徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

盾牌座UY

指数 盾牌座UY

座UY(UY Scuti、UY Sct),是一顆位於盾牌座的紅色超巨星。這顆恆星是至今人類已知體積最大的恆星,超越過往被視為體積最大恆星的大犬座VY。.

22 关系: 大犬座VY天鵝座NML太阳系太阳质量太陽巨大恆星列表亮度伽玛射线暴土星哥伦比亚大学美国国家航空航天局特超巨星盾牌座變星超巨星黑洞II型超新星J2000.0JPL Horizons On-Line Ephemeris System恒星光谱木星望远镜

大犬座VY

大犬座VY(VY Canis Majoris,VY CMa)是一顆位於大犬座的紅色特超巨星,距離地球4900光年,視星等7.95。據推測,其質量約為30~40倍太陽質量,半徑約有1,420倍太陽半徑。犬座VY不僅巨大,光度也有太陽的50萬倍之多,是光度最高的恆星之一,因此也被歸為特超巨星。它和其他大部分出現在聯星或多重星系統中的特超巨星不同的是,它是單一恆星。大犬座VY同時也是變光週期約2000日的半規則變星。平均密度是5到10mg/m3。 如果將大犬座VY放在太陽系中心,它的表面位置將會在土星軌道之外;不過也有天文學家認為該恆星半徑應是小得多,大約600倍的太陽半徑,在火星軌道之外。.

新!!: 盾牌座UY和大犬座VY · 查看更多 »

天鵝座NML

天鵝座NML(NML Cygni或NML Cyg)是一顆紅特超巨星,是目前已知體積第二大的恆星,半徑大約是太陽的1650倍。天鵝座NML也是已知光度最高的恆星之一,距離地球約1700秒差距或5500光年。天鵝座NML周圍有許多塵埃環繞,周圍有一個豆狀的不規則星雲,並且它的形狀和水蒸氣邁射分布是一致的。它同時也是一顆週期約940日的半規則變星。.

新!!: 盾牌座UY和天鵝座NML · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

新!!: 盾牌座UY和太阳系 · 查看更多 »

太阳质量

太阳质量(符號為)是天文学上用于测量恒星、星团或星系等大型天体的质量单位,定义为太阳的质量,约为2×1030千克,表示为: 1个太阳质量是地球质量的333000倍。 太陽質量也可以用年的長度、地球和太陽的距離天文單位和萬有引力常數(G)的形式呈現: 現在,天文單位和萬有引力常數的數值都已經被精確的測量,然而,還是不太常用太陽質量來表示太陽系的其他行星或聯星的質量;只在大質量天體的測量上使用。現今,使用行星際雷達已經測出很準確的天文單位和" G ",但是太陽質量在習俗中仍然繼續被當成天文學歷史上未解的謎題來探究。.

新!!: 盾牌座UY和太阳质量 · 查看更多 »

太陽

#重定向 太阳.

新!!: 盾牌座UY和太陽 · 查看更多 »

巨大恆星列表

以下為已知體積最大的恆星列表,其排序比較的依據是太陽半徑(696,392公里)。然而已知恆星大小的確實排序尚未消楚,也尚未妥善定義。原因有 雙星有時會分開處理,有時會被視為單一系統; 估計恆星大小,不同的測量法會得到不同的結果; 部份恆星的測量結果並不準確; 大部分恆星的距離未能確定,因此其大小亦未能確定; 大部分恆星均有大氣層,而這些大氣層會導致測量結果被高估; 有理論指出銀河系中並沒有半徑大於太陽1500倍的恆星; 一個關於麥哲倫雲的調查發現星雲共有44個半徑大於太陽700倍的紅巨星,這顯示還有很多巨大恆星未被發現。.

新!!: 盾牌座UY和巨大恆星列表 · 查看更多 »

亮度

亮度(luminance)是表示人眼对发光体或被照射物体表面的发光或反射光强度实际感受的物理量,亮度和光强这两个量在一般的日常用语中往往被混淆使用。簡而言之,當任兩個物體表面在照相時被拍攝出的最終結果是一樣亮、或被眼睛看起來兩個表面一樣亮,它們就是亮度相同。 国际单位制中规定,「亮度」的符号是B,单位为尼特。.

新!!: 盾牌座UY和亮度 · 查看更多 »

伽玛射线暴

伽玛射线暴(Gamma Ray Burst,缩写GRB),又称伽玛暴,是来自天空中某一方向的伽玛射线强度在短时间内突然增强,随后又迅速减弱的现象,持续时间在0.01-1000秒,辐射主要集中在0.1-100 MeV的能段。伽玛暴发现于1967年,数十年来,人们对其本质了解得还不很清楚,但基本可以确定是发生在宇宙学尺度上的恒星级天体中的爆发过程。伽玛暴是目前天文学中最活跃的研究领域之一,曾在1997年和1999年两度被美国《科学》杂志评为年度十大科技进展之列。.

新!!: 盾牌座UY和伽玛射线暴 · 查看更多 »

土星

土星,為太陽系八大行星之一,至太阳距离(由近到远)位於第六、体积則僅次於木星。並與木星、天王星及海王星同属氣體(類木)巨星。古代中国亦称之填星或鎮星。 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自希臘/羅馬神話传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于羅馬神話中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希臘神話中的克洛諾斯(泰坦族,宙斯的父親,一说其在罗马神话中即萨图尔努斯)、巴比倫神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符號是代表农神萨图尔努斯的鐮刀(Unicode: )。 土星主要由氫組成,還有少量的氦與微痕元素,內部的核心包括岩石和冰,外圍由數層金屬氫和氣體包覆著。最外層的大氣層在外观上通常情况下都是平淡的,雖然有时会有長时间存在的特徵出現。土星的風速高達1,800公里/時,明顯的比木星上的風快速。土星的行星磁場強度介於地球和更強的木星之間。 土星有一個顯著的環系統,主要的成分是冰的微粒和較少數的岩石殘骸以及塵土。已經確認的土星的衛星有62顆。其中,土卫六是土星系統中最大和太陽系中第二大的衛星(半徑2575KM,太陽系最大的衞星是木星的木衛三,半徑2634KM),比行星中的水星還要大;並且土卫六是唯一擁有明顯大氣層的衛星。.

新!!: 盾牌座UY和土星 · 查看更多 »

哥伦比亚大学

纽约市哥伦比亚大学(英文:Columbia University in the City of New York;通称:哥伦比亚大学),是一所坐落于纽约市曼哈顿上城晨边高地的私立研究型大学,常春藤联盟成员。她被视作世界上最具声望的大学之一。 哥伦比亚大学最初名为国王学院(King's College),于1754年根据英国国王乔治二世颁布的王室特许状成立。她是全美历史第五悠久及纽约州最古老的高等教育机构,也是九所美国独立宣言签署前成立的殖民地学院之一。美国独立战争之后,国王学院于1784年被重新命名为哥伦比亚学院(Columbia College)。一份1787年起草的章程将学校置于一个私人董事会的管理之下。1896年,她从麦迪逊大道搬迁至她现在位于晨边高地,占地32英亩的校址,并同时被赋予了一个新名称,即“哥伦比亚大学”。哥伦比亚大学是美国大学协会的十四个创立成员之一,并且是美国第一所授予医学博士学位的大学。 大学直辖二十所学院,包括哥伦比亚学院、傅氏基金工程和应用科学学院和通识教育学院 三所本科生院。同时,许多临近的机构也附属于哥伦比亚大学,包括教师学院、巴纳德学院、协和神学院。另外,学校还与美洲犹太教神学院、巴黎政治学院和朱利亚学院拥有本科联合教育项目 。大学同时在安曼、北京、伊斯坦布尔、巴黎、孟买、里约热内卢、圣地亚哥、亚松森和内罗毕建立了哥伦比亚大学全球中心。 哥伦比亚大学是每年一度的普利策奖的颁发机构,哥伦比亚大学——包括其前身国王学院——的著名校友包括五位美国开国元勋;九位美国最高法院法官;二十位在世的亿万富翁;二十九位奥斯卡奖获得者;以及二十九位各国元首,包括三位美国总统。九十五位校友、教职工或研究人员是诺贝尔奖获得者,数量在全球所有大学中名列第五。.

新!!: 盾牌座UY和哥伦比亚大学 · 查看更多 »

美国国家航空航天局

美國國家航空暨太空總署(National Aeronautics and Space Administration,縮寫为NASA)是美国联邦政府的一个独立机构,负责制定、实施美国的民用太空计划、與开展航空科學暨太空科學的研究。1958年7月29日,美国总统艾森豪威尔签署了《美国公共法案85-568》,创立了國家NASA航空和太空管理局,取代了其前身美國國家航空諮詢委員會(NACA)。於1958年10月開始運作。自此,美國國家航空暨太空總署負責了美國的太空探索,例如登月的阿波羅計劃,太空實驗室,以及隨後的航天飞机。自2006年2月,美国国家航空航天局的愿景是“開拓未來的太空探索,科學發現及航空研究”。美国国家航空航天局的使命是“理解并保护我们依賴生存的行星;探索宇宙,找到地球外的生命;启示我们的下一代去探索宇宙”。在太空计划之外,美国国家航空航天局还进行长期的民用以及军用航空航天研究。美国国家航空航天局被广泛认为是世界范围内太空机构中執牛耳者。美國國家航空暨太空總署透過地球觀測系統提升對地球的了解,透過太陽科學研究計劃精進太陽科學。美國國家航空暨太空總署注重於利用先進的機械任務探索太陽系中的的所有天體並利用天文觀測台及相關計劃研究天體物理學中的主題,例如大爆炸理論。美國國家航空暨太空總署與許多美國國內及國際的組織分享其研究數據。.

新!!: 盾牌座UY和美国国家航空航天局 · 查看更多 »

特超巨星

特超巨星(Hypergiant)在約克光譜分類中的光度屬於0(是數字的零,不是字母O),位置在赫羅圖的最上方,是一種具有極高質量與光度的恆星,顯示它們質量流失非常大。.

新!!: 盾牌座UY和特超巨星 · 查看更多 »

盾牌座

座,Scutum,(拉丁文"盾")是现代88星座中的一个小星座。它被幾個大星座包圍,包括天鷹座、人馬座及巨蛇座。盾牌座包含中国星官:天弁。.

新!!: 盾牌座UY和盾牌座 · 查看更多 »

變星

變星是指亮度與電磁輻射不穩定的,經常變化並且伴隨著其他物理變化的恆星。 多數恆星在亮度上幾乎都是固定的。以我們的太陽來說,太陽亮度在11年的太陽週期中,只有0.1%變化。然而有許多恆星的亮度確有顯著的變化。這就是我們所說的變星。 變星可以大致分成以下兩種形態:.

新!!: 盾牌座UY和變星 · 查看更多 »

超巨星

超巨星是質量最大的恆星,在赫羅圖上占據著圖的頂端,在約克光譜分類中屬於Ia(非常亮的超巨星)或Ib(不很亮的超巨星),但最明亮的超巨星有時會被分類為0。 超巨星的質量是太陽的10至70倍,亮度則為太陽光度的30,000至數百萬倍,它們的半徑變化也很大,通常是太陽半徑的30至500倍,甚至超過1000倍太陽半徑。斯特凡-波茲曼定律顯示紅超巨星的表面,單位面積輻射的能量較低,因此相對於藍超巨星的溫度是較冷的,因此有相同亮度的紅超巨星會比藍超巨星更巨大。 因為她們的質量是如此的巨大,因此壽命只有短暫的一千萬至五千萬年,所以只存在於年輕的宇宙結構中,像是疏散星團、螺旋星系的漩渦臂,和不規則星系。她們在螺旋星系的核球中很罕見,也未曾在橢圓星系或球狀星團中被觀測到,因為這些天體都是由老年的恆星組成的。 超巨星的光譜佔據了所有的類型,從藍超巨星早期型的O型光譜,到紅超巨星晚期型的M型都有。參宿七,在獵戶座中最亮的恆星,是顆藍白色的超巨星,參宿四和天蝎座的心宿二則是紅超巨星。 超巨星模型的塑造依然是研究領域中活躍且有困難之處的區塊,例如恆星質量流失的問題就仍待解決。新的趨勢與研究方法則不只是要塑造一顆恆星的模型,而是要塑造整個星團的模型,並且藉以比較超巨星在其中的分布與變化,例如,像在星系麥哲倫雲中的分布狀態。 宇宙中的第一顆恆星,被認為是比存在於現在的宇宙中的恆星都要明亮與巨大的。這些恆星被認為是第三星族,她們的存在是解釋在類星體的觀測中,只有氫和氦這兩種元素的譜線所必須的。 大部分第二型超新星的前身被認為是紅超巨星,然而,超新星1987A的前身卻是藍超巨星。不過,在強大的恆星風將外面數層的氣體殼吹散前他可能是一顆紅超巨星。 目前所知最大的幾顆恆星,依據體積的大小排序如下:盾牌座UY、天鵝座NML、仙王座RW、WOH G64、仙后座PZ、維斯特盧1-26、人馬座VX、大犬座VY(the Garnet Star)。以上排名与亮度和重量无关。.

新!!: 盾牌座UY和超巨星 · 查看更多 »

黑洞

黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

新!!: 盾牌座UY和黑洞 · 查看更多 »

II型超新星

Ⅱ型超新星(罗马数字2),也稱為核塌縮超新星,是大質量恆星由內部塌縮引發劇烈爆炸的的結果,在分類上是激變變星的一個分支。能造成內部塌縮的恆星,質量至少是太陽質量的9倍。 大質量恆星由核融合產生能量,與太陽不同的是,這些恆星的質量能夠合成原子量比氫和氦更重的元素,恆星的演化供應和儲存質量更大的核融合燃料,直到鐵元素被製造出來。但是鐵的核融合不能產生能量來支撐恆星,所以核心的質量改由電子簡併壓力來支撐。這種壓力來自屬於費米子的電子,在恆星被壓縮時不能在原子核內擁有相同的能量狀態。(參考泡利不相容原理) 當鐵核的質量大於1.44太陽質量(錢德拉塞卡極限),接著就會發生內爆。快速的收縮使核心被加熱,導致快速的核反應形成大量的中子和微中子。塌縮被中子的短距力阻止,造成內爆轉而向外。向外傳遞的震波有足夠的能量將環繞在周圍的物質推擠掉,形成超新星的爆炸。 Ⅱ型超新星的爆炸有幾種不同的類型,可以依據爆炸後的光度曲線-光度對爆炸後的時間變化圖-來分類。Ⅱ-L超新星顯示出穩定的線性光度下降;而Ⅱ-P超新星在一段正常的光度下降之後,呈現出平緩的下降(高原),才會再持續正常的下降曲線。通常這些塌縮超新星的光譜中也會出現氫的光譜,雖然Ib和Ic超新星也是將氫和氦(Ic超新星)的殼層拋出的核心塌縮大質量恆星,但它們的光譜看起來卻缺乏這些元素。.

新!!: 盾牌座UY和II型超新星 · 查看更多 »

J2000.0

J2000.0是在天文学上使用的曆元,前缀「J」代表这是一个儒略纪元法,而不是一个贝塞耳纪元。 它指的是儒略日期TT时2451545.0,或是TT时2000年1月1日12時,即相对于TAI的2000年1月1日,11:59:27.816或UTC时间2000年1月1日11:58:55.816。 因恒星赤经和赤纬会因岁差(與恒星的自行)改变,所以天文学家们经常指定某一特定的纪元作参考点。早期採用的纪元标准是B1950.0纪元。 在J2000时刻的天赤道與二分点用来定义天球参考坐标系,该参考坐标系也可写作J2000坐标或简单记为J2000,但更合适的,应该如下使用国际天球参考系統(ICRS)。.

新!!: 盾牌座UY和J2000.0 · 查看更多 »

JPL Horizons On-Line Ephemeris System

#重定向 噴氣推進實驗室線上曆書系統.

新!!: 盾牌座UY和JPL Horizons On-Line Ephemeris System · 查看更多 »

恒星光谱

在天文學,恆星分類是將恆星依照光球的溫度分門別類,伴隨著的是光譜特性、以及隨後衍生的各種性質。根據維恩定律可以用溫度來測量物體表面的溫度,但對距離遙遠的恆星是非常困難的。恆星光譜學提供了解決的方法,可以根據光譜的吸收譜線來分類:因為在一定的溫度範圍內,只有特定的譜線會被吸收,所以檢視光譜中被吸收的譜線,就可以確定恆星的溫度。早期(19世紀末)恆星的光譜由A至P分為16種,是目前使用的光譜的起源。 恒星光谱分类 20世纪初,美国哈佛大学天文台对50万颗恒星进行了光谱研究。他们根据恒星不同的谱线进行了分类,结果发现它们与颜色也有关系.

新!!: 盾牌座UY和恒星光谱 · 查看更多 »

木星

|G1.

新!!: 盾牌座UY和木星 · 查看更多 »

望远镜

望遠鏡是一種可以透過遙控方式收集電磁波(例如可見光)以協助觀察遠方物體的工具。已知能實用的第一架望遠鏡是在17世紀初期在荷蘭使用玻璃透鏡發明的。這項發明現在被應用在陸地和天文學。 在第一架望遠鏡被製造出來幾十年內,用鏡子收集和聚焦光線的反射望遠鏡就被製造出來。在20世紀,許多新型式的望遠鏡被發明,包括1930年代的電波望遠鏡和1960年代的紅外線望遠鏡。望遠鏡這個名詞現在是泛指能夠偵測不同區域的電磁頻譜的各種儀器,在某些情況下還包括其他類型的探測儀器。 英文的「telescope」(來自希臘的τῆλε,tele "far"和 σκοπεῖν,skopein "to look or see";τηλεσκόπος,teleskopos "far-seeing")。這個字是希臘數學家乔瓦尼·德米西亚尼在1611年於伽利略出席的意大利猞猁之眼国家科学院的一場餐會中,推銷他的儀器時提出的。在《星際信使》這本書中,伽利略使用的字是"perspicillum"。.

新!!: 盾牌座UY和望远镜 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »