徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

良序关系

指数 良序关系

在数学中,集合S上的良序关系(或良序)需要满足:1.是在S上的全序关系2.

21 关系: 子集实数序同构序数二元关系佐恩引理当且仅当全序关系非空集合非构造性证明负数超限归纳法自然数良基关系良序定理集合选择公理有向集合最小元数学整数

子集

子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.

新!!: 良序关系和子集 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 良序关系和实数 · 查看更多 »

序同构

在数学领域序理论中,序同构是特殊种类的单调函数,构造了一个适合偏序集合的同构概念。当两个偏序集合是序同构的时候,它们可以被认为是“本质上相同”的,在一个次序可以通过重命名元素而从另一个次序获得。有关于序同构的两个严格更弱的概念是序嵌入和伽罗瓦连接。.

新!!: 良序关系和序同构 · 查看更多 »

序数

數學上,序數是自然數的一種擴展,與基數相對,著重於次序的性質。大於有限數的序數也稱作超限序數。 超限序数是由數學家格奥尔格·康托尔于1897年引入,用來考慮無窮序列,並用來對具有序结构的無窮集進行分類。.

新!!: 良序关系和序数 · 查看更多 »

二元关系

数学上,二元关系(Binary relation,或简称关系)用於讨论两种物件的连系。诸如算术中的「大於」及「等於」、几何学中的「相似」或集合论中的「为……之元素」、「为……之子集」。.

新!!: 良序关系和二元关系 · 查看更多 »

佐恩引理

佐恩引理(Zorn's Lemma)也被称为库拉托夫斯基-佐恩(Kuratowski-Zorn)引理,是集合论中一个重要的定理,其陳述為: 在任何一非空的偏序集中,若任何链(即全序的子集)都有上界,則此偏序集内必然存在(至少一枚)极大元。 佐恩引理是以数学家马克斯·佐恩的名字命名的。 具体来说,假设(P, \le)是一个偏序集,它的一个子集T称为是一个全序子集,如果对于任意的s, t \in T有s \le t或t \le s。而T称为是有上界的,如果P中存在一个元素u,使得对于任意的t \in T,都有t \le u。在上述定义中,并不要求u一定是T中的元素。而一个元素m \in T称为是極大的,如果x \in T且x \ge m,则必然有x.

新!!: 良序关系和佐恩引理 · 查看更多 »

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

新!!: 良序关系和当且仅当 · 查看更多 »

全序关系

全序关系即集合X上的反对称的、传递的和完全的二元关系(一般称其为\leq)。 若X满足全序关系,则下列陈述对于X中的所有a,b和c成立:.

新!!: 良序关系和全序关系 · 查看更多 »

非空集合

在集合論裏,非空集合是至少含有一个元素的集合。與之相對的是空集。 非空集合的元素个数不为零,而空集不含任何元素。 en:Non-empty set F.

新!!: 良序关系和非空集合 · 查看更多 »

非构造性证明

非构造性证明是「表述存在性的命题或定理」的一种证明方式:证明的过程中,不举例而只证明语句是否正确。非构造性证明很多时候依赖于排中律。数学结构主义数学不允许非构造性证明。.

新!!: 良序关系和非构造性证明 · 查看更多 »

负数

负数,在数学上指小于0的实数,如−2、−3.2、−807.5等,与正数相对。和实数一样,负數也是一個不可數的無限集合。這個集合在数学上通常用粗體R−或\mathbb^-来表示。负数与0统称非正数。.

新!!: 良序关系和负数 · 查看更多 »

超限归纳法

超限归纳法(transfinite induction)是数学归纳法向(大)良序集合比如基数或序数的集合的扩展。.

新!!: 良序关系和超限归纳法 · 查看更多 »

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

新!!: 良序关系和自然数 · 查看更多 »

良基关系

在数学中,类 X 上的一个二元关系 R 被称为是良基的,当且仅当所有 X 的非空子集都有一个 R-极小元;就是说,对 X 的每一个非空子集 S,存在一个 S 中的元素 m 使得对于所有 S 中的 s,二元组 (s,m) 都不在 R 中。 等价的说,假定某种选择公理,一个二元关系称为是良基的,当且仅当它不包含可数的无穷降链,也就是说不存在 X 的元素的无穷序列 x0, x1, x2,...使得对所有的自然数 n 有着 xn+1 R xn。 在序理论中,一个偏序关系称为是良基的,当且仅当它对应的严格偏序是良基的。如果这个序还是全序,那么此时称这个序为良序。 在集合论中,一个集合 x 称为是一个良基集合,如果集成员关系在 x 的传递闭包上是良基的。策梅洛-弗兰克尔集合论中的正则公理,就是断言所有的集合都是良基的。.

新!!: 良序关系和良基关系 · 查看更多 »

良序定理

在數學中,良序定理(Well-ordering theorem)表示「所有集合都可以被良序排序」。这是非常重要的,因为它使所有集合均适用於超限归纳法。.

新!!: 良序关系和良序定理 · 查看更多 »

集合

集合可以指:.

新!!: 良序关系和集合 · 查看更多 »

选择公理

选择公理(Axiom of Choice,縮寫AC)是数学中的一条集合论公理。这条公理声明,对所有非空指标集族 (S_i)_,总存在一个索引族 (x_i)_,对每一个 i \in I,均有 x_i \in S_i。选择公理最早于1904年,由恩斯特·策梅洛为证明良序定理而公式化完成。 非正式地說,选择公理声明:給定一些盒子(可以是無限個),每个盒子中都含有至少一个小球,那么可以作出这样一种选择,使得可从每个盒子中恰好选出一个小球。在很多情况下这样的选择可不借助选择公理;尤其是在“盒子个数有限”和“存在具體的選擇規則”(當每個盒子都恰好只有一个小球具有某項特征)这两种情况下。再举一个例子,假设有许多(甚至是无限)双鞋子,则我们可以选取每双鞋左边的鞋子构成一个具体的选择。然而,假设有无限双袜子(假设每双袜子都没有可区分的特征),在这种情况下,有效的选择只能通过选择公理得到。 尽管曾具有争议性,选择公理現在已被大多数数学家毫无保留地使用着,例如带有选择公理的策梅洛-弗兰克尔集合论(ZFC)。数学家们使用选择公理的原因是,有许多被普遍接受的数学定理,比如是吉洪诺夫定理,都需要选择公理来证明。現代的集合论学家也研究与选择公理相矛盾的公理,例如。 在一些構造性數學的理論中會避免选择公理的使用,不過也有的將选择公理包括在內。.

新!!: 良序关系和选择公理 · 查看更多 »

有向集合

在数学中,有向集合(也叫有向预序或过滤集合),是一个具有预序关系(自反及传递之二元关系 ≤)的非空集合 A,而且每一對元素都會有個上界,亦即对于 A 中任意两个元素 a 和 b,存在着 A 中的一个元素 c(不必然不同于 a,b),使得 a ≤ c 和 b ≤ c(有向性)。 有向集合是非空全序集合的廣義化,亦即所有的全序集合都會是有向集合(偏序集合則不一定是有向的)。在拓撲學裡,有向集合被用來定義網,一種廣義化序列且統合用於數學分析中各式極限的概念。有向集合亦在抽象代數及(更一般的)範疇論中被用來產生有向極限這類的概念。.

新!!: 良序关系和有向集合 · 查看更多 »

最小元

设(A, \leq)是偏序集,B \subseteq A,y \in B,若对于所有的x \in B都有y \leq x,则称y为B的最小元。 请注意最小元和极小元的区别。最小元是B中最小的元素,它与B中其它元素都可比;而极小元不一定与B中其它元素都可比,只要没有比它小的元素,它就是极小元。对于有穷集合B,极小元一定存在,但最小元不一定存在。最小元如果存在一定是唯一的,但极小元可能有多个。.

新!!: 良序关系和最小元 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 良序关系和数学 · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

新!!: 良序关系和整数 · 查看更多 »

重定向到这里:

良序良序關係良序集良序集合

传出传入
嘿!我们在Facebook上吧! »