譜線分裂成數個部分的塞曼效應相似。 斯塔克效應可使用全量子力學的方式解釋,但也有許多基於半古典物理的方式。.

新!!: 分子和斯塔克效应 · 查看更多 »

新大陸禿鷲

新大陸禿鷲,又稱新世界禿鷹或新域鷲,是屬於美洲鷲科(或新域鷲科)的鳥類。當中包含了在美洲溫帶生活的5種禿鷲及2種神鷹。除了美洲鷲屬外,所有其下的屬都是單型的。 新大陸禿鷲在基因上與外表相似的舊大陸禿鷲並非近親,牠們之間的相似性是來自趨同演化,而牠們之間的分野則卻仍在討論及研究中。牠們在新近紀都是廣泛分佈在舊世界及北美洲的。 禿鷲是吃腐肉的,很多時都是吃已死去的動物屍體。新大陸禿鷲有良好的嗅覺,但舊大陸禿鷲卻是憑視覺來尋找屍體。牠們的特徵是頭上完全沒有羽毛。.

新!!: 分子和新大陸禿鷲 · 查看更多 »

新界南總區總部及行動基地

新界南總區總部及行動基地(英文:New Territories South Regional Police Headquarters and Operational Base)為香港警務處新界南總區總部及各主要部門的所在地,位處香港新界荃灣區荃灣城門道8號。大樓於2005年5月落成,於2006年3月8日由時任警務處處長李明逵和新界南總區指揮官──警務處助理處長鄧厚江主持開幕。於2013年,新界南總區總部及行動基地有168名警務人員和46名文職人員駐守。.

新!!: 分子和新界南總區總部及行動基地 · 查看更多 »

无机化学命名法

无机化学命名法是命名无机化合物的标准化方法,其遵循IUPAC命名法(Nomenclature of Inorganic Chemistry,2005)和《无机化学命名原则(1980)》(中国化学会)两部现行命名法。对于还未统一中文命名的名称,以IUPAC英文命名标注,后加括号内有建议使用的中文名称。.

新!!: 分子和无机化学命名法 · 查看更多 »

无机纳米管

无机纳米管是由金属氧化物(通常)构成的圆柱体分子结构,形态上同碳纳米管相似。 虽然早在1930年,莱纳斯·鲍林就提出了矿物的弯曲叠层的可能性;直到1992年,以色列科学家Reshef Tenne宣布制成了二硫化钨纳米管,才宣告了无机纳米管的诞生。 无机纳米管比碳纳米管重,并且在张力作用下不够强。但是却具有特别强的抗压力。因此有潜力用来做抗冲撞产品,例如防弹衣。.

新!!: 分子和无机纳米管 · 查看更多 »

无机酸列表

本列表按照特征分子中的中心原子对应元素在元素周期表中的顺序排列。 如果对应的酸不存在,将以“——”划去。盐和酯同理。.

新!!: 分子和无机酸列表 · 查看更多 »

日本人諾貝爾獎得主

日本人諾貝爾獎得主」(),係指日本人或出生於日本的諾貝爾獎得主。日本人完成獲獎研究,但獲獎時已移籍者,亦作為參考資料一併收錄。.

新!!: 分子和日本人諾貝爾獎得主 · 查看更多 »

摩尔 (单位)

莫耳(拉丁文「一團」),是物质的量的国际单位,符号为mol(mole)。1莫耳是指化学物质所含基本微粒个数等于12克的碳-12(_6^\!\mbox)所含原子个数,即阿伏伽德罗常数。使用莫耳时,应指明基本微粒,可以是分子、原子、离子、电子或其他基本微粒,也可以是基本微粒的特定组合体。1莫耳物质中所含基本微粒的个数等于阿伏伽德罗常数,符号为NA,数值约是6.02214129×1023,常取6.02×1023。摩尔是國際單位制的七個基本單位之一,在量綱分析中會用符號n表示。 摩尔可以用于表达原子、电子和离子等微观粒子的数量。在化学反应的定量计算中,常使用摩尔。例如氢气与氧气反应生成水,可以用化学方程式表达为:2+→2。其意义为2摩尔氢气与1摩尔氧气反应生成2摩尔水。溶液的浓度也常用物质的量浓度,即摩尔浓度表示,例如1mol/L的氯化钠溶液,表示每升该溶液中含有1摩尔氯化钠。 摩尔质量定义为一摩尔某物质的质量,以克计量时在数值上等于该物质的相对分子质量(或相对原子质量)。例如水分子的相对分子质量约为18.015,一摩尔水的质量为18.015克。 “克-分子”(gram-molecule)曾被用来表达本质上相同的概念,1克-分子的純物質表示其質量等於該物質數量為阿伏加德罗常数時的質量。而“克-原子”(gram-atom)则用来表示一个相关但不同的概念,1克-原子的元素表示其質量等於該原子的數量為阿伏加德罗常数時的質量。例如1摩尔是1“克-分子”,是由1“克-原子”及2“克-原子”組成。。 一些科学家以1摩尔物质所含微粒数——亞佛加厥数确定了一个纪念日——摩尔日。摩尔日纪念活动在每年的10月23日举行,也有一些纪念活动在6月2日举行。.

新!!: 分子和摩尔 (单位) · 查看更多 »

摩擦力

摩擦力(英語:friction)指两个表面接触的物体相对滑动时抵制它们的相对移动的力,是经典力学的一個名詞。广义地,物体在液体和气体中运动时也受到摩擦力。 摩擦力產生的成因:.

新!!: 分子和摩擦力 · 查看更多 »

操縱子

操縱組(operon,又稱操縱子或操縱元)是一組關鍵的核苷酸序列,包括了一個操縱基因(operator),及一個或以上的結構基因被用作生產信使RNA(mRNA)的基元,受一個單一的啟動子控制之下。首个被發現操縱子是乳糖操縱子,由方斯華·賈克柏及賈克·莫諾於1961年發現。 操縱子是與調節子及刺激子有關:操縱子包含了一組受操縱基因調節的基因,調節子包含了一組受單一調節蛋白質的基因,而刺激子則包含一組受單一細胞調節的基因。 最初,操纵子被认为仅存在于原核生物中,但自从1990年代初发现真核生物中的第一个操纵子以来,已经出现了更多的证据表明它们比以前假设的更常见。通常,原核操纵子的表达导致产生多顺反子mRNA,而真核操纵子导致单顺反子mRNA。 操纵子也存在于病毒如噬菌体。例如,有两个操纵子。.

新!!: 分子和操縱子 · 查看更多 »

感情纽带

感情纽带(也称链结,Human Bonding)是指人与人之间形成的一种亲近的人际关系。也指人与动物之间建立的联系。建立感情纽带的过程则称为建立链结,或简言之为结链。感情纽带大多存在于亲人、朋友之间,不过和一个队伍(例如球队)或一个人长时间的相处也可以建立感情纽带。感情纽带和普通的好感有所不同,它是一种相互的、互动的过程。 感情纽带通常在浪漫伙伴、密友和亲子产生和发展。这种联系是以类似于喜欢和信任的情感为特征的。任意两个总在一起消磨时间的人都可能形成感情纽带。男性链结指的是通常男性在一起而不包括女性在内的活动。另一个名词女性链结使用频率较低,指的是女性之间形成的亲近的人际关系。.

新!!: 分子和感情纽带 · 查看更多 »

應變 (化學)

在化學的意義下,當一分子受到一應變影響,其化學結構對比於無應變的分子會受壓力而產生內能。所有的能量儲存於分子內的稱為內能。一受應變的分子相對於不受應變的分子有著額外的內能。這些額外的內能或稱為應變能,就如同壓縮的彈簧。Anslyn and Dougherty, Modern Physical Organic Chemistry, University Science Books, 2006, ISBN 978-1-891389-31-3如同壓縮的彈簧一般,必須保持緊壓避免釋放出勢能,而分子可以不穩定的構型中維持內能是由於分子內的化學鍵,當這些化學鍵遭斷鍵則勢能就會瓦解。.

新!!: 分子和應變 (化學) · 查看更多 »

数量级 (能量)

本頁焦耳為單位,按能量大小列出一些例子,以幫助理解不同能量的概念。.

新!!: 分子和数量级 (能量) · 查看更多 »

数量级 (长度)

本頁公尺為單位,按長度大小列出一些例子,以幫助理解不同長度的概念。.

新!!: 分子和数量级 (长度) · 查看更多 »

数量级 (数)

这个列表罗列了部分正数的数量级,包括事物的数量、无量大数和概率。.

新!!: 分子和数量级 (数) · 查看更多 »

数量级 (数据)

;十進制.

新!!: 分子和数量级 (数据) · 查看更多 »

扁球面坐標系

扁球面坐標系(Oblate spheroidal coordinates)是一種三維正交坐標系。設定二維橢圓坐標系包含於xz-平面;兩個焦點F_與F_的直角坐標分別為(- a,\ 0,\ 0)與(a,\ 0,\ 0)。將橢圓坐標系繞著z-軸旋轉,則可以得到扁球面坐標系。(假若,繞著y-軸旋轉,則可以得到長球面坐標系。)橢圓坐標系的兩個焦點,變為一個半徑為a的圓圈,包含於三維空間的xy-平面。稱這圓圈為焦圓,又稱為參考圓。扁球面坐標系可以被視為橢球坐標系的極限案例,其兩個最大的半軸的長度相同。 當邊界條件涉及扁球面或旋轉雙曲面時,扁球面坐標時常可以用來解析偏微分方程式。例如,關於佩蘭摩擦因子(Perrin friction factors)的計算,扁球面坐標扮演了極重要的角色。讓·佩蘭因此而榮獲1926年諾貝爾物理獎。佩蘭摩擦因子決定了分子的旋轉擴散(rotational diffusion)。這程序又影響了許多科技,像蛋白質核磁共振光譜學(protein NMR),的可行性。應用這程序,我們可以推論分子的流體動力體積與形狀。扁球面坐標也時常用來解析電磁學(例如,扁球形帶電的分子的電容率),聲學(例如,聲音通過圓孔時產生的散射),流體動力學(水通過消防水帶的噴口),擴散理論(紅熱的錢幣在水裏的冷卻),等等方面的問題。.

新!!: 分子和扁球面坐標系 · 查看更多 »

拍號

在樂譜中,拍號是用分數的形式來標畫的。每一個樂譜前面都有拍號,中間如果改變節奏會標出改變的拍號,拍號如同分數,如2/4、3/4等。.

新!!: 分子和拍號 · 查看更多 »

拉曼光譜學

拉曼光譜學是用來研究晶格及分子的振動模式、旋轉模式和在一系統裡的其他低頻模式的一種分光技術。拉曼散射為一非彈性散射,通常用來做激發的雷射範圍為可見光、近紅外光或者在近紫外光範圍附近。雷射與系統聲子做交互作用,導致最後光子能量增加或減少,而由這些能量的變化可得知聲子模式。這和紅外光吸收光譜的基本原理相似,但兩者所得到的數據結果是互補的。 通常,一個樣品被一束雷射照射,照射光點被透鏡所聚焦且通過分光儀分光。波長靠近雷射的波長時為彈性瑞利散射。 自發性的拉曼散射是非常微弱的,並且很難去分開強度相對於拉曼散射高的瑞利散射,使得得到的結果是光譜微弱,導致測定困難。歷史上,拉曼分光儀利用多個光柵去達到高度的分光,去除雷射,而可得到能量的微小差異。過去,光電倍增管被選擇為拉曼散射訊號的偵測計,其需要很久的時間才能得到結果。而現今的技術,帶阻濾波器 (notch filters) 可有效地去除雷射且光譜儀或傅立葉變換光譜儀和電荷耦合元件 (CCD) 偵測計的進步,在科學研究中,利用拉曼光譜研究材料特性越來越廣泛。 有很多種的拉曼光譜分析,例如表面增強拉曼效應、針尖增強拉曼效應、偏極拉曼光譜等。.

新!!: 分子和拉曼光譜學 · 查看更多 »

替代医学

替代醫學(alternative medicine,也称另类医学)指任何声称产生医疗效果,但并非源於科学方法收集证据的医疗实践。替代医学不是生物医学的一部分,由于其疗法声明與科學共识及已確立的科學定律矛盾,他们通常被证明无效,未经证明,或者无法证明。替代医学包括各種衛生保健實踐、保健產品和療法,其在生物學角度上令人覺得貌似是合理的,但不是經過充分測試,與證據和科學矛盾,甚至是對人體有害或有毒 。例子包括新型和傳統醫學措施,如順勢療法、自然療法、脊椎按摩療法、、各種形式的針灸、中國傳統醫學、阿育吠陀醫學、、信仰療法。检测替代醫學疗效的費用龐大,美國政府曾花费高达25億美元来测试各类替代医学。然而幾乎沒有一種替代疗法与虛假治療(即使用安慰劑)相比能表現出更佳的疗效"Science-based medicine, with its emphasis on controlled study, proof, evidence, statistical significance and safety is being rejected in favour of 'alternative medicine' - an atavistic portmanteau of anecdote, hearsay, rumour and hokum....

新!!: 分子和替代医学 · 查看更多 »

晶体

晶体是原子、离子或分子按照一定的周期性,在结晶过程中,在空间排列形成具有一定规则的几何外形的固体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。 晶体内部原子或分子排列的三维空间周期性结构,是晶体最基本的、最本质的特征,并使晶体具有下面的通性:.

新!!: 分子和晶体 · 查看更多 »

晶体生长

晶体生长(英语:Crystal growth)是物质结晶过程中,继成核之后进行的一个重要阶段。宏观上,晶体生长过程是晶体——环境相(蒸气、溶液、熔体) 界面向环境相中不断推进的过程,即晶核超过临界大小之后,由包含组成晶体单元的母相从低有序相向高有序晶相的转变。晶体被定义为原子,分子或离子以有序的重复模式排列,晶格在所有三个空间维度上延伸。 因此,晶体生长不同于液滴生长,因为在生长过程中,分子或离子必须落入正确的晶格位置,以便有序的晶体生长。.

新!!: 分子和晶体生长 · 查看更多 »

晶格空位

在晶體學中, 一個晶格空位是晶體的點缺陷之一。 P. Ehrhart, Properties and interactions of atomic defects in metals and alloys, volume 25 of Landolt-Börnstein, New Series III, chapter 2, page 88, Springer, Berlin, 1991, 當一個晶格格位上缺失了一個粒子(原子,離子甚至分子),這種缺陷既為晶格空位。除了被稱為晶質的缺陷的晶體本質上具有的不完整性外,晶格空位有時是由於溫度改變或受到輻射等外部因素造成的。 晶格空位自然存在於所有晶體。對於每一個小於該物質熔點的溫度,都存在一個晶格空位平衡濃度(具有空位的格位和其他格位的比率)。一些金屬在熔點溫度具有大約為0.1%的平衡濃度。.

新!!: 分子和晶格空位 · 查看更多 »

16S 核糖体RNA

16S核糖体RNA(16S ribosomal RNA),简称16S rRNA,是原核生物的核糖体中30S亚基的组成部分。16S rRNA的长度约为1,542 nt。卡尔·乌斯和乔治·福克斯是率先在系统发育中使用的16S rRNA基因的两个先驱者。 一个细菌的细胞中可包含多个具有不同序列的16S rRNA。.

新!!: 分子和16S 核糖体RNA · 查看更多 »

2,3,4,5,6,7,8,9-八羥基壬醛

2,3,4,5,6,7,8,9-八羥基壬醛(IUPAC名:2,3,4,5,6,7,8,9-octahydroxynonanal)是一類壬醛糖。共有128種鏡像異構物,例如L-核-D-甘露壬糖等。.

新!!: 分子和2,3,4,5,6,7,8,9-八羥基壬醛 · 查看更多 »

2-磷酸甘油酸

2-磷酸甘油酸(英語:2-phosphoglycerate)是生物界中常見的化學分子,一般出現在糖解作用與糖質新生作用的過程中。 在糖解作用中,2-磷酸甘油酸是3-磷酸甘油酸在磷酸甘油酸變位酶(Phosphoglycerate)的催化之下產生,2-磷酸甘油酸第2個碳上所接的磷酸根,是來自變位酶。這個反應需要鎂離子或其他2價陽離子的參與。 2-磷酸甘油酸也會在接下來的步驟中,受到烯醇化酶(enolase)催化生成一種稱為磷酸烯醇式丙酮酸的高能磷酸分子,並釋出水分子,這是糖解作用的第9個步驟,也是倒數第2個步驟。 Category:糖酵解 Category:磷酸酯.

新!!: 分子和2-磷酸甘油酸 · 查看更多 »

2004年1月

2004年1月的新闻事件: 请参看:.

新!!: 分子和2004年1月 · 查看更多 »

72法則

金融學上有所謂72法則、71法則、70法則和69.3法則,用作估計將投資倍增或減半所需的時間,反映出的是複利的結果。 計算所需時間時,把與所應用的法則相應的數字,除以預料增長率即可。例如:.

新!!: 分子和72法則 · 查看更多 »

重定向到这里:

分子 (化学)

传出传入
嘿!我们在Facebook上吧! »