徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

疊層石和细菌

快捷方式: 差异相似杰卡德相似系数参考

疊層石和细菌之间的区别

疊層石 vs. 细菌

層石(英語:Stromatolite,或稱層疊石,源自希臘文strōma與lithos)可定義為「從某一點或有限的表面開始增生,並聚集石化,形成逐漸增大的沉澱物生成構造」。自然界中有許多不同型態的疊層石,包括圓錐狀、層狀、分枝狀、圓頂狀或圆柱狀等。 一般認為疊層石是由一些微生物,尤其是藍菌(舊稱藍綠藻)所黏結堆砌而成,不過事實上古代的疊層石只有少數含有微生物化石。關於如何有效辨識生物性與非生物疊層石,是地質學的研究對象之一。地球上有許多形成於前寒武紀的疊層石,其中較早的(如太古元)可能是單細胞藍菌聚落所遺留的化石;較晚的(如顯生元)則可能為真核綠藻的早期型態。而澳洲西部最古老的藍綠菌疊層石為35億年。 現代疊層石主要可見於鹽湖或潟湖當中,這些極端地帶較缺乏動物的覓食,例如澳洲西部的鯊魚灣。此外位於墨西哥北部沙漠的:en:Cuatro Ciénegas,也有發現一些處於淡水之中的疊層石。. 細菌(学名:Bacteria)是生物的主要類群之一,屬於細菌域。也是所有生物中數量最多的一類,據估計,其總數約有5×1030個。細菌的個體非常小,目前已知最小的細菌只有0.2微米長,因此大多--能在顯微鏡下看到它們;而世界上最大的細菌可以用肉眼直接看見,有0.2-0.6毫米大,是一種叫納米比亞嗜硫珠菌的細菌。細菌一般是單細胞,細胞結構簡單,缺乏細胞核以及膜狀胞器,例如粒線體和葉綠體。基於這些特徵,細菌屬於原核生物。原核生物中還有另一類生物稱做古細菌,是科學家依據演化關係而另闢的類別。為了區別,本類生物也被稱做真細菌(Eubacteria)。古細菌與真細菌在生活環境、營養方式以及遺傳上有所不同。細菌的形狀相當多樣,主要有球狀、桿狀,以及螺旋狀。 細菌廣泛分佈於土壤和水中,或著與其他生物共生。人體身上也帶有相當多的細菌。據估計,人體內及表皮上的細菌細胞總數約是人體細胞總數的十倍。此外,也有部分種類分布在極端的環境中,例如溫泉,甚至是放射性廢棄物中,它們被歸類為嗜極生物,其中最著名的種類之一是海棲熱袍菌,科學家是在意大利的一座海底火山中發現這種細菌的。甚至在太空梭上也能生長。然而,細菌種類是如此多,科學家研究過並命名的種類只佔其中的小部份。細菌域下所有門中,只有約一半能在實驗室培養的種類。 細菌的營養方式有自养及异养,其中异养的腐生細菌是生态系统中重要的分解者,使碳循環能順利進行。部分細菌會進行固氮作用,使氮元素得以轉換為生物能利用的形式。細菌也對人類活動有很大的影響。一方面,細菌是許多疾病的病原體,包括肺結核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由細菌所引發。然而,人類也時常利用細菌,例如乳酪及酸奶和酒釀的製作、部分抗生素的製造、廢水的處理等,都與細菌有關。在生物科技領域中,細菌有也著廣泛的運用。 總的來說,這世界上約有5×1030 隻細菌。其生物量遠大於世界上所有動植物體內細胞數量的總和。細菌還在營養素循環上扮演相當重要的角色,像是微生物造成的腐敗作用,就與氮循環相關。而在海底火山和在冷泉中,細菌則是靠硫化氫和甲烷來產生能量。2013年3月17日,研究者在深約11公里的馬里亞納海溝中發現了細菌。其他研究則指出,在美國西北邊離岸2600米的海床下580米深處,仍有許多的微生物根據這些研究人員的說法:「你可以在任何地方找到他們,他們的適應力遠比你想像的還要強,可以在任何地方存活。.

之间疊層石和细菌相似

疊層石和细菌有(在联盟百科)5共同点: 二氧化碳微生物化石光合作用真核生物

二氧化碳

二氧化碳(IUPAC名:carbon dioxide,分子式:CO2)是空氣中常見的化合物,由两个氧原子与一个碳原子通过共价键连接而成。空氣中有微量的二氧化碳,約佔0.04%。二氧化碳略溶於水中,形成碳酸,碳酸是一種弱酸。 在二氧化碳分子中,碳原子的成键方式是sp杂化轨道与氧原子成键。碳原子的两个sp杂化轨道分别与两个氧原子生成两个σ键。碳原子上两个没有参加杂化(混成)的p轨道与成键的sp杂化轨道成90°的直角,并同氧原子的p轨道分别发生重叠,故缩短了碳氧键的间距。 二氧化碳平均约占大气体积的400ppm,不過每年因為人為的排放增加,比率還在逐步上升。2018年4月大氣二氧化碳月均濃度超過410ppm,為過去80萬年來最高。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。 二氧化碳常壓下為無色、無味、不助燃、不可燃的氣體。二氧化碳是一種溫室氣體。二氧化碳的濃度自1900年至2016年11月增長了約127ppm。.

二氧化碳和疊層石 · 二氧化碳和细菌 · 查看更多 »

微生物

微生物通常是所有难以用肉眼直接看到或看不清楚的一切微小生物的总称,包括细菌、真菌、放线菌、原生动物、藻类等有细胞结构的微生物,也包括病毒、支原体、衣原体等无完整细胞结构的微生物。一般需要借助显微镜来观察研究。微生物个体微小(直径小于0.1毫米),种类繁多(99%都是未知品種,且不斷增加),之於生態圈卻非常重要(能量來源與物質循環利用),是地球最多的生命形式,可以佔據上所有生物(這裡包含植物、海草等)總重量的一半之多,与人类日常生活、健康关系密切。微生物应用领域日益拓展,广泛应用在食品、医药、环保等领域。.

微生物和疊層石 · 微生物和细菌 · 查看更多 »

化石

化石是存留在岩石中的古生物遗体、遗物或生活痕跡,最常見的是骸骨和貝殼等。 化石,古代生物的遗体、遗物或遗迹埋藏在地下变成的跟石头一样的东西。研究化石可以了解生物的演化并能帮助确定地层的年代。保存在地壳的岩石中的古动物或古植物的遗体或表明有遗体存在的证据都谓之化石。從太古宙(34億年前)至全新世(1萬年前)之間都有化石出現。 简单地说,化石就是生活在遥远的过去的生物的遗体或遗迹变成的石头。在漫长的地质年代里,地球上曾经生活过无数的生物,这些生物死亡后的遗体或是生活时遗留下来的痕跡,许多都被当时的泥沙掩埋起来。在随后的岁月中,这些生物遗体中的有机质分解殆尽,坚硬的部分如外壳、骨骼、枝叶等与包围在周围的沉积物一起经过石化变成了石头,但是它们原来的形态、结构(甚至一些细微的内部构造)依然保留着;同样,那些生物生活时留下的痕跡也可以这样保留下来。我们把这些石化了的生物遗体、遗迹就称为化石。从化石中可以看到古代动物、植物的样子,从而可以推断出古代动物、植物的生活情况和生活环境,可以推断出埋藏化石的地层形成的年代和经历的变化,可以看到生物从古到今的变化等等。 其實有很長一段時間,化石作用被認定是單純的「石化」,後來人類才逐漸瞭解化石形成的原理。這是一種非常複雜的過程,是生物、物理、化學三種現象的結合。而化石的形成,需要一些特殊條件:第一,死去的有機體被迅速埋在沙土、淤泥或河泥中而沒有分解。海底和湖底是非常有利的環境,草原和沙漠也不錯。其次,此生物不曾腐壞,而由礦物逐漸取代該生物體的有機物質。最後,化石若要保存幾百萬年不變,必須在石化後,不再經歷任何地質變動。.

化石和疊層石 · 化石和细菌 · 查看更多 »

光合作用

光合作用是植物、藻類等生產者和某些細菌,利用光能把二氧化碳、水或硫化氢變成碳水化合物。可分为產氧光合作用和不產氧光合作用。 植物之所以称为食物链的生产者,是因为它们能够透过光合作用利用无机物生产有机物并且贮存能量,其能量轉換效率約為6%。通过食用,食物链的消费者可以吸收到植物所贮存的能量,效率为10%左右。對大多數生物來説,這個過程是賴以生存的關鍵。而地球上的碳氧循环,光合作用是其中最重要的一环。.

光合作用和疊層石 · 光合作用和细菌 · 查看更多 »

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

疊層石和真核生物 · 真核生物和细菌 · 查看更多 »

上面的列表回答下列问题

疊層石和细菌之间的比较

疊層石有16个关系,而细菌有189个。由于它们的共同之处5,杰卡德指数为2.44% = 5 / (16 + 189)。

参考

本文介绍疊層石和细菌之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »