徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

钢和铁

快捷方式: 差异相似杰卡德相似系数参考

钢和铁之间的区别

钢 vs. 铁

鋼或稱鋼鐵、鋼材,是一種由鐵與其他元素結合而成的合金,當中最普遍的是碳。碳約佔鋼材重量的0.2%至2.1%,視乎鋼材的等級。其他有時會用到的合金元素還包括錳、鉻、釩和鎢. 铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.

之间钢和铁相似

钢和铁有(在联盟百科)19共同点: 延展性地壳地球磁鐵礦生鐵熔点赤铁矿铁锈腐蚀氧化物氧化铁晶体结构

延展性

延展性(ductility and malleability),是物質的一種機械性質,表示材料在受力而產生破裂(fracture)之前,其塑性變形的能力。延展性是由延性、展性兩個概念相近的機械性質合稱。常見金屬及許多合金均有延展性。 在材料科學中,延性(Ductility)是材料受到拉伸應力(tensile stress)變形時,特別被注目的材料能力。延性它主要表現在材料被拉伸成線條狀時。展性(Malleability)是另外一個較相似的概念,但它表示為材料受到壓縮應力(compressive stress)變形,而不破裂的能力。展性主要表現在材料受到鍛造或軋製成薄板時。延性和展性兩者間並不總是相關,如黃金具有良好的延性和展性,但鉛僅僅有良好的展性而已。然而,通常上因這兩個性質概念相近,常被稱為延展性。.

延展性和钢 · 延展性和铁 · 查看更多 »

地壳

在地理上,地殼(Crust)是指一个星球最外層的實心薄殼,可以用化學方法将它与地幔區别。地球,月球,水星,金星,火星以及其它星球的地殼大部分都是由火成岩形成的,星球的地殼比起它们的地幔有更多的不相容成分。.

地壳和钢 · 地壳和铁 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

地球和钢 · 地球和铁 · 查看更多 »

硫是一种化学元素,在元素周期表中它的化学符号是S,原子序数是16。硫是一种非常常见的无味无臭的非金属,纯的硫是黄色的晶体,又稱做硫黄、硫磺。硫有许多不同的化合价,常見的有-2, 0, +4, +6等。在自然界中常以硫化物或硫酸盐的形式出现,尤其在火山地区纯的硫也在自然界出现。硫单质难溶于水,微溶于乙醇,易溶于二硫化碳。对所有的生物来说,硫都是一种重要的必不可少的元素,它是多种氨基酸的组成部分,尤其是大多数蛋白质的组成部分。它主要被用在肥料中,也廣泛地被用在火药、潤滑劑、殺蟲劑和抗真菌剂中。.

硫和钢 · 硫和铁 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

碳和钢 · 碳和铁 · 查看更多 »

磁鐵礦

磁铁矿为一种具有亚铁磁性的矿物,其富含四氧化三铁(化学式为Fe3O4,分子量为231.54)。 产于变质矿床和内生矿床中,氧化后变为赤铁矿或褐铁矿,是炼铁的主要原料。.

磁鐵礦和钢 · 磁鐵礦和铁 · 查看更多 »

生鐵

生鐵是碳的质量分数超过2%,并且其他元素的含量不超过表1中所规定的极限值的铁-碳合金。 生铁在熔融条件下可进一步处理成钢或者铸铁。生铁既可以液态铁水的形式交货,也可以铸锭及类似的固体块或颗粒等固态铸铁的形式交货。 將鐵礦石、焦炭、石灰石等原料投進高爐熔煉,由高爐直接煉得並在模中鑄造出來的。生鐵的質地相當的脆,必須將其煉造成鋼以後才能有較多的用途。 另一方面,亦有直接從生鐵搥打的炊具,比用熟鐵鑄造的炊具更耐用。铁和足量的盐酸充分反应后,因为生铁是鐵和碳的合金,會產生碳的固體残渣,而生成的氯化亚铁能溶解於水中,所以不会形成固體沉澱。.

生鐵和钢 · 生鐵和铁 · 查看更多 »

熔点

點、液化點(M.P.)是在大氣壓下晶体將其物態由固態轉變為液態的过程中固液共存状态的溫度;各种晶体的熔点不同,对同一种晶体,熔点又与所受压强有关,壓強越大,熔點越高。不過,與沸點不同,熔點受壓强的影響很小,因爲由固態轉變(熔化)為液態的过程中,物質的體積幾乎不變化。 進行相反動作(即由液態轉為固態)的溫度,稱之為凝固点、結晶點(對水而言也称為冰点),在一定大氣壓下,任何晶体的凝固点和熔点相同。習慣上,根據常溫(25℃)時物質的狀態使用凝固点或熔点稱呼這一個溫度:對於常溫下為固態的物質,這個溫度稱爲凝固点;對於常溫下為液態的物質,這個溫度稱爲熔点。 一般的,非晶体并没有固定的熔点和凝固点。.

熔点和钢 · 熔点和铁 · 查看更多 »

赤铁矿

赤铁矿,是氧化铁的主要矿物形式,铁主要由赤铁矿冶炼。.

赤铁矿和钢 · 赤铁矿和铁 · 查看更多 »

钴是一种化学元素,符号为Co,原子序数27,属过渡金属,铁系元素之一,具有磁性。鈷礦主要為砷化物、氧化物和硫化物。此外,放射性的鈷-60同位素可進行癌症治療。.

钢和钴 · 钴和铁 · 查看更多 »

铁锈

铁锈為铁氧化物的统称,通常为红色,由铁和氧气境下進行氧化還原反應而生成。不同情况下会生成不同形式的铁鏽。铁锈主要由三氧化二铁水合物Fe2O3·nH2O和氢氧化铁(FeO(OH), Fe(OH)3)组成。其他金属亦会被氧化,但是通常不称为“鏽”。足够的时间后,在氧气和水充足的情况下,铁会完全氧化成鏽。铝的氧化非常缓慢,因为氧气在铝的表面生成了一层致密的氧化铝薄膜,此反应称为钝化。.

钢和铁锈 · 铁和铁锈 · 查看更多 »

铝(Aluminium 或Aluminum)是一种化学元素,属于硼族元素,其化学符号是Al,原子序数是13。相对密度是2.70。铝是一种较软的易延展的银白色金属。铝是地壳中第三大丰度的元素(仅次于氧和硅),也是丰度最大的金属,在地球的固体表面中占约8%的质量。铝金属在化学上很活跃,因此除非在极其特殊的氧化还原环境下,一般很难找到游离态的金属铝。被发现的含铝的矿物超过270种。最主要的含铝矿石是铝土矿。 铝因其低密度以及耐腐蚀(由于钝化现象)而受到重视。利用铝及其合金制造的结构件不仅在航空航太工业中非常关键,在交通和结构材料领域也非常重要。最有用的铝化合物是它的氧化物和硫酸盐。 尽管铝在环境中广泛存在,但没有一种已知生命形式需要铝元素。.

钢和铝 · 铁和铝 · 查看更多 »

铜(copper)是化学元素,化学符号Cu(来自cuprum),原子序数29。纯铜是柔软的金属,表面刚切开时为红橙色帶金屬光澤、延展性好、导热性和导电性高,因此在电缆和电气、电子元件是最常用的材料,也可用作建筑材料,以及組成众多種合金。铜合金机械性能优异,电阻率很低,其中最重要的是青铜和黄铜。此外,铜也是耐用的金属,可以多次回收而无损其机械性能。 人类使用铜及其合金已有数千年历史。古罗马时期铜的主要开采地是塞浦路斯,因此最初得名cyprium(意为塞浦路斯的金属),后来变为cuprum,这是copper、cuivre和Kupfer的来源。二价铜盐是常见的铜化合物,常呈蓝色或绿色,是蓝铜矿和绿松石等矿物颜色的来源,历史上曾广泛用作颜料。铜质建筑结构受腐蚀后会产生铜绿(碱式碳酸铜)。装饰艺术主要使用金属铜和含铜的颜料。 铜是所有生物所必需的微量膳食矿物质,因为它是呼吸酶复合体细胞色素c氧化酶的关键组分。软体动物和甲壳亚门动物的血液色素血蓝蛋白中含有铜。鱼类和其他哺乳动物的血液中则是含铁的复合物血红蛋白。铜在人体中主要分布于肝脏、肌肉和骨骼中。铜的化合物可用作、杀真菌剂和木材防腐剂。.

钢和铜 · 铁和铜 · 查看更多 »

锰(manganese)是一种化学元素,它的化学符号是Mn,它的原子序数是25,是一种过渡金属。.

钢和锰 · 铁和锰 · 查看更多 »

是一種化學元素,化學符號為Ni,原子序數為28。它是一種有光澤的銀白色金屬,其銀白色帶一點淡金色。鎳屬於過渡金屬,質硬,具延展性。純鎳的化學活性相當高,這種活性可以在反應表面積最大化的粉末狀態下看到,但大塊的鎳金屬與周圍的空氣反應緩慢,因為其表面已形成了一層帶保護性質的氧化物。即使如此,由於鎳與氧之間的活性夠高,所以在地球表面還是很難找到自然的金屬鎳。地球表面的自然鎳都被封在較大的鎳鐵隕石裏面,這是因為隕石在太空的時候接觸不到氧氣的緣故。在地球上,這種自然鎳總會和鐵結合在一起,這點反映出它們都是超新星核合成主要的最終產物。一般認為地球的地核就是由鎳鐵混合物所組成的。 鎳的使用(天然的隕鎳鐵合金)最早可追溯至公元前3500年。阿克塞尔·弗雷德里克·克龙斯泰特於1751年最早分離出鎳,並將它界定為化學元素,儘管他最初把鎳礦石誤認為銅的礦物。鎳的外語名字來自德國礦工傳說中同名的淘氣妖精(Nickel,與英語中魔鬼別稱"Old Nick"相近),這是由於鎳銅礦不能用煉銅的方法煉出銅來,所以被比擬成妖魔。鎳最經濟的主要來源為鐵礦石褐鐵礦,含鎳量一般為1-2%。鎳的其他重要礦物包括硅鎂鎳礦及鎳黃鐵礦。鎳的主要生產地包括加拿大的索德柏立區(一般認為該處是隕石撞擊坑)、太平洋的新喀里多尼亞及俄羅斯的諾里爾斯克。 由於鎳在室溫時的氧化緩慢,所以一般視為具有耐腐蝕性。歷史上,因為這一點鎳被用作電鍍各種表面,例如金屬(如鐵及黃銅)、化學裝置內部及某些需要保持閃亮銀光的合金(例如鎳銀)。世界鎳生產量中的約6%仍被用於抗腐蝕純鎳電鍍。鎳曾經是硬幣的常見成份,但現時這方面已大致上被較便宜的鐵所取代,尤其是因為有些人的皮膚對鎳過敏。儘管如此,英國還是在皮膚科醫生的反對下,於2012年開始再使用鎳鑄造錢幣。 只有四種元素在室溫時具有鐵磁性,鎳就是其中一種。含鎳的鋁鎳鈷合金永久磁鐵,其磁力強度介乎於含鐵的永久磁鐵與稀土磁鐵之間。鎳在現代世界的的地位主要來自於它的各種合金。全世界鎳產量中的約60%被用於生產各種鎳鋼(特別是不鏽鋼)。其他常見的合金,還有一些的新的高溫合金,就幾乎就佔盡了餘下的世界鎳用量。用於製作化合物的化學用途只佔了鎳產量的不到3%。作為化合物,鎳在化學製造有好幾種特定的用途,例如作為氫化反應的催化劑。某些微生物和植物的酶用鎳作為活性位點,因此鎳是它們重要的養分。.

钢和镍 · 铁和镍 · 查看更多 »

腐蚀

腐蚀(Rusting)是指因工程材料与其周围的物质发生化学反应而导致解体的现象。通常这个术语用来表示金属物质与氧化物如氧气等物质发生电化学的氧化反应。例如,使用金属铁制成的产品会由于铁原子在固体溶剂中发生氧化而导致生锈,这就是电化学腐蚀的一个众所周知的例子。这种反应通常会产生对应金属的氧化物,也可能产生盐。换句话说,腐蚀指的是金属物质因化学反应而导致的损耗。 很多合金结构都仅仅因为暴露在潮湿的空气中遭到腐蚀,但是,腐蚀过程会受到材料所接触的物质的强烈影响。腐蚀可能在某个局部集中出现,从而导致材料上出现孔洞甚至裂缝,也有可能在一个较大面积的表面上几乎平均的分布。由于腐蚀是一种扩散控制的过程,通常只有材料表面产生腐蚀。因此,可以通过一些对暴露的表面进行加工的办法,如钝化和铬酸盐转换等处理办法来增加材料的耐腐蚀性。然而,仍然有一些腐蚀的机制无法观察到,也难以预料。 腐蚀还可以发生在其他不是金属的物质上,例如陶瓷和聚合物。.

腐蚀和钢 · 腐蚀和铁 · 查看更多 »

氧化物

氧化物,是负价氧和另外一个化學元素組成的二元化合物,例如氧化鐵(Fe2O3)或氧化鋁(Al2O3),通常經由氧化反應產生。氧化物在地球的地殻極度普遍,而在宇宙的固體中也是如此。 氧离子(O2−)是氢氧根(OH−)离子的共轭碱,存在某些氧化物离子晶体中。自由的氧离子具强碱性(pKb ~ -22),在水溶液中是不稳定的。 氧化物中的氧元素应该呈负氧化态。如果含氧二元化合物中的氧为正氧化态,例如二氟化二氧(O2F2)和二氟化氧(OF2),则它们一般称为氟化物,而非氧化物。.

氧化物和钢 · 氧化物和铁 · 查看更多 »

氧化铁

氧化铁,或称三氧化二铁,化学式Fe2O3,是铁锈和赤铁矿的主要成分。铁锈的主要成因是鐵金屬在杂质碳的存在下,與環境中的水份和氧氣反应,鐵金屬便會生鏽。.

氧化铁和钢 · 氧化铁和铁 · 查看更多 »

晶体结构

晶体结构是指晶体的周期性结构。固体材料可以分为晶体、准晶体和非晶体三大类,其中,晶体内部原子的排列具有周期性,外部具有规则外形,比如钻石(图)。 Hauy最早提出晶体的規則外型是因为晶體内部原子分子呈規則排列,比如鑽石所具有的完美外形和優良光学性質就可以歸結為其内部原子的規則排列。20世紀初期,勞厄發明X射線衍射法,從此人們可以使用X射线來研究晶體内部的原子排列,其研究结果進而證實了Hauy的判斷。 晶體内部原子排列的具体形式一般稱之为晶格,不同的晶体内部原子排列稱為具有不同的晶格結構。各種晶格結構又可以歸納為七大晶系,各種晶系分别与十四種空間格(稱作布拉维晶格)相對應,在宏观上又可以归结为三十二种空间点群,在微观上可进一步细分为230个空间群。 对于晶体结构的研究是研究固体材料的宏观性质及各种微观过程的基础。專門研究分子結晶結構的科學稱為晶體學,經常應用在化學、生物化學與分子生物學。.

晶体结构和钢 · 晶体结构和铁 · 查看更多 »

上面的列表回答下列问题

钢和铁之间的比较

钢有158个关系,而铁有95个。由于它们的共同之处19,杰卡德指数为7.51% = 19 / (158 + 95)。

参考

本文介绍钢和铁之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »