徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

Z轉換

指数 Z轉換

在數學和信号处理中,Z轉換(Z-transform)把一連串離散的實數或複數訊號,從時域轉為复頻域表示。 可以把它认为是拉普拉斯变换的离散时间等价。在时标微积分中会探索它们的相似性.

33 关系: 卷积卷积定理卷积码升採樣复平面幂级数传递函数圖訊號分佈式參數系統傅里叶级数倒頻譜离散时间傅里叶变换線性系統线性滤波器终值定理無差拍控制盧特菲·澤德頻域雙線性轉換逆小波轉換降采样S平面Z (消歧義)控制理论洛朗级数有界輸入有界輸出穩定性有限冲激响应最小相位时标微积分数字信号处理数字滤波器數位控制拉普拉斯变换

卷积

在泛函分析中,捲積、疊積、--積或旋積,是通过两个函数f和g生成第三个函数的一种数学算子,表徵函数f与经过翻转和平移的g的乘積函數所圍成的曲邊梯形的面積。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑動平均”的推广。.

新!!: Z轉換和卷积 · 查看更多 »

卷积定理

卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即一个域中的卷积对应于另一个域中的乘积,例如时域中的卷积对应于频域中的乘积。 其中\mathcal(f)表示f 的傅里叶变换。下面这种形式也成立: 借由傅里叶逆变换\mathcal^,也可以写成 注意以上的写法只对特定形式定义的变换正确,变换可能由其它方式正规化,使得上面的关系式中出现其它的常数因子。 这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n-1组对位乘法,其计算复杂度为\mathcal(n^2);而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为\mathcal(n\log n)。这一结果可以在快速乘法计算中得到应用。.

新!!: Z轉換和卷积定理 · 查看更多 »

卷积码

卷積碼(convolution code)是頻道編碼(channel coding)技術的一種,在電信領域中,屬於一種錯誤更正碼(error-correcting code)。相對於分組碼,卷積碼維持頻道的記憶效應(memory property)。卷積碼的由來,是因為輸入的原始訊息資料會和編碼器(encoder)的脈衝響應(impulse response)做卷積運算。卷積碼具有以下特性:.

新!!: Z轉換和卷积码 · 查看更多 »

升採樣

升採樣是一種插值的過程,應用於數位訊號處理,當一串數列或連續的訊號經過升採樣後,輸出的結果約略等於訊號經由更高的取樣速率採樣後所得的序列,舉例來說,一個取樣率為44,100 赫茲的16位元數位音樂訊號若被升採樣到55,125 赫茲,則此時升採樣因子為5/4,升採樣後的訊號擁有更高的位元率。 升採樣因子(常用表示符號為"L")一般是大於1的整數或有理數。這個因子表達採樣週期變成原來的1/L倍,或者等價表示採樣率變成原來的L倍。.

新!!: Z轉換和升採樣 · 查看更多 »

复平面

数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.

新!!: Z轉換和复平面 · 查看更多 »

幂级数

在数学中,幂级数(power series)是一类形式简单而应用广泛的函数级数,变量可以是一个或多个(见“多元幂级数”一节)。单变量的幂级数形式为: 其中的c和a_0,a_1,a_2 \cdots a_n \cdots是常数。a_0,a_1,a_2 \cdots a_n \cdots称为幂级数的系数。幂级数中的每一项都是一个幂函数,幂次为非负整数。幂级数的形式很像多项式,在很多方面有类似的性质,可以被看成是“无穷次的多项式”。 如果把(x-c)看成一项,那么幂级数可以化简为\sum_^\infty a_n x^n 的形式。后者被称为幂级数的标准形式。一个标准形式的幂级数完全由它的系数来决定。 将一个函数写成幂级数\sum_^\infty a_n \left(x-c \right)^n的形式称为将函数在c处展开成幂级数。不是每个函数都可以展开成幂级数。 幂级数是分析学研究的重点之一,然而在组合数学中,幂级数也占有一席之地。作为母函数,由幂级数概念发展出来的形式幂级数是许多组合恒等式的来源。在电力工程学中,幂级数则被称为Z-变换。实数的小数记法也可以被看做幂级数的一种,只不过这里的x被固定为\frac。在p-进数中则可以见到x被固定为10的幂级数。.

新!!: Z轉換和幂级数 · 查看更多 »

传递函数

在工程中,传递函数(也称系统函数、转移函数或网络函数,画出的曲线叫做传递曲线)是用来拟合或描述黑箱模型(系统)的输入与输出之间关系的数学表示。 通常它是零初始条件和零平衡点下,以空间或时间频率为变量表示的线性时不变系统(LTI)的输入与输出之间的关系。然而一些资料来源中用“传递函数”直接表示某些物理量输入输出的特性,(例如二端口网络中的输出电压作为输入电压的一个函数)而不使用变换到S平面上的结果。.

新!!: Z轉換和传递函数 · 查看更多 »

圖訊號

圖訊號(Graph Signal)的構造方法為在一張圖的頂點上賦予值,故在討論一個圖訊號時,必須先有一張圖。 圖訊號與離散時間訊號相對應,分別是圖訊號處理和數位訊號處理的處理對象。 圖訊號的指標域為圖的頂點集合。與離散時間訊號不同,因為圖的性質,指標不一定有前後的方向性,故一般而言不能將圖訊號的指標域比擬作時間。然而,為了與數位訊號處理中的概念相呼應,有時還是會將其稱作時域。.

新!!: Z轉換和圖訊號 · 查看更多 »

分佈式參數系統

分佈式參數系統(distributed parameter system)不同於集總參數系統,是状态空间為無限維度的系統。這類系統也稱為是無限維系統。典型的例子是用偏微分方程或是时滞微分方程描述的系統。以下段落所探討的會以線性非時變分佈式參數系統為主。.

新!!: Z轉換和分佈式參數系統 · 查看更多 »

傅里叶级数

在数学中,傅里叶级数(Fourier series, )是把类似波的函数表示成简单正弦波的方式。更正式地说,它能将任何周期函数或周期信号分解成一个(可能由无穷个元素组成的)简单振荡函数的集合,即正弦函数和余弦函数(或者,等价地使用复指数)。离散时间傅里叶变换是一个周期函数,通常用定义傅里叶级数的项进行定义。另一个应用的例子是Z变换,将傅里叶级数简化为特殊情形 |z|.

新!!: Z轉換和傅里叶级数 · 查看更多 »

倒頻譜

倒頻譜(cepstrum),顧名思義,就是將頻譜(spectrum)的英文前四個字母反過來寫。倒頻譜是為了某些時候,為了計算方便,將原來信號的頻譜先轉成類似分貝的單位,再作逆傅里叶变换,把它視為一種新的訊號做處理。倒頻譜有複數倒頻譜,及實數倒頻譜。 倒頻譜被定義在1963的論文(Bogert等)。定義如下:.

新!!: Z轉換和倒頻譜 · 查看更多 »

离散时间傅里叶变换

在数学中,离散时间傅里叶变换(DTFT,Discrete-time Fourier Transform)是傅里叶分析的一种形式,适用于连续函数的均匀间隔采样。离散时间是指对采样间隔通常以时间为单位的离散数据(样本)的变换。仅根据这些样本,它就可以产生原始连续函数的连续傅里叶变换的的以频率为变量的函数。在采样定理所描述的一定理论条件下,可以由DTFT完全恢复出原来的连续函数,因此也能从原来的离散样本恢复。DTFT本身是频率的连续函数,但可以通过离散傅里叶变换(DFT)很容易计算得到它的离散样本(参见对DTFT采样),而DFT是迄今为止现代傅里叶分析最常用的方法。 这两种变换都是可逆的。离散时间傅里叶逆变换得到的是原始采样数据序列。离散傅里叶逆变换是原始序列的周期求和。快速傅里叶变换(FFT)是用于计算DFT的一个周期的算法,而它的逆变换会产生一个周期的离散傅里叶逆变换。.

新!!: Z轉換和离散时间傅里叶变换 · 查看更多 »

線性系統

線性系統是一數學模型,是指用線性運算子組成的系統。相較於非線性系統,線性系統的特性比較簡單。例如以下的系統即為一線性系統: 由於線性系統較容易處理,許多時候會將系統理想化或簡化為線性系統。線性系統常應用在自動控制理論、信號處理及電信上。像無線通訊訊號在介質中的傳播就可以用線性系統來模擬。 線性系統需滿足線性的特性,若線性系統還滿足非時變性(即系統的輸入信號若延遲τ秒,那麼得到的輸出除了這τ秒延時以外是完全相同的),則稱為線性時不變系統。.

新!!: Z轉換和線性系統 · 查看更多 »

线性滤波器

线性滤波器用于时变输入信号的线性运算(:en:linear operator)。线性滤波器在电子学和数字信号处理中应用非常普遍(参见电子滤波器中的文章),它们也用于机械工程和其它技术领域。 线性滤波器经常用于剔除输入信号中不想要的频率或者从许多频率中选择一个想要的频率。滤波器和滤波器技术类型非常广泛,这篇文章将给出一个总的描述。 不论它们是电子的、电力的还是机械的,也不论它们的频率范围或者时间尺度有多大,线性滤波器的数学理论都是通用的。.

新!!: Z轉換和线性滤波器 · 查看更多 »

终值定理

在数学分析中,终值定理(FVT)是将时间趋于无穷时的頻域表达式与時域行为建立联系的许多定理之一。终值定理允许直接对频域表达式取极限来计算时域行为,无需先转换到时域表达式再取极限。 在数学上,如果 有一个有限极限,那么 其中 F(s) 为 f(t) 的(单边)拉普拉斯变换。 同样,在离散时间中 其中 F(z) 为 f 的Z轉換。.

新!!: Z轉換和终值定理 · 查看更多 »

無差拍控制

無差拍控制(dead-beat control)是離散控制理論的一種問題,是針對特定系統,要找到可以在最短時間內讓輸出進入穩態的輸入信號。 可以證明在N階的線性系統中,若系統為零可控(null controllable,是指可以利用特定輸入使狀態變為0),其最少的步數不會超過N步(依初始條件而不同)。 解法是用反饋的方式,使閉迴路轉移函數的極點都在z平面的原點(有關z平面及轉移函數的細節,請參考Z轉換)。因此線性系統的例子很容易找到解。因此一個極點都在z平面的閉迴路轉移函數有時也會稱為無差拍轉移函數(dead beat transfer function)。 非線性系統的無差拍控制是一個仍在研究中的問題(可以參考以下Nesic的參考資料)。 無差拍控制器因為其動態特性良好,常用在過程控制中。此控制器是典型的回控控制器,其控制增益是依系統階數及正規化自然頻率的表來設定。 無差拍控制的特性如下:.

新!!: Z轉換和無差拍控制 · 查看更多 »

盧特菲·澤德

盧特菲·阿利亞斯卡·澤德(Lotfi Aliasker Zadeh,date,),生於巴库,美国逻辑学家和数学家,於1965年建立了模糊集和模糊逻辑,主要研究模糊邏輯的應用。1991年又引進軟計算的概念。1996年提出。近期的研究重点是软计算在自然语言处理的应用何语言的语义计算。 他有阿塞拜疆籍的父親和俄羅斯籍的母親,並於伊朗長大,1944年搬往美國。他現為美國加州大學柏克萊分校研究院教授及柏克萊软計算研究所主任。 他早年对传统的控制论有很大的贡献,包括线性系统理论和z-变换。自1965年发表了第一篇关于模糊集的文章到现在,他一直致力于发展和推广模糊逻辑。.

新!!: Z轉換和盧特菲·澤德 · 查看更多 »

頻域

在電子學、控制系統及統計學中,頻域(frequency domain)是指在對函數或信號進行分析時,分析其和頻率有關部份,而不是和時間有關的部份,和時域一詞相對。 函數或信號可以透過一對數學的運算子在時域及頻域之間轉換。例如傅里葉變換可以將一個時域信號轉換成在不同頻率下對應的振幅及相位,其頻譜就是時域信號在頻域下的表現,而反傅里葉變換可以將頻譜再轉換回時域的信號。.

新!!: Z轉換和頻域 · 查看更多 »

雙線性轉換

在數位信號處理和離散時間的控制理論中,雙線性變換 (即 Tustin變換)被用來在連續時間系統與離散時間系統做轉換。 雙線性變換是一種特別的共行映射(即莫比烏斯變換),常被用來將線性非時變系統濾波器在連續時域的傳遞函數 H_a(s) \ 轉換成線性且平移不變濾波器在離散時域的傳遞函數 H_d(z) \ 。將S平面中位置在 j \omega \ 軸的點映射到複數平面上的單位圓 |z|.

新!!: Z轉換和雙線性轉換 · 查看更多 »

逆小波轉換

逆小波轉換(inverse wavelet transform)為小波轉換的反函數,小波轉換大致分為三類.

新!!: Z轉換和逆小波轉換 · 查看更多 »

降采样

在數位信號處理領域中,降採樣是一種多速率數位訊號處理的技術或是降低信號採樣率的過程,通常用於降低數據傳輸速率或者數據大小。 跟插值互補,插值是用來增加取樣頻率。降採樣的過程中會運用濾波器降低混疊造成的失真,因為降採樣會有混疊的情形發生,系統中具有降採樣功能的部分稱為降頻器。 降採樣因子(常用表示符號為"M")一般是大於1的整數或有理數。這個因子表達採樣週期變成原來的M倍,或者等價表示採樣率變成原來的1/M倍。 採樣率的降低會造成頻譜的壓縮,因此需要利用濾波器確保在較低的採樣頻率下不發生混疊,確保奈奎式採樣定理依舊成立。.

新!!: Z轉換和降采样 · 查看更多 »

S平面

在數學及工程上,s平面是進行拉氏轉換後複平面的名稱。s平面是數學模型,可以不用處理時域下以時間為基礎的函數,改為處理頻域下的方程式,在工程及物理學上是圖象式的分析工具。 時間t的實函數f(t)可以進行s轉換轉換到s平面,作法是和e^(s為複數)相乘後再積分,時間範圍為0 到\infty,積分後的結果就是轉換到s平面下的函數。 一種了解此方程的方法是考慮傅利葉分析。在傅利葉分析中,將正弦及餘弦和原信號相乘,所得到的積分可以看出某一頻率下的信號(頻域下某一頻率的能量)。s轉換也有類似的效果,而且e-st不止考慮頻率,也考慮了e-t的效果。因此s轉換不止有頻率的資訊,也有衰減量的資訊,例如有阻尼的弦波就可以用s轉換準確的表示。 s轉換常稱為拉氏轉換。在s平面上,乘s有類似在時域中微分的效果,除以s則相當於積分。 可以分析s平面上方程式的複數根,並繪製在复平面上,可以看到此系統頻率響應及穩定性的相關資訊。.

新!!: Z轉換和S平面 · 查看更多 »

Z (消歧義)

Z是拉丁字母中的第26個字母。 在其他的領域,Z可以代表:.

新!!: Z轉換和Z (消歧義) · 查看更多 »

控制理论

控制理論是工程學與數學的跨領域分支,主要處理在有輸入信號的動力系統的行為。系統的外部輸入稱為「參考值」,系統中的一個或多個變數需隨著參考值變化,控制器處理系統的輸入,使系統輸出得到預期的效果。 控制理論一般的目的是藉由控制器的動作讓系統穩定,也就是系統維持在設定值,而且不會在設定值附近晃動。 連續系統一般會用微分方程來表示。若微分方程是線性常係數,可以將微分方程取拉普拉斯轉換,將其輸入和輸出之間的關係用傳遞函數表示。若微分方程為非線性,已找到其解,可以將非線性方程在此解附近進行線性化。若所得的線性化微分方程是常係數的,也可以用拉普拉斯轉換得到傳遞函數。 傳遞函數也稱為系統函數或網路函數,是一個數學表示法,用時間或是空間的頻率來表示一個線性常係數系統中,輸入和輸出之間的關係。 控制理论中常用方塊圖來說明控制理论的內容。.

新!!: Z轉換和控制理论 · 查看更多 »

洛朗级数

在数学中,复变函数f(z)的洛朗级数,是幂级数的一种,它不仅包含了正数次数的项,也包含了负数次数的项。有时无法把函数表示为泰勒级数,但可以表示为洛朗级数。洛朗级数是由皮埃尔·阿方斯·洛朗在1843年首次发表并以他命名的。卡尔·魏尔斯特拉斯可能是更早发现这个级数的人,但他1841年的论文在他死后才发表于世。 函数f(z)关于点c的洛朗级数由下式给出: 其中an是常数,由以下的曲線積分定义,它是柯西积分公式的推广: 积分路径γ是位于圆环A内的一条逆时针方向的可求长曲线,把c包围起来,在这个圆环内f(z)是全纯的(解析的)。f(z)的洛朗级数展开式在这个圆环内的任何地方都是正确的。在右边的图中,该环用红色显示,其内有一合适的积分路径\gamma 。如果我们让\gamma是一个圆|z-c|.

新!!: Z轉換和洛朗级数 · 查看更多 »

有界輸入有界輸出穩定性

在信號處理及控制理論中,有界輸入有界輸出穩定性簡稱BIBO穩定性,是一種針對有輸入信號線性系統的穩定性。BIBO是「有界輸入有界輸出」(Bounded-Input Bounded-Output)的簡稱,若系統有BIBO穩定性,則針對每一個有界的輸入,系統的輸出也都會有界,不會發散到無限大。 對於信號若存在有限的定值B > 0使得信號的振幅不會超過B,則此信號為有界的,也就是說.

新!!: Z轉換和有界輸入有界輸出穩定性 · 查看更多 »

有限冲激响应

有限冲激响应(Finite impulse response,縮寫 FIR)滤波器是數位滤波器的一种,简称FIR數位滤波器。这类滤波器对于脉冲输入信号的响应最终趋向于0,因此是有限的,而得名。它是相对于无限冲激响应(IIR)滤波器而言。由于无限冲激响应滤波器中存在反馈回路,因此对于脉冲输入信号的响应是无限延续的。.

新!!: Z轉換和有限冲激响应 · 查看更多 »

最小相位

最小相位(minimum-phase)是控制理论及信號處理中有特殊性質的系統,對於线性时不变系统,若本身為因果系统且穩定,且其也是穩定的因果系统,此系統即為最小相位系統。 相反的,非最小相位(non-minimum phase)系統可以用最小相位系統串接,使部份的零點移到右半面。若有零點在右半面,表示其逆系統不穩定。全通濾波器加入了「額外的相位」(有些可能是传送迟延),這也是為何所得系統稱為非最小相位的原因。 例如一個離散系統,其有理傳遞函數若其所有的極點都在單位圓內,此系統為符合因果性的穩定系統。不過此系統的零點可以單位圓內或是圓外的任意位置。若離散系統的零點也都在單位圓內,則這個系統也是最小相位的系統。以下會說明為何這様的系統會稱為最小相位系統。.

新!!: Z轉換和最小相位 · 查看更多 »

时标微积分

在数学中,时标微积分是差分方程和微分方程的一种统一。时标微积分最初由德国数学家Stefan Hilger发明,应用于需要同时包含离散和连续的情况的模型的领域中。它为导数赋予了新的定义,使得如果你对定义在实数中的闭区间上的函数进行求导,就等价于通常意义上的导数;然而如果你将这种新定义的导数作用于定义在整数集上的函数,则它就等价于前移差分算子。.

新!!: Z轉換和时标微积分 · 查看更多 »

数字信号处理

数字信号处理(digital signal processing),简称DSP,是指用数学和数字计算来解决问题。大学里,数字信号处理常指用数字表示和解决问题的理论和技巧;而DSP也是数字信号处理器(digital signal processor)的简称,是一种可编程计算机芯片,常指用数字表示和解决问题的技术和芯片。 数字信号处理的目的是对真实世界的模拟信号进行加工和处理。因此在数字信号处理前,模拟信号要用模数转换器(A-D轉換器)变成数字信号;经数字信号处理后的数字信号往往要用数模转换器(D-A轉換器)变回模拟信号,才能适应真实世界的应用。 数字信号处理的算法需要用计算机或专用处理设备如数字信号处理器、专用集成电路等来实现。处理器是用乘法、加法、延时来处理信号,是0和1的数字运算,比模拟信号处理的电路稳定、准确、抗干扰、灵活。.

新!!: Z轉換和数字信号处理 · 查看更多 »

数字滤波器

数字滤波器是对数字信号进行滤波处理以得到期望的响应特性的离散时间系统。作为一种电子滤波器,数字滤波器与完全工作在模拟信号域的模拟滤波器不同。数字滤波器工作在数字信号域,它处理的对象是经由采样器件将模拟信号转换而得到的數位信号。 数字滤波器的工作方式与模拟滤波器也完全不同:后者完全依靠电阻器、电容器、晶体管等电子元件组成的物理网络实现滤波功能;而前者是通过数字运算器件对输入的数字信号进行运算和处理,从而实现设计要求的特性。 数字滤波器理论上可以实现任何可以用数学算法表示的滤波效果。数字滤波器的两个主要限制条件是它们的速度和成本。数字滤波器不可能比滤波器内部的数字电路的运算速度更快。但是随着集成电路成本的不断降低,数字滤波器变得越来越常见并且已经成为了如收音机、蜂窝电话、立体声接收机这样的日常用品的重要组成部分。 数字滤波器一般由寄存器、延时器、加法器和乘法器等基本数字电路实现。随着集成电路技术的发展,其性能不断提高而成本却不断降低,数字滤波器的应用领域也因此越来越广。按照数字滤波器的特性,它可以被分为线性与非线性、因果与非因果、无限脉冲响应(IIR)与有限脉冲响应(FIR)等等。其中,线性时不变的数字滤波器是最基本的类型;而由于数字系统可以对延时器加以利用,因此可以引入一定程度的非因果性,获得比传统的因果滤波器更灵活强大的特性;相对于IIR滤波器,FIR滤波器有着易于实现和系统绝对稳定的优势,因此得到广泛的应用;对于时变系统滤波器的研究则导致了以卡尔曼滤波为代表的自适应滤波理论.

新!!: Z轉換和数字滤波器 · 查看更多 »

數位控制

數位控制(Digital control)是控制理论中的一種,利用數位電子計算機作為控制器。 數位控制系統可以是单片机、特殊應用積體電路(ASIC),也可以是標準的桌上型電腦,依需求而定。 數位控制系統屬於离散系統,其中會用Z轉換代替拉普拉斯变换。而數位電腦的精度是有限的(參見量化),因此需額外考慮係數的誤差、類比數位轉換器、數位類比轉換器是否會造成非預期的影響。 第一台數位電腦阿塔纳索夫-贝瑞计算机在1940年代初問世,現今的數位電腦價格和之前相比有大幅的下降。數位電腦因為以下原因成為控制系統中的關鍵元件。.

新!!: Z轉換和數位控制 · 查看更多 »

拉普拉斯变换

拉普拉斯变换(Laplace transform)是应用数学中常用的一种积分变换,又名拉氏轉換,其符號為 \displaystyle\mathcal \left\。拉氏變換是一個線性變換,可將一個有引數實數 t(t \ge 0) 的函數轉換為一個引數為複數 s 的函數: 拉氏變換在大部份的應用中都是對射的,最常見的 f(t) 和 F(s) 組合常印製成表,方便查閱。拉普拉斯变换得名自法國天文學家暨數學家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在機率論的研究中首先引入了拉氏變換。 拉氏變換和傅里叶变换有關,不過傅里叶变换將一個函數或是信號表示為許多弦波的疊加,而拉氏變換則是將一個函數表示為許多矩的疊加。拉氏變換常用來求解微分方程及積分方程。在物理及工程上常用來分析線性非時變系統,可用來分析電子電路、諧振子、光学仪器及機械設備。在這些分析中,拉氏變換可以作時域和頻域之間的轉換,在時域中輸入和輸出都是時間的函數,在頻域中輸入和輸出則是複變角頻率的函數,單位是弧度每秒。 對於一個簡單的系統,拉氏變換提供另一種系統的描述方程,可以簡化分析系統行為的時間。像時域下的線性非時變系統,在頻域下會轉換為代數方程,在時域下的捲積會變成頻域下的乘法。.

新!!: Z轉換和拉普拉斯变换 · 查看更多 »

重定向到这里:

Z-变换Z变换Z變換

传出传入
嘿!我们在Facebook上吧! »