徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

聚乙烯吡咯烷酮和高分子

快捷方式: 差异相似杰卡德相似系数参考

聚乙烯吡咯烷酮和高分子之间的区别

聚乙烯吡咯烷酮 vs. 高分子

聚乙烯吡咯烷酮(Polyvinylpyrrolidone)简称PVP,通常也稱為 Polyvidone 或 Povidone ,是''N''-乙烯基-2-吡咯烷酮发生聚合生成的高分子化合物。. 分子(Macromolecule)化合物是一個非常大的分子,如蛋白質,通常由較小的亞基(單體)的聚合產生。它們一般由數千或更多的原子組成。通过一定形式的聚合反应生成具有非常高的分子量的大分子,一般指聚合物和结构上包括聚合物的分子。在生物化学中,这个术语被应用于三个传统的生物聚合物(核酸、蛋白质、和碳水化合物),以及具有大分子量的非聚合分子,例如脂类和。这些分子有时也被称为生物大分子。 聚合物高分子的各个构成分子被称为单体。 人工合成的高分子包括塑料。金属和晶体虽然也是由许多原子组成的,其内部通过类似分子的键联合在一起,但是它们一般不被认为是高分子。有时不同的高分子之间通过分子间力(但不是通过化学键)组合到一起,尤其是假如这样的组合是自然发生的,而且其组成部分一般不单独出现的话,那么这样的混合物也会被称为高分子。实际上这样的混合物更应该被称为高分子复合物。在这种情况下组成这个复合物的单个高分子往往被称为下单位。由高分子组成的物质往往有不寻常的物理特性。液晶和橡胶就是很好的例子。许多高分子在水中需要特殊的小分子帮助才能溶解。许多需要盐或者特殊的离子来溶解。.

之间聚乙烯吡咯烷酮和高分子相似

聚乙烯吡咯烷酮和高分子有(在联盟百科)4共同点: 单体乙炔分子量聚合

单体

在高分子化学中,单体是可与同种或他种分子通过共价键连接生成聚合物的小分子。英文的“单体”(monomer)一词来源于希腊语的“一”(mono)和“部分”(meros)。.

单体和聚乙烯吡咯烷酮 · 单体和高分子 · 查看更多 »

乙炔

乙炔,俗稱風煤(實際上風煤是指氧氣與乙炔組成之套件,風指壓縮氧、煤指乙炔,並非單單乙炔稱為風煤)、電石氣、電土,是炔烴化合物系列中體積最小的一員,主要作工業用途,特別是燒焊金屬方面。 乙炔於1836年由英國科學家艾德蒙·戴维(Edmund Davy)發現,化學式為,有一個如下圖所示的直线型結構: 乙炔在室溫下是無色、極易燃的氣體。純乙炔是無臭的,但工業用乙炔由於含有硫化氫、磷化氫等雜質,而有一股大蒜的氣味。乙炔的化學能主要貯存於它的三鍵中。 在攝氏400度以上, 乙炔會聚合生成乙烯基乙炔()和苯()。在攝氏900度以上則會形成炭黑。 碳酸鈣(石灰岩)和煤炭是生產乙炔的主要原料。首先,碳酸鈣會轉化為氧化鈣,煤炭則轉化為焦炭。然後氧化鈣和焦炭會發生反應形成碳化鈣和一氧化碳: 碳化钙加水會形成乙炔和氫氧化鈣:CaC2 +2H2O → C2H2↑ + Ca(OH)2.

乙炔和聚乙烯吡咯烷酮 · 乙炔和高分子 · 查看更多 »

分子量

分子量,又称“相对分子质量”,指组成分子的所有原子的原子量的总和,分子量的符号为Mr。定义为物质分子或特定单元的平均质量与12C质量的1/12之比值。由于是相对值,所以为无量纲量,单位为1。.

分子量和聚乙烯吡咯烷酮 · 分子量和高分子 · 查看更多 »

聚合

聚合是将一种或几种具有简单小分子的物质,合并成具有大分子量的物质的化工单元过程。 大分子量的物质一般叫作聚合物或高分子化合物,分子量都高达几千甚至几百万。淀粉、纤维素都是天然的高聚物,是由单糖聚合而成的。塑料是人工合成的高聚物。能够聚合成高聚物的小分子物质叫做单体,单体一般有三类:一种是含有不饱和键,大部分是碳碳双键,也可能是碳碳三键或者是碳氮三键;另一种单体是含有两个或多个有特殊功能的原子团;第三种单体是不同原子组成的环状分子,比如碳氧环、氧硫环、碳氮环等。这些单体可以互相连接形成高聚物。 如果聚合是由同一种单体进行的叫做均聚;如果由几种不同的单体形成高聚物,叫做共聚。 例如由乙烯分子作为单体聚合形成聚乙烯塑料的过程就叫做均聚;此外还有丙烯均聚形成聚丙烯塑料,氯乙烯形成聚氯乙烯等。 有乙烯和丙烯进行共聚,可以形成合成橡胶,叫做乙丙橡胶。 任何小分子合并的过程都可以叫做聚合,不仅仅是必须形成高聚物。例如三个甲醛分子合成一个三聚甲醛分子的过程也叫做聚合过程。.

聚乙烯吡咯烷酮和聚合 · 聚合和高分子 · 查看更多 »

上面的列表回答下列问题

聚乙烯吡咯烷酮和高分子之间的比较

聚乙烯吡咯烷酮有16个关系,而高分子有102个。由于它们的共同之处4,杰卡德指数为3.39% = 4 / (16 + 102)。

参考

本文介绍聚乙烯吡咯烷酮和高分子之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »